WorldWideScience

Sample records for modeling gps velocity

  1. Uncertainty estimation of the velocity model for stations of the TrigNet GPS network

    Science.gov (United States)

    Hackl, M.; Malservisi, R.; Hugentobler, U.

    2010-12-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.

  2. Uncertainty estimation of the velocity model for the TrigNet GPS network

    Science.gov (United States)

    Hackl, Matthias; Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard

    2010-05-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is quite demanding and are usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies.

  3. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  4. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  5. Modeling environmental bias and computing velocity field from data of Terra Nova Bay GPS network in Antarctica by means of a quasi-observation processing approach

    Science.gov (United States)

    Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo

    2007-01-01

    A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.

  6. Clustering of GPS velocities in the Mojave Block, southeastern California

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  7. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  8. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  9. Kinematics of the entire East African Rift from GPS velocities

    Science.gov (United States)

    Floyd, M.; King, R. W.

    2017-12-01

    Through a collaborative effort of the GeoPRISMS East Africa Rift GPS Working Group, we have collected and collated all of the publicly available continuous and survey-mode data for the entire rift system between 1994 and 2017 and processed these data as part of a larger velocity solution for Africa, Arabia and western Eurasia. We present here our velocity solution encompassing the major bounding plates and intervening terranes along the East African Rift from the Red Sea to the Malawi Rift and adjacent regions for GPS sites with data spans of at least 2.4 years, and north and east velocity uncertainties less than 1.5 mm/yr. To obtain realistic uncertainties for the velocity estimates, we attempted at each stage of the analysis to account for the character of the noise: During phase processing, we used an elevation-dependent weighting based on the phase residuals for each station; we then examined each position time series, removing outliers and reweighting appropriately to account for the white noise component of the errors; and e accounted for temporal correlations by estimating an equivalent random-walk magnitude for each continuous site and applying the median value (0.5 mm/√yr) to all survey-mode sites. We rigorously estimate relative rotation rates of Nubia, by choosing subset of well-determined sites such that the effective weights of western, northeastern and southern Africa were roughly equivalent, and Somalia, for which the estimate is dominated by three sites (MALI, RCMN, SEY1) whose uncertainties are a factor of 2-3 smaller than those of the other sites. For both plates, the weighted root-mean-square of the velocity residuals is 0.5 mm/yr. Our unified velocity solution provides a geodetic framework and constraints on the continental-scale kinematics of surface motions as well as more local effects both within and outside of the rift structures. Specific focus areas with denser coverage than previous fields include the Danakil block, the Afar Rift, the

  10. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    Science.gov (United States)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these

  11. An investigation of airborne GPS/INS for high accuracy position and velocity determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Cannon, M.E. [Calgary Univ., AB (Canada). Dept. of Geomatics Engineering; Owen, T.E.; Meindl, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    An airborne test using a differential GPS-INS system in a Twin Otter was conducted by Sandia National Laboratories to assess the feasibility of using the integrated system for cm-level position and cm/s velocity. The INS is a miniaturized ring-laser gyro IMU jointly developed by Sandia and Honeywell while the GPS system consists of the NovAtel GPSCard{trademark}. INS position, velocity and attitude data were computed using Sandia`s SANDAC flight computer system and logged at 4 Hz and GPS data was acquired at a 1 Hz rate. The mission was approximately 2.5 hours in duration and the aircraft reached separations of up to 19 km from the base station. The data was post-processed using a centralized Kalman filter approach in which the double differenced carrier phase measurements are used to update the INS data. The INS position is in turn used to detect and correct GPS carrier phase cycle slips and also to bridge GPS outages. Results are presented for the GPS-only case and also for integrated GPS/INS.

  12. Seismotectonic Implications Of Clustered Regional GPS Velocities In The San Francisco Bay Region, California

    Science.gov (United States)

    Graymer, R. W.; Simpson, R.

    2012-12-01

    We have used a hierarchical agglomerative clustering algorithm with Euclidean distance and centroid linkage, applied to continuous GPS observations for the Bay region available from the U.S. Geological Survey website. This analysis reveals 4 robust, spatially coherent clusters that coincide with 4 first-order structural blocks separated by 3 major fault systems: San Andreas (SA), Southern/Central Calaveras-Hayward-Rodgers Creek-Maacama (HAY), and Northern Calaveras-Concord-Green Valley-Berryessa-Bartlett Springs (NCAL). Because observations seaward of the San Gregorio (SG) fault are few in number, the cluster to the west of SA may actually contain 2 major structural blocks not adequately resolved: the Pacific plate to the west of the northern SA and a Peninsula block between the Peninsula SA and the SG fault. The average inter-block velocities are 11, 10, and 9 mm/yr across SA, HAY, and NCAL respectively. There appears to be a significant component of fault-normal compression across NCAL, whereas SA and HAY faults appear to be, on regional average, purely strike-slip. The velocities for the Sierra Nevada - Great Valley (SNGV) block to the west of NCAL are impressive in their similarity. The cluster of these velocities in a velocity plot forms a tighter grouping compared with the groupings for the other cluster blocks, suggesting a more rigid behavior for this block than the others. We note that for 4 clusters, none of the 3 cluster boundaries illuminate geologic structures other than north-northwest trending dominantly strike-slip faults, so plate motion is not accommodated by large-scale fault-parallel compression or extension in the region or by significant plastic deformation , at least over the time span of the GPS observations. Complexities of interseismic deformation of the upper crust do not allow simple application of inter-block velocities as long-term slip rates on bounding faults. However, 2D dislocation models using inter-block velocities and typical

  13. Determining glacier velocity with single frequency GPS receivers

    NARCIS (Netherlands)

    Reijmer, C.H.; van de Wal, R.S.W.; Boot, W.

    2011-01-01

    A well-known phenomenon in glacier dynamics is the existence of a relation between the glacier velocity and available amount of melt water (Zwally et al., 2002; Van de Wal et al., 2008). This relation is of particular importance when estimating the reaction of glaciers and ice sheets to climate

  14. Effect of GPS errors on Emission model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...... in this paper indicates that the location error from using smartphones is within the accuracy needed to use the location data in air quality modelling. The nature of smartphone location data enables more accurate and near real time air quality modelling and monitoring. The location data is harvested from user...

  15. Combining GPS measurements and IRI model predictions

    International Nuclear Information System (INIS)

    Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.

    2002-01-01

    The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations

  16. Tsunami Scenario in the Nankai Trough, Japan, Based on the GPS-A and GNSS Velocities

    Science.gov (United States)

    Bock, Y.; Watanabe, S. I.; Melgar, D.; Tadokoro, K.

    2017-12-01

    We present two local tsunami scenarios for the Nankai trough, Japan, an area of significant seismic risk, using GPS-A and GNSS velocities and two different plate interface geometries to better assess the slip deficit rate. We expand on the work of Yokota et al. [2016, Nature] by: (1) Adding seafloor data collected by Nagoya University [Tadokoro et al., 2012 GRL] at the Kumano basin, (2) Aligning the geodetic data to the Nankai block (forearc sliver) to the tectonic model of Loveless and Meade [2010 JGR] - the earlier work ignored block boundaries such as the Median Tectonic Line (MTL) and may have overestimated the slip deficit rate, (3) Considering two different plate interface geometries - it is essential to use the accurate depth of the plate interface, especially for the offshore region where the faults are located near the observation sites, (4) Estimating and correcting for the postseismic displacements of the 2004 southeastern off the Kii Peninsula earthquakes (MJMA 7.1, 7.4). Based upon the refined model, we calculate the coseismic displacements and tsunami wave propagation assuming that a hundred years of constant slip deficit accumulation is released instantaneously. We used the open source software GeoClaw v5.3.1, which solves the two-dimensional shallow water equations with the finite volume technique [LeVeque, 2002 Cambridge University Press], for the local tsunami scenarios. We present the expected tsunami propagation models and wave profiles based on the geodetically-derived distribution of slip, stressing the importance of identifying fault locations and geometries. The location of the downdip edge of the coseismic rupture is essential to assess whether the coastal area would subside or not. The sensitivity to the plate interface geometries is increased in the near-trough region. From the point of view of disaster prevention, subsidence at the southern coast would heighten the tsunami runup distance (e.g., at gauges in Shimotsu and Irago). Further

  17. A new GPS velocity field in the south-western Balkans: insights for continental dynamics

    Science.gov (United States)

    D'Agostino, N.; Avallone, A.; Duni, L.; Ganas, A.; Georgiev, I.; Jouanne, F.; Koci, R.; Kuka, N.; Metois, M.

    2017-12-01

    The Balkans peninsula is an area of active distributed deformation located at the southern boundary of the Eurasian plate. Relatively low strain rates and logistical reasons have so far limited the characterization and definition of the active tectonics and crustal kinematics. The increasing number of GNSS stations belonging to national networks deployed for scientific and cadastral purposes, now provides the opportunity to improve the knowledge of the crustal kinematics in this area and to define a cross-national velocity field that illuminates the active tectonic deformation. In this work we homogeneously processed the data from the south western Balkans and neighbouring regions using available rinex files from scientific and cadastral networks (ALBPOS, EUREF, HemusNET, ITALPOS, KOPOS, MAKPOS, METRICA, NETGEO, RING, TGREF). In order to analyze and interpret station velocities relative to the Eurasia plate and to reduce the common mode signal, we updated the Eurasian terrestrial reference frame described in Métois et al. 2015. Starting from this dataset we present a new GPS velocity field covering the south western part of the Balkan Peninsula. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Our results (1) improve the picture of the general southward flow of the crust characterizing the south western Balkans behind the contractional belt at the boundary with Adriatic and (2) provide new key elements for the understanding of continental dynamics in this part of the Eurasian plate boundary.

  18. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  19. A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields

    Science.gov (United States)

    Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang

    2017-03-01

    Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.

  20. Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis

    Science.gov (United States)

    Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing

    2018-03-01

    Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.

  1. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2013-01-01

    Full Text Available In the southernmost Longitudinal Valley (LV, Taiwan, we analyzed a dense GPS array composed of 10 continuous stations and 86 campaign-mode stations. By removing the effects of the four major earthquakes (one regional and three local occurred during the 1992 - 2010 observation period, we derived a new horizontal velocity field in this area, which then allows better locating the surface traces of the major active faults, including the Longitudinal Valley Fault (LVF system and the Central Range Fault, and characterizing the slip behaviors along the faults. Note that LVF reveals two sub-parallel strands in the study area: the Luyeh Fault to the west and the Lichi Fault to the east. Based on the results of strain analyses, including dilatation and shear strain, and projected vectors of station velocities across the major faults, we came to the following geological interpretations. During the inter-seismic periods, the surface deformation of the southernmost LV is mainly accommodated by the faulting on the two branches of the LVF; there is very little surface deformation on the Central Range Fault. The Luyeh River appears to act as a boundary to divide the LVF to behave differently to its northern and southern sides. The Lichi Fault reveals a change of slip kinematics from an oblique shearing/thrusting in the north to a nearly pure shearing with minor extension to the south. Regarding the slip behavior of the Luyeh Fault, it exhibits a creeping behavior in the north and a partially near-surface-locked faulting behavior in the south. We interpret that the two strands of the LVF merge together in the northern Taitung alluvial plain and turns to E-W trend toward the offshore area.

  2. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  3. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities

    Science.gov (United States)

    d'Alessio, M. A.; Johanson, I.A.; Burgmann, R.; Schmidt, D.A.; Murray, M.H.

    2005-01-01

    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BA??VU??, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ?? 0.6 mm yr-1 directed toward N30.4??W ?? 0.8?? at San Francisco (??2??). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ?? 1.0; West Napa fault, 4.0 ?? 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ?? 1.0; and Mount Diablo thrust, 3.9 ?? 1.0 of reverse slip and 4.0 ?? 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/ Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated. Copyright 2005 by the American Geophysical Union.

  4. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    Science.gov (United States)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.

  5. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  6. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    Science.gov (United States)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  7. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  8. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  9. Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan

    Science.gov (United States)

    Savage, J. C.

    2018-02-01

    I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.

  10. A generalized development model for testing GPS user equipment

    Science.gov (United States)

    Hemesath, N.

    1978-01-01

    The generalized development model (GDM) program, which was intended to establish how well GPS user equipment can perform under a combination of jamming and dynamics, is described. The systems design and the characteristics of the GDM are discussed. The performance aspects of the GDM are listed and the application of the GDM to civil aviation is examined.

  11. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  12. A GPS and modelling study of deformation in northern Central America

    Science.gov (United States)

    Rodriguez, M.; DeMets, C.; Rogers, R.; Tenorio, C.; Hernandez, D.

    2009-09-01

    We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west-northwest at rates that increase gradually from 3.3 +/- 0.6 mm yr-1 in central Honduras to 4.1 +/- 0.6 mm yr-1 in western Honduras to as high as 11-12 mm yr-1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region. We examine the factors that influence the regional deformation by comparing the new GPS velocity field to velocity fields predicted by finite element models (FEMs) that incorporate the regional plate boundary faults and known plate motions. Our modelling suggests that the obliquely convergent (~20°) direction of Caribbean-North American Plate motion relative to the Motagua fault west of 90°W impedes the ENE-directed motion of the Caribbean Plate in southern Guatemala, giving rise to extension in southern Guatemala and western Honduras. The FEM predictions agree even better with the measured velocities if the plate motion west of the Central American volcanic arc is forced to occur over a broad zone rather than along a single throughgoing plate boundary fault. Our analysis confirms key predictions of a previous numerical model for deformation in this region, and also indicates that the curvature of the Motagua fault causes significant along-strike changes in the orientations of the principal strain-rate axes in the fault borderlands, in accord with earthquake focal mechanisms and conclusions reached in a recent synthesis of the structural and morphologic data

  13. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA)

    International Nuclear Information System (INIS)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-01-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [es

  14. GEOSUD/SUDETEN network GPS data reprocessing and horizontal site velocity estimation

    Czech Academy of Sciences Publication Activity Database

    Kaplon, J.; Kontny, B.; Grzempowski, P.; Schenk, Vladimír; Schenková, Zdeňka; Balek, Jan; Holešovský, Jan

    2014-01-01

    Roč. 11, č. 1 (2014), s. 65-75 ISSN 1214-9705 R&D Projects: GA MŠk LN00A005; GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA MŠk LM2010008; GA ČR GA205/01/0480; GA ČR GA205/05/2287; GA AV ČR 1QS300460551; GA AV ČR IAA300460507 Institutional research plan: CEZ:AV0Z30460519 Keywords : geodesy * GPS * data processing * geodynamics Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.389, year: 2014 http://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=70

  15. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  16. New GPS velocity field in the northern Andes (Peru - Ecuador - Colombia): heterogeneous locking along the subduction, northeastwards motion of the Northern Andes

    Science.gov (United States)

    Nocquet, J.; Mothes, P. A.; Villegas Lanza, J.; Chlieh, M.; Jarrin, P.; Vallée, M.; Tavera, H.; Ruiz, G.; Regnier, M.; Rolandone, F.

    2010-12-01

    Rapid subduction of the Nazca plate beneath the northen Andes margin (~6 cm/yr) results in two different processes: (1) elastic stress is accumulating along the Nazca/South American plate interface which is responsible for one of the largest megathrust earthquake sequences during the last century. The 500-km-long rupture zone of the 1906 (Mw= 8.8) event was partially reactivated by three events from the 1942 (Mw = 7.8), 1958 (Mw = 7.7), to the 1979 (Mw = 8.2). However, south of latitude 1°S, no M>8 earthquake has been reported in the last three centuries, suggesting that this area is slipping aseismically (2) permanent deformation causes opening of the Gulf of Guayaquil, with northeastwards motion of the Northern Andean Block (NAB). We present a new GPS velocity field covering the northern Andes from south of the Gulf of Guayaquil to the Caribbean plate. Our velocity field includes new continuously-recording GPS stations installed along the Ecuadorian coast, together with campaign sites observed since 1994 in the CASA project (Kellogg et al., 1989). We first estimate the long-term kinematics of the NAB in a joint inversion including GPS data, earthquake slip vectors, and quaternary slip rates on major faults. The inversion provides an Euler pole located at long. -107.8°E, lat. 36.2°N, 0.091°/Ma and indicates little internal deformation of the NAB (wrms=1.2 mm/yr). As a consequence, 30% of the obliquity of the Nazca/South America motion is accommodated by transcurrent to transpressive motion along the eastern boundary of the NAB. Residual velocities with respect to the NAB are then modeled in terms Models indicate a patchwork of highly coupled asperities encompassed by aseismic patches over the area of rupture of the M~8.8 1906 earthquake. Very low coupling is found along the southern Ecuadorian and northern Peru subduction.

  17. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  18. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    Science.gov (United States)

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  19. Rapid Modeling of and Response to Large Earthquakes Using Real-Time GPS Networks (Invited)

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.; Squibb, M. B.

    2010-12-01

    Real-time GPS networks have the advantage of capturing motions throughout the entire earthquake cycle (interseismic, seismic, coseismic, postseismic), and because of this, are ideal for real-time monitoring of fault slip in the region. Real-time GPS networks provide the perfect supplement to seismic networks, which operate with lower noise and higher sampling rates than GPS networks, but only measure accelerations or velocities, putting them at a supreme disadvantage for ascertaining the full extent of slip during a large earthquake in real-time. Here we report on two examples of rapid modeling of recent large earthquakes near large regional real-time GPS networks. The first utilizes Japan’s GEONET consisting of about 1200 stations during the 2003 Mw 8.3 Tokachi-Oki earthquake about 100 km offshore Hokkaido Island and the second investigates the 2010 Mw 7.2 El Mayor-Cucapah earthquake recorded by more than 100 stations in the California Real Time Network. The principal components of strain were computed throughout the networks and utilized as a trigger to initiate earthquake modeling. Total displacement waveforms were then computed in a simulated real-time fashion using a real-time network adjustment algorithm that fixes a station far away from the rupture to obtain a stable reference frame. Initial peak ground displacement measurements can then be used to obtain an initial size through scaling relationships. Finally, a full coseismic model of the event can be run minutes after the event, given predefined fault geometries, allowing emergency first responders and researchers to pinpoint the regions of highest damage. Furthermore, we are also investigating using total displacement waveforms for real-time moment tensor inversions to look at spatiotemporal variations in slip.

  20. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

    Science.gov (United States)

    Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

  1. Accuracy of a 10 Hz GPS Unit in Measuring Shuttle Velocity Performed at Different Speeds and Distances (5 – 20 M

    Directory of Open Access Journals (Sweden)

    Beato Marco

    2016-12-01

    Full Text Available The aim of this study was to validate the accuracy of a 10 Hz GPS device (STATSports, Ireland by comparing the instantaneous values of velocity determined with this device with those determined by kinematic (video analysis (25 Hz. Ten male soccer players were required to perform shuttle runs (with 180° change of direction at three velocities (slow: 2.2 m·s-1; moderate: 3.2 m·s-1; high: maximal over four distances: 5, 10, 15 and 20 m. The experiments were video-recorded; the “point by point” values of speed recorded by the GPS device were manually downloaded and analysed in the same way as the “frame by frame” values of horizontal speed as obtained by video analysis. The obtained results indicated that shuttle distance was smaller in GPS than video analysis (p < 0.01. Shuttle velocity (shuttle distance/shuttle time was thus smaller in GPS than in video analysis (p < 0.001; the percentage difference (bias, % in shuttle velocity between methods was found to decrease with the distance covered (5 m: 9 ± 6%; 20 m: 3 ± 3%. The instantaneous values of speed were averaged; from these data and from data of shuttle time, the distance covered was recalculated; the error (criterion distance-recalculated distance was negligible for video data (0.04 ± 0.28 m whereas GPS data underestimated criterion distance (0.31 ± 0.55 m. In conclusion, the inaccuracy of this GPS unit in determining shuttle speed can be attributed to inaccuracy in determining the shuttle distance.

  2. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments

    DEFF Research Database (Denmark)

    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.

    2013-01-01

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all...

  3. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  4. Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling

    Science.gov (United States)

    Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.

    2006-12-01

    The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over

  5. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    Science.gov (United States)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS

  6. Crustal deformation characteristics of Sichuan-Yunnan region in China on the constraint of multi-periods of GPS velocity fields

    Science.gov (United States)

    Yue, Caiya; Dang, Yamin; Dai, Huayang; Yang, Qiang; Wang, Xiankai

    2018-04-01

    In order to obtain deformation parameters in each block of Sichuan-Yunnan Region (SYG) in China by stages and establish a dynamic model about the variation of the strain rate fields and the surface expansion in this area, we taken the Global Positioning System (GPS) sites velocity in the region as constrained condition and taken advantage of the block strain calculation model based on spherical surface. We also analyzed the deformation of the active blocks in the whole SYG before and after the Wenchuan earthquake, and analyzed the deformation of active blocks near the epicenter of the Wenchuan earthquake in detail. The results show that, (1) Under the effects of the carving from India plate and the crimping from the potential energy of Tibetan Plateau for a long time, there is a certain periodicity in crustal deformation in SYG. And the period change and the earthquake occurrence have a good agreement. (2) The differences in GPS velocity fields relative Eurasian reference frame shows that the Wenchuan earthquake and the Ya'an earthquake mainly affect the crustal movement in the central and southern part of SYG, and the average velocity difference is about 4-8 mm/a for the Wenchuan earthquake and 2-4 mm/a for the Ya'an earthquake. (3) For the Wenchuan earthquake, the average strain changed from 10 to 20 nanostrian/a before earthquake to 40-50 nanostrian/a after the earthquake, but before and after the Ya'an earthquake, the strain value increased from about 15 nanostrian/a to about 30 nanostrian/a. (4) The Wenchuan earthquake has changed the strain parameter of each active block more or less. Especially, the Longmen block and Chengdu block near the epicenter. The research provides fundamental material for the study of the dynamic mechanism of the push extrusion from the north-east of the India plate and the crimp from Qinghai Tibet Plateau, and it also provides support for the study of crustal stress variation and earthquake prediction in Sichuan Yunnan region.

  7. GPS-based Microenvironment Tracker (MicroTrac) Model to ...

    Science.gov (United States)

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared to 24 h diary data from 7 participants on workdays and 2 participants on nonworkdays, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize

  8. Tectonic Model of Bali Island Inferred from GPS Data

    Directory of Open Access Journals (Sweden)

    Cecep Sulaeman

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.81-91Seven periods of GPS campaign have been conducted for three years since March 2013 - October 2015 on fourteen GPS sites across Bali Island. The GAMIT/GLOBK 10.6 version was used to compute data with respect for thirteen reference sites of International Terrestrial Reference Frame (ITRF 2008 surrounding Bali. The result shows that horizontal displacement varies between 1.93 and 22.53 mm/yr dominantly northeastward. Vertical displacement ranges at -184.34 to 33.79 mm/yr. The result of modeling using Coulomb 3.3 version indicates the deformation in Bali was mostly contributed by subduction at the southern part, West and East Flores Back-Arc Thrust at the north, Lombok Strait Fault and a fault at the eastern coast of Bali with the estimation maximum magnitude of 7.1, 6.6, 6.8, 5.8, and 5.2, respectively.

  9. Error detection in GPS observations by means of Multi-process models

    DEFF Research Database (Denmark)

    Thomsen, Henrik F.

    2001-01-01

    The main purpose of this article is to present the idea of using Multi-process models as a method of detecting errors in GPS observations. The theory behind Multi-process models, and double differenced phase observations in GPS is presented shortly. It is shown how to model cycle slips in the Mul...

  10. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  11. Current Direction and Velocity Measurements Using GPS Receivers Mounted on Floats at Tom Bevill Lock and Dam

    Science.gov (United States)

    2002-12-01

    radio and batteries. The procedures outlined in this CHETN will concentrate on the Magellan GPS ProMARK X-CP receiver as it was used to collect...The Magellan GPS ProMARK X-CP is a small robust light receiver that can log 9 hr of both pseudorange and carrier phase satellite data for post...post- processing software, pseudorange GPS data recorded by the ProMARK X-CP can be post-processed differential to achieve 1-3 m (3.3-9.8 ft) horizontal

  12. Design of complete software GPS signal simulator with low complexity and precise multipath channel model

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2016-09-01

    Full Text Available The need for GPS data simulators have become important due to the tremendous growth in the design of versatile GPS receivers. Commercial hardware and software based GPS simulators are expensive and time consuming. In this work, a low cost simple novel GPS L1 signal simulator is designed for testing and evaluating the performance of software GPS receiver in a laboratory environment. A typical real time paradigm, similar to actual satellite derived GPS signal is created on a computer generated scenario. In this paper, a GPS software simulator is proposed that may offer a lot of analysis and testing flexibility to the researchers and developers as it is totally software based primarily running on a laptop/personal computer without the requirement of any hardware. The proposed GPS simulator allows provision for re-configurability and test repeatability and is developed in VC++ platform to minimize the simulation time. It also incorporates Rayleigh multipath channel fading model under non-line of sight (NLOS conditions. In this work, to efficiently design the simulator, several Rayleigh fading models viz. Inverse Discrete Fourier Transform (IDFT, Filtering White Gaussian Noise (FWFN and modified Sum of Sinusoidal (SOS simulators are tested and compared in terms of accuracy of its first and second order statistical metrics, execution time and the later one is found to be as the best appropriate Rayleigh multipath model suitable for incorporating with GPS simulator. The fading model written in ‘MATLAB’ engine has been linked with software GPS simulator module enable to test GPS receiver’s functionality in different fading environments.

  13. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-06-05

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

  14. Modeling the Ionosphere with GPS and Rotation Measure Observations

    Science.gov (United States)

    Malins, J. B.; Taylor, G. B.; White, S. M.; Dowell, J.

    2017-12-01

    Advances in digital processing have created new tools for looking at and examining the ionosphere. We have combined data from dual frequency GPSs, digital ionosondes and observations from The Long Wavelength Array (LWA), a 256 dipole low frequency radio telescope situated in central New Mexico in order to examine ionospheric profiles. By studying polarized pulsars, the LWA is able to very accurately determine the Faraday rotation caused by the ionosphere. By combining this data with the international geomagnetic reference field, the LWA can evaluate ionospheric profiles and how well they predict the actual Faraday rotation. Dual frequency GPS measurements of total electron content, as well as measurements from digisonde data were used to model the ionosphere, and to predict the Faraday rotation to with in 0.1 rad/m2. Additionally, it was discovered that the predicted topside profile of the digisonde data did not accurate predict faraday rotation measurements, suggesting a need to reexamine the methods for creating the topside predicted profile. I will discuss the methods used to measure rotation measure and ionosphere profiles as well as discuss possible corrections to the topside model.

  15. On stochastic modeling of the modernized global positioning system (GPS) L2C signal

    International Nuclear Information System (INIS)

    Elsobeiey, Mohamed; El-Rabbany, Ahmed

    2010-01-01

    In order to take full advantage of the modernized GPS L2C signal, it is essential that its stochastic characteristics and code bias be rigorously determined. In this paper, long sessions of GPS measurements are used to study the stochastic characteristics of the modernized GPS L2C signal. As a byproduct, the stochastic characteristics of the legacy GPS signals, namely C/A and P2 codes, are also determined, which are used to verify the developed stochastic model of the modernized signal. The differential code biases between P2 and C2, DCB P2-C2 , are also estimated using the Bernese GPS software. It is shown that the developed models improved the precise point positioning (PPP) solution and convergence time

  16. Optimal velocity difference model for a car-following theory

    International Nuclear Information System (INIS)

    Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.

    2011-01-01

    In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.

  17. Tectonic Model of Bali Island Inferred from GPS Data

    OpenAIRE

    Cecep Sulaeman; Sri Hidayati; Amalfi Omang; Imam Catur Priambodo

    2018-01-01

    DOI: 10.17014/ijog.5.1.81-91Seven periods of GPS campaign have been conducted for three years since March 2013 - October 2015 on fourteen GPS sites across Bali Island. The GAMIT/GLOBK 10.6 version was used to compute data with respect for thirteen reference sites of International Terrestrial Reference Frame (ITRF) 2008 surrounding Bali. The result shows that horizontal displacement varies between 1.93 and 22.53 mm/yr dominantly northeastward. Vertical displacement ranges at -184.34 to 33.79 m...

  18. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  19. Truck Route Choice Modeling using Large Streams of GPS Data

    Science.gov (United States)

    2017-07-31

    The primary goal of this research was to use large streams of truck-GPS data to analyze travel routes (or paths) chosen by freight trucks to travel between different origin and destination (OD) location pairs in metropolitan regions of Florida. Two s...

  20. An improved grey model for the prediction of real-time GPS satellite clock bias

    Science.gov (United States)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  1. Identification of AR(I)MA processes for modelling temporal correlations of GPS observations

    Science.gov (United States)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling

  2. Empirical model of subdaily variations in the Earth rotation from GPS and its stability

    Science.gov (United States)

    Panafidina, N.; Kurdubov, S.; Rothacher, M.

    2012-12-01

    The model recommended by the IERS for these variations at diurnal and semidiurnal periods has been computed from an ocean tide model and comprises 71 terms in polar motion and Universal Time. In the present study we compute an empirical model of variations in the Earth rotation on tidal frequencies from homogeneously re-processed GPS-observations over 1994-2007 available as free daily normal equations. We discuss the reliability of the obtained amplitudes of the ERP variations and compare results from GPS and VLBI data to identify technique-specific problems and instabilities of the empirical tidal models.

  3. Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-09-01

    Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.

  4. A new car-following model considering velocity anticipation

    International Nuclear Information System (INIS)

    Jun-Fang, Tian; Bin, Jia; Xin-Gang, Li; Zi-You, Gao

    2010-01-01

    The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink–antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this model. Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model. (general)

  5. The Limit Deposit Velocity model, a new approach

    Directory of Open Access Journals (Sweden)

    Miedema Sape A.

    2015-12-01

    Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.

  6. Ionospheric Tomography from a Reference GPS/MET Experiment Through the IRI Model

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2006-01-01

    Full Text Available In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstructed image we need ground-based validation systems which are difficult to obtain. However, such comparative investigation is needed if one aims to improve tomography inverse techniques and algorithms. In this study, we propose a simulation scheme to carry out this task. We first simulate the GPS-to-LEO TEC measurements through the IRI model by integrating electron densities along the ¡§straight¡¨ ray occultation paths between the GPS and LEO satellite obtained from the real GPS/MET experiment. Contiguous tomographic images are then derived by the MART algorithm within the ¡§reference¡¨ GPS/MET experiment. They are verified by comparison with the ¡§true¡¨ IRI-modelled ionosphere. We show that simulation/reference results can be used to find the optimal reconstruction strategy in space-based ionospheric tomography.

  7. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  8. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  9. Handwriting Velocity Modeling by Artificial Neural Networks

    OpenAIRE

    Mohamed Aymen Slim; Afef Abdelkrim; Mohamed Benrejeb

    2014-01-01

    The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, wr...

  10. An Extended Optimal Velocity Model with Consideration of Honk Effect

    International Nuclear Information System (INIS)

    Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan

    2010-01-01

    Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)

  11. A classical model explaining the OPERA velocity paradox

    CERN Document Server

    Broda, Boguslaw

    2011-01-01

    In the context of the paradoxical results of the OPERA Collaboration, we have proposed a classical mechanics model yielding the statistically measured velocity of a beam higher than the velocity of the particles constituting the beam. Ingredients of our model necessary to obtain this curious result are a non-constant fraction function and the method of the maximum-likelihood estimation.

  12. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    Science.gov (United States)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  13. Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions

    Science.gov (United States)

    Gu, Yanchao; Fan, Dongming; You, Wei

    2017-07-01

    Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.

  14. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  15. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  16. An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations

    Science.gov (United States)

    Abdelazeem, Mohamed; Çelik, Rahmi N.; El-Rabbany, Ahmed

    2018-01-01

    In this study, we propose a regional ionospheric model (RIM) based on both of the GPS-only and the combined GPS/BeiDou observations for single-frequency precise point positioning (SF-PPP) users in Europe. GPS/BeiDou observations from 16 reference stations are processed in the zero-difference mode. A least-squares algorithm is developed to determine the vertical total electron content (VTEC) bi-linear function parameters for a 15-minute time interval. The Kriging interpolation method is used to estimate the VTEC values at a 1 ° × 1 ° grid. The resulting RIMs are validated for PPP applications using GNSS observations from another set of stations. The SF-PPP accuracy and convergence time obtained through the proposed RIMs are computed and compared with those obtained through the international GNSS service global ionospheric maps (IGS-GIM). The results show that the RIMs speed up the convergence time and enhance the overall positioning accuracy in comparison with the IGS-GIM model, particularly the combined GPS/BeiDou-based model.

  17. A phenomenological retention tank model using settling velocity distributions.

    Science.gov (United States)

    Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P

    2012-12-15

    Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Flood Water Crossing: Laboratory Model Investigations for Water Velocity Reductions

    Directory of Open Access Journals (Sweden)

    Kasnon N.

    2014-01-01

    Full Text Available The occurrence of floods may give a negative impact towards road traffic in terms of difficulties in mobilizing traffic as well as causing damage to the vehicles, which later cause them to be stuck in the traffic and trigger traffic problems. The high velocity of water flows occur when there is no existence of objects capable of diffusing the water velocity on the road surface. The shape, orientation and size of the object to be placed beside the road as a diffuser are important for the effective flow attenuation of water. In order to investigate the water flow, a laboratory experiment was set up and models were constructed to study the flow velocity reduction. The velocity of water before and after passing through the diffuser objects was investigated. This paper focuses on laboratory experiments to determine the flow velocity of the water using sensors before and after passing through two best diffuser objects chosen from a previous flow pattern experiment.

  19. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    Science.gov (United States)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  20. Car Deceleration Considering Its Own Velocity in Cellular Automata Model

    International Nuclear Information System (INIS)

    Li Keping

    2006-01-01

    In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the car deceleration is realistic, and is closer to the field measure than that of NaSch model.

  1. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  2. Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data

    Science.gov (United States)

    Huang, J.; Deng, M.; Zhang, Y.; Liu, H.

    2017-09-01

    It is widely accepted that digital map becomes an indispensable guide for human daily traveling. Traditional road network maps are produced in the time-consuming and labour-intensive ways, such as digitizing printed maps and extraction from remote sensing images. At present, a large number of GPS trajectory data collected by floating vehicles makes it a reality to extract high-detailed and up-to-date road network information. Road intersections are often accident-prone areas and very critical to route planning and the connectivity of road networks is mainly determined by the topological geometry of road intersections. A few studies paid attention on detecting complex road intersections and mining the attached traffic information (e.g., connectivity, topology and turning restriction) from massive GPS traces. To the authors' knowledge, recent studies mainly used high frequency (1 s sampling rate) trajectory data to detect the crossroads regions or extract rough intersection models. It is still difficult to make use of low frequency (20-100 s) and easily available trajectory data to modelling complex road intersections geometrically and semantically. The paper thus attempts to construct precise models for complex road intersection by using low frequency GPS traces. We propose to firstly extract the complex road intersections by a LCSS-based (Longest Common Subsequence) trajectory clustering method, then delineate the geometry shapes of complex road intersections by a K-segment principle curve algorithm, and finally infer the traffic constraint rules inside the complex intersections.

  3. Three dimensional reflection velocity analysis based on velocity model scan; Model scan ni yoru sanjigen hanshaha sokudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is a reflection wave velocity analysis method using model scanning as a method for velocity estimation across a section, the estimation being useful in the construction of a velocity structure model in seismic exploration. In this method, a stripping type analysis is carried out, wherein optimum structure parameters are determined for reflection waves one after the other beginning with those from shallower parts. During this process, the velocity structures previously determined for the shallower parts are fixed and only the lowest of the layers undergoing analysis at the time is subjected to model scanning. To consider the bending of ray paths at each velocity boundaries involving shallower parts, the ray path tracing method is utilized for the calculation of the reflection travel time curve for the reflection surface being analyzed. Out of the reflection wave travel time curves calculated using various velocity structure models, one that suits best the actual reflection travel time is detected. The degree of matching between the calculated result and actual result is measured by use of data semblance in a time window provided centering about the calculated reflective wave travel time. The structure parameter is estimated on the basis of conditions for the maximum semblance. 1 ref., 4 figs.

  4. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  5. A generic model for the shallow velocity structure of volcanoes

    Science.gov (United States)

    Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra

    2018-05-01

    The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.

  6. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  7. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  8. Shallow and deep crustal velocity models of Northeast Tibet

    Science.gov (United States)

    Karplus, M.; Klemperer, S. L.; Mechie, J.; Shi, D.; Zhao, W.; Brown, L. D.; Wu, Z.

    2009-12-01

    The INDEPTH IV seismic profile in Northeast Tibet is the highest resolution wide-angle refraction experiment imaging the Qaidam Basin, North Kunlun Thrusts (NKT), Kunlun Mountains, North and South Kunlun Faults (NKT, SKT), and Songpan-Ganzi terrane (SG). First arrival refraction modeling using ray tracing and least squares inversion has yielded a crustal p-wave velocity model, best resolved for the top 20 km. Ray tracing of deeper reflections shows considerable differences between the Qaidam Basin and the SG, in agreement with previous studies of those areas. The Moho ranges from about 52 km beneath the Qaidam Basin to 63 km with a slight northward dip beneath the SG. The 11-km change must occur between the SKF and the southern edge of the Qaidam Basin, just north of the NKT, allowing the possibility of a Moho step across the NKT. The Qaidam Basin velocity-versus-depth profile is more similar to the global average than the SG profile, which bears resemblance to previously determined “Tibet-type” velocity profiles with mid to lower crustal velocities of 6.5 to 7.0 km/s appearing at greater depths. The highest resolution portion of the profile (100-m instrument spacing) features two distinct, apparently south-dipping low-velocity zones reaching about 2-3 km depth that we infer to be the locations of the NKF and SKF. A strong reflector at 35 km, located entirely south of the SKF and truncated just south of it, may be cut by a steeply south-dipping SKF. Elevated velocities at depth beneath the surface location of the NKF may indicate the south-dipping NKF meets the SKF between depths of 5 and 10 km. Undulating regions of high and low velocity extending about 1-2 km in depth near the southern border of the Qaidam Basin likely represent north-verging thrust sheets of the NKT.

  9. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  10. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

    Science.gov (United States)

    Koziol, Conrad P.; Arnold, Neil

    2018-03-01

    Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.

  11. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    Science.gov (United States)

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  12. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2013-07-01

    Full Text Available Advances in the development of micro-electromechanical systems (MEMS have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS and the inertial navigation system (INS integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs, stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV and the power spectral density (PSD techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade presents error sources with short-term (high-frequency and long-term (low-frequency components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  13. Modeling and Velocity Tracking Control for Tape Drive System ...

    African Journals Online (AJOL)

    Modeling and Velocity Tracking Control for Tape Drive System. ... Journal of Applied Sciences and Environmental Management ... The result of the study revealed that 7.07, 8 and 10 of koln values met the design goal and also resulted in optimal control performance with the following characteristics 7.31%,7.71% , 9.41% ...

  14. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  15. Horizontal and vertical velocities derived from the IDS contribution to ITRF2014, and comparisons with geophysical models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaría-Gómez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-10-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm yr-1. For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr-1, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr-1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  16. A new settling velocity model to describe secondary sedimentation.

    Science.gov (United States)

    Ramin, Elham; Wágner, Dorottya S; Yde, Lars; Binning, Philip J; Rasmussen, Michael R; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-12-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full-scale measurements. Finally, it was shown that the representation of compression settling in the CFD model can significantly influence the prediction of sludge distribution in the SSTs under dry- and wet-weather flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pi

    2009-01-01

    Full Text Available The four-dimensional Global Assimilative Ionospheric Model (GAIM is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.

  18. Do Financial Incentives Influence GPs' Decisions to Do After-hours Work? A Discrete Choice Labour Supply Model.

    Science.gov (United States)

    Broadway, Barbara; Kalb, Guyonne; Li, Jinhu; Scott, Anthony

    2017-12-01

    This paper analyses doctors' supply of after-hours care (AHC), and how it is affected by personal and family circumstances as well as the earnings structure. We use detailed survey data from a large sample of Australian General Practitioners (GPs) to estimate a structural, discrete choice model of labour supply and AHC. This allows us to jointly model GPs' decisions on the number of daytime-weekday working hours and the probability of providing AHC. We simulate GPs' labour supply responses to an increase in hourly earnings, both in a daytime-weekday setting and for AHC. GPs increase their daytime-weekday working hours if their hourly earnings in this setting increase, but only to a very small extent. GPs are somewhat more likely to provide AHC if their hourly earnings in that setting increase, but again, the effect is very small and only evident in some subgroups. Moreover, higher earnings in weekday-daytime practice reduce the probability of providing AHC, particularly for men. Increasing GPs' earnings appears to be at best relatively ineffective in encouraging increased provision of AHC and may even prove harmful if incentives are not well targeted. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    Science.gov (United States)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  20. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  1. A new settling velocity model to describe secondary sedimentation

    DEFF Research Database (Denmark)

    Ramin, Elham; Wágner, Dorottya Sarolta; Yde, Lars

    2014-01-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids...... distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges...... associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM...

  2. A model relating Eulerian spatial and temporal velocity correlations

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  3. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  4. A new approach for modeling dry deposition velocity of particles

    Science.gov (United States)

    Giardina, M.; Buffa, P.

    2018-05-01

    The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.

  5. Modeling delamination of FRP laminates under low velocity impact

    Science.gov (United States)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  6. GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain

    Science.gov (United States)

    Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang

    2018-05-01

    The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.

  7. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    Science.gov (United States)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale

  8. Velocity profiles in idealized model of human respiratory tract

    Science.gov (United States)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  9. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  10. Estimation of spatial uncertainties of tomographic velocity models

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.; Du, Z.; Querendez, E. [SINTEF Petroleum Research, Trondheim (Norway)

    2012-12-15

    This research project aims to evaluate the possibility of assessing the spatial uncertainties in tomographic velocity model building in a quantitative way. The project is intended to serve as a test of whether accurate and specific uncertainty estimates (e.g., in meters) can be obtained. The project is based on Monte Carlo-type perturbations of the velocity model as obtained from the tomographic inversion guided by diagonal and off-diagonal elements of the resolution and the covariance matrices. The implementation and testing of this method was based on the SINTEF in-house stereotomography code, using small synthetic 2D data sets. To test the method the calculation and output of the covariance and resolution matrices was implemented, and software to perform the error estimation was created. The work included the creation of 2D synthetic data sets, the implementation and testing of the software to conduct the tests (output of the covariance and resolution matrices which are not implicitly provided by stereotomography), application to synthetic data sets, analysis of the test results, and creating the final report. The results show that this method can be used to estimate the spatial errors in tomographic images quantitatively. The results agree with' the known errors for our synthetic models. However, the method can only be applied to structures in the model, where the change of seismic velocity is larger than the predicted error of the velocity parameter amplitudes. In addition, the analysis is dependent on the tomographic method, e.g., regularization and parameterization. The conducted tests were very successful and we believe that this method could be developed further to be applied to third party tomographic images.

  11. Forest operations planning by using RTK-GPS based digital elevation model

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2015-07-01

    Full Text Available Having large proportion of forests in mountainous terrain in Turkey, the logging methods that not only minimize operational costs but also minimize environmental damages should be determined in forest operations planning. In a case where necessary logging equipment and machines are available, ground slope is the most important factor in determining the logging method. For this reason, accurate, up to date, and precise ground slope data is very crucial in the success of forest operations planning. In recent years, high-resolution Digital Elevation Models (DEM can be generated for forested areas by using Real Time Kinematic (RTK GPS method and these DEMs can be used to develop precise slope maps. In this study, high-resolution DEM was developed by RTK-GPS method to generate precise slope map in a sample area. Then, the slope map was classified into slope classes specified by IUFRO in order to assist forest operations planning. According to the results, logging methods that are suitable for very steep and steep terrain conditions (i.e. skyline logging, cable pulling, and chute systems should be preferred in 48.1% of the study area. It was also found that logging methods that are suitable for terrain with medium slope (i.e. skidding and cable pulling and gentle slope (i.e. skidding and mobile winch should be preferred in 34.1% and 17.8% of the study area, respectively.

  12. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter; Jü ngel, Ansgar; Aoki, Kazuo

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  13. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  14. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Carlucci, L.N.

    1984-01-01

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  15. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  16. Measured and modeled dry deposition velocities over the ESCOMPTE area

    Science.gov (United States)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant

  17. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  18. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  19. Hydrodynamic Equations for Flocking Models without Velocity Alignment

    Science.gov (United States)

    Peruani, Fernando

    2017-10-01

    The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previous reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.

  20. Decadal GPS Time Series and Velocity Fields Spanning the North American Continent and Beyond: New Data Products, Cyberinfrastructure and Case Studies from the EarthScope Plate Boundary Observatory (PBO) and Other Regional Networks

    Science.gov (United States)

    Phillips, D. A.; Herring, T.; Melbourne, T. I.; Murray, M. H.; Szeliga, W. M.; Floyd, M.; Puskas, C. M.; King, R. W.; Boler, F. M.; Meertens, C. M.; Mattioli, G. S.

    2017-12-01

    The Geodesy Advancing Geosciences and EarthScope (GAGE) Facility, operated by UNAVCO, provides a diverse suite of geodetic data, derived products and cyberinfrastructure services to support community Earth science research and education. GPS data and products including decadal station position time series and velocities are provided for 2000+ continuous GPS stations from the Plate Boundary Observatory (PBO) and other networks distributed throughout the high Arctic, North America, and Caribbean regions. The position time series contain a multitude of signals in addition to the secular motions, including coseismic and postseismic displacements, interseismic strain accumulation, and transient signals associated with hydrologic and other processes. We present our latest velocity field solutions, new time series offset estimate products, and new time series examples associated with various phenomena. Position time series, and the signals they contain, are inherently dependent upon analysis parameters such as network scaling and reference frame realization. The estimation of scale changes for example, a common practice, has large impacts on vertical motion estimates. GAGE/PBO velocities and time series are currently provided in IGS (IGb08) and North America (NAM08, IGb08 rotated to a fixed North America Plate) reference frames. We are reprocessing all data (1996 to present) as part of the transition from IGb08 to IGS14 that began in 2017. New NAM14 and IGS14 data products are discussed. GAGE/PBO GPS data products are currently generated using onsite computing clusters. As part of an NSF funded EarthCube Building Blocks project called "Deploying MultiFacility Cyberinfrastructure in Commercial and Private Cloud-based Systems (GeoSciCloud)", we are investigating performance, cost, and efficiency differences between local computing resources and cloud based resources. Test environments include a commercial cloud provider (Amazon/AWS), NSF cloud-like infrastructures within

  1. Thermal imbalance force modelling for a GPS satellite using the finite element method

    Science.gov (United States)

    Vigue, Yvonne; Schutz, Bob E.

    1991-01-01

    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  2. Pembuatan Digital Elevation Model Resolusi 10m dari Peta RBI dan Survei GPS dengan Algoritma Anudem

    Directory of Open Access Journals (Sweden)

    Indarto

    2014-04-01

    Full Text Available This study proposes the generation of Digital Elevation Model (DEM with spatial resolution of 10m x 10m by re-interpolation of elevation data. Data input for this study includes: (1 digitized datum coordinate from RBI map, (2 sample points surveyed by GPS, (3 digitized contour data fromSRTM DEM and ASTER GDEM2, and (4 digitized stream-network layer from RBI. All collected data were converted to mass point coordinats. On the top of Topogrid-ArcGIS, all points data were interpolated to produce DEM. After that the produced DEM were compared and evaluated to the SRTM and ASTER DEMvisually. The result shows that produced DEM are more accurate to represent the detailed topography of the study areas.

  3. Model-assisted measurements of suspension-feeding flow velocities.

    Science.gov (United States)

    Du Clos, Kevin T; Jones, Ian T; Carrier, Tyler J; Brady, Damian C; Jumars, Peter A

    2017-06-01

    Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis , measured using a direct method based on particle image velocimetry (PIV). Past uses of PIV in suspension-feeding studies have been limited by strong laser reflections that interfere with velocity measurements proximate to the siphon. We used a new approach based on fitting PIV-based velocity profile measurements to theoretical profiles from computational fluid dynamic (CFD) models, which allowed us to calculate inhalant siphon Reynolds numbers ( Re ). We used these inhalant Re and measurements of siphon diameters to calculate exhalant Re , pumping rates, and mean inlet and outlet velocities. For the three species studied, inhalant Re ranged from 8 to 520, and exhalant Re ranged from 15 to 1073. Volumetric pumping rates ranged from 1.7 to 7.4 l h -1 for M . arenaria , 0.3 to 3.6 l h -1 for M . m ercenaria and 0.07 to 0.97 l h -1 for C . intestinalis We also used CFD models based on measured pumping rates to calculate capture regions, which reveal the spatial extent of pumped water. Combining PIV data with CFD models may be a valuable approach for future suspension-feeding studies. © 2017. Published by The Company of Biologists Ltd.

  4. Modeling studies on the formation of Hurricane Helene: the impact of GPS dropwindsondes from the NAMMA 2006 field campaign

    Science.gov (United States)

    Folmer, Michael J.; Pasken, Robert W.; Chiao, Sen; Dunion, Jason; Halverson, Jeffrey

    2016-12-01

    Numerical simulations, using the weather research and forecasting (WRF) model in concert with GPS dropwindsondes released during the NASA African Monsoon Multidisciplinary Analyses 2006 Field Campaign, were conducted to provide additional insight on SAL-TC interaction. Using NCEP Final analysis datasets to initialize the WRF, a sensitivity test was performed on the assimilated (i.e., observation nudging) GPS dropwindsondes to understand the effects of individual variables (i.e., moisture, temperature, and winds) on the simulation and determine the extent of improvement when compared to available observations. The results suggested that GPS dropwindsonde temperature data provided the most significant difference in the simulated storm organization, storm strength, and synoptic environment, but all of the variables assimilated at the same time give a more representative mesoscale and synoptic picture.

  5. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.

    Science.gov (United States)

    Karamat, Tashfeen B; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-22

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers' measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer's errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories' data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance.

  6. OSGM02: A new model for converting GPS-derived heights to local height datums in Great Britain and Ireland

    DEFF Research Database (Denmark)

    Iliffe, J.C.; Ziebart, M.; Cross, P.A.

    2003-01-01

    The background to the recent computation of a new vertical datum model for the British Isles (OSGM02) is described After giving a brief description of the computational techniques and the data sets used for the derivation of the gravimetric geoid, the paper focuses on the fitting of this surface...... to the GPS and levelling networks in the various regions of the British Isles in such a way that it can be used in conjunction with GPS to form a replacement for the existing system of bench marks. The error sources induced in this procedure are discussed, and the theoretical basis given for the fitting...

  7. Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor

    Energy Technology Data Exchange (ETDEWEB)

    Pego, J.P. [Universitaet Erlangen-Nuernberg, LSTM, Erlangen, Lehrstuhl fuer Stroemungsmechanik, Erlangen (Germany); Faculdade de Engenharia da Universidade do Porto, Porto (Portugal); Lienhart, H.; Durst, F. [Universitaet Erlangen-Nuernberg, LSTM, Erlangen, Lehrstuhl fuer Stroemungsmechanik, Erlangen (Germany)

    2007-08-15

    Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen fuer Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996

  8. Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor

    Science.gov (United States)

    Pêgo, J. P.; Lienhart, H.; Durst, F.

    2007-08-01

    Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen für Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996

  9. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  10. Dynamic Travel Time Prediction Models for Buses Using Only GPS Data

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2015-01-01

    Full Text Available Providing real-time and accurate travel time information of transit vehicles can be very helpful as it assists passengers in planning their trips to minimize waiting times. The purpose of this research is to develop and compare dynamic travel time prediction models which can provide accurate prediction of bus travel time in order to give real-time information at a given downstream bus stop using only global positioning system (GPS data. Historical Average (HA, Kalman Filtering (KF and Artificial Neural Network (ANN models are considered and developed in this paper. A case has been studied by making use of the three models. Promising results are obtained from the case study, indicating that the models can be used to implement an Advanced Public Transport System. The implementation of this system could assist transit operators in improving the reliability of bus services, thus attracting more travelers to transit vehicles and helping relieve congestion. The performances of the three models were assessed and compared with each other under two criteria: overall prediction accuracy and robustness. It was shown that the ANN outperformed the other two models in both aspects. In conclusion, it is shown that bus travel time information can be reasonably provided using only arrival and departure time information at stops even in the absence of traffic-stream data.

  11. Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity

    Directory of Open Access Journals (Sweden)

    Toure K. Augustin

    2014-06-01

    Full Text Available This paper studies a variant of an overhead crane model's problem, with a control force in velocity and rotating velocity on the platform. We obtain under certain conditions the well-posedness and the strong stabilization of the closed-loop system. We then analyze the spectrum of the system. Using a method due to Shkalikov, we prove the existence of a sequence of generalized eigenvectors of the system, which forms a Riesz basis for the state energy Hilbert space.

  12. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  13. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  14. Modeling the effects of Multi-path propagation and scintillation on GPS signals

    Science.gov (United States)

    Habash Krause, L.; Wilson, S. J.

    2014-12-01

    GPS signals traveling through the earth's ionosphere are affected by charged particles that often disrupt the signal and the information it carries due to "scintillation", which resembles an extra noise source on the signal. These signals are also affected by weather changes, tropospheric scattering, and absorption from objects due to multi-path propagation of the signal. These obstacles cause distortion within information and fading of the signal, which ultimately results in phase locking errors and noise in messages. In this work, we attempted to replicate the distortion that occurs in GPS signals using a signal processing simulation model. We wanted to be able to create and identify scintillated signals so we could better understand the environment that caused it to become scintillated. Then, under controlled conditions, we simulated the receiver's ability to suppress scintillation in a signal. We developed a code in MATLAB that was programmed to: 1. Create a carrier wave and then plant noise (four different frequencies) on the carrier wave, 2. Compute a Fourier transform on the four different frequencies to find the frequency content of a signal, 3. Use a filter and apply it to the Fourier transform of the four frequencies and then compute a Signal-to-noise ratio to evaluate the power (in Decibels) of the filtered signal, and 4.Plot each of these components into graphs. To test the code's validity, we used user input and data from an AM transmitter. We determined that the amplitude modulated signal or AM signal would be the best type of signal to test the accuracy of the MATLAB code due to its simplicity. This code is basic to give students the ability to change and use it to determine the environment and effects of noise on different AM signals and their carrier waves. Overall, we were able to manipulate a scenario of a noisy signal and interpret its behavior and change due to its noisy components: amplitude, frequency, and phase shift.

  15. Parameterization of water vapor using high-resolution GPS data and empirical models

    Science.gov (United States)

    Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.

    2018-03-01

    The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.

  16. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  17. Inferring spatial memory and spatiotemporal scaling from GPS data: comparing red deer Cervus elaphus movements with simulation models.

    Science.gov (United States)

    Gautestad, Arild O; Loe, Leif E; Mysterud, Atle

    2013-05-01

    1. Increased inference regarding underlying behavioural mechanisms of animal movement can be achieved by comparing GPS data with statistical mechanical movement models such as random walk and Lévy walk with known underlying behaviour and statistical properties. 2. GPS data are typically collected with ≥ 1 h intervals not exactly tracking every mechanistic step along the movement path, so a statistical mechanical model approach rather than a mechanistic approach is appropriate. However, comparisons require a coherent framework involving both scaling and memory aspects of the underlying process. Thus, simulation models have recently been extended to include memory-guided returns to previously visited patches, that is, site fidelity. 3. We define four main classes of movement, differing in incorporation of memory and scaling (based on respective intervals of the statistical fractal dimension D and presence/absence of site fidelity). Using three statistical protocols to estimate D and site fidelity, we compare these main movement classes with patterns observed in GPS data from 52 females of red deer (Cervus elaphus). 4. The results show best compliance with a scale-free and memory-enhanced kind of space use; that is, a power law distribution of step lengths, a fractal distribution of the spatial scatter of fixes and site fidelity. 5. Our study thus demonstrates how inference regarding memory effects and a hierarchical pattern of space use can be derived from analysis of GPS data. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  18. Intraplate Strain and the Seismic Cycle: Inferences from 3D Finite-Element Spherical Viscoelastic Models and GPS Data

    Science.gov (United States)

    Fleitout, L.; Klein, E.; Vigny, C.; Garaud, J. D.

    2017-12-01

    The postseismic deformations affecting the subducting and overiding plates over thousands of kilometers after the Sumatra, Tohoku and Maule megaearthquakes have been measured precisely by GPS positioning. The characteristics of the postseismic deformation are very similar for the three earthquakes. Modeling using 3D finite element methodsleads to the conclusion that only viscous relaxation in an asthenosphere a few hundred kilometers thick with a viscosity of some 3. 1018Pas, can explain the far-field GPS data. A low viscosity channel along thedeep part of the slab interface helps to explain uplift over the volcanic arc. Viscoelastic models of the seismic cycle based on the mechanical models compatible with the postseismic data predict a continuous transitionbetween postseismic extension andthe compensating interseismic compression. The transition between the two regimes occurs sooner in areas close to the trench. The predictions of the models are compared to GPS data in South-America before Maule earthquake. The GPS time-series are corrected for deformations induced by hydrological loading deduced from the GRACE mission.A slight but welldefined general compression of the South American plate is evidenced between20 and 40 degrees south.Postseismic extension several decades after Valdivia earthquake is also conspicuous south of 40° South.At shorter distances from the trench, the zone of strong compression rate isbroader thanpredicted by elastic back-slip models.Although Chile appears like an ideal place to study deformations through the seismic cycle, similar patterns seem to prevail in other areas affected by megaearthquakes: In Asia, the Northward motion of the 'Sunda block' with respect to South China, or the convergence ratebetween Amour and Okhotsk plates infered from GPS data collected before the megaearthquake, are, at least in part, due to interseismic elastic compression of the lithosphere.

  19. RadVel: The Radial Velocity Modeling Toolkit

    Science.gov (United States)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

  20. A detonation model of high/low velocity detonation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shaoming; Li, Chenfang; Ma, Yunhua; Cui, Junmin [Xian Modern Chemistry Research Institute, Xian, 710065 (China)

    2007-02-15

    A new detonation model that can simulate both high and low velocity detonations is established using the least action principle. The least action principle is valid for mechanics and thermodynamics associated with a detonation process. Therefore, the least action principle is valid in detonation science. In this model, thermodynamic equilibrium state is taken as the known final point of the detonation process. Thermodynamic potentials are analogous to mechanical ones, and the Lagrangian function in the detonation process is L=T-V. Under certain assumptions, the variation calculus of the Lagrangian function gives two solutions: the first one is a constant temperature solution, and the second one is the solution of an ordinary differential equation. A special solution of the ordinary differential equation is given. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Modelling low velocity impact induced damage in composite laminates

    Science.gov (United States)

    Shi, Yu; Soutis, Constantinos

    2017-12-01

    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.

  2. Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia

    Science.gov (United States)

    Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.

    2010-07-01

    We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.

  3. A GPS Modeling Study of Earthquakes and Deformation in Northern Central America and along the Middle America Trench: 1999 to 2017

    Science.gov (United States)

    Ellis, Andria P.

    Northern Central America is a tectonically complicated region prone to hazardous earthquakes due to the confluence of the Motagua-Polochic fault zone with the Middle America trench and strike-slip faults in the Central America volcanic arc. These three major fault zones converge at the western end of the Caribbean plate where the Cocos plate subducts under the North America and Caribbean plates. Literature from the 1970s and 1980s focused on whether a discrete North America-Caribbean-Cocos plate triple junction existed, and how the relative motions of the upper North America and Caribbean plates were accommodated. The discovery of a fourth major crustal block, the Central America forearc sliver, from seismic and geodetic observations made a three-plate triple junction geometrically impossible and introduced a new set of questions related to how deformation of the upper plate accommodates relative movements between the Caribbean plate, North America plate, and Central America forearc sliver where they intersect in the upper plate. My dissertation uses GPS and numerical modeling to measure and quantify earthquake transients and crustal deformation related to fault interactions in northern Central America and consists of three related chapters. The first chapter of my dissertation is a geodetic study of a M w = 7.4 subduction zone earthquake that occurred in 2012 offshore from our Guatemala GPS (Global Positioning System) network. For this study, I inverted coseismic site offsets and postseismic amplitudes to determine best-fitting coseismic and afterslip rupture distributions on the Middle America trench. I also determined the maximum likely viscoelastic deformation for the earthquake to test whether the transient postseismic deformation was dominated by fault afterslip or viscoelastic flow. This work was published in Geophysical Journal International in January 2015. The second chapter of my dissertation derives a new 200+ site GPS velocity field for northern

  4. GPS atmosphere sounding project - An innovative approach for the recovery of atmospheric parameters. WP 232 - Validation of regional models - BALTEX - and contributions to WP 341 and WP 344

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, K.P.

    2003-07-01

    The atmospheric water vapor content is one of the most important parameters for the hydrological cycle. In order to investigate the energy and water balance over the BALTEX study region this report describes comparisons of specific humidity profiles of the hydrostatic High resolution Regional weather forecast Model HRM of the Deutscher Wetterdienst (DWD) with profiles derived from spaceborne radio occultation data of GPS/MET and CHAMP and comparisons with the vertically integrated water vapor (IWV) of different networks of groundbased GPS receivers within Europe. High correlations (with a correlation coefficient around 0.9) between the HRM IWV and GPS IWV were found. It is shown that the analysis data used to initialize the HRM model can explain a large part of the mean difference between the IWV from the model and the GPS data. Specific humidities and the IWVs were determined from the refractivity profiles of the radio occultations of GPS/MET and CHAMP/GPS using an iterative algorithm of Gorbunov and Sokolovski (1993). The comparisons of the specific humidity profiles have shown that both receivers, GPS/MET and CHAMP/GPS, measure significantly lower mean specific humidities below about 4 km than HRM. This is e.g. supported by comparisons between the HRM model and the ECMWF analysis data, between the HRM model and radiosonde ascents at Lindenberg/Germany (which have shown lower mean absolute differences of about 0.2 g/kg) as well as between HRM and further spaceborne data like AMSU-A/B and TERRA/MODIS. Comparisons between CHAMP/GPS and AMSU-A over oceans and AMSU-B over Antarctica show the high value of GPS radio occultations for applications worldwide. (orig.)

  5. OPEN-SOURCE DIGITAL ELEVATION MODEL (DEMs EVALUATION WITH GPS AND LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. F. Khalid

    2016-09-01

    Full Text Available Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available Digital Elevation Model (DEM datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  6. Shear wave crustal velocity model of the Western Bohemian Massif from Love wave phase velocity dispersion

    Czech Academy of Sciences Publication Activity Database

    Kolínský, Petr; Málek, Jiří; Brokešová, J.

    2011-01-01

    Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/

  7. Near Field Modeling for the Maule Tsunami from DART, GPS and Finite Fault Solutions (Invited)

    Science.gov (United States)

    Arcas, D.; Chamberlin, C.; Lagos, M.; Ramirez-Herrera, M.; Tang, L.; Wei, Y.

    2010-12-01

    The earthquake and tsunami of February, 27, 2010 in central Chile has rekindled an interest in developing techniques to predict the impact of near field tsunamis along the Chilean coastline. Following the earthquake, several initiatives were proposed to increase the density of seismic, pressure and motion sensors along the South American trench, in order to provide field data that could be used to estimate tsunami impact on the coast. However, the precise use of those data in the elaboration of a quantitative assessment of coastal tsunami damage has not been clarified. The present work makes use of seismic, Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems, and GPS measurements obtained during the Maule earthquake to initiate a number of tsunami inundation models along the rupture area by expressing different versions of the seismic crustal deformation in terms of NOAA’s tsunami unit source functions. Translation of all available real-time data into a feasible tsunami source is essential in near-field tsunami impact prediction in which an impact assessment must be generated under very stringent time constraints. Inundation results from each different source are then contrasted with field and tide gauge data by comparing arrival time, maximum wave height, maximum inundation and tsunami decay rate, using field data collected by the authors.

  8. Discrete Velocity Models for Polyatomic Molecules Without Nonphysical Collision Invariants

    Science.gov (United States)

    Bernhoff, Niclas

    2018-05-01

    An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. Unlike for the Boltzmann equation, for DVMs there can appear extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and hence, without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species, but also for binary mixtures and recently extensively for multicomponent mixtures. In this paper, we address ways of constructing normal DVMs for polyatomic molecules (here represented by that each molecule has an internal energy, to account for non-translational energies, which can change during collisions), under the assumption that the set of allowed internal energies are finite. We present general algorithms for constructing such models, but we also give concrete examples of such constructions. This approach can also be combined with similar constructions of multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules, which is also briefly outlined. Then also, chemical reactions can be added.

  9. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  10. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  11. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    Science.gov (United States)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  12. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  13. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  14. Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region

    Science.gov (United States)

    Suraj, Puram Sai; Kumar Dabbakuti, J. R. K.; Chowdhary, V. Rajesh; Tripathi, Nitin K.; Ratnam, D. Venkata

    2017-12-01

    This paper proposes a linear time series model to represent the climatology of the ionosphere and to investigate the characteristics of hourly averaged total electron content (TEC). The GPS-TEC observation data at the Bengaluru international global navigation satellite system (GNSS) service (IGS) station (geographic 13.02°N , 77.57°E ; geomagnetic latitude 4.4°N ) have been utilized for processing the TEC data during an extended period (2009-2016) in the 24{th} solar cycle. Solar flux F10.7p index, geomagnetic Ap index, and periodic oscillation factors have been considered to construct a linear TEC model. It is evident from the results that solar activity effect on TEC is high. It reaches the maximum value (˜ 40 TECU) during the high solar activity (HSA) year (2014) and minimum value (˜ 15 TECU) during the low solar activity (LSA) year (2009). The larger magnitudes of semiannual variations are observed during the HSA periods. The geomagnetic effect on TEC is relatively low, with the highest being ˜ 4 TECU (March 2015). The magnitude of periodic variations can be seen more significantly during HSA periods (2013-2015) and less during LSA periods (2009-2011). The correlation coefficient of 0.89 between the observations and model-based estimations has been found. The RMSE between the observed TEC and model TEC values is 4.0 TECU (linear model) and 4.21 TECU (IRI2016 Model). Further, the linear TEC model has been validated at different latitudes over the northern low-latitude region. The solar component (F10.7p index) value decreases with an increase in latitude. The magnitudes of the periodic component become less significant with the increase in latitude. The influence of geomagnetic component becomes less significant at Lucknow GNSS station (26.76°N, 80.88°E) when compared to other GNSS stations. The hourly averaged TEC values have been considered and ionospheric features are well recovered with linear TEC model.

  15. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.; Jonsson, Sigurjon; Danielsen, G.; Hreinsdottir, S.; Jouanne, F.; Giardini, D.; Villemin, T.

    2012-01-01

    The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  16. Numerical modeling of probe velocity effects for electromagnetic NDE methods

    Science.gov (United States)

    Shin, Y. K.; Lord, W.

    The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.

  17. Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density

    Directory of Open Access Journals (Sweden)

    L. Bànyai

    1997-06-01

    Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.

  18. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    Science.gov (United States)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  19. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  20. J2 : An evaluation of new estimates from GPS, GRACE, and load models compared to SLR

    NARCIS (Netherlands)

    Lavallée, D.A.; Moore, P.; Clarke, P.J.; Petrie, E.J.; Van Dam, T.; King, M.A.

    2010-01-01

    Changes in J2, resulting from past and present changes in Earth's climate, are traditionally observed by Satellite Laser ranging (SLR). Assuming an elastic Earth, it is possible to infer changes in J2 from changes in Earth's shape observed by GPS. We compare estimates of non-secular J2 changes from

  1. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    Science.gov (United States)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  2. An extended continuum model considering optimal velocity change with memory and numerical tests

    Science.gov (United States)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  3. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

    Science.gov (United States)

    Huang, Liangke; Jiang, Weiping; Liu, Lilong; Chen, Hua; Ye, Shirong

    2018-05-01

    In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, T_m , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing T_m models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that T_m is highly correlated with both latitude and altitude. In this study, a new global grid empirical T_m model, named as GGTm, was established by a sliding window algorithm using global gridded T_m data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded T_m data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded T_m data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMS_{PWV} and RMS_{PWV} /PWV values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate T_m value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.

  4. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  5. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  6. A comparative study of velocity increment generation between the rigid body and flexible models of MMET

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2016-02-01

    The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.

  7. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen; Bennett, Richard A.; Hreinsdó ttir, Sigrú n

    2015-01-01

    © 2015 The Authors. Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  8. Comparison of GPS derived TEC with the TEC predicted by IRI 2012 model in the southern Equatorial Ionization Anomaly crest within the Eastern Africa region

    Science.gov (United States)

    Sulungu, Emmanuel D.; Uiso, Christian B. S.; Sibanda, Patrick

    2018-04-01

    We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 - 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.

  9. Multijam Solutions in Traffic Models with Velocity-Dependent Driver Strategies

    DEFF Research Database (Denmark)

    Carter, Paul; Christiansen, Peter Leth; Gaididei, Yuri B.

    2014-01-01

    The optimal-velocity follow-the-leader model is augmented with an equation that allows each driver to adjust their target headway according to the velocity difference between the driver and the car in front. In this more detailed model, which is investigated on a ring, stable and unstable multipu...

  10. GPS coordinate time series measurements in Ontario and Quebec, Canada

    Science.gov (United States)

    Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.

    2017-06-01

    New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the

  11. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  12. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    Science.gov (United States)

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart

  13. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  14. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  15. VELOCITY AND GRAVITATIONAL EFFECTS ON GPS SATELLITES: AN OUTLINE OF EARLY PREDICTION AND DETECTION OF STRONG EARTHQUAKES EFECTOS DE VELOCIDAD Y DE GRAVITACIÓN EN GPS SATELITALES: UN ESQUEMA PARA LA PREDICCIÓN Y DETECCIÓN TEMPRANA DE FUERTES TERREMOTOS

    Directory of Open Access Journals (Sweden)

    H Torres-Silva

    2010-12-01

    Full Text Available Today, the global navigation satellite systems, GPS used as global positioning systems, are based on a gravitational model and hence they are only operative when several relativistic effects are taken into account. The most important relativistic effects (to order 1/c² are: the Doppler red shift of second order, due to the motion of the satellite (special relativity and the Einstein gravitational blue shift effect of the satellite clock frequency (equivalence principle of general relativity. Both of these effects can be treated at a basic level, making for an appealing application of relativity to every life. This paper examines the significant effects that must be taken into account in the design and operation of systems GPS without resorting to the theory of special and general relativity, yielding the same results for these systems, where one of the effects can be treated with the time contraction approach proposed here and the other using the Newton's theory as an approximation of the General Relativity. This approach allow us to propose an outline of early prediction and detection on strong earthquake phenomena.Hoy en día, los sistemas de navegación global por satélite, GPS utilizados como sistemas de posicionamiento global, se basan en un modelo gravitacional y por lo tanto solo son operativos cuando varios efectos relativistas son tenidos en cuenta. Los efectos relativistas más importantes (hasta el orden 1/c² son: el desplazamiento Doppler al rojo de segundo orden, debido al movimiento del satélite (la relatividad especial y el efecto gravitacional de Einstein corrimiento al azul de la frecuencia de reloj del satélite (principio de equivalencia de la relatividad general. Ambos efectos pueden ser tratados en un nivel básico, apelando a la relatividad del día a día. Este artículo examina los efectos significativos que deben tenerse en cuenta en la operación de sistemas de GPS sin tener que recurrir a las teorías de la

  16. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  17. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  18. GPS operations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J.

    2010-06-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ±0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  19. Assimilation of COST 716 Near-Real Time GPS data in the nonhydrostatic limited area model used at MeteoSwiss

    Science.gov (United States)

    Guerova, G.; Bettems, J.-M.; Brockmann, E.; Matzler, Ch.

    2006-01-01

    Application of the GPS derived water vapor into Numerical Weather Prediction (NWP) models is one of the focuses of the COST Action 716 “Exploitation of Ground based GPS for climate and numerical weather prediction applications”. For this purpose the GPS data covering Europe have been collected within the Near-Real Time (NRT) demonstration project and provided for Observing System Experiments (OSE). For the experiments presented in this manuscript the operational NWP system of MeteoSwiss is used. The limited area nonhydrostatic aLpine Model (aLMo) of MeteoSwiss covers most of western Europe, has a horizontal resolution of 7 km, 45 layers in the vertical, and uses a data assimilation scheme based on the Newtonian relaxation (nudging) method. In total 17 days analyses and two 30 hours daily forecasts have been computed, with 100 GPS sites assimilated for three selected periods in autumn 2001, winter and summer 2002. It is to be noted that only in the last period data from 10 french sites, i.e. west of Switzerland are assimilated. The GPS NRT data quality has been compared with the Post-Processed data. Agreement within 3 mm level Zenith Total Delay bias and 8 mm standard deviation was found, corresponding to an Integrated Water Vapor (IWV) bias below 0.5 kg/m2. Most of the NRT data over aLMo domain are available within a prescribed time window of 1 h 45 min. In the nudging process the NRT data are successfully used by the model to correct the IWV deficiencies present in the reference analysis; stronger forcing with a shorter time scale could be however recommended. Comparing the GPS derived IWV with radiosonde observations, a dry radiosonde bias has been found over northern Italy. Through GPS data assimilation the aLMo analysis bias and standard deviation in the diurnal cycle has been reduced. The negative bias of 0.64 kg/m2 in the reference analysis has been reduced to 0.34 kg/m2 in GPS analysis. However, the diurnal cycle statistic from the forecast does show the

  20. Validation of tectonic models for an intraplate seismic zone, Charleston, South Carolina, with GPS geodetic data

    International Nuclear Information System (INIS)

    Talwani, P.; Kellogg, J.N.; Trenkamp, R.

    1997-02-01

    Although the average strain rate in intraplate settings is 2--3 orders of magnitude lower than at plate boundaries, there are pockets of high strain rates within intraplate regions. The results of a Global Positioning System survey near the location of current seismicity (and the inferred location of the destructive 1886 Charleston, South Carolina earthquake) suggest that there is anomalous strain build-up occurring there. By reoccupying 1930 triangulation and 1980 GPS sites with six Trimble SST dual frequency receivers, a strain rate of 0.4 x 10 -7 yr -1 was observed. At the 95% confidence level, this value is not significant; however, at a lower level of confidence (∼ 85%) it is about two orders of magnitude greater than the background of 10 -9 to 10 -10 yr -1 . The direction of contraction inferred from the GPS survey 66 degree ± 11 degree is in excellent agreement with the direction of the maximum horizontal stress (N 60 degree E) in the area, suggesting that the observed strain rate is also real. 66 refs

  1. Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations

    Science.gov (United States)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2017-10-01

    Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.

  2. Nonaligned shocks for discrete velocity models of the Boltzmann equation

    Directory of Open Access Journals (Sweden)

    J. M. Greenberg

    1991-05-01

    Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.

  3. Modeling of velocity field for vacuum induction melting process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi

    2005-01-01

    The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.

  4. Velocity potential formulations of highly accurate Boussinesq-type models

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Madsen, Per A.; Fuhrman, David R.

    2009-01-01

    , B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487-504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective...... with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave...... processes on the weather side of reflective structures. Coast. Eng. 53, 929-945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position z=(z) over cap. For practical implementation however, the solution is expanded based on a slow...

  5. Velocity Deficits in the Wake of Model Lemon Shark Dorsal Fins Measured with Particle Image Velocimetry

    Science.gov (United States)

    Terry, K. N.; Turner, V.; Hackett, E.

    2017-12-01

    Aquatic animals' morphology provides inspiration for human technological developments, as their bodies have evolved and become adapted for efficient swimming. Lemon sharks exhibit a uniquely large second dorsal fin that is nearly the same size as the first fin, the hydrodynamic role of which is unknown. This experimental study looks at the drag forces on a scale model of the Lemon shark's unique two-fin configuration in comparison to drag forces on a more typical one-fin configuration. The experiments were performed in a recirculating water flume, where the wakes behind the scale models are measured using particle image velocimetry. The experiments are performed at three different flow speeds for both fin configurations. The measured instantaneous 2D distributions of the streamwise and wall-normal velocity components are ensemble averaged to generate streamwise velocity vertical profiles. In addition, velocity deficit profiles are computed from the difference between these mean streamwise velocity profiles and the free stream velocity, which is computed based on measured flow rates during the experiments. Results show that the mean velocities behind the fin and near the fin tip are smallest and increase as the streamwise distance from the fin tip increases. The magnitude of velocity deficits increases with increasing flow speed for both fin configurations, but at all flow speeds, the two-fin configurations generate larger velocity deficits than the one-fin configurations. Because the velocity deficit is directly proportional to the drag force, these results suggest that the two-fin configuration produces more drag.

  6. M-Health Service for Train Passengers Using Mobile GPS System: An ArchiMate Service Layer Model

    Directory of Open Access Journals (Sweden)

    MUHAMMAD SAJID

    2017-01-01

    Full Text Available EA (Enterprise Architecture is an instrument that is employed to describe the organization?s structure, business layout and operations within the IT (Information Technology environment. Different types of organizations extensively employed EA for aligning their business and operations with IT resources. EA may also be employed in non-organizational setting such as service providing agencies; rescue, medical emergency and education services. This paper suggests an EAF (Enterprise Architecture Framework for non-organizational setting by critically analyzing the top four EAs. The paper also proposes a new m-Health service model based on the mobile GPS (Global Positioning System for train/rail passengers by employing the ArchiMate modeling language and compares the proposed model with existing service providers.

  7. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  8. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA); Modelo de deformación horizontal GPS de la región sur de la Península Ibérica y norte de África (SPINA)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-09-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [Spanish] El Sistema Global de Navegación por Satélite (GNSS), y, en particular, el Sistema Global de Posicionamiento (GPS) proporcionan una importante herramienta en el estudio de los procesos geodinámicos. Como consecuencia de estos estudios, es posible analizar la interacción entre las placas tectónicas con el fin de evaluar y establecer las características de sus límites. Este trabajo se centra principalmente, en el análisis de series temporales obtenidas a partir de observaciones de los satélites GNSS-GPS en estaciones geodésicas permanentes ubicadas en la región sur de la Península Ibérica y norte de

  9. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    den enkelte bil med en computer, der ved hjælp af signaler fra satellitter, kan bestemme bilens placering på vejnettet. Herved kan bilens computer ved hjælp af elektroniske vejkort udregne kilometertaksten det pågældende sted, således at det skyldige beløb enten trækkes direkte eller akkumuleres til...... estimeringskvaliteten af positionen, som specielt ses når bilerne accelererer, deaccelererer og drejer hurtigt i sving m.m. Hver GPS-baseret observations nøjagtighed afhænger af antallet af satellitter inden for ”sigt”, kvaliteten af hvert signal (HDOP) og den retning satellitterne befinder sig i forhold til enheden og...

  10. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  11. Evaluation of a Model for Predicting the Tidal Velocity in Fjord Entrances

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Emilia [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden); Thomassen, Paul [Team Ashes, Trondheim (Norway); Leijon, Mats [The Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Uppsala Univ. (Sweden)

    2013-04-15

    Sufficiently accurate and low-cost estimation of tidal velocities is of importance when evaluating a potential site for a tidal energy farm. Here we suggest and evaluate a model to calculate the tidal velocity in fjord entrances. The model is compared with tidal velocities from Acoustic Doppler Current Profiler (ADCP) measurements in the tidal channel Skarpsundet in Norway. The calculated velocity value from the model corresponded well with the measured cross-sectional average velocity, but was shown to underestimate the velocity in the centre of the channel. The effect of this was quantified by calculating the kinetic energy of the flow for a 14-day period. A numerical simulation using TELEMAC-2D was performed and validated with ADCP measurements. Velocity data from the simulation was used as input for calculating the kinetic energy at various locations in the channel. It was concluded that the model presented here is not accurate enough for assessing the tidal energy resource. However, the simplicity of the model was considered promising in the use of finding sites where further analyses can be made.

  12. Decay constants of heavy mesons in the relativistic potential model with velocity dependent corrections

    International Nuclear Information System (INIS)

    Avaliani, I.S.; Sisakyan, A.N.; Slepchenko, L.A.

    1992-01-01

    In the relativistic model with the velocity dependent potential the masses and leptonic decay constants of heavy pseudoscalar and vector mesons are computed. The possibility of using this potential is discussed. 11 refs.; 4 tabs

  13. Using GPS Imaging to Unravel Vertical Land Motions in the Interior Pacific Northwest

    Science.gov (United States)

    Overacker, J.; Hammond, W. C.; Kraner, M.; Blewitt, G.

    2017-12-01

    GPS Imaging uses robust trends in time series of GPS positions to create a velocity field that can reveal rates and patterns of vertical motions that would be otherwise difficult to detect. We have constructed an image of vertical land velocities within the interior Pacific Northwest region of the United States using GPS Imaging. The image shows a 50-250 km wide swath of approximately 2 mm/yr of subsidence seemingly unrelated to topographic features of the region. The extent of the signal roughly corresponds to the Juan de Fuca plate subduction latitudes and longitude of the Cascade arc. This suggests that the signal could be associated with ongoing crustal deformation possibly related to plate-scale geodynamic forces arising from interseismic coupling, long term plate boundary tractions, volcanic loading, and/or mantle flow. However, hydrological loading from accumulating precipitation in the Cascades and in the region's groundwater basins, and possible effects from Glacial Isostatic Adjustment (GIA) near its hinge line cannot be discounted as potential contributors to the observed subsidence signal. Here we attempt to unravel the contributions of hydrological loading and GIA to the vertical GPS signal observed within the interior Pacific Northwest. In order to determine the non-tectonic contributions to the observed vertical GPS Image, we will examine how the subsidence rate changes over time using early and late period comparisons. GPS, GRACE, and climatic data will be used in conjunction to disentangle the hydrological effect from the GPS Image. GIA models of the Western Cordillera will be compared with the patterns in the GPS Image to assess whether the signal can be explained with current models of GIA. Our presentation will document the signals, uncertainties, and hypotheses for the possible mechanisms behind this subsidence and attempt to quantify their relation and contribution to the observed deformation signal. Figure 1: Pacific Northwest GPS Imaging

  14. GPS-derived crustal deformation in Azerbaijan

    Science.gov (United States)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  15. An empirical velocity scale relation for modelling a design of large mesh pelagic trawl

    NARCIS (Netherlands)

    Ferro, R.S.T.; Marlen, van B.; Hansen, K.E.

    1996-01-01

    Physical models of fishing nets are used in fishing technology research at scales of 1:40 or smaller. As with all modelling involving fluid flow, a set of rules is required to determine the geometry of the model and its velocity relative to the water. Appropriate rules ensure that the model is

  16. GPS measurements in Satakunta area

    International Nuclear Information System (INIS)

    Poutanen, M.; Nyberg, S.; Ahola, J.

    2010-10-01

    The Finnish Geodetic Institute, the Geological Survey of Finland, Posiva Ltd and municipalities in the district of Satakunta launched the GeoSatakunta research program in 2002 to carry out interdisciplinary studies on regional bedrock stress field and to apply the results e.g. in land use planning in the Satakunta area. The area was chosen for many reasons. Its geological diversity, extensive multi-disciplinary data coverage, and various interests of participants made the area suitable for the project. The purpose of the GPS observations is to get detailed information on recent crustal deformations in the area. The Finnish Geodetic Institute maintains e.g. national GPS network, FinnRef, and since 1995 a local research network in the Olkiluoto area. The Satakunta network differs from these, and this is the first time to obtain such detailed information of a regional network in Finland. The Satakunta GPS network consists of 13 concrete pillars for episodic GPS campaigns and the Olkiluoto permanent GPS station in the FinnRef network. The distances between the concrete pillars are 10-15 km, and the sites were chosen in a co-operation with the Geological Survey of Finland taking into account the geological structures in the area. The City of Pori made the final reconnaissance in the field and constructed eight pillars in 2003. The original network was expanded in 2005-2006 in Eurajoki and Rauma, and at the City of Rauma joined the co-operation. The five new pillars join the previous Olkiluoto network into the Satakunta network. There have been three annual GPS campaigns in 2003-2008. Time series of the Satakunta network are shorter than in the Olkiluoto network, and also the distances are longer. Therefore, the same accuracy than in Olkiluoto has not yet achieved. However, mm-sized movements can be excluded. Estimated velocities were small (0.2 mm/a) and mostly statistically insignificant because of relatively short time series. In this publication we describe the

  17. Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale

    Science.gov (United States)

    Kooshapur, Sheema; Manhart, Michael

    2015-04-01

    For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and

  18. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community

  19. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  20. Analyzing the Impact of Different Pcv Calibration Models on Height Determination Using Gps/Glonass Observations from Asg-Eupos Network

    Science.gov (United States)

    Dawidowicz, Karol

    2014-12-01

    The integration of GPS with GLONASS is very important in satellite-based positioning because it can clearly improve reliability and availability. However, unlike GPS, GLONASS satellites transmit signals at different frequencies. This results in significant difficulties in modeling and ambiguity resolution for integrated GNSS positioning. There are also some difficulties related to the antenna Phase Center Variations (PCV) problem because, as is well known, the PCV is dependent on the received signal frequency dependent. Thus, processing simultaneous observations from different positioning systems, e.g. GPS and GLONASS, we can expect complications resulting from the different structure of signals and differences in satellite constellations. The ASG-EUPOS multifunctional system for precise satellite positioning is a part of the EUPOS project involving countries of Central and Eastern Europe. The number of its users is increasing rapidly. Currently 31 of 101 reference stations are equipped with GPS/GLONASS receivers and the number is still increasing. The aim of this paper is to study the height solution differences caused by using different PCV calibration models in integrated GPS/GLONASS observation processing. Studies were conducted based on the datasets from the ASG-EUPOS network. Since the study was intended to evaluate the impact on height determination from the users' point of view, a so-called "commercial" software was chosen for post-processing. The analysis was done in a baseline mode: 3 days of GNSS data collected with three different receivers and antennas were used. For the purposes of research the daily observations were divided into different sessions with a session length of one hour. The results show that switching between relative and absolute PCV models may cause an obvious effect on height determination. This issue is particularly important when mixed GPS/GLONASS observations are post-processed.

  1. Mathematical Modeling for Energy Dissipation Behavior of Velocity ...

    African Journals Online (AJOL)

    The developed oil-pressure damper is installed with an additional Relief Valve parallel to the Throttle Valve. This is intended to obtain an adaptive control by changing the damping coefficient of this damper using changeable orifice size. In order to simulate its actual energy-dissipating behavior, a serial friction model and a ...

  2. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle’s Motion Sensors

    Science.gov (United States)

    Karamat, Tashfeen B.; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance. PMID:26402680

  3. Quantum Gravity and Maximum Attainable Velocities in the Standard Model

    International Nuclear Information System (INIS)

    Alfaro, Jorge

    2007-01-01

    A main difficulty in the quantization of the gravitational field is the lack of experiments that discriminate among the theories proposed to quantize gravity. Recently we showed that the Standard Model(SM) itself contains tiny Lorentz invariance violation(LIV) terms coming from QG. All terms depend on one arbitrary parameter α that set the scale of QG effects. In this talk we review the LIV for mesons nucleons and leptons and apply it to study several effects, including the GZK anomaly

  4. Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.

    Science.gov (United States)

    Mouri, Hideaki

    2015-12-01

    For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.

  5. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  6. Instantaneous emission modeling with GPS-based vehicle activity data: results of diesel trucks for one-day trips

    NARCIS (Netherlands)

    Feng, T.; Arentze, T.A.; Timmermans, H.J.P.

    2011-01-01

    This paper presents an instantaneous analysis for traffic emissions using GPS-based vehicle activity data. The different driving conditions, including real-time and average speed, short-time stops and long-time stops, acceleration and deceleration, etc., are extracted from GPS data. The hot

  7. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    Science.gov (United States)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  8. A wave propagation model of blood flow in large vessels using an approximate velocity profile function

    NARCIS (Netherlands)

    Bessems, D.; Rutten, M.C.M.; Vosse, van de F.N.

    2007-01-01

    Lumped-parameter models (zero-dimensional) and wave-propagation models (one-dimensional) for pressure and flow in large vessels, as well as fully three-dimensional fluid–structure interaction models for pressure and velocity, can contribute valuably to answering physiological and patho-physiological

  9. Mathematical modeling of groundwater contamination with varying velocity field

    Directory of Open Access Journals (Sweden)

    Das Pintu

    2017-06-01

    Full Text Available In this study, analytical models for predicting groundwater contamination in isotropic and homogeneous porous formations are derived. The impact of dispersion and diffusion coefficients is included in the solution of the advection-dispersion equation (ADE, subjected to transient (time-dependent boundary conditions at the origin. A retardation factor and zero-order production terms are included in the ADE. Analytical solutions are obtained using the Laplace Integral Transform Technique (LITT and the concept of linear isotherm. For illustration, analytical solutions for linearly space- and time-dependent hydrodynamic dispersion coefficients along with molecular diffusion coefficients are presented. Analytical solutions are explored for the Peclet number. Numerical solutions are obtained by explicit finite difference methods and are compared with analytical solutions. Numerical results are analysed for different types of geological porous formations i.e., aquifer and aquitard. The accuracy of results is evaluated by the root mean square error (RMSE.

  10. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.

    Directory of Open Access Journals (Sweden)

    Andrew D Lowther

    Full Text Available Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.

  11. A math model for high velocity sensoring with a focal plane shuttered camera.

    Science.gov (United States)

    Morgan, P.

    1971-01-01

    A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.

  12. Assessment of effectiveness of geologic isolation systems: geostatistical modeling of pore velocity

    International Nuclear Information System (INIS)

    Devary, J.L.; Doctor, P.G.

    1981-06-01

    A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses

  13. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  14. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    Science.gov (United States)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  15. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency f, for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit...... one curve. The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given. In stable, horizontal velocity spectra, there is often a ‘gap’ at low frequencies. Using dimensional considerations...... and the spectral model previously derived, an expression for the gap frequency is found....

  16. One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan

    Science.gov (United States)

    Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.

    2011-09-01

    We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.

  17. UCVM: An Open Source Framework for 3D Velocity Model Research

    Science.gov (United States)

    Gill, D.; Maechling, P. J.; Jordan, T. H.; Plesch, A.; Taborda, R.; Callaghan, S.; Small, P.

    2013-12-01

    Three-dimensional (3D) seismic velocity models provide fundamental input data to ground motion simulations, in the form of structured or unstructured meshes or grids. Numerous models are available for California, as well as for other parts of the United States and Europe, but models do not share a common interface. Being able to interact with these models in a standardized way is critical in order to configure and run 3D ground motion simulations. The Unified Community Velocity Model (UCVM) software, developed by researchers at the Southern California Earthquake Center (SCEC), is an open source framework designed to provide a cohesive way to interact with seismic velocity models. We describe the several ways in which we have improved the UCVM software over the last year. We have simplified the UCVM installation process by automating the installation of various community codebases, improving the ease of use.. We discuss how UCVM software was used to build velocity meshes for high-frequency (4Hz) deterministic 3D wave propagation simulations, and how the UCVM framework interacts with other open source resources, such as NetCDF file formats for visualization. The UCVM software uses a layered software architecture that transparently converts geographic coordinates to the coordinate systems used by the underlying velocity models and supports inclusion of a configurable near-surface geotechnical layer, while interacting with the velocity model codes through their existing software interfaces. No changes to the velocity model codes are required. Our recent UCVM installation improvements bundle UCVM with a setup script, written in Python, which guides users through the process that installs the UCVM software along with all the user-selectable velocity models. Each velocity model is converted into a standardized (configure, make, make install) format that is easily downloaded and installed via the script. UCVM is often run in specialized high performance computing (HPC

  18. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Science.gov (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Science.gov (United States)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  20. Simultaneous inversion for hypocenters and lateral velocity variation: An iterative solution with a layered model

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, B.W.; Zandt, G.; Smith, R.B.

    1981-08-10

    An iterative inversion technique has been developed that uses the direct P and S wave arrival times from local earthquakes to compute simultaneously a three-dimensional velocity structure and relocated hypocenters. Crustal structure is modeled by subdiving flat layers into rectangular blocks. An interpolation function is used to smoothly vary velocities between blocks, allowing ray trace calculations of travel times in a three-dimensional medium. Tests using synthetic data from known models show that solutions are reasonably independent of block size and spatial distribution but are sensitive to the choice of layer thicknesses. Application of the technique to observed earthquake data from north-central Utah shown the following: (1) lateral velcoity variations in the crust as large as 7% occur over 30-km distance, (2) earthquake epicenters computed with the three-dimensional velocity structure were shifted an average of 3.0 km from location determined assuming homogeneous flat layered models, and (3) the laterally varying velocity structure correlates with anomalous variations in the local gravity and aeromagnetic fields, suggesting that the new velocity information can be valuable in acquiring a better understanding of crustal structure.

  1. Calculation of pressure gradients from MR velocity data in a laminar flow model

    International Nuclear Information System (INIS)

    Adler, R.S.; Chenevert, T.L.; Fowlkes, J.B.; Pipe, J.G.; Rubin, J.M.

    1990-01-01

    This paper reports on the ability of current imaging modalities to provide velocity-distribution data that offers the possibility of noninvasive pressure-gradient determination from an appropriate rheologic model of flow. A simple laminar flow model is considered at low Reynolds number, RE calc = 0.59 + (1.13 x (dp/dz) meas ), R 2 = .994, in units of dyne/cm 2 /cm for the range of flows considered. The authors' results indicate the potential usefulness of noninvasive pressure-gradient determinations from quantitative analysis of imaging-derived velocity data

  2. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    Science.gov (United States)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  3. GPS deformation measurements at Olkiluoto in 2013

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2014-08-01

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  4. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  5. Should tsunami models use a nonzero initial condition for horizontal velocity?

    Science.gov (United States)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami

  6. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  7. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  8. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    Science.gov (United States)

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  9. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  10. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    Science.gov (United States)

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  11. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    Science.gov (United States)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  12. Velocity Model Analysis Based on Integrated Well and Seismic Data of East Java Basin

    Science.gov (United States)

    Mubin, Fathul; Widya, Aviandy; Eka Nurcahya, Budi; Nurul Mahmudah, Erma; Purwaman, Indro; Radityo, Aryo; Shirly, Agung; Nurwani, Citra

    2018-03-01

    Time to depth conversion is an important processof seismic interpretationtoidentify hydrocarbonprospectivity. Main objectives of this research are to minimize the risk of error in geometry and time to depth conversion. Since it’s using a large amount of data and had been doing in the large scale of research areas, this research can be classified as a regional scale research. The research was focused on three horizons time interpretation: Top Kujung I, Top Ngimbang and Basement which located in the offshore and onshore areas of east Java basin. These three horizons was selected because they were assumed to be equivalent to the rock formation, which is it has always been the main objective of oil and gas exploration in the East Java Basin. As additional value, there was no previous works on velocity modeling for regional scale using geological parameters in East Java basin. Lithology and interval thickness were identified as geological factors that effected the velocity distribution in East Java Basin. Therefore, a three layer geological model was generated, which was defined by the type of lithology; carbonate (layer 1: Top Kujung I), shale (layer 2: Top Ngimbang) and Basement. A statistical method using three horizons is able to predict the velocity distribution on sparse well data in a regional scale. The average velocity range for Top Kujung I is 400 m/s - 6000 m/s, Top Ngimbang is 500 m/s - 8200 m/s and Basement is 600 m/s - 8000 m/s. Some velocity anomalies found in Madura sub-basin area, caused by geological factor which identified as thick shale deposit and high density values on shale. Result of velocity and depth modeling analysis can be used to define the volume range deterministically and to make geological models to prospect generation in details by geological concept.

  13. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  14. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  15. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking.

    Science.gov (United States)

    Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy

    2015-07-01

    The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling

  16. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Long, Thomas C; Schultz, Bradley D; Crooks, James; Breen, Miyuki; Langstaff, John E; Isaacs, Kristin K; Tan, Yu-Mei; Williams, Ronald W; Cao, Ye; Geller, Andrew M; Devlin, Robert B; Batterman, Stuart A; Buckley, Timothy J

    2014-07-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies.

  17. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    Science.gov (United States)

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  18. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    Science.gov (United States)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  19. An investigation of FLUENT's fan model including the effect of swirl velocity

    International Nuclear Information System (INIS)

    El Saheli, A.; Barron, R.M.

    2002-01-01

    The purpose of this paper is to investigate and discuss the reliability of simplified models for the computational fluid dynamics (CFD) simulation of air flow through automotive engine cooling fans. One of the most widely used simplified fan models in industry is a variant of the actuator disk model which is available in most commercial CFD software, such as FLUENT. In this model, the fan is replaced by an infinitely thin surface on which pressure rise across the fan is specified as a polynomial function of normal velocity or flow rate. The advantages of this model are that it is simple, it accurately predicts the pressure rise through the fan and the axial velocity, and it is robust

  20. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P

    1979-10-01

    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  1. Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter

    NARCIS (Netherlands)

    Alavi, A.; Parrinello, M.; Frenkel, D.

    1995-01-01

    First-principles molecular dynamics simulations were used to calculate the sound velocity of dense hydrogen, and the results were compared with extrapolations of experimental data that currently conflict with either astrophysical models or data obtained from recent global oscillation measurements of

  2. Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?

    Science.gov (United States)

    2015-05-01

    extended Kalman filter . Molcard et al. (2005) used a statistical method to cor- relate model and drifter velocities. Taillandier et al. (2006) describe the... temperature and salinity observations. Trajectory angular differ- ences are also reduced. 1. Introduction The importance of Lagrangian forecasts was seen... Temperature , salinity, and sea surface height (SSH, measured along-track by satellite altimeters) observa- tions are typically assimilated in

  3. Analytical models for predicting the ion velocity distributions in JET in the presence of ICRF heating

    International Nuclear Information System (INIS)

    Anderson, A.; Eriksson, L.G.; Lisak, M.

    1986-01-01

    The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)

  4. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)

    2008-10-21

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  5. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  6. 3D Crustal Velocity Structure Model of the Middle-eastern North China Craton

    Science.gov (United States)

    Duan, Y.; Wang, F.; Lin, J.; Wei, Y.

    2017-12-01

    Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. Up to 42 wide-angle reflection/refraction deep seismic sounding (DSS) profiles have been completed in the middle-eastern NCC, we collect all the 2D profiling results and perform gridding of the velocity and interface depth data, and build a 3D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, using the Kriging interpolation method. In this model, four layers are divided by three interfaces: G is the interface between the sedimentary cover and crystalline crust, with velocities of 5.0-5.5 km/s above and 5.8-6.0 km/s below. C is the interface of the upper and lower crust, with velocity jump from 6.2-6.4 km/s to 6.5-6.6 km/s. M is the interface between the crust and upper mantle, with velocity 6.7-7.0 km/s at the crust bottom and 7.9-8.0 km/s on mantle top. Our results show that the first arrival time calculated from HBCust1.0 fit well with the observation. It also demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C. The depth of interface Moho varies beneath the source area of the Tangshan earth-quake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average, this high-velocity probably results from longterm underplating of the mantle magma. This research is founded by the Natural Science

  7. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  8. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  9. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    International Nuclear Information System (INIS)

    Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng

    2011-01-01

    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  10. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  11. GPS observations of coseismic deformation following the 2016, August 24, Mw 6 Amatrice earthquake (central Italy: data, analysis and preliminary fault model

    Directory of Open Access Journals (Sweden)

    Daniele Cheloni

    2016-11-01

    Full Text Available We used continuous Global Positioning System (GPS measurements to infer the fault geometry and the amount of coseismic slip associated to the August 24, 2016 Mw 6 Amatrice earthquake. We realized a three dimensional coseismic displacement field by combining different geodetic solutions generated by three independent analyses of the raw GPS observations. The coseismic deformation field described in this work aims at representing a consensus solution that minimizes the systematic biases potentially present in the individual geodetic solutions. Because of the limited number of stations available we modeled the measured coseismic displacements using a uniform slip model, deriving the geometry and kinematics of the causative fault, finding good agreement between our geodetically derived fault plane and other seismological and geological observations.

  12. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  13. Minimum 1D P wave velocity model for the Cordillera Volcanica de Guanacaste, Costa Rica

    International Nuclear Information System (INIS)

    Araya, Maria C.; Linkimer, Lepolt; Taylor, Waldo

    2016-01-01

    A minimum velocity model is derived from 475 local earthquakes registered by the Observatorio Vulcanologico y Sismologico Arenal Miravalles (OSIVAM) for the Cordillera Volcanica de Guanacaste, between January 2006 and July 2014. The model has consisted of six layers from the surface up to 80 km the depth. The model has presented speeds varying between 3,96 and 7,79 km/s. The corrections obtained from the seismic stations have varied between -0,28 to 0,45, and they have shown a trend of positive values on the volcanic arc and negative on the forearc, in concordance with the crustal thickness. The relocation of earthquakes have presented three main groups of epicenters that could be associated with activity in inferred failures. The minimum ID velocity model has provided a simplified idea of the crustal structure and aims to contribute with the improvement of the routine location of earthquakes performed by OSIVAM. (author) [es

  14. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  15. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  16. A model for the two-point velocity correlation function in turbulent channel flow

    International Nuclear Information System (INIS)

    Sahay, A.; Sreenivasan, K.R.

    1996-01-01

    A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics

  17. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    Science.gov (United States)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  18. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    Science.gov (United States)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  19. Zero velocity interval detection based on a continuous hidden Markov model in micro inertial pedestrian navigation

    Science.gov (United States)

    Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli

    2018-06-01

    Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.

  20. A comparison between TEC obtained by the TOPEX/Poseidon borne GPS receiver and TEC from the Gallagher model

    International Nuclear Information System (INIS)

    Ciraolo, L.

    2003-01-01

    JPL archived RINEX files relative to the GPS receiver of TOPEX at the site bodhi.jplnasa.gov/pub/topex/rinex for years 1992, 1993, 1994, 1995, 1997. The GPS receiver on board was intended as a tool for precise orbitography, but from such data it is possible to extract Differential Phase and Group Delays providing with a biased estimate of slant Total Electron Content (TEC) from TOPEX to GPS. This means a very useful information about TEC in an area above 1340 up to 20000 km, or high topside and plasmasphere. It was possible to get some estimate of the minimum magnitude of slants that can be observed in such region. A comparison with slants obtained by the Gallagher was carried out, with interesting results

  1. A comparison between TEC obtained by the TOPEX/Poseidon borne GPS receiver and TEC from the Gallagher model

    CERN Document Server

    Ciraolo, L

    2002-01-01

    JPL archived RINEX files relative to the GPS receiver of TOPEX at the site bodhi.jplnasa.gov/pub/topex/rinex for years 1992, 1993, 1994, 1995, 1997. The GPS receiver on board was intended as a tool for precise orbitography, but from such data it is possible to extract Differential Phase and Group Delays providing with a biased estimate of slant Total Electron Content (TEC) from TOPEX to GPS. This means a very useful information about TEC in an area above 1340 up to 20000 km, or high topside and plasmasphere. It was possible to get some estimate of the minimum magnitude of slants that can be observed in such region. A comparison with slants obtained by the Gallagher was carried out, with interesting results.

  2. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvius and Phlegraean fields

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2006-12-15

    This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)

  3. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    Science.gov (United States)

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  4. The covariance of GPS coordinates and frames

    International Nuclear Information System (INIS)

    Lachieze-Rey, Marc

    2006-01-01

    We explore, in the general relativistic context, the properties of the recently introduced global positioning system (GPS) coordinates, as well as those of the associated frames and coframes that they define. We show that they are covariant and completely independent of any observer. We show that standard spectroscopic and astrometric observations allow any observer to measure (i) the values of the GPS coordinates at his position (ii) the components of his 4-velocity and (iii) the components of the metric in the GPS frame. This provides this system with a unique value both for conceptual discussion (no frame dependence) and for practical use (involved quantities are directly measurable): localization, motion monitoring, astrometry, cosmography and tests of gravitation theories. We show explicitly, in the general relativistic context, how an observer may estimate his position and motion, and reconstruct the components of the metric. This arises from two main results: the extension of the velocity fields of the probes to the whole (curved) spacetime, and the identification of the components of the observer's velocity in the GPS frame with the (inversed) observed redshifts of the probes. Specific cases (non-relativistic velocities, Minkowski and Friedmann-Lemaitre spacetimes, geodesic motions) are studied in detail

  5. Comparison of Models for GPS Kinematic Data Processing%GPS动态定位数据处理模型的比较研究

    Institute of Scientific and Technical Information of China (English)

    刘立龙; 文鸿雁; 刘斌

    2008-01-01

    The characteristics of three GPS kinematic data processing models, Least Squares (LS), Kalman filtering and H ∞ filtering are discussed and their advantages and disadvantages are compared. With observational data and pertinent data processing software, the applicable condition, context and effect of the three models are experimented. Results show that when the mobile platform is in uniform motion, the accuracy of the three models are almost equal; when the mobile platform is in stochastic acceleration, the accuracy of H∞ filtering model is superior to that of LS, while that of Kalman filtering is the worst.

  6. Models for assessing the relative phase velocity in a two-phase flow. Status report

    International Nuclear Information System (INIS)

    Schaffrath, A.; Ringel, H.

    2000-06-01

    The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)

  7. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  8. Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data

    Science.gov (United States)

    Graeber, Frank M.; Asch, Günter

    1999-09-01

    The PISCO'94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) seismological network of 31 digital broad band and short-period three-component seismometers was deployed in northern Chile between the Coastal Cordillera and the Western Cordillera. More than 5300 local seismic events were observed in a 100 day period. A subset of high-quality P and S arrival time data was used to invert simultaneously for hypocenters and velocity structure. Additional data from two other networks in the region could be included. The velocity models show a number of prominent anomalies, outlining an extremely thickened crust (about 70 km) beneath the forearc region, an anomalous crustal structure beneath the recent magmatic arc (Western Cordillera) characterized by very low velocities, and a high-velocity slab. A region of an increased Vp/Vs ratio has been found directly above the Wadati-Benioff zone, which might be caused by hydration processes. A zone of lower than average velocities and a high Vp/Vs ratio might correspond to the asthenospheric wedge. The upper edge of the Wadati-Benioff zone is sharply defined by intermediate depth hypocenters, while evidence for a double seismic zone can hardly be seen. Crustal events between the Precordillera and the Western Cordillera have been observed for the first time and are mainly located in the vicinity of the Salar de Atacama down to depths of about 40 km.

  9. Learning Together 1: an educational model for training GPs, paediatricians: initial findings.

    Science.gov (United States)

    Macaulay, Chloe; Spicer, John; Riches, Wendy; Lakhanpaul, Monica

    2017-01-01

    Learning Together is primarily an educational intervention, where paediatric registrars [SpRs] and General Practice (GP) registrars [GPSTs] see children together in a primary care setting. Over a six month period in 2013/2014, 44 learning pairs were set up mainly in North East and Central London. Proof of concept for the model at scale was achieved. Reported learning demonstrated: clinical learning themes of new knowledge, skill and communication skills; and collaborative themes of ongoing collaboration, satisfaction with team working and change in attitudes. These themes were identified in both sets of trainees. The self-reported learning is backed up by the results of a retrospective notes review of four common conditions based on NICE guidelines; constipation, asthma, feverish illness and eczema (CAFE). Guidance adherence improved from 57% before the intervention in solo GP training consultations to 72% during the joint clinic intervention (p Learning Together in its South London extension.

  10. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu

    2017-02-24

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  11. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    Directory of Open Access Journals (Sweden)

    Yiqing Yao

    2017-02-01

    Full Text Available In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS outages, a novel robust least squares support vector machine (LS-SVM-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS. The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  12. Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt

    Science.gov (United States)

    Mohamed, Abdel-Monem S.; Hosny, A.; Abou-Aly, N.; Saleh, M.; Rayan, A.

    2013-06-01

    A local geodetic network consisting of eleven benchmarks has been established to study the recent crustal deformation in the Abu-Dabbab area. Seven campaigns of GPS measurements have been collected started from October 2008 and ended in March 2012. The collected data were processed using Bernese version 5.0, and the result values were adjusted to get the more accurate positions of the GPS stations. The magnitudes of horizontal displacements are variable from one epoch to another and in the range of 1-3 (±0.2) mm/yr. Due to the differences in rates of the horizontal displacement; the area is divided into two main blocks. The first one, moves to the east direction of about 3 mm/yr, while the second block, moves to the SW direction of about 6 mm/yr. According to the strain fields that were calculated for the different epochs of measurement, the main force is compression force and is taken the NW-SE to NWW-SEE direction. This force could be because of local and regional tectonic processes affecting on the study area. The maximum values of compression stress are found in the southern central and western part of study area. Estimated accumulation of this strain energy may be considered as an indicator of the possibility of earthquake occurrence. From the seismic tomography study, the 3D Vp and Vp/Vs crustal models indicate high Vp/Vs values forms an elongated anomaly, in the central part of the study area, that extends from a depth of 12 km to about 1-2 km of depth is obtained. By using this crustal model in relocations all seismicity informed that most of the seismicity strongly tend to occur in a cluster manner exactly above the southern part of the study area. Based on the conducted source mechanism study, it is noticed that shallow earthquakes are associated by a high CLVD ratio (up to 40%). Furthermore, initiation of a high level seismic activity, without a large seismic main shock is observed in the Abu-Dabbab area. The distribution of micro-earthquakes tends to

  13. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  14. GPS Operations at Olkiluoto, Kivetty and Romuvaara in 2005

    International Nuclear Information System (INIS)

    Ahola, J.; Ollikainen, M.; Koivula, H.; Jokela, J.

    2006-07-01

    The GPS based deformation studies has been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. Twenty GPS measurement campaigns have been carried out at Olkiluoto since 1995, and fourteen campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. There are no statistically signicant movements at Kivetty and Romuvaara expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. The local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliable (maximum velocity is - 0.25 mm/a ± 0.025 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results to show a possible scale error of the GPS. The GPS network at Olkiluoto was enlarged in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari, both north from Olkiluoto. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed five times since 2003, but the time series are still too short for reliable deformation studies. Including the new pillars the local

  15. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Poutanen, M.; Jokela, J.

    2007-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a ± 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  16. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  17. A vorticity transport model to restore spatial gaps in velocity data

    Science.gov (United States)

    Ameli, Siavash; Shadden, Shawn

    2017-11-01

    Often measurements of velocity data do not have full spatial coverage in the probed domain or near boundaries. These gaps can be due to missing measurements or masked regions of corrupted data. These gaps confound interpretation, and are problematic when the data is used to compute Lagrangian or trajectory-based analyses. Various techniques have been proposed to overcome coverage limitations in velocity data such as unweighted least square fitting, empirical orthogonal function analysis, variational interpolation as well as boundary modal analysis. In this talk, we present a vorticity transport PDE to reconstruct regions of missing velocity vectors. The transport model involves both nonlinear anisotropic diffusion and advection. This approach is shown to preserve the main features of the flow even in cases of large gaps, and the reconstructed regions are continuous up to second order. We illustrate results for high-frequency radar (HFR) measurements of the ocean surface currents as this is a common application of limited coverage. We demonstrate that the error of the method is on the same order of the error of the original velocity data. In addition, we have developed a web-based gateway for data restoration, and we will demonstrate a practical application using available data. This work is supported by the NSF Grant No. 1520825.

  18. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Ramin, Elham; Szabo, Peter

    2015-01-01

    The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient...... and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational...... viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through...

  19. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  20. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    Science.gov (United States)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with

  1. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  2. Analytical study on the criticality of the stochastic optimal velocity model

    International Nuclear Information System (INIS)

    Kanai, Masahiro; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2006-01-01

    In recent works, we have proposed a stochastic cellular automaton model of traffic flow connecting two exactly solvable stochastic processes, i.e., the asymmetric simple exclusion process and the zero range process, with an additional parameter. It is also regarded as an extended version of the optimal velocity model, and moreover it shows particularly notable properties. In this paper, we report that when taking optimal velocity function to be a step function, all of the flux-density graph (i.e. the fundamental diagram) can be estimated. We first find that the fundamental diagram consists of two line segments resembling an inversed-λ form, and next identify their end-points from a microscopic behaviour of vehicles. It is notable that by using a microscopic parameter which indicates a driver's sensitivity to the traffic situation, we give an explicit formula for the critical point at which a traffic jam phase arises. We also compare these analytical results with those of the optimal velocity model, and point out the crucial differences between them

  3. Crustal and mantle velocity models of southern Tibet from finite frequency tomography

    Science.gov (United States)

    Liang, Xiaofeng; Shen, Yang; Chen, Yongshun John; Ren, Yong

    2011-02-01

    Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite-frequency tomographic inversions to image the three-dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively high P and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high-velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong-Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate-depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite-eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north-dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north-south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya.

  4. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  5. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    Science.gov (United States)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  6. Low-velocity Impact Response of a Nanocomposite Beam Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Mahdi Heydari Meybodi

    Full Text Available AbstractLow-velocity impact of a nanocomposite beam made of glass/epoxy reinforced with multi-wall carbon nanotubes and clay nanoparticles is investigated in this study. Exerting modified rule of mixture (MROM, the mechanical properties of nanocomposite including matrix, nanoparticles or multi-wall carbon nanotubes (MWCNT, and fiber are attained. In order to analyze the low-velocity impact, Euler-Bernoulli beam theory and Hertz's contact law are simultaneously employed to govern the equations of motion. Using Ritz's variational approximation method, a set of nonlinear equations in time domain are obtained, which are solved using a fourth order Runge-Kutta method. The effect of different parameters such as adding nanoparticles or MWCNT's on maximum contact force and energy absorption, stacking sequence, geometrical dimensions (i.e., length, width and height, and initial velocity of the impactor have been studied comprehensively on dynamic behavior of the nanocomposite beam. In addition, the result of analytical model is compared with Finite Element Modeling (FEM.The results reveal that the effect of nanoparticles on energy absorption is more considerable at higher impact energies.

  7. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    International Nuclear Information System (INIS)

    Ekman, Lennart; Ekman, Mats

    2013-03-01

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  8. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  9. Velocity statistics for interacting edge dislocations in one dimension from Dyson's Coulomb gas model.

    Science.gov (United States)

    Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel

    2013-10-01

    The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.

  10. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  11. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    Science.gov (United States)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  12. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    Science.gov (United States)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  13. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  14. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Science.gov (United States)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  15. Critique of the use of deposition velocity in modeling indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Weschler, C.J.

    1993-01-01

    Among the potential fates of indoor air pollutants are a variety of physical and chemical interactions with indoor surfaces. In deterministic mathematical models of indoor air quality, these interactions are usually represented as a first-order loss process, with the loss rate coefficient given as the product of the surface-to-volume ratio of the room times a deposition velocity. In this paper, the validity of this representation of surface-loss mechanisms is critically evaluated. From a theoretical perspective, the idea of a deposition velocity is consistent with the following representation of an indoor air environment. Pollutants are well-mixed throughout a core region which is separated from room surfaces by boundary layers. Pollutants migrate through the boundary layers by a combination of diffusion (random motion resulting from collisions with surrounding gas molecules), advection (transport by net motion of the fluid), and, in some cases, other transport mechanisms. The rate of pollutant loss to a surface is governed by a combination of the rate of transport through the boundary layer and the rate of reaction at the surface. The deposition velocity expresses the pollutant flux density (mass or moles deposited per area per time) to the surface divided by the pollutant concentration in the core region. This concept has substantial value to the extent that the flux density is proportional to core concentration. Published results from experimental and modeling studies of fine particles, radon decay products, ozone, and nitrogen oxides are used as illustrations of both the strengths and weaknesses of deposition velocity as a parameter to indicate the rate of indoor air pollutant loss on surfaces. 66 refs., 5 tabs

  16. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  17. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  18. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  19. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.

    Science.gov (United States)

    Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen

    2018-01-01

    This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that

  20. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    Science.gov (United States)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  1. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    Science.gov (United States)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field

  2. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Ondřej [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Prieto, Jose L., E-mail: pejcha@astro.princeton.edu [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago (Chile)

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  3. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  4. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.

    2011-11-01

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 σ. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 ± 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates are

  5. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2011-11-15

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 {sigma}. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 {+-} 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates

  6. A fifth equation to model the relative velocity the 3-D thermal-hydraulic code THYC

    International Nuclear Information System (INIS)

    Jouhanique, T.; Rascle, P.

    1995-11-01

    E.D.F. has developed, since 1986, a general purpose code named THYC (Thermal HYdraulic Code) designed to study three-dimensional single and two-phase flows in rod tube bundles (pressurised water reactor cores, steam generators, condensers, heat exchangers). In these studies, the relative velocity was calculated by a drift-flux correlation. However, the relative velocity between vapor and liquid is an important parameter for the accuracy of a two-phase flow modelling in a three-dimensional code. The range of application of drift-flux correlations is mainly limited by the characteristic of the flow pattern (counter current flow ...) and by large 3-D effects. The purpose of this paper is to describe a numerical scheme which allows the relative velocity to be computed in a general case. Only the methodology is investigated in this paper which is not a validation work. The interfacial drag force is an important factor of stability and accuracy of the results. This force, closely dependent on the flow pattern, is not entirely established yet, so a range of multiplicator of its expression is used to compare the numerical results with the VATICAN test section measurements. (authors). 13 refs., 6 figs

  7. An analytical model for displacement velocity of liquid film on a hot vertical surface

    International Nuclear Information System (INIS)

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  8. Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation

    Science.gov (United States)

    Schueler, Dominik; Toso-Pentecôte, Nathalie; Voggenreiter, Heinz

    2016-08-01

    High velocity impact on composite aircraft structures leads to the formation of flexural waves that can cause severe damage to the structure. Damage and failure can occur within the plies and/or in the resin rich interface layers between adjacent plies. In the present paper a modelling methodology is documented that captures intra- and inter-laminar damage and their interrelations by use of shell element layers representing sub-laminates that are connected with cohesive interface layers to simulate delamination. This approach allows the simulation of large structures while still capturing the governing damage mechanisms and their interactions. The paper describes numerical algorithms for the implementation of a Ladevèze continuum damage model for the ply and methods to derive input parameters for the cohesive zone model. By comparison with experimental results from gas gun impact tests the potential and limitations of the modelling approach are discussed.

  9. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    Science.gov (United States)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental

  10. Softverski model estimatora radijalne brzine ciljeva / Software model of a radial velocity estimator

    Directory of Open Access Journals (Sweden)

    Dejan S. Ivković

    2010-04-01

    Full Text Available U radu je softverski modelovan novi blok u delu za obradu signala softverskog radarskog prijemnika, koji je nazvan estimator radijalne brzine. Detaljno je opisan način procene Doplerove frekvencije na osnovu MUSIC algoritma i ukratko prikazan način rada pri merenju. Svi parametri pri merenju klatera i detekcije simuliranih i realnih ciljeva dati su tabelarno, a rezultati grafički. Na osnovu analize prikazanih rezultata može se zaključiti da se pomoću projektovanog estimatora radijalne brzine može precizno proceniti Doplerov pomak u reflektovanom signalu od pokretnog cilja, a samim tim može se precizno odrediti njegova brzina. / In all analyses the MUSIC method has given better results than the FFT method. The MUSIC method proved to be better at estimation precision as well as at resolving two adjacent Doppler frequencies. On the basis of the obtained results, the designed estimator of radial velocity can be said to estimate Doppler frequency in the reflected signal from a moving target precisely, and, consequently, the target velocity. It is thus possible to improve the performances of the current radar as far as a precise estimation of velocity of detected moving targets is concerned.

  11. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  12. Sterile Neutrinos, Dark Matter, and Pulsar Velocities in Models with a Higgs Singlet

    International Nuclear Information System (INIS)

    Kusenko, Alexander

    2006-01-01

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider

  13. How well do modelled routes to school record the environments children are exposed to?: a cross-sectional comparison of GIS-modelled and GPS-measured routes to school

    Science.gov (United States)

    2014-01-01

    Background The school journey may make an important contribution to children’s physical activity and provide exposure to food and physical activity environments. Typically, Geographic Information Systems (GIS) have been used to model assumed routes to school in studies, but these may differ from those actually chosen. We aimed to identify the characteristics of children and their environments that make the modelled route more or less representative of that actually taken. We compared modelled GIS routes and actual Global Positioning Systems (GPS) measured routes in a free-living sample of children using varying travel modes. Methods Participants were 175 13-14 yr old children taking part in the Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people (SPEEDY) study who wore GPS units for up to 7 days. Actual routes to/from school were extracted from GPS data, and shortest routes between home and school along a road network were modelled in a GIS. Differences between them were assessed according to length, percentage overlap, and food outlet exposure using multilevel regression models. Results GIS routes underestimated route length by 21.0% overall, ranging from 6.1% among walkers to 23.2% for bus users. Among pedestrians food outlet exposure was overestimated by GIS routes by 25.4%. Certain characteristics of children and their neighbourhoods that improved the concordance between GIS and GPS route length and overlap were identified. Living in a village raised the odds of increased differences in length (odds ratio (OR) 3.36 (1.32-8.58)), while attending a more urban school raised the odds of increased percentage overlap (OR 3.98 (1.49-10.63)). However none were found for food outlet exposure. Journeys home from school increased the difference between GIS and GPS routes in terms of food outlet exposure, and this measure showed considerable within-person variation. Conclusions GIS modelled routes between home and school were not

  14. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  15. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  16. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    Science.gov (United States)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  17. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  18. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    Science.gov (United States)

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modeling the Impacts of Suspended Sediment Concentration and Current Velocity on Submersed Vegetation in an Illinois River Pool, USA

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    This technical note uses a modeling approach to examine the impacts of suspended sediment concentrations and current velocity on the persistence of submersed macrophytes in a shallow aquatic system...

  20. A new car-following model for autonomous vehicles flow with mean expected velocity field

    Science.gov (United States)

    Wen-Xing, Zhu; Li-Dong, Zhang

    2018-02-01

    Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.

  1. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen

    2015-02-06

    © 2015 The Authors. Earth\\'s present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  2. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    Science.gov (United States)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of

  3. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    Science.gov (United States)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  4. GPS observations of coseismic deformation following the May 20 and 29, 2012, Emilia seismic events (northern Italy: data, analysis and preliminary models

    Directory of Open Access Journals (Sweden)

    Enrico Serpelloni

    2012-10-01

    Full Text Available In May-July 2012, a seismic sequence struck a broad area of the Po Plain Region in northern Italy. The sequence included two Ml >5.5 mainshocks. The first one (Ml 5.9 occurred near the city of Finale Emilia (ca. 30 km west of Ferrara on May 20 at 02:03:53 (UTC, and the second (Ml 5.8 occurred on May 29 at 7:00:03 (UTC, about 12 km southwest of the May 20 mainshock (Figure 1, near the city of Mirandola. The seismic sequence involved an area that extended in an E-W direction for more than 50 km, and included seven Ml ≥5.0 events and more than 2,300 Ml >1.5 events (http://iside.rm.ingv.it. The focal mechanisms of the main events [Pondrelli et al. 2012, Scognamiglio et al. 2012, this volume] consistently showed compressional kinematics with E-W oriented reverse nodal planes. This sector of the Po Plain is known as a region characterized by slow deformation rates due to the northwards motion of the northern Apennines fold-and-thrust belt, which is buried beneath the sedimentary cover of the Po Plain [Picotti and Pazzaglia 2008, Toscani et al. 2009]. Early global positioning system (GPS measurements [Serpelloni et al. 2006] and the most recent updates [Devoti et al. 2011, Bennett et al. 2012] recognized that less than 2 mm/yr of SW-NE shortening are accommodated across this sector of the Po Plain, in agreement with other present-day stress indicators [Montone et al. 2012] and known active faults [Basili et al. 2008]. In the present study, we describe the GPS data used to study the coseismic deformation related to the May 20 and 29 mainshocks, and provide preliminary models of the two seismic sources, as inverted from consensus GPS coseismic deformation fields. […

  5. Testing global geopotential models through comparison of a local quasi-geoid model with GPS/leveling data

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kostelecký, J.; Klokočník, Jaroslav

    2009-01-01

    Roč. 53, č. 1 (2009), s. 39-60 ISSN 0039-3169 R&D Projects: GA AV ČR IAA3003407; GA MŠk(CZ) LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : global geopotential model s * CHAMP * GRACE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.000, year: 2009

  6. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  7. Lower Mantle S-wave Velocity Model under the Western United States

    Science.gov (United States)

    Nelson, P.; Grand, S. P.

    2016-12-01

    Deep mantle plumes created by thermal instabilities at the core-mantle boundary has been an explanation for intraplate volcanism since the 1970's. Recently, broad slow velocity conduits in the lower mantle underneath some hotspots have been observed (French and Romanowicz, 2015), however the direct detection of a classical thin mantle plume using seismic tomography has remained elusive. Herein, we present a seismic tomography technique designed to image a deep mantle plume under the Yellowstone Hotspot located in the western United States utilizing SKS and SKKS waves in conjunction with finite frequency tomography. Synthetic resolution tests show the technique can resolve a 235 km diameter lower mantle plume with a 1.5% Gaussian velocity perturbation even if a realistic amount of random noise is added to the data. The Yellowstone Hotspot presents a unique opportunity to image a thin plume because it is the only hotspot with a purported deep origin that has a large enough aperture and density of seismometers to accurately sample the lower mantle at the length scales required to image a plume. Previous regional tomography studies largely based on S wave data have imaged a cylindrically shaped slow anomaly extending down to 900km under the hotspot, however they could not resolve it any deeper (Schmandt et al., 2010; Obrebski et al., 2010).To test if the anomaly extends deeper, we measured and inverted over 40,000 SKS and SKKS waves' travel times in two frequency bands recorded at 2400+ stations deployed during 2006-2012. Our preliminary model shows narrow slow velocity anomalies in the lower mantle with no fast anomalies. The slow anomalies are offset from the Yellowstone hotspot and may be diapirs rising from the base of the mantle.

  8. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  9. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  10. Accurate calibration of the velocity-dependent one-scale model for domain walls

    International Nuclear Information System (INIS)

    Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.

    2013-01-01

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.

  11. Two-dimensional velocity models for paths from Pahute Mesa and Yucca Flat to Yucca Mountain

    International Nuclear Information System (INIS)

    Walck, M.C.; Phillips, J.S.

    1990-11-01

    Vertical acceleration recordings of 21 underground nuclear explosions recorded at stations at Yucca Mountain provide the data for development of three two-dimensional crystal velocity profiles for portions of the Nevada Test Site. Paths from Area 19, Area 20 (both Pahute Mesa), and Yucca Flat to Yucca Mountain have been modeled using asymptotic ray theory travel time and synthetic seismogram techniques. Significant travel time differences exist between the Yucca Flat and Pahute Mesa source areas; relative amplitude patterns at Yucca Mountain also shift with changing source azimuth. The three models, UNEPM1, UNEPM2, and UNEYF1, successfully predict the travel time and amplitude data for all three paths. 24 refs., 34 figs., 8 tabs

  12. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    Science.gov (United States)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  13. CFD model of thermal and velocity conditions in a particular indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politecnica de Valencia (Spain); Guillen Guillamon, Ignacio [Applied Physics Department, Universitat Politecnica de Valencia (Spain)

    2013-07-01

    The demand for maintaining high indoor environmental quality (IEQ) with the minimum energy consumption is rapidly increasing. In the recent years, several studies have been completed to investigate the impact of indoor environment factors on human comfort, health and energy efficiency. Therefore, the design of the thermal environment in any sort of room, specially offices, has huge economic consequences. In this paper, a particular analysis on the air temperature in a multi-task room environment is modeled, in order to represent the velocities and temperatures inside the room by using Computational Fluid Dynamics (CFD) techniques. This model will help to designers to analyze the thermal comfort regions inside the studied air volume and to visualize the whole temperatures inside the room, determining the effect of the fresh external incoming air in the internal air temperature.

  14. Ground deformation source model at Kuchinoerabu-jima volcano during 2006-2014 as revealed by campaign GPS observation

    Science.gov (United States)

    Hotta, Kohei; Iguchi, Masato

    2017-12-01

    We analyzed campaign Global Positioning System observation data in Kuchinoerabu-jima during 2006-2014. Most benchmarks located around Shin-dake crater showed crater-centered radial horizontal displacements. Horizontal displacements at western rim of the Shin-dake crater were tended to be larger compared to those at eastern rim. In addition, benchmark KUC14 which locates near the cliff at Furu-dake showed westward horizontal displacement rather than crater-centered radial (southward) one. Meanwhile, small displacements were detected at the benchmarks located at the foot of Kuchinoerabu-jima. We modeled the observed displacements applying a finite element method. We set entire FE domain as 100 × 100 × 50 km3. We set top of the domain as a free surface, and sides and bottom to be fixed boundaries. Topography was introduced in the area within Kuchinoerabu-jima using digital elevation model data provided by Kagoshima prefecture and elevation information from Google earth, and elevation of the outside area was assumed to be sea level. We assumed a stratified structure based on a one-dimensional P-wave velocity structure. We applied a vertical spheroid source model and searched optimal values of horizontal location, depth, equatorial and polar radiuses, and internal pressure change of the source using the forward modeling method. A spherical source with a radius of 50 m was obtained beneath the Shin-dake crater at a depth of 400 m above sea level. The internal pressure increase of 361 MPa yields its volume increase of 31,700 m3. Taking effects of topography and heterogeneity of ground into account allowed reproduction of overall deformation in Kuchinoerabu-jima. The location of deformation source coincides with hypocenters of shallow volcano-tectonic (VT) earthquakes and the aquifer estimated from a two-dimensional resistivity model by audio-frequency magnetotellurics method. The obtained deformation source may be corresponding to the pressurized aquifer, and shallow VT

  15. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    Science.gov (United States)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  16. The Statistics of GPS

    National Research Council Canada - National Science Library

    Matsakis, Demetrios

    2007-01-01

    The Global Positioning System (GPS) is an extremely effective satellite-based system that broadcasts sufficient information for a user to determine time and position from any location on or near the Earth...

  17. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  18. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  19. Governing equations for a seriated continuum: an unequal velocity model for two-phase flow

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Hughes, E.D.

    1975-05-01

    The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)

  20. Investigation of the velocity field in a full-scale model of a cerebral aneurysm

    International Nuclear Information System (INIS)

    Roloff, Christoph; Bordás, Róbert; Nickl, Rosa; Mátrai, Zsolt; Szaszák, Norbert; Szilárd, Szabó; Thévenin, Dominique

    2013-01-01

    Highlights: • We investigate flow fields inside a phantom model of a full-scale cerebral aneurysm. • An artificial blood fluid is used matching viscosity and density of real blood. • We present Particle Tracking results of fluorescent tracer particles. • Instantaneous model inlet velocity profiles and volume flow rates are derived. • Trajectory fields at three of six measurement planes are presented. -- Abstract: Due to improved and now widely used imaging methods in clinical surgery practise, detection of unruptured cerebral aneurysms becomes more and more frequent. For the selection and development of a low-risk and highly effective treatment option, the understanding of the involved hemodynamic mechanisms is of great importance. Computational Fluid Dynamics (CFD), in vivo angiographic imaging and in situ experimental investigations of flow behaviour are powerful tools which could deliver the needed information. Hence, the aim of this contribution is to experimentally characterise the flow in a full-scale phantom model of a realistic cerebral aneurysm. The acquired experimental data will then be used for a quantitative validation of companion numerical simulations. The experimental methodology relies on the large-field velocimetry technique PTV (Particle Tracking Velocimetry), processing high speed images of fluorescent tracer particles added to the flow of a blood-mimicking fluid. First, time-resolved planar PTV images were recorded at 4500 fps and processed by a complex, in-house algorithm. The resulting trajectories are used to identify Lagrangian flow structures, vortices and recirculation zones in two-dimensional measurement slices within the aneurysm sac. The instantaneous inlet velocity distribution, needed as boundary condition for the numerical simulations, has been measured with the same technique but using a higher frame rate of 20,000 fps in order to avoid ambiguous particle assignment. From this velocity distribution, the time

  1. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model

    Science.gov (United States)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2017-12-01

    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of

  2. Analysis of Regional GPS Networks in Eastern Ontario

    Science.gov (United States)

    Samadi Alinia, H.; Tiampo, K. F.

    2014-12-01

    Although stable, intraplate region of eastern Canada is considered low rate deformation area in the North American plate, the retreat of large ice sheets during deglaciation in the last 20 ka has resulted in horizontal and vertical deformation of the Earth's in eastern Ontario. Present-day glacial isostatic adjustment (GIA) uplift rates approach 10 mm/yr or more at Hudson Bay and decrease with distance southeastward. Current GIA models forecast that the hinge line between uplift to the northwest and subsidence to the southeast lies somewhere near the Saint Lawrence valley in eastern Canada [Tushingham and Peltier, 1991; Peltier, 2002]. Employing continuous Global Positioning System (cGPS) observations and high precision tools for processing and then analyzing each component of derived time series are important tools to monitor the associated regional crustal deformation with good accuracies. Here we describe the analysis of coordinate time series of cGPS stations scattered sparsely throughout southeastern Ontario and between Ottawa and the east coast of Hudson Bay. Here, the two most reliable local networks, each including 4 to 6 reference stations, were selected for analysis. Data for period of approximately five years, 2008-2012.9, was processed with Bernese 5.0 over several campaigns. Individual cGPS coordinate time series were generated for each station and basic parameters, such as mean, variance and repeatability, were estimated. The time series are corrected with respect to the rigid plate motion and seasonal variations and advanced time series analysis techniques, including spectral analysis and principal component analysis were implemented. Post-processing of the time series reproduces the general GIA spatial pattern. Results also show that the vertical velocities of all stations in the solution are consistent with the GIA model uplift rate and are consistent with other cGPS sites in eastern Canada and increases from north of lake of Ontario (approximately

  3. Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.

    Science.gov (United States)

    Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S

    2015-06-01

    Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.

  4. Velocity-based movement modeling for individual and population level inference.

    Directory of Open Access Journals (Sweden)

    Ephraim M Hanks

    Full Text Available Understanding animal movement and resource selection provides important information about the ecology of the animal, but an animal's movement and behavior are not typically constant in time. We present a velocity-based approach for modeling animal movement in space and time that allows for temporal heterogeneity in an animal's response to the environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information. Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus ursinus movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting stronger response to environmental variables.

  5. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong

    2017-07-04

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.

  6. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    Science.gov (United States)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  7. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Mainak J. Patel

    2018-06-01

    Full Text Available Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells. TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation and velocity (through synchrony of the TC population spikes of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the

  8. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  9. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Science.gov (United States)

    Bouillot, Vincent R.; Alimi, Jean-Michel; Corasaniti, Pier-Stefano; Rasera, Yann

    2015-06-01

    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ cold dark matter (ΛCDM) model predictions. Halo catalogues from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogues from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results, we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the ΛCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.

  10. Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer

    International Nuclear Information System (INIS)

    Pozorski, Jacek; Waclawczyk, Marta; Minier, Jean-Pierre

    2004-01-01

    The temperature field in a heated turbulent flow is considered as a dynamically passive scalar. The probability density function (PDF) method with down to the wall integration is explored and new modelling proposals are put forward, including the explicit account for the molecular transport terms. Two variants of the approach are considered: first, the scalar PDF method with the use of externally-provided turbulence statistics; and second, the joint (stand-alone) velocity-scalar PDF method where a near-wall model for dynamical variables is coupled with a model for temperature. The closure proposals are formulated in the Lagrangian setting and resulting stochastic evolution equations are solved with a Monte Carlo method. The near-wall region of a heated channel flow is taken as a validation case; the second-order thermal statistics are of a particular interest. The PDF computation results agree reasonably with available DNS data. The sensitivity of results to the molecular Prandtl number and to the thermal wall boundary condition is accounted for

  11. Site-response Estimation by 1D Heterogeneous Velocity Model using Borehole Log and its Relationship to Damping Factor

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2014-01-01

    In the Niigata area, which suffered from several large earthquakes such as the 2007 Chuetsu-oki earthquake, geographical observation that elucidates the S-wave structure of the underground is advancing. Modeling of S-wave velocity structure in the subsurface is underway to enable simulation of long-period ground motion. The one-dimensional velocity model by inverse analysis of micro-tremors is sufficiently appropriate for long-period site response but not for short-period, which is important for ground motion evaluation at NPP sites. The high-frequency site responses may be controlled by the strength of heterogeneity of underground structure because the heterogeneity of the 1D model plays an important role in estimating high-frequency site responses and is strongly related to the damping factor of the 1D layered velocity model. (author)

  12. Velocity Models of the Upper Mantle Beneath the MER, Somali Platform, and Ethiopian Highlands from Body Wave Tomography

    Science.gov (United States)

    Hariharan, A.; Keranen, K. M.; Alemayehu, S.; Ayele, A.; Bastow, I. D.; Eilon, Z.

    2016-12-01

    The Main Ethiopian Rift (MER) presents a unique opportunity to improve our understanding of an active continental rift. Here we use body wave tomography to generate compressional and shear wave velocity models of the region beneath the rift. The models help us understand the rifting process over the broader region around the MER, extending the geographic region beyond that captured in past studies. We use differential arrival times of body waves from teleseismic earthquakes and multi-channel cross correlation to generate travel time residuals relative to the global IASP91 1-d velocity model. The events used for the tomographic velocity model include 200 teleseismic earthquakes with moment magnitudes greater than 5.5 from our recent 2014-2016 deployment in combination with 200 earthquakes from the earlier EBSE and EAGLE deployments (Bastow et al. 2008). We use the finite-frequency tomography analysis of Schmandt et al. (2010), which uses a first Fresnel zone paraxial approximation to the Born theoretical kernel with spatial smoothing and model norm damping in an iterative LSQR algorithm. Results show a broad, slow region beneath the rift with a distinct low-velocity anomaly beneath the northwest shoulder. This robust and well-resolved low-velocity anomaly is visible at a range of depths beneath the Ethiopian plateau, within the footprint of Oligocene flood basalts, and near surface expressions of diking. We interpret this anomaly as a possible plume conduit, or a low-velocity finger rising from a deeper, larger plume. Within the rift, results are consistent with previous work, exhibiting rift segmentation and low-velocities beneath the rift valley.

  13. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  14. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  15. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    Science.gov (United States)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  16. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  17. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  18. Critical velocity and anaerobic paddling capacity determined by different mathematical models and number of predictive trials in canoe slalom.

    Science.gov (United States)

    Messias, Leonardo H D; Ferrari, Homero G; Reis, Ivan G M; Scariot, Pedro P M; Manchado-Gobatto, Fúlvia B

    2015-03-01

    The purpose of this study was to analyze if different combinations of trials as well as mathematical models can modify the aerobic and anaerobic estimates from critical velocity protocol applied in canoe slalom. Fourteen male elite slalom kayakers from Brazilian canoe slalom team (K1) were evaluated. Athletes were submitted to four predictive trials of 150, 300, 450 and 600 meters in a lake and the time to complete each trial was recorded. Critical velocity (CV-aerobic parameter) and anaerobic paddling capacity (APC-anaerobic parameter) were obtained by three mathematical models (Linear1=distance-time; Linear 2=velocity-1/time and Non-Linear = time-velocity). Linear 1 was chosen for comparison of predictive trials combinations. Standard combination (SC) was considered as the four trials (150, 300, 450 and 600 m). High fits of regression were obtained from all mathematical models (range - R² = 0.96-1.00). Repeated measures ANOVA pointed out differences of all mathematical models for CV (p = 0.006) and APC (p = 0.016) as well as R² (p = 0.033). Estimates obtained from the first (1) and the fourth (4) predictive trials (150 m = lowest; and 600 m = highest, respectively) were similar and highly correlated (r=0.98 for CV and r = 0.96 for APC) with the SC. In summary, methodological aspects must be considered in critical velocity application in canoe slalom, since different combinations of trials as well as mathematical models resulted in different aerobic and anaerobic estimates. Key pointsGreat attention must be given for methodological concerns regarding critical velocity protocol applied on canoe slalom, since different estimates were obtained depending on the mathematical model and the predictive trials used.Linear 1 showed the best fits of regression. Furthermore, to the best of our knowledge and considering practical applications, this model is the easiest one to calculate the estimates from critical velocity protocol. Considering this, the abyss between science

  19. Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis)

    Science.gov (United States)

    Kubrak, Elżbieta; Kubrak, Janusz; Rowiński, Paweł

    2013-02-01

    One-dimensional model for vertical profiles of longitudinal velocities in open-channel flows is verified against laboratory data obtained in an open channel with artificial plants. Those plants simulate Canadian waterweed which in nature usually forms dense stands that reach all the way to the water surface. The model works particularly well for densely spaced plants.

  20. Two-phase modeling of DDT: Structure of the velocity-relaxation zone

    International Nuclear Information System (INIS)

    Kapila, A.K.; Son, S.F.; Bdzil, J.B.; Menikoff, R.; Stewart, D.S.

    1997-01-01

    The structure of the velocity relaxation zone in a hyperbolic, nonconservative, two-phase model is examined in the limit of large drag, and in the context of the problem of deflagration-to-detonation transition in a granular explosive. The primary motivation for the study is the desire to relate the end states across the relaxation zone, which can then be treated as a discontinuity in a reduced, equivelocity model, that is computationally more efficient than its parent. In contrast to a conservative system, where end states across thin zones of rapid variation are determined principally by algebraic statements of conservation, the nonconservative character of the present system requires an explicit consideration of the structure. Starting with the minimum admissible wave speed, the structure is mapped out as the wave speed increases. Several critical wave speeds corresponding to changes in the structure are identified. The archetypal structure is partly dispersed, monotonic, and involves conventional hydrodynamic shocks in one or both phases. The picture is reminiscent of, but more complex than, what is observed in such (simpler) two-phase media as a dusty gas. copyright 1997 American Institute of Physics

  1. A fast iterative model for discrete velocity calculations on triangular grids

    International Nuclear Information System (INIS)

    Szalmas, Lajos; Valougeorgis, Dimitris

    2010-01-01

    A fast synthetic type iterative model is proposed to speed up the slow convergence of discrete velocity algorithms for solving linear kinetic equations on triangular lattices. The efficiency of the scheme is verified both theoretically by a discrete Fourier stability analysis and computationally by solving a rarefied gas flow problem. The stability analysis of the discrete kinetic equations yields the spectral radius of the typical and the proposed iterative algorithms and reveal the drastically improved performance of the latter one for any grid resolution. This is the first time that stability analysis of the full discrete kinetic equations related to rarefied gas theory is formulated, providing the detailed dependency of the iteration scheme on the discretization parameters in the phase space. The corresponding characteristics of the model deduced by solving numerically the rarefied gas flow through a duct with triangular cross section are in complete agreement with the theoretical findings. The proposed approach may open a way for fast computation of rarefied gas flows on complex geometries in the whole range of gas rarefaction including the hydrodynamic regime.

  2. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  3. A P-wave velocity model of the upper crust of the Sannio region (Southern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1998-06-01

    Full Text Available This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia

  4. Horses for Courses: Designing a GPS Tracking Data Collection

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Overgård, Christian Hansen

    2014-01-01

    and practical experiences from a number of GPS tracking projects into a practical guideline. Researchers can use this model as a starting point when designing a GPS tracking data collection. The authors hope that the model can constitute a first step towards the development of best practice....

  5. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  6. Modeling skin temperature to assess the effect of air velocity to mitigate heat stress among growing pigs

    DEFF Research Database (Denmark)

    Bjerg, Bjarne; Pedersen, Poul; Morsing, Svend

    2017-01-01

    It is generally accepted that increased air velocity can help to mitigate heat stress in livestock housing, however, it is not fully clear how much it helps and significant uncertainties exists when the air temperature approaches the animal body temperature. This study aims to develop a skin...... temperature model to generated data for determining the potential effect of air velocity to mitigate heat stress among growing pigs housed in warm environment. The model calculates the skin temperature as function of body temperature, air temperature and the resistances for heat transfer from the body...

  7. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  8. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Jokela, J.

    2008-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a ± 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  9. GPS Ephemeris Message Broadcast Simulation

    National Research Council Canada - National Science Library

    Browne, Nathan J; Light, James J

    2005-01-01

    The warfighter constantly needs increased accuracy from GPS and a means to increasing this accuracy to the decimeter level is a broadcast ephemeris message containing GPS satellite orbit and clock corrections...

  10. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  11. Continuing medical education and burnout among Danish GPs

    DEFF Research Database (Denmark)

    Brøndt, Anders; Sokolowski, Ineta; Olesen, Frede

    2008-01-01

    BACKGROUND: There has been minimal research into continuing medical education (CME) and its association with burnout among GPs. AIM: The aim of this study was to investigate the association between participating in CME and experiencing burnout in a sample of Danish GPs. DESIGN OF STUDY: Cross......-sectional questionnaire study. SETTING: All 458 active GPs in 2004, in the County of Aarhus, Denmark were invited to participate. METHOD: Data on CME activities were obtained for all GPs and linked to burnout which was measured using the Maslach Burnout Inventory - Human Services Survey. The relationship between CME...... activity and burnout was calculated as prevalence ratios (PR) in a generalised linear model. RESULTS: In total, 379 (83.5%) GPs returned the questionnaire. The prevalence of burnout was about 25%, and almost 3% suffered from 'high burnout'. A total of 344 (92.0%) GPs were members of a CME group...

  12. Variability in GPS sources

    NARCIS (Netherlands)

    Jauncey, DL; King, EA; Bignall, HE; Lovell, JEJ; Kedziora-Chudczer, L; Tzioumis, AK; Tingay, SJ; Macquart, JP; McCulloch, PM

    2003-01-01

    Flux density monitoring data at 2.3 and 8.4 GHz is presented for a sample of 33 southern hemisphere GPS sources, drawn from the 2.7 GHz Parkes survey. This monitoring data, together with VLBI monitoring data, shows that a small fraction of these sources, similar to10%, vary. Their variability falls

  13. Informing disease models with temporal and spatial contact structure among GPS-collared individuals in wild populations.

    Directory of Open Access Journals (Sweden)

    David M Williams

    Full Text Available Contacts between hosts are essential for transmission of many infectious agents. Understanding how contacts, and thus transmission rates, occur in space and time is critical to effectively responding to disease outbreaks in free-ranging animal populations. Contacts between animals in the wild are often difficult to observe or measure directly. Instead, one must infer contacts from metrics such as proximity in space and time. Our objective was to examine how contacts between white-tailed deer (Odocoileus virginianus vary in space and among seasons. We used GPS movement data from 71 deer in central New York State to quantify potential direct contacts between deer and indirect overlap in space use across time and space. Daily probabilities of direct contact decreased from winter (0.05-0.14, to low levels post-parturition through summer (0.00-0.02, and increased during the rut to winter levels. The cumulative distribution for the spatial structure of direct and indirect contact probabilities around a hypothetical point of occurrence increased rapidly with distance for deer pairs separated by 1,000 m-7,000 m. Ninety-five percent of the probabilities of direct contact occurred among deer pairs within 8,500 m of one another, and 99% within 10,900 m. Probabilities of indirect contact accumulated across greater spatial extents: 95% at 11,900 m and 99% at 49,000 m. Contacts were spatially consistent across seasons, indicating that although contact rates differ seasonally, they occur proportionally across similar landscape extents. Distributions of contact probabilities across space can inform management decisions for assessing risk and allocating resources in response.

  14. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  15. Defect evolution in cosmology and condensed matter quantitative analysis with the velocity-dependent one-scale model

    CERN Document Server

    Martins, C J A P

    2016-01-01

    This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

  16. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  17. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  18. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    Science.gov (United States)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  19. Shallow velocity model in the area of Pozzo Pitarrone, Mt. Etna, from single station, array methods and borehole data

    Directory of Open Access Journals (Sweden)

    Luciano Zuccarello

    2016-09-01

    Full Text Available Seismic noise recorded by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna, have been analysed with several techniques. Single station HVSR method and SPAC array method have been applied to stationary seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. A comparison of such model with the stratigraphic information available for the investigated area shows a good qualitative agreement. Taking advantage of a borehole station installed at 130 m depth, we could estimate also the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave observable in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, compatible with the shear wave velocity found from the analysis of seismic noise.

  20. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  1. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  2. Proof of Concept: Model Based Bionic Muscle with Hyperbolic Force-Velocity Relation

    Directory of Open Access Journals (Sweden)

    D. F. B. Haeufle

    2012-01-01

    Full Text Available Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE, a parallel damper element (PDE, and a serial element (SE exhibits operating points with hyperbolic force-velocity dependency. In this paper, a technical proof of this concept was presented. AE and PDE were implemented as electric motors, SE as a mechanical spring. The force-velocity relation of this artificial CE was determined in quick release experiments. The CE exhibited hyperbolic force-velocity dependency. This proof of concept can be seen as a well-founded starting point for the development of Hill-type artificial muscles.

  3. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.

    2012-11-19

    The Tjörnes Fracture Zone (TFZ), North Iceland, is a 120 km transform offset of the Mid-Atlantic-Ridge that accommodates 18 mm yr−1 plate motion on two parallel transform structures and connects the offshore Kolbeinsey Ridge in the north to the on-shore Northern Volcanic Zone (NVZ) in the south. This transform zone is offshore except for a part of the right-lateral strike-slip Húsavík-Flatey fault (HFF) system that lies close to the coastal town of Húsavík, inducing a significant seismic risk to its inhabitants. In our previous work we constrained the locking depth and slip-rate of the HFF using 4 yr of continuous GPS measurements and found that the accumulated slip-deficit on the fault is equivalent to a Mw6.8 ± 0.1 earthquake, assuming a complete stress release in the last major earthquakes in 1872 and a steady accumulation since then. In this paper we improve our previous analysis by adding 44 campaign GPS (EGPS) data points, which have been regularly observed since 1997. We extract the steady-state interseismic velocities within the TFZ by correcting the GPS data for volcanic inflation of Theistareykir—the westernmost volcano of the NVZ—using a model with a magma volume increase of 25 × 106 m3, constrained by InSAR time-series analysis results. The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  4. Impact of Assimilating Surface Velocity Observations on the Model Sea Surface Height Using the NCOM-4DVAR

    Science.gov (United States)

    2016-09-26

    the ensemble Kalman filter and the ensemble Kalman smoother: A comparison study using a nonlinear reduced gravity ocean model.OceanModell., 12, 378...using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes. Ocean Modell., 69, 22–38, doi:10.1016/j.ocemod.2013.05.002...observations are assimi- lated. This gives a sense of the added value from the inclusion of velocity observations with the standard set of temperature

  5. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  6. Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current

  7. Estimation of urinary flow velocity in models of obstructed and unobstructed urethras by decorrelation of ultrasound radiofrequency signals

    NARCIS (Netherlands)

    Arif, M.; Idzenga, T.; Mastrigt, R. van; Korte, C.L. de

    2014-01-01

    The feasibility of estimating urinary flow velocity from the decorrelation of radiofrequency (RF) signals was investigated in soft tissue-mimicking models of obstructed and unobstructed urethras. The decorrelation was studied in the near field, focal zone and far field of the ultrasound beam.

  8. Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA

    Directory of Open Access Journals (Sweden)

    I. Sasgen

    2018-03-01

    Full Text Available The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data – namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003–2009, gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003–2009 and bedrock uplift (GPS; 1995–2013. The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745. The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two

  9. Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)

    Science.gov (United States)

    Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R.

    2018-03-01

    The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003-2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two contributions summarizing the

  10. Modeling a Propagating Sawtooth Flare Ribbon Structure as a Tearing Mode in the Presence of Velocity Shear

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Jacob; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-09-20

    On 2014 April 18 (SOL2014-04-18T13:03), an M-class flare was observed by IRIS. The associated flare ribbon contained a quasi-periodic sawtooth pattern that was observed to propagate along the ribbon, perpendicular to the IRIS spectral slit, with a phase velocity of ∼15 km s{sup −1}. This motion resulted in periodicities in both intensity and Doppler velocity along the slit. These periodicities were reported by Brannon et al. to be approximately ±0.″5 in position and ±20 km s{sup −1} in velocity and were measured to be ∼180° out of phase with one another. This quasi-periodic behavior has been attributed by others to bursty or patchy reconnection and slipping occurring during three-dimensional magnetic reconnection. Though able to account for periodicities in both intensity and Doppler velocity, these suggestions do not explicitly account for the phase velocity of the entire sawtooth structure or the relative phasing of the oscillations. Here we propose that the observations can be explained by a tearing mode (TM) instability occurring at a current sheet across which there is also a velocity shear. Using a linear model of this instability, we reproduce the relative phase of the oscillations, as well as the phase velocity of the sawtooth structure. We suggest a geometry and local plasma parameters for the April 18 flare that would support our hypothesis. Under this proposal, the combined spectral and spatial IRIS observations of this flare may provide the most compelling evidence to date of a TM occurring in the solar magnetic field.

  11. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  12. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    International Nuclear Information System (INIS)

    Kallio, U.; Ahola, J.; Koivula, H.; Jokela, J.; Poutanen, M.

    2009-09-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  13. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    Science.gov (United States)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  14. Hypocenter relocation along the Sunda arc in Indonesia, using a 3D seismic velocity model

    Science.gov (United States)

    Nugraha, Andri Dian; Shiddiqi, Hasbi A.; Widiyantoro, Sri; Thurber, Clifford H.; Pesicek, Jeremy D.; Zhang, Haijiang; Wiyono, Samsul H.; Ramadhan, Mohamad; Wandano,; Irsyam, Mahsyur

    2018-01-01

    The tectonics of the Sunda arc region is characterized by the junction of the Eurasian and Indo‐Australian tectonic plates, causing complex dynamics to take place. High‐seismicity rates in the Indonesian region occur due to the interaction between these tectonic plates. The availability of a denser network of seismometers after the earthquakes of Mw">Mw 9.1 in 2004 and  Mw">Mw 8.6 in 2005 supports various seismic studies, one of which regards the precise relocation of the hypocenters. In this study, hypocenter relocation was performed using a teleseismic double‐difference (DD) relocation method (teletomoDD) combining arrival times of P and S waves from stations at local, regional, and teleseismic distances. The catalog data were taken from the Agency of Meteorology, Climatology, and Geophysics (BMKG) of Indonesia, and the International Seismological Centre (ISC) for the time period of April 2009 to May 2015. The 3D seismic‐wave velocity model with a grid size 1°×1°">1°×1° was used in the travel‐time calculations. Relocation results show a reduction in travel‐time residuals compared with the initial locations. The relocation results better illuminate subducted slabs and active faults in the region such as the Mentawai back thrust and the outer rise in the subduction zone south of Java. Focal mechanisms from the Global Centroid Moment Tensor catalog are analyzed in conjunction with the relocation results, and our synthesis of the results provides further insight into seismogenesis in the region.

  15. Estimation of S-wave Velocity Structures by Using Microtremor Array Measurements for Subsurface Modeling in Jakarta

    Directory of Open Access Journals (Sweden)

    Mohamad Ridwan

    2014-12-01

    Full Text Available Jakarta is located on a thick sedimentary layer that potentially has a very high seismic wave amplification. However, the available information concerning the subsurface model and bedrock depth is insufficient for a seismic hazard analysis. In this study, a microtremor array method was applied to estimate the geometry and S-wave velocity of the sedimentary layer. The spatial autocorrelation (SPAC method was applied to estimate the dispersion curve, while the S-wave velocity was estimated using a genetic algorithm approach. The analysis of the 1D and 2D S-wave velocity profiles shows that along a north-south line, the sedimentary layer is thicker towards the north. It has a positive correlation with a geological cross section derived from a borehole down to a depth of about 300 m. The SPT data from the BMKG site were used to verify the 1D S-wave velocity profile. They show a good agreement. The microtremor analysis reached the engineering bedrock in a range from 359 to 608 m as depicted by a cross section in the north-south direction. The site class was also estimated at each site, based on the average S-wave velocity until 30 m depth. The sites UI to ISTN belong to class D (medium soil, while BMKG and ANCL belong to class E (soft soil.

  16. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  17. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  18. Stochastic Analysis of Differential GPS Surveys for Earth Dam ...

    African Journals Online (AJOL)

    In GPS measurement, we try to model not just the deterministic part of the measurement but also try to account for their stochastic behavior using the measurement variance-covariance matrix. The variance-covariance matrices are computed as part of a least squares adjustment. In this study, the results of GPS survey by ...

  19. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  20. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    Science.gov (United States)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing

  1. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    Science.gov (United States)

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  2. Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model

    Science.gov (United States)

    Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu

    2018-05-01

    To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.

  3. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  4. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    Science.gov (United States)

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  5. Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

    Directory of Open Access Journals (Sweden)

    Wojtas Krzysztof

    2015-06-01

    Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

  6. Model of the seismic velocity distribution in the upper lithosphere of the Vrancea seismogenic zone and within the adjacent areas

    International Nuclear Information System (INIS)

    Raileanu, Victor; Bala, Andrei

    2002-01-01

    The task of this project is to perform a detailed seismic velocity model of the P waves in the crust and upper mantle crossed by the VRANCEA 2001 seismic line and to interpret it in structural terms. The velocity model aims to contribute to a new geodynamical model of the Eastern Carpathians evolution and to a better understanding of the causes of the Vrancea earthquakes. It is performed in cooperation with the University of Karlsruhe, Germany, and University of Bucharest. The Project will be completed in 5 working stages. Vrancea 2001 is the name of the seismic line recorded with about 780 seismic instruments deployed over more then 600 km length from eastern part of Romania (east Tulcea) through Vrancea area to Aiud and south Oradea. 10 big shots with charges from 300 kg to 1500 kg dynamite were detonated along seismic line. Field data quality is from good to very good and it provides information down to the upper mantle levels. Processing of data has been performed in the first stage of present project and it consisted in merging of all individual field records in seismograms for each shotpoint. Almost 800 individual records for each out of the 10 shots were merged in 10 seismograms with about 800 channels. A seismogram of shot point S (25 km NE of Ramnicu Sarat) is given. It is visible a high energy generated by shotpoint S. Pn wave can be traced until the western end of seismic line, about 25 km from source. In the second stage of project an interpretation of seismic data is achieved for the first 5 seismograms from the eastern half of seismic line, from Tulcea to Ramnicu Sarat. It is used a forward modeling procedure. 5 unidimensional (1D) velocity-depth function models are obtained. P wave velocity-depth function models for shotpoints from O to T are presented. Velocity-depth information is extended down to 40 km for shot R and 80 km for shot S. It should noticed the unusually high velocities at the shallow levels for Dobrogea area (O and P shots) and the

  7. GPS & Galileo. Friendly Foes?

    Science.gov (United States)

    2007-04-01

    some of their data, others employ different techniques. United States defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for...Europe in a New Generation of Satellite Navigation Services,” European Commission (9 Feb 1999): 16. 25. Ibid. 26. Anne Jolis , “Problems Run Rampant...European Outer Space,” Euro Topics (19 March 2007), found at http://www.eurotopics.net/en/presseschau/archiv/archiv_dossier/DOSSIER15435. 40. Jolis

  8. Shallow velocity model in the area of Pozzo Pitarrone, Mt. Etna, from single station, array methods and borehole data.

    OpenAIRE

    Zuccarello, L.; Paratore, M.; Ferrari, F.; Messina, A.; Branca, S.; Contrafatto, D.; Galluzzo, D.; Rapisarda, S.; La Rocca, M.

    2016-01-01

    Seismic noise recorded by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna, have been analysed with several techniques. Single station HVSR method and SPAC array method have been applied to stationary seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. A comparison of such model with the stratigraphic information available for the investigate...

  9. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  10. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  11. How does the workload and work activities of procedural GPs compare to non-procedural GPs?

    Science.gov (United States)

    Russell, Deborah J; McGrail, Matthew R

    2017-08-01

    To investigate patterns of Australian GP procedural activity and associations with: geographical remoteness and population size hours worked in hospitals and in total; and availability for on-call DESIGN AND PARTICIPANTS: National annual panel survey (Medicine in Australia: Balancing Employment and Life) of Australian GPs, 2011-2013. Self-reported geographical work location, hours worked in different settings, and on-call availability per usual week, were analysed against GP procedural activity in anaesthetics, obstetrics, surgery or emergency medicine. Analysis of 9301 survey responses from 4638 individual GPs revealed significantly increased odds of GP procedural activity in anaesthetics, obstetrics or emergency medicine as geographical remoteness increased and community population size decreased, albeit with plateauing of the effect-size from medium-sized (population 5000-15 000) rural communities. After adjusting for confounders, procedural GPs work more hospital and more total hours each week than non-procedural GPs. In 2011 this equated to GPs practising anaesthetics, obstetrics, surgery, and emergency medicine providing 8% (95%CI 0, 16), 13% (95%CI 8, 19), 8% (95%CI 2, 15) and 18% (95%CI 13, 23) more total hours each week, respectively. The extra hours are attributable to longer hours worked in hospital settings, with no reduction in private consultation hours. Procedural GPs also carry a significantly higher burden of on-call. The longer working hours and higher on-call demands experienced by rural and remote procedural GPs demand improved solutions, such as changes to service delivery models, so that long-term procedural GP careers are increasingly attractive to current and aspiring rural GPs. © 2016 National Rural Health Alliance Inc.

  12. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data

    DEFF Research Database (Denmark)

    Featherstone, W.E.; Kirby, J.F.; Kearsley, A.H.W.

    2001-01-01

    The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on ...

  13. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  14. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    Science.gov (United States)

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  15. A one-dimensional model to describe flow localization in viscoplastic slender bars subjected to super critical impact velocities

    Science.gov (United States)

    Vaz-Romero, A.; Rodríguez-Martínez, J. A.

    2018-01-01

    In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.

  16. Rapid Geodetic Shortening Across the Eastern Cordillera of NW Argentina Observed by the Puna-Andes GPS Array

    Science.gov (United States)

    McFarland, Phillip K.; Bennett, Richard A.; Alvarado, Patricia; DeCelles, Peter G.

    2017-10-01

    We present crustal velocities for 29 continuously recording GPS stations from the southern central Andes across the Puna, Eastern Cordillera, and Santa Barbara system for the period between the 27 February 2010 Maule and 1 April 2014 Iquique earthquakes in a South American frame. The velocity field exhibits a systematic decrease in magnitude from 35 mm/yr near the trench to convergence accommodated at the subduction interface. Velocity residuals calculated for each model demonstrate that locking on the NZ-SA interface is insufficient to reproduce the observed velocities. We model deformation associated with a back-arc décollement using an edge dislocation, estimating model parameters from the velocity residuals for each forward model of the subduction interface ensemble using a Bayesian approach. We realize our best fit to the thrust-perpendicular velocity field with 70 ± 5% of NZ-SA convergence accommodated at the subduction interface and a slip rate of 9.1 ± 0.9 mm/yr on the fold-thrust belt décollement. We also estimate a locking depth of 14 ± 9 km, which places the downdip extent of the locked zone 135 ± 20 km from the thrust front. The thrust-parallel component of velocity is fit by a constant shear strain rate of -19 × 10-9 yr-1, equivalent to clockwise rigid block rotation of the back arc at a rate of 1.1°/Myr.

  17. A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity

    International Nuclear Information System (INIS)

    Wang Liang-Shun; Wu Zhi-Hai

    2014-01-01

    Inspired by the fact that in most existing swarm models of multi-agent systems the velocity of an agent can be infinite, which is not in accordance with the real applications, we propose a novel swarm model of multi-agent systems where the velocity of an agent is finite. The Lyapunov function method and LaSalle's invariance principle are employed to show that by using the proposed model all of the agents eventually enter into a bounded region around the swarm center and finally tend to a stationary state. Numerical simulations are provided to demonstrate the effectiveness of the theoretical results. (interdisciplinary physics and related areas of science and technology)

  18. Shear velocity model for the westernmost Mediterranean from ambient noise and ballistic finite-frequency Rayleigh wave tomography

    Science.gov (United States)

    Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.

    2014-12-01

    The westernmost Mediterranean comprises the Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin. From north to south this region consists of the Pyrenees, resulting from Iberia-Eurasia collision; the Iberian Massif, which has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes), resulting from post-Oligocene subduction roll-back; and the Atlas Mountains. We analyzed data from recent broad-band array deployments and permanent stations in the area (IberArray and Siberia arrays, the PICASSO array, the University of Munster array, and the Spanish, Portuguese and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km. We calculated the Rayleigh waves phase velocities from ambient noise (periods 4 to 40 s) and teleseismic events (periods 20 to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. Our results correlate well with the surface expression of the main structural units with higher crustal velocity for the Iberian Massif than for the Alpine Iberia and Atlas Mountains. The Gibraltar Arc has lower crustal shear velocities than the regional average at all crustal depths. It also shows an arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas.

  19. Tomography of core-mantle boundary and lowermost mantle coupled by geodynamics: joint models of shear and compressional velocity

    Directory of Open Access Journals (Sweden)

    Gaia Soldati

    2015-03-01

    Full Text Available We conduct joint tomographic inversions of P and S travel time observations to obtain models of delta v_P  and delta v_S in the entire mantle. We adopt a recently published method which takes into account the geodynamic coupling between mantle heterogeneity and core-mantle boundary (CMB topography by viscous flow, where sensitivity of the seismic travel times to the CMB is accounted for implicitly in the inversion (i.e. the CMB topography is not explicitly inverted for. The seismic maps of the Earth's mantle and CMB topography that we derive can explain the inverted seismic data while being physically consistent with each other. The approach involved scaling P-wave velocity (more sensitive to the CMB to density anomalies, in the assumption that mantle heterogeneity has a purely thermal origin, so that velocity and density heterogeneity are proportional to one another. On the other hand, it has sometimes been suggested that S-wave velocity might be more directly sensitive to temperature, while P heterogeneity is more strongly influenced by chemical composition. In the present study, we use only S-, and not P-velocity, to estimate density heterogeneity through linear scaling, and hence the sensitivity of core-reflected P phases to mantle structure. Regardless of whether density is more closely related to P- or S-velocity, we think it is worthwhile to explore both scaling approaches in our efforts to explain seismic data. The similarity of the results presented in this study to those obtained by scaling P-velocity to density suggests that compositional anomaly has a limited impact on viscous flow in the deep mantle.

  20. Predicting the peak growth velocity in the individual child: validation of a new growth model.

    NARCIS (Netherlands)

    Busscher, I.; Kingma, I.; de Bruin, R.; Wapstra, F.H.; Verkerke, G.J.; Veldhuizen, A.G.

    2012-01-01

    Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the

  1. Predicting the peak growth velocity in the individual child : validation of a new growth model

    NARCIS (Netherlands)

    Busscher, Iris; Kingma, Idsart; de Bruin, Rob; Wapstra, Frits Hein; Verkerke, Gijsvertus J.; Veldhuizen, Albert G.

    Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the

  2. Predicting the peak growth velocity in the individual child: validation of a new growth model

    NARCIS (Netherlands)

    Busscher, I.; Kingma, I.; Bruin, R.; Wapstra, F.H.; Verkerke, Gijsbertus Jacob; Veldhuizen, A.G.

    2012-01-01

    Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the

  3. Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction

    Science.gov (United States)

    Costet, Alexandre; Melki, Lea; Sayseng, Vincent; Hamid, Nadira; Nakanishi, Koki; Wan, Elaine; Hahn, Rebecca; Homma, Shunichi; Konofagou, Elisa

    2017-12-01

    Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n  =  5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.

  4. Forearc Sliver Translation, a Lack of Arc-Normal Strain Accumulation, and Interplate Thrust Earthquakes: GPS Geodesy in Western Nicaragua

    Science.gov (United States)

    Turner, H. L.; Mattioli, G. S.; Jansma, P. E.; Styron, R. H.

    2007-05-01

    We have been investigating the kinematics of the Nicaraguan forearc using campaign GPS measurements of our geodetic network made over the last seven years (Turner et al., 2007). We currently have interseismic velocities for 18 campaign sites and have installed 10 additional sites in the backarc to investigate the nature of the transition from forearc sliver motion to stable Caribbean Plate motion. Our work focusing on the later issue is presented elsewhere at this meeting (Styron et al., 2007). Corrections for modeled coseismic offsets from the Jan. 13, 2001 Mw7.7 earthquake off the coast of El Salvador have been applied to our campaign site velocities. Some of our time-series are also strongly affected by coseismic and postseismic effects of the Oct. 9, 2004 Mw6.9 earthquake off of the coast of Nicaragua. The geodetic effects of this event are being removed from the affected time-series for interseismic velocity analysis. We have also derived interseismic velocities for five continuous GPS sites in the region. Our GPS results confirm previous predictions of northwest transport of a forearc sliver with an average Northwest velocity of ~15 mm yr-1, but show little evidence for an arc- normal component of strain accumulation associated with locking on the subduction interface. However, the amount of seismicity along this section of the Middle America Trench, including several recent large events such as the 1992 Mw7.6 and 2004 Mw6.9 earthquakes, indicates some amount of locking is present. Several possibilities may account for the apparent contradiction between the GPS results and observed seismicity. The locked zone may be too shallow and too far offshore for the arc-normal component to show up in our network, or the arc-normal signal may be masked by post-seismic effects from the 1992 offshore earthquake. If coupling between the downgoing slab and the overriding plate is weak or limited to a small seismogenic zone, then arc-parallel motion of the forearc sliver may

  5. Lithospheric structure of the westernmost Mediterranean inferred from finite frequency Rayleigh wave tomography S-velocity model.

    Science.gov (United States)

    Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun

    2016-04-01

    The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas

  6. Standardization of GPS data processing

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY O ASIS as side

  7. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  8. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  9. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  10. Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS

    Science.gov (United States)

    Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.

    2017-12-01

    The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that

  11. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  12. Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption

    Directory of Open Access Journals (Sweden)

    NEGRINI A. L.

    1999-01-01

    Full Text Available Air flow through packed beds was analyzed experimentally under conditions ranging from those that reinforce the effect of the wall on the void fraction to those that minimize it. The packing was spherical particles, with a tube-to-particle diameter ratio (D/dp between 3 and 60. Air flow rates were maintained between 1.3 and 4.44 m3/min, and gas velocity was measured with a Pitot tube positioned above the bed exit. Measurements were made at various radial and angular coordinate values, allowing the distribution of air flow across the bed to be described in detail. Comparison of the experimentally observed radial profiles with those derived from published equations revealed that at high D/dp ratios the measured and calculated velocity profiles behaved similarly. At low ratios, oscillations in the velocity profiles agreed with those in the voidage profiles, signifying that treating the porous medium as a continuum medium is questionable in these cases.

  13. Secular changes in Earth's shape and surface mass loading derived from combinations of reprocessed global GPS networks

    Science.gov (United States)

    Booker, David; Clarke, Peter J.; Lavallée, David A.

    2014-09-01

    The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.

  14. Statistical properties of the coarse-grained velocity gradient tensor in turbulence: Monte-Carlo simulations of the tetrad model

    International Nuclear Information System (INIS)

    Pumir, Alain; Naso, Aurore

    2010-01-01

    A proper description of the velocity gradient tensor is crucial for understanding the dynamics of turbulent flows, in particular the energy transfer from large to small scales. Insight into the statistical properties of the velocity gradient tensor and into its coarse-grained generalization can be obtained with the help of a stochastic 'tetrad model' that describes the coarse-grained velocity gradient tensor based on the evolution of four points. Although the solution of the stochastic model can be formally expressed in terms of path integrals, its numerical determination in terms of the Monte-Carlo method is very challenging, as very few configurations contribute effectively to the statistical weight. Here, we discuss a strategy that allows us to solve the tetrad model numerically. The algorithm is based on the importance sampling method, which consists here of identifying and sampling preferentially the configurations that are likely to correspond to a large statistical weight, and selectively rejecting configurations with a small statistical weight. The algorithm leads to an efficient numerical determination of the solutions of the model and allows us to determine their qualitative behavior as a function of scale. We find that the moments of order n≤4 of the solutions of the model scale with the coarse-graining scale and that the scaling exponents are very close to the predictions of the Kolmogorov theory. The model qualitatively reproduces quite well the statistics concerning the local structure of the flow. However, we find that the model generally tends to predict an excess of strain compared to vorticity. Thus, our results show that while some physical aspects are not fully captured by the model, our approach leads to a very good description of several important qualitative properties of real turbulent flows.

  15. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    Science.gov (United States)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the

  16. A general correlation of MPPS penetration as a function of face velocity with the model 8140 using the certitest 8160

    Energy Technology Data Exchange (ETDEWEB)

    Lifshutz, N.; Pierce, M. [Hollingsworth & Vose Company, West Groton, MA (United States)

    1997-08-01

    The CertiTest 8160 is a Condensation Nucleus Counter (CNC) based filtration test stand which permits measurement of penetration as a function of particle size. The Model 8140 is also a CNC based filtration test stand which provides a single penetration measurement for a fixed particle distribution aerosol challenge. A study was carried out measuring DOP penetration on a broad range of flat filtration media at various face velocities to compare these two instruments. The tests done on the CertiTest 8160 incorporated a range of particle sizes which encompassed the most penetrating particle size (MPPS). In this paper we present a correlation between the MPPS penetration as measured by the CertiTest 8160 and the penetration values obtained on the Model 8140. We observed that at the lowest air face velocities of the study the Model 8140 tended to overpredict the MPPS penetration as measured by the CertiTest 8160. We also present a correlation of MPPS penetration with face velocity which may be of use for extrapolation purposes. 5 refs., 8 figs.

  17. GPS: Public Utility or Software Platform

    Science.gov (United States)

    2016-09-01

    train for GPS loss, encourage use of GPS signal integrity monitors , develop in- vehicle GPS backups, and evaluate the range of radio...literature prevent the full quantification of exactly how vulnerable GPS is to service interruption. This thesis used constant comparison analysis to...criticality, resilience, and vulnerability. This methodology overcomes research limitations by using GPS system design, operations, and policies as

  18. Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.

  19. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  20. Episodic inflation and complex surface deformation of Akutan volcano, Alaska revealed from GPS time-series

    Science.gov (United States)

    DeGrandpre, Kimberly; Wang, Teng; Lu, Zhong; Freymueller, Jeffrey T.

    2017-11-01

    Akutan is one of the most active volcanoes in the Aleutian island arc. Studies involving seismic, GPS, and InSAR data have observed activity and deformation on the island since 1996. In this study we inverted measurements of volcanic deformation, observed using three components of motions at 12 continuous GPS sites to define magma source parameters using Mogi point source, Okada dislocation, and Yang spheroid and ellipsoid models. In order to analyze the evolution of this magma source we split the GPS data into five consecutive time periods, and one period that incorporates all available data. These time periods were designed around two inflation events in 2008 and 2014, when a sudden and significant increase in vertical velocity was observed. Inversion of these time periods independently allowed us to create a magma volume time-series that is related to the physical migration of magma defined by the estimated source parameters. The best fit model parameters resulting from these inversions describes magma storage in the form of an oblate spheroid centered on the northeastern rim of the caldera of Akutan volcano, extending from a depth of 7 km to 8 km, with a length of 3.5 km, a strike of N165°E, and a dip of 63° from the horizontal to the southwest. Our model results were compared with seismic studies and found to support previous interpretations of episodic inflation beneath Akutan volcano with complicated magma storage at intermediate depths. The inflation event observed in 2008 was estimated to be the result of an injection of magma of 0.08 km3 that was followed in 2014 by an additional increase in volume of 0.06 km3. No periods of deflation were observed in the GPS data after these events, and we believe the total volume of magma accumulated in this region, 0.2 km3, remains in a shallow storage system beneath Akutan Volcano.

  1. Elaboration of a velocity model of the Bogota basin (Colombia) based on microtremors arrays measurements, gravity data, and geological information

    Science.gov (United States)

    Pulido Hernandez, N. E.; Senna, S.; Garcia, H. Mr; Montejo, S.; Reyes, J. C.

    2017-12-01

    Bogotá, a megacity with almost 8 million inhabitants is prone to a significant earthquake hazard due to nearby active faults as well as subduction megathrust earthquakes. The city has been severely affected by many historical earthquakes in the last 500 years, reaching MM intensities of 8 or more in Bogotá. The city is also located at a large lacustrine basin composed of extremely soft soils which may strongly amplify the ground shaking from earthquakes. The basin extends approximately 40 km from North to South, is bounded by the Andes range to the East and South, and sharply deepens towards the West of Bogotá. The city has been the subject of multiple microzonations studies which have contributed to gain a good knowledge on the geotechnical zonation of the city and tectonic setting of the region. To improve our knowledge on the seismic risk of the city as one of the topics, we started a 5 years project sponsored by SATREPS (a joint program of JICA and JST), entitled "Application of state of the art technologies to strengthen research and response to seismic, volcanic and tsunami events and enhance risk management in Colombia (2015-2019)". In this paper we will show our results for the elaboration of a velocity model of the city. To construct a velocity model of the basin we conducted multi-sized microtremors arrays measurements (radius from 60 cm up to 1000 m) at 41 sites within the city. We calculated dispersion curves and inferred velocity profiles at all the sites. We combine these results with gravity measurements as well as geological information to obtain the initial velocity model of the basin. Ackowledgments This research is funded by SATREPS (a joint program of JICA and JST).

  2. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  3. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  4. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data

    Science.gov (United States)

    Rapp, Markus; Dörnbrack, Andreas; Kaifler, Bernd

    2018-02-01

    Temperature profiles based on radio occultation (RO) measurements with the operational European METOP satellites are used to derive monthly mean global distributions of stratospheric (20-40 km) gravity wave (GW) potential energy densities (EP) for the period July 2014-December 2016. In order to test whether the sampling and data quality of this data set is sufficient for scientific analysis, we investigate to what degree the METOP observations agree quantitatively with ECMWF operational analysis (IFS data) and reanalysis (ERA-Interim) data. A systematic comparison between corresponding monthly mean temperature fields determined for a latitude-longitude-altitude grid of 5° by 10° by 1 km is carried out. This yields very low systematic differences between RO and model data below 30 km (i.e., median temperature differences is between -0.2 and +0.3 K), which increases with height to yield median differences of +1.0 K at 34 km and +2.2 K at 40 km. Comparing EP values for three selected locations at which also ground-based lidar measurements are available yields excellent agreement between RO and IFS data below 35 km. ERA-Interim underestimates EP under conditions of strong local mountain wave forcing over northern Scandinavia which is apparently not resolved by the model. Above 35 km, RO values are consistently much larger than model values, which is likely caused by the model sponge layer, which damps small-scale fluctuations above ˜ 32 km altitude. Another reason is the well-known significant increase of noise in RO measurements above 35 km. The comparison between RO and lidar data reveals very good qualitative agreement in terms of the seasonal variation of EP, but RO values are consistently smaller than lidar values by about a factor of 2. This discrepancy is likely caused by the very different sampling characteristics of RO and lidar observations. Direct comparison of the global data set of RO and model EP fields shows large correlation coefficients (0

  5. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  6. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block

    Science.gov (United States)

    Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong

    2018-02-01

    On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.

  7. Homogenization and implementation of a 3D regional velocity model in Mexico for its application in moment tensor inversion of intermediate-magnitude earthquakes

    Science.gov (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Caló, Marco

    2017-04-01

    Moment tensor inversions for intermediate and small earthquakes (M. < 4.5) are challenging as they principally excite relatively short period seismic waves that interact strongly with local heterogeneities. Incorporating detailed regional 3D velocity models permits obtaining realistic synthetic seismograms and recover the seismic source parameters these smaller events. Two 3D regional velocity models have recently been developed for Mexico, using surface waves and seismic noise tomography (Spica et al., 2016; Gaite et al., 2015), which could be used to model the waveforms of intermediate magnitud earthquakes in this region. Such models are parameterized as layered velocity profiles and for some of the profiles, the velocity difference between two layers are considerable. The "jump" in velocities between two layers is inconvenient for some methods and algorithms that calculate synthetic waveforms, in particular for the method that we are using, the spectral element method (SPECFEM3D GLOBE, Komatitsch y Tromp, 2000), when the mesh does not follow the layer boundaries. In order to make the velocity models more easily implementec in SPECFEM3D GLOBE it is neccesary to apply a homogenization algorithm (Capdeville et al., 2015) such that the (now anisotropic) layer velocities are smoothly varying with depth. In this work, we apply a homogenization algorithm to the regional velocity models in México for implementing them in SPECFEM3D GLOBE, calculate synthetic waveforms for intermediate-magnitude earthquakes in México and invert them for the seismic moment tensor.

  8. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  9. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  10. Computation of the velocity field and mass balance in the finite-element modeling of groundwater flow

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-01-01

    Darcian velocity has been conventionally calculated in the finite-element modeling of groundwater flow by taking the derivatives of the computed pressure field. This results in discontinuities in the velocity field at nodal points and element boundaries. Discontinuities become enormous when the computed pressure field is far from a linear distribution. It is proposed in this paper that the finite element procedure that is used to simulate the pressure field or the moisture content field also be applied to Darcy's law with the derivatives of the computed pressure field as the load function. The problem of discontinuity is then eliminated, and the error of mass balance over the region of interest is much reduced. The reduction is from 23.8 to 2.2% by one numerical scheme and from 29.7 to -3.6% by another for a transient problem

  11. Modeling of hand function by mapping the motion of individual muscle voxels with MR imaging velocity tagging

    International Nuclear Information System (INIS)

    Drace, J.; Pele, N.; Herfkens, R.J.

    1990-01-01

    This paper reports on a method to correlate the three-dimensional (3D) motion of the fingers with the complex motion of the intrinsic, flexor, and extensor muscles. A better understanding of hand function is important to the medical, surgical, and rehabilitation treatment of patients with arthritic, neurogenic, and mechanical hand dysfunctions. Static, high-resolution MR volumetric imaging defines the 3D shape of each individual bone in the hands of three subjects and three patients. Single-section velocity-tagging sequences (VIGOR) are performed through the hand and forearm, while the actual 3D motion of the hand is computed from the MR model and readings of fiber-optic goniometers attached to each finger. The accuracy of the velocity tagging is also tested with a motion phantom

  12. Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Monem S. Mohamed

    2013-06-01

    From the seismic tomography study, the 3D Vp and Vp/Vs crustal models indicate high Vp/Vs values forms an elongated anomaly, in the central part of the study area, that extends from a depth of 12 km to about 1–2 km of depth is obtained. By using this crustal model in relocations all seismicity informed that most of the seismicity strongly tend to occur in a cluster manner exactly above the southern part of the study area. Based on the conducted source mechanism study, it is noticed that shallow earthquakes are associated by a high CLVD ratio (up to 40%. Furthermore, initiation of a high level seismic activity, without a large seismic main shock is observed in the Abu-Dabbab area. The distribution of micro-earthquakes tends to align in an ENE–WSW direction marking a zone of activity verse the Red Sea. The nucleation of the seismic activity beneath the southern part of the Abu-Dabbab crust is more consistent with the obtained crustal deformation result by increasing the crustal movement in the south part than the northern part. Then, based on the obtained results of the above mentioned studies; seismic tomography; source mechanisms, and crustal deformation we conclude that these seismic activities that are associated by crustal deformation are owing to some magma activity beneath the crust of the Abu-Dabbab area.

  13. Depletion velocities for atmospheric pollutants oriented To improve the simplified regional dispersion modelling

    International Nuclear Information System (INIS)

    Sanchez Gacita, Madeleine; Turtos Carbonell, Leonor; Rivero Oliva, Jose de Jesus

    2005-01-01

    The present work is aimed to improve externalities assessment using Simplified Methodologies, through the obtaining of depletion velocities for primary pollutants SO 2 , NO X and TSP (Total Suspended Particles) and for sulfate and nitrate aerosols, the secondary pollutants created from the first ones. The main goal proposed was to estimate these values for different cases, in order to have an ensemble of values for the geographic area, among which the most representative could be selected for using it in future studies that appeal to a simplified methodology for the regional dispersion assessment, taking into account the requirements of data, qualified manpower and time for a detailed approach. The results where obtained using detailed studies of the regional dispersion that were conduced for six power facilities, three from Cuba (at the localities of Mariel, Santa Cruz and Tallapiedra) and three from Mexico (at the localities of Tuxpan, Tula and Manzanillo). The depletion velocity for SO 2 was similar for all cases. Results obtained for Tallapiedra, Santa Cruz, Mariel and Manzanillo were similar. For Tula and Tuxpan a high uncertainty was found

  14. The 21 August 2017 Ischia (Italy) Earthquake Source Model Inferred From Seismological, GPS, and DInSAR Measurements

    Science.gov (United States)

    De Novellis, V.; Carlino, S.; Castaldo, R.; Tramelli, A.; De Luca, C.; Pino, N. A.; Pepe, S.; Convertito, V.; Zinno, I.; De Martino, P.; Bonano, M.; Giudicepietro, F.; Casu, F.; Macedonio, G.; Manunta, M.; Cardaci, C.; Manzo, M.; Di Bucci, D.; Solaro, G.; Zeni, G.; Lanari, R.; Bianco, F.; Tizzani, P.

    2018-03-01

    The causative source of the first damaging earthquake instrumentally recorded in the Island of Ischia, occurred on 21 August 2017, has been studied through a multiparametric geophysical approach. In order to investigate the source geometry and kinematics we exploit seismological, Global Positioning System, and Sentinel-1 and COSMO-SkyMed differential interferometric synthetic aperture radar coseismic measurements. Our results indicate that the retrieved solutions from the geodetic data modeling and the seismological data are plausible; in particular, the best fit solution consists of an E-W striking, south dipping normal fault, with its center located at a depth of 800 m. Moreover, the retrieved causative fault is consistent with the rheological stratification of the crust in this zone. This study allows us to improve the knowledge of the volcano-tectonic processes occurring on the Island, which is crucial for a better assessment of the seismic risk in the area.

  15. The GPS odograph user's guide

    Science.gov (United States)

    The GPS-based Odograph Prototype (GOP or GPS Odograph) was developed in an effort sponsored by The Federal Highway Administration (FHWA). The purpose of this effort was to develop a means of using inexpensive commercial off-the-self laptop (or notebo...

  16. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  17. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  18. Development of a first 3D crustal velocity model for the region of Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Andrea C. Riaño

    2017-05-01

    Full Text Available Knowledge regarding the characteristics of soils in Bogotá basin has been possible to get through previous microzonation studies. However, there is still insufficient knowledge of the crustal velocity structure of the region. Bogotá is located in a region prone to a significant seismic hazard. Historically, the city has been affected by strong earthquakes, reaching moment magnitudes greater than or equal to 7. Furthermore, the city was built on a lacustrine basin, with soft soils of considerable depth that may strongly amplify the ground motion during an earthquake. In this article, we describe the development of a first crustal structure and material properties model for the region of Bogotá, Colombia, covering an area of about 130 km by 102 km. This effort aims at constructing a realistic 3D seismic velocity model using geological and geotechnical information from several sources. Major geological units have been identified and mapped into the model. The Inverse Distance Weighted (IDW interpolation was used to create continuous surfaces delimiting the geological units. Seismic-wave properties are assigned to any point in the domain using a location-based approach. We expect this model to be useful for a wide range of applications, including dynamic ground motion simulations and fault system modeling.

  19. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  20. De GPS al mapa

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available Las coordenadas Lambert obtenidas a partir de mediciones con equipos GPS de mano, llamados a veces navegadores, en ciertos casos confunden al usuario, por diferir claramente de su posición real al ser graficadas en un mapa del Instituto Geográfico Nacional (IGN: Esto puede resolverse con suficiente exactitud mediante una transformación de Molodensky, seguida de la correspondiente proyección cartográfica. Sin embargo, los tres parámetros necesarios para la transformación, supuestamente válidos para Costa Rica, se encuentran en muchas variantes y producen obviamente resultados diferentes. En este trabajo se analizan los fundamentos del problema y sus posibles soluciones, culminando con un estudio comparativo de ocho casos, que permite seleccionar los valores más adecuados para los parámetros.

  1. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model

    Science.gov (United States)

    Jusoh, R.; Nazar, R.; Pop, I.

    2018-03-01

    A reformulation of the three-dimensional flow of a nanofluid by employing Buongiorno's model is presented. A new boundary condition is implemented in this study with the assumption of nanoparticle mass flux at the surface is zero. This condition is practically more realistic since the nanoparticle fraction at the boundary is latently controlled. This study is devoted to investigate the impact of the velocity slip and suction to the flow and heat transfer characteristics of nanofluid. The governing partial differential equations corresponding to the momentum, energy, and concentration are reduced to the ordinary differential equations by utilizing the appropriate transformation. Numerical solutions of the ordinary differential equations are obtained by using the built-in bvp4c function in Matlab. Graphical illus