WorldWideScience

Sample records for modeling framework version

  1. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  2. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    Science.gov (United States)

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used t...

  3. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    Science.gov (United States)

    Fahey, Kathleen M.; Carlton, Annmarie G.; Pye, Havala O. T.; Baek, Jaemeen; Hutzell, William T.; Stanier, Charles O.; Baker, Kirk R.; Wyat Appel, K.; Jaoui, Mohammed; Offenberg, John H.

    2017-04-01

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM - KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM - KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides (AQCHEM - KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) period. The added in-cloud chemistry leads to a monthly average increase of 11-18 % in cloud SOA at the surface in the eastern United States for June 2013.

  4. The Gaia Framework: Version Support In Web Based Open Hypermedia

    DEFF Research Database (Denmark)

    Kejser, Thomas; Grønbæk, Kaj

    2003-01-01

    The GAIA framework prototype, described herein, explores the possibilities and problems that arise when combining versioning and open hypermedia paradigms. It will be argued that it - by adding versioning as a separate service in the hypermedia architecture - is possible to build consistent versi...... architectures for future versioned hypermedia frameworks....

  5. WeBCMD: A cross-platform interface for the BCMD modelling framework [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joshua Russell-Buckland

    2017-07-01

    Full Text Available Multimodal monitoring of the brain generates a great quantity of data, providing the potential for great insight into both healthy and injured cerebral dynamics. In particular, near-infrared spectroscopy can be used to measure various physiological variables of interest, such as haemoglobin oxygenation and the redox state of cytochrome-c-oxidase, alongside systemic signals, such as blood pressure. Interpreting these measurements is a complex endeavour, and much work has been done to develop mathematical models that can help to provide understanding of the underlying processes that contribute to the overall dynamics. BCMD is a software framework that was developed to run such models. However, obtaining, installing and running this software is no simple task. Here we present WeBCMD, an online environment that attempts to make the process simpler and much more accessible. By leveraging modern web technologies, an extensible and cross-platform package has been created that can also be accessed remotely from the cloud. WeBCMD is available as a Docker image and an online service.

  6. The Gaia Framework: Version Support In Web Based Open Hypermedia

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kejser, Thomas

    2004-01-01

    The GAIA framework prototype, described herein, explores the possibilities and problems that arise when combining versioning and open hypermedia paradigms. It will be argued that it - by adding versioning as a separate service in the hypermedia architecture – is possible to build consistent...... versioning field and GAIA is compared with previous attempts at defining hypermedia versioning frameworks. GAIA is capable of multi-level versioning and versioning of structures and supports freezing mechanisms for both documents and hyperstructure. The experiences from GAIA provide an input to new reference...

  7. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  8. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  9. Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts

    Directory of Open Access Journals (Sweden)

    A. Payo

    2017-07-01

    Full Text Available The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME, change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures.

  10. The Unified Extensional Versioning Model

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred; Christensen, H. B.

    1999-01-01

    Versioning of components in a system is a well-researched field where various adequate techniques have already been established. In this paper, we look at how versioning can be extended to cover also the structural aspects of a system. There exist two basic techniques for versioning - intentional...

  11. Data for GMD article "A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1"

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data were used to generate the figures included in the following manuscript: Fahey, et al. (2017) "A framework for expanding aqueous chemistry in the Community...

  12. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  13. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  14. Solar Advisor Model User Guide for Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  15. Crystallization Kinetics within a Generic Modeling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.

    2014-01-01

    of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages...

  16. Simpevarp - site descriptive model version 0

    International Nuclear Information System (INIS)

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  17. An Extensible Model and Analysis Framework

    Science.gov (United States)

    2010-11-01

    of a pre-existing, open-source modeling and analysis framework known as Ptolemy II (http://ptolemy.org). The University of California, Berkeley...worked with the Air Force Research Laboratory, Rome Research Site on adapting Ptolemy II for modeling and simulation of large scale dynamics of Political...capabilities were prototyped in Ptolemy II and delivered via version control and software releases. Each of these capabilities specifically supports one or

  18. Software Frameworks for Model Composition

    Directory of Open Access Journals (Sweden)

    Mikel D. Petty

    2014-01-01

    Full Text Available A software framework is an architecture or infrastructure intended to enable the integration and interoperation of software components. Specialized types of software frameworks are those specifically intended to support the composition of models or other components within a simulation system. Such frameworks are intended to simplify the process of assembling a complex model or simulation system from simpler component models as well as to promote the reuse of the component models. Several different types of software frameworks for model composition have been designed and implemented; those types include common library, product line architecture, interoperability protocol, object model, formal, and integrative environment. The various framework types have different components, processes for composing models, and intended applications. In this survey the fundamental terms and concepts of software frameworks for model composition are presented, the different types of such frameworks are explained and compared, and important examples of each type are described.

  19. NetMOD Version 2.0 Mathematical Framework

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Young, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chael, Eric P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).

  20. Simpevarp - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  1. Web application development with Laravel PHP Framework version 4

    OpenAIRE

    Armel, Jamal

    2014-01-01

    The purpose of this thesis work was to learn a new PHP framework and use it efficiently to build an eCommerce web application for a small start-up freelancing company that will let potential customers check products by category and pass orders securely. To fulfil this set of requirements, a system consisting of a web application with a backend was designed and implemented using built in Laravel features such as Composer, Eloquent, Blade and Artisan and a WAMP stack. The web application wa...

  2. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M. [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  3. Fiscal impacts model documentation. Version 1. 0

    Energy Technology Data Exchange (ETDEWEB)

    Beck, S.L.; Scott, M.J.

    1986-05-01

    The Fiscal Impacts (FI) Model, Version 1.0 was developed under Pacific Northwest Laboratory's Monitored Retrievable Storage (MRS) Program to aid in development of the MRS Reference Site Environmental Document (PNL 5476). It computes estimates of 182 fiscal items for state and local government jurisdictions, using input data from the US Census Bureau's 1981 Survey of Governments and local population forecasts. The model can be adapted for any county or group of counties in the United States.

  4. CMAQ Model Evaluation Framework

    Science.gov (United States)

    CMAQ is tested to establish the modeling system’s credibility in predicting pollutants such as ozone and particulate matter. Evaluation of CMAQ has been designed to assess the model’s performance for specific time periods and for specific uses.

  5. Forsmark - site descriptive model version 0

    International Nuclear Information System (INIS)

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  6. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  7. Computer-Aided Modeling Framework

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    . In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...... with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene, and, for the performance evaluation of an atomizer product. In the first case study, the reactor type is where the reactions are thermodynamically limited......, such as, steam reforming and the production of olefins from inexpensive paraffins via dehydrogenation. The generated process model is based on Fickian diffusion model, which is the most widely used to account for the intraparticle mass transfer resistance. The model of the process can help to predict...

  8. A Unified Bayesian Inference Framework for Generalized Linear Models

    Science.gov (United States)

    Meng, Xiangming; Wu, Sheng; Zhu, Jiang

    2018-03-01

    In this letter, we present a unified Bayesian inference framework for generalized linear models (GLM) which iteratively reduces the GLM problem to a sequence of standard linear model (SLM) problems. This framework provides new perspectives on some established GLM algorithms derived from SLM ones and also suggests novel extensions for some other SLM algorithms. Specific instances elucidated under such framework are the GLM versions of approximate message passing (AMP), vector AMP (VAMP), and sparse Bayesian learning (SBL). It is proved that the resultant GLM version of AMP is equivalent to the well-known generalized approximate message passing (GAMP). Numerical results for 1-bit quantized compressed sensing (CS) demonstrate the effectiveness of this unified framework.

  9. A framework for Controlled Human Infection Model (CHIM studies in Malawi: Report of a Wellcome Trust workshop on CHIM in Low Income Countries held in Blantyre, Malawi [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stephen B Gordon

    2017-08-01

    Full Text Available Controlled human infection model (CHIM studies have pivotal importance in vaccine development, being useful for proof of concept, pathogenesis, down-selection and immunogenicity studies.  To date, however, they have seldom been carried out in low and middle income countries (LMIC, which is where the greatest burden of vaccine preventable illness is found.  This workshop discussed the benefits and barriers to CHIM studies in Malawi.  Benefits include improved vaccine effectiveness and host country capacity development in clinical, laboratory and governance domains.  Barriers include acceptability, safety and regulatory issues. The report suggests a framework by which ethical, laboratory, scientific and governance issues may be addressed by investigators considering or planning CHIM in LMIC.

  10. Frameworks for understanding and describing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian; Roslender, Robin

    2014-01-01

    This chapter provides in a chronological fashion an introduction to six frameworks that one can apply to describing, understanding and also potentially innovating business models. These six frameworks have been chosen carefully as they represent six very different perspectives on business models ...... Maps (2001) • Intellectual Capital Statements (2003) • Chesbrough’s framework for Open Business Models (2006) • Business Model Canvas (2008)...

  11. A Unified Framework for Systematic Model Improvement

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A unified framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation (SDE) modelling, statistical tests and multivariate nonparametric regression...

  12. Version control of pathway models using XML patches.

    Science.gov (United States)

    Saffrey, Peter; Orton, Richard

    2009-03-17

    Computational modelling has become an important tool in understanding biological systems such as signalling pathways. With an increase in size complexity of models comes a need for techniques to manage model versions and their relationship to one another. Model version control for pathway models shares some of the features of software version control but has a number of differences that warrant a specific solution. We present a model version control method, along with a prototype implementation, based on XML patches. We show its application to the EGF/RAS/RAF pathway. Our method allows quick and convenient storage of a wide range of model variations and enables a thorough explanation of these variations. Trying to produce these results without such methods results in slow and cumbersome development that is prone to frustration and human error.

  13. Industrial Waste Management Evaluation Model Version 3.1

    Science.gov (United States)

    IWEM is a screening level ground water model designed to simulate contaminant fate and transport. IWEM v3.1 is the latest version of the IWEM software, which includes additional tools to evaluate the beneficial use of industrial materials

  14. GCFM Users Guide Revision for Model Version 5.0

    Energy Technology Data Exchange (ETDEWEB)

    Keimig, Mark A.; Blake, Coleman

    1981-08-10

    This paper documents alterations made to the MITRE/DOE Geothermal Cash Flow Model (GCFM) in the period of September 1980 through September 1981. Version 4.0 of GCFM was installed on the computer at the DOE San Francisco Operations Office in August 1980. This Version has also been distributed to about a dozen geothermal industry firms, for examination and potential use. During late 1980 and 1981, a few errors detected in the Version 4.0 code were corrected, resulting in Version 4.1. If you are currently using GCFM Version 4.0, it is suggested that you make the changes to your code that are described in Section 2.0. User's manual changes listed in Section 3.0 and Section 4.0 should then also be made.

  15. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  16. Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors

    OpenAIRE

    Francois-Éric Racicot; Raymond Théoret; Alain Coen

    2006-01-01

    In this paper, we propose a new empirical version of the Fama and French Model based on the Hausman (1978) specification test and aimed at discarding measurement errors in the variables. The proposed empirical framework is general enough to be used for correcting other financial and accounting models of measurement errors. Removing measurement errors is important at many levels as information disclosure, corporate governance and protection of investors.

  17. Model Adequacy Analysis of Matching Record Versions in Nosql Databases

    Directory of Open Access Journals (Sweden)

    E. V. Tsviashchenko

    2015-01-01

    Full Text Available The article investigates a model of matching record versions. The goal of this work is to analyse the model adequacy. This model allows estimating a user’s processing time distribution of the record versions and a distribution of the record versions count. The second option of the model was used, according to which, for a client the time to process record versions depends explicitly on the number of updates, performed by the other users between the sequential updates performed by a current client. In order to prove the model adequacy the real experiment was conducted in the cloud cluster. The cluster contains 10 virtual nodes, provided by DigitalOcean Company. The Ubuntu Server 14.04 was used as an operating system (OS. The NoSQL system Riak was chosen for experiments. In the Riak 2.0 version and later provide “dotted vector versions” (DVV option, which is an extension of the classic vector clock. Their use guarantees, that the versions count, simultaneously stored in DB, will not exceed the count of clients, operating in parallel with a record. This is very important while conducting experiments. For developing the application the java library, provided by Riak, was used. The processes run directly on the nodes. In experiment two records were used. They are: Z – the record, versions of which are handled by clients; RZ – service record, which contains record update counters. The application algorithm can be briefly described as follows: every client reads versions of the record Z, processes its updates using the RZ record counters, and saves treated record in database while old versions are deleted form DB. Then, a client rereads the RZ record and increments counters of updates for the other clients. After that, a client rereads the Z record, saves necessary statistics, and deliberates the results of processing. In the case of emerging conflict because of simultaneous updates of the RZ record, the client obtains all versions of that

  18. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    Science.gov (United States)

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  19. The ONKALO area model. Version 1

    International Nuclear Information System (INIS)

    Kemppainen, K.; Ahokas, T.; Ahokas, H.; Paulamaeki, S.; Paananen, M.; Gehoer, S.; Front, K.

    2007-11-01

    The geological model of the ONKALO area consists of three submodels: the lithological model, the brittle deformation model and the alteration model. The lithological model gives properties of definite rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The brittle deformation model describes the results of brittle deformation, where geophysical and hydrogeological results are added. The alteration model describes occurrence of different alteration types and its possible effects. The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to polyphased ductile deformation, including five stages. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result a polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock in the Olkiluoto site has been subject to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: (1) pervasive (disseminated

  20. Borehole Optical Stratigraphy Modeling, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of scripts and code designed for modeling the properties of boreholes in polar ice sheets, under a range of variations in the borehole...

  1. Land-Use Portfolio Modeler, Version 1.0

    Science.gov (United States)

    Taketa, Richard; Hong, Makiko

    2010-01-01

    -on-investment. The portfolio model, now known as the Land-Use Portfolio Model (LUPM), provided the framework for the development of the Land-Use Portfolio Modeler, Version 1.0 software (LUPM v1.0). The software provides a geographic information system (GIS)-based modeling tool for evaluating alternative risk-reduction mitigation strategies for specific natural-hazard events. The modeler uses information about a specific natural-hazard event and the features exposed to that event within the targeted study region to derive a measure of a given mitigation strategy`s effectiveness. Harnessing the spatial capabilities of a GIS enables the tool to provide a rich, interactive mapping environment in which users can create, analyze, visualize, and compare different

  2. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... Home; Journals; Journal of Biosciences; Volume 32; Issue 5. Cytoview: Development of a cell modelling framework ... The framework serves as a first step in integrating different levels of data available for a biological cell and has the potential to lead to development of computational models in our pursuit to ...

  3. Smart Grid Interoperability Maturity Model Beta Version

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  4. A framework for sustainable interorganizational business model

    OpenAIRE

    Neupane, Ganesh Prasad; Haugland, Sven A.

    2016-01-01

    Drawing on literature on business model innovations and sustainability, this paper develops a framework for sustainable interorganizational business models. The aim of the framework is to enhance the sustainability of firms’ business models by enabling firms to create future value by taking into account environmental, social and economic factors. The paper discusses two themes: (1) application of the term sustainability to business model innovation, and (2) implications of integrating sustain...

  5. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  6. IDC Use Case Model Survey Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Dorthe B.; Harris, James M.

    2014-12-01

    This document contains the brief descriptions for the actors and use cases contained in the IDC Use Case Model Survey. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  7. IDC Use Case Model Survey Version 1.1.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carr, Dorthe B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This document contains the brief descriptions for the actors and use cases contained in the IDC Use Case Model. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 SNL IDC Reengineering Project Team Initial delivery M. Harris V1.1 2/2015 SNL IDC Reengineering Project Team Iteration I2 Review Comments M. Harris

  8. Fiscal impacts model documentation. Version 1.0

    International Nuclear Information System (INIS)

    Beck, S.L.; Scott, M.J.

    1986-05-01

    The Fiscal Impacts (FI) Model, Version 1.0 was developed under Pacific Northwest Laboratory's Monitored Retrievable Storage (MRS) Program to aid in development of the MRS Reference Site Environmental Document (PNL 5476). It computes estimates of 182 fiscal items for state and local government jurisdictions, using input data from the US Census Bureau's 1981 Survey of Governments and local population forecasts. The model can be adapted for any county or group of counties in the United States

  9. A useful framework for optimal replacement models

    International Nuclear Information System (INIS)

    Aven, Terje; Dekker, Rommert

    1997-01-01

    In this note we present a general framework for optimization of replacement times. It covers a number of models, including various age and block replacement models, and allows a uniform analysis for all these models. A relation to the marginal cost concept is described

  10. Graphical Model Debugger Framework for Embedded Systems

    DEFF Research Database (Denmark)

    Zeng, Kebin

    2010-01-01

    Model Driven Software Development has offered a faster way to design and implement embedded real-time software by moving the design to a model level, and by transforming models to code. However, the testing of embedded systems has remained at the code level. This paper presents a Graphical Model...... Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...... and check the running status of the system, which offers a debugging capability on a higher level of abstraction. The framework intends to contribute a tool to the Eclipse society, especially suitable for model-driven development of embedded systems....

  11. A Technological Pedagogical Content Knowledge Based Instructional Design Model: A Third Version Implementation Study in a Technology Integration Course

    Science.gov (United States)

    Lee, Chia-Jung; Kim, ChanMin

    2017-01-01

    This paper presents the third version of a technological pedagogical content knowledge (TPACK) based instructional design model that incorporates the distinctive, transformative, and integrative views of TPACK into a comprehensive actionable framework. Strategies of relating TPACK domains to real-life learning experiences, role-playing, and…

  12. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  13. Calibration in a Bayesian modelling framework

    NARCIS (Netherlands)

    Jansen, M.J.W.; Hagenaars, T.H.J.

    2004-01-01

    Bayesian statistics may constitute the core of a consistent and comprehensive framework for the statistical aspects of modelling complex processes that involve many parameters whose values are derived from many sources. Bayesian statistics holds great promises for model calibration, provides the

  14. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... Here we report a framework to model various aspects of a cell and integrate knowledge encoded at different levels of abstraction, with cell morphologies at one end to atomic structures at the other. The different issues that have been addressed are ontologies, feature description and model building.

  15. Computer-aided modeling framework – a generic modeling template

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    This work focuses on the development of a computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured on workflows for different modeling tasks. The overall objective is to support model developers and users to generate ....... The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene...

  16. Site characterizations around KURT area-Geologic model (Version 1)-

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Kim, Geon Young

    2009-08-01

    To characterize the geologic elements around study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as geophysical surveys and borehole drillings were carried out since 1997. Especially, the KURT (KAERI Underground Research Tunnel) was constructed to understand the deep geological environments in 2006. At recent, the deep boreholes, which have 500m depth at left research module inside the KURT and 1,000m depth outside the KURT, were drilled around the KURT area to confirm and validate the geological model. The objective of this research is to construct the first version of geological model around KURT area in the point of hydro-geological view. The data in this study are based on the surface geological investigation and borehole investigations drilled in until 2005. At results, total 4 geological elements are obtained from geological analysis, which are a subsurface weathered zone, log-angled fractures zone, fracture zones and bedrock. And, the geometries of these elements are also plotted by three-dimensional model. The first version of geological model which is built in this study will be supported to construct the hydrogeological model and geochemical model

  17. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  18. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  19. H2A Production Model, Version 2 User Guide

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Ramsden, T.; Zuboy, J.

    2008-09-01

    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  20. Business Model Concept: An Integrative Framework Proposal

    Directory of Open Access Journals (Sweden)

    Marko Peric

    2017-09-01

    Full Text Available Every firm employs a particular business model seeking competitive advantage. However, this pursuit is difficult, and sometimes unsuccessful. The reasons for failure should be sought in the managers’ lack of understanding of their organisations’ business models, their unique building blocks, and the potential that they have. To help managers better understand business models, this paper reviews the extant literature and identifies the elements of business models cited therein. Further, considering the new needs on the changing markets and the prevailing search for sustainability beyond profit, this paper portrays essential business model elements in an integrated framework. An updated generic business model framework consists of four primary categories, namely, value proposition, value capture, value creation, and value network, and could be useful for a variety of organisations, profit and non-profit, with various mission and vision orientations and interaction with the environment.

  1. QMM – A Quarterly Macroeconomic Model of the Icelandic Economy. Version 2.0

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi

    implemented in the forecasting round for the Monetary Bulletin 2006/1 in March 2006. QMM is used by the Bank for forecasting and various policy simulations and therefore plays a key role as an organisational framework for viewing the medium-term future when formulating monetary policy at the Bank. This paper......This paper documents and describes Version 2.0 of the Quarterly Macroeconomic Model of the Central Bank of Iceland (QMM). QMM and the underlying quarterly database have been under construction since 2001 at the Research and Forecasting Division of the Economics Department at the Bank and was first...

  2. Integrated Farm System Model Version 4.3 and Dairy Gas Emissions Model Version 3.3 Software development and distribution

    Science.gov (United States)

    Modeling routines of the Integrated Farm System Model (IFSM version 4.2) and Dairy Gas Emission Model (DairyGEM version 3.2), two whole-farm simulation models developed and maintained by USDA-ARS, were revised with new components for: (1) simulation of ammonia (NH3) and greenhouse gas emissions gene...

  3. What's new in the Atmospheric Model Evaluation Tool (AMET) version 1.3

    Science.gov (United States)

    A new version of the Atmospheric Model Evaluation Tool (AMET) has been released. The new version of AMET, version 1.3 (AMETv1.3), contains a number of updates and changes from the previous of version of AMET (v1.2) released in 2012. First, the Perl scripts used in the previous ve...

  4. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way...... to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model...... checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems....

  5. Next generation framework for aquatic modeling of the Earth System

    Science.gov (United States)

    Fekete, B. M.; Wollheim, W. M.; Wisser, D.; Vörösmarty, C. J.

    2009-03-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the complexity of the surrounding IT infrastructure is growing as well. Earth System models must manage a vast amount of data in heterogeneous computing environments. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. The Next generation Framework for Aquatic Modeling of the Earth System (NextFrAMES, a revised version of FrAMES) have numerous similarities to those developed by other teams, but represents a novel model development paradigm. NextFrAMES is built around a modeling XML that lets modelers to express the overall model structure and provides an API for dynamically linked plugins to represent the processes. The model XML is executed by the NextFrAMES run-time engine that parses the model definition, loads the module plugins, performs the model I/O and executes the model calculations. NextFrAMES has a minimalistic view representing spatial domains and treats every domain (regardless of its layout such as grid, network tree, individual points, polygons, etc.) as vector of objects. NextFrAMES performs computations on multiple domains and interactions between different spatial domains are carried out through couplers. NextFrAMES allows processes to operate at different frequencies by providing rudimentary aggregation and disaggregation facilities. NextFrAMES was designed primarily for

  6. Interacting vector boson model and other versions of IBM

    International Nuclear Information System (INIS)

    Asherova, R.M.; Fursa, D.V.; Georgieva, A.; Smirnov, Yu.F.

    1991-01-01

    The Dyson mapping of interacting vector boson model (IVBM) on the standard IBM with dynamical symmetry U(21) is obtained. This version of IBM contains the S(T=1), D(T=1) and P(T=0) bosons, where T is isospin of bosons. From group theory view point it corresponds to the realization of the Sp(12,R) generators in terms of generators of HW(21)xU(6) group. The problem of elimination of spurious states and Hermitization of this boson representation is discussed. The image of the IVBM Hamiltonian in the space of above mentioned S, D, P-bosons is found. 22 refs

  7. Spatial Modeling for Resources Framework (SMRF)

    Science.gov (United States)

    Spatial Modeling for Resources Framework (SMRF) was developed by Dr. Scott Havens at the USDA Agricultural Research Service (ARS) in Boise, ID. SMRF was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed. SMRF was developed...

  8. A framework for API solubility modelling

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Crafts, Peter

    The solubility of solid organic compounds in water and organic solvents is a fundamental thermodynamic property for many purposes such as product-process design and optimization, for the chemical and pharmaceutical industry. Experimental literature solubility data are usually scarce and temperature......-dependent measurements are expensive in terms of time and resources. The few available data are badly organized and difficult to use for fast solubility calculations and solvent screening. Available models often require time consuming and complex implementation together with a good user expertise for their efficient use....... In addition, most of the models are not predictive and requires experimental data for the calculation of the needed parameters. This work aims at developing an efficient framework for the solubility modelling of Active Pharmaceutical Ingredients (API) in water and organic solvents. With this framework...

  9. A framework for benchmarking land models

    Directory of Open Access Journals (Sweden)

    Y. Q. Luo

    2012-10-01

    Full Text Available Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1 targeted aspects of model performance to be evaluated, (2 a set of benchmarks as defined references to test model performance, (3 metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4 model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1 a priori thresholds of acceptable model performance and (2 a scoring system to combine data–model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties

  10. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  11. CLPX-Model: Rapid Update Cycle 40km (RUC-40) Model Output Reduced Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Update Cycle, version 2 at 40km (RUC-2, known to the Cold Land Processes community as RUC40) model is a Mesoscale Analysis and Prediction System (MAPS)...

  12. A Guide for applying a revised version of the PARIHS framework for implementation

    Directory of Open Access Journals (Sweden)

    Helfrich Christian D

    2011-08-01

    Full Text Available Abstract Background Based on a critical synthesis of literature on use of the Promoting Action on Research Implementation in Health Services (PARIHS framework, revisions and a companion Guide were developed by a group of researchers independent of the original PARIHS team. The purpose of the Guide is to enhance and optimize efforts of researchers using PARIHS in implementation trials and evaluations. Methods Authors used a planned, structured process to organize and synthesize critiques, discussions, and potential recommendations for refinements of the PARIHS framework arising from a systematic review. Using a templated form, each author independently recorded key components for each reviewed paper; that is, study definitions, perceived strengths/limitations of PARIHS, other observations regarding key issues and recommendations regarding needed refinements. After reaching consensus on these key components, the authors summarized the information and developed the Guide. Results A number of revisions, perceived as consistent with the PARIHS framework's general nature and intent, are proposed. The related Guide is composed of a set of reference tools, provided in Additional files. Its core content is built upon the basic elements of PARIHS and current implementation science. Conclusions We invite researchers using PARIHS for targeted evidence-based practice (EBP implementations with a strong task-orientation to use this Guide as a companion and to apply the revised framework prospectively and comprehensively. Researchers also are encouraged to evaluate its use relative to perceived strengths and issues. Such evaluations and critical reflections regarding PARIHS and our Guide could thereby promote the framework's continued evolution.

  13. Environmental Modeling Framework using Stacked Gaussian Processes

    OpenAIRE

    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel

    2016-01-01

    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  14. An automated framework for QSAR model building.

    Science.gov (United States)

    Kausar, Samina; Falcao, Andre O

    2018-01-16

    In-silico quantitative structure-activity relationship (QSAR) models based tools are widely used to screen huge databases of compounds in order to determine the biological properties of chemical molecules based on their chemical structure. With the passage of time, the exponentially growing amount of synthesized and known chemicals data demands computationally efficient automated QSAR modeling tools, available to researchers that may lack extensive knowledge of machine learning modeling. Thus, a fully automated and advanced modeling platform can be an important addition to the QSAR community. In the presented workflow the process from data preparation to model building and validation has been completely automated. The most critical modeling tasks (data curation, data set characteristics evaluation, variable selection and validation) that largely influence the performance of QSAR models were focused. It is also included the ability to quickly evaluate the feasibility of a given data set to be modeled. The developed framework is tested on data sets of thirty different problems. The best-optimized feature selection methodology in the developed workflow is able to remove 62-99% of all redundant data. On average, about 19% of the prediction error was reduced by using feature selection producing an increase of 49% in the percentage of variance explained (PVE) compared to models without feature selection. Selecting only the models with a modelability score above 0.6, average PVE scores were 0.71. A strong correlation was verified between the modelability scores and the PVE of the models produced with variable selection. We developed an extendable and highly customizable fully automated QSAR modeling framework. This designed workflow does not require any advanced parameterization nor depends on users decisions or expertise in machine learning/programming. With just a given target or problem, the workflow follows an unbiased standard protocol to develop reliable QSAR models

  15. MDM: A Mode Diagram Modeling Framework

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2012-12-01

    Full Text Available Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems.

  16. The integrated Earth System Model Version 1: formulation and functionality

    Energy Technology Data Exchange (ETDEWEB)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  17. Implementation of a PETN failure model using ARIA's general chemistry framework

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model, implementation, and validation.

  18. Disposal Systems Evaluation Framework (DSEF) Version 1.0 - Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, Massimiliano [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-03

    The Disposal Systems Evaluation Framework (DSEF) is being developed at Lawrence Livermore National Laboratory to formalize the development and documentation of repository conceptual design options for each waste form and environment combination. This report summarizes current status and plans for the remainder of FY11 and for FY12. This progress report defines the architecture and interface parameters of the DSEF Excel workbook, which contains worksheets that link to each other to provide input and document output from external codes such that concise comparisons between fuel cycles, disposal environments, repository designs and engineered barrier system materials can be performed. Collaborations between other Used Fuel Disposition Campaign work packages and US Department of Energy / Nuclear Energy campaigns are clearly identified. File naming and configuration management is recommended to allow automated abstraction of data from multiple DSEF runs.

  19. BehavePlus fire modeling system, version 5.0: Variables

    Science.gov (United States)

    Patricia L. Andrews

    2009-01-01

    This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...

  20. Computerized transportation model for the NRC Physical Protection Project. Versions I and II

    International Nuclear Information System (INIS)

    Anderson, G.M.

    1978-01-01

    Details on two versions of a computerized model for the transportation system of the NRC Physical Protection Project are presented. The Version I model permits scheduling of all types of transport units associated with a truck fleet, including truck trailers, truck tractors, escort vehicles and crews. A fixed-fleet itinerary construction process is used in which iterations on fleet size are required until the service requirements are satisfied. The Version II model adds an aircraft mode capability and provides for a more efficient non-fixed-fleet itinerary generation process. Test results using both versions are included

  1. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  2. Institutional Transformation Version 2.5 Modeling and Planning.

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mizner, Jack H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vetter, Douglas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evans, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Addison, Marlin [Arizona State Univ., Mesa, AZ (United States); Schaffer, Matthew A. [Bridgers and Paxton Engineering Firm, Albuquerque, NM (United States); Higgins, Matthew W. [Vibrantcy, Albuquerque, NM (United States)

    2017-02-01

    ., representing 80% of the energy consumption at SNL. SNL has been able to leverage this model to estimate energy savings potential of many competing ECMs. The results helped high level decision makers to create energy reduction goals for SNL. These resources also have multiple applications for use of the models as individual buildings. In addition to the building module, a solar module built in Powersim Studio (r) allows planners to evaluate the potential photovoltaic (PV) energy generation potential for flat plate PV, concentrating solar PV, and concentration solar thermal technologies at multiple sites across SNL's New Mexico campus. Development of the IX modeling framework was a unique collaborative effort among planners and engineers in SNL's facilities division; scientists and computer modelers in SNL's research and development division; faculty from Arizona State University; and energy modelers from Bridger and Paxton Consulting Engineers Incorporated.

  3. Model based risk assessment - the CORAS framework

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjoern Axel; Fredriksen, Rune; Thunem, Atoosa P-J.

    2004-04-15

    Traditional risk analysis and assessment is based on failure-oriented models of the system. In contrast to this, model-based risk assessment (MBRA) utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The target models are then used as input sources for complementary risk analysis and assessment techniques, as well as a basis for the documentation of the assessment results. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tested with successful outcome through a series of seven trial within the telemedicine and ecommerce areas. The CORAS project in general and the CORAS application of MBRA in particular have contributed positively to the visibility of model-based risk assessment and thus to the disclosure of several potentials for further exploitation of various aspects within this important research field. In that connection, the CORAS methodology's possibilities for further improvement towards utilization in more complex architectures and also in other application domains such as the nuclear field can be addressed. The latter calls for adapting the framework to address nuclear standards such as IEC 60880 and IEC 61513. For this development we recommend applying a trial driven approach within the nuclear field. The tool supported approach for combining risk analysis and system development also fits well with the HRP proposal for developing an Integrated Design Environment (IDE) providing efficient methods and tools to support control room systems design. (Author)

  4. Evaluation of a new CNRM-CM6 model version for seasonal climate predictions

    Science.gov (United States)

    Volpi, Danila; Ardilouze, Constantin; Batté, Lauriane; Dorel, Laurant; Guérémy, Jean-François; Déqué, Michel

    2017-04-01

    This work presents the quality assessment of a new version of the Météo-France coupled climate prediction system, which has been developed in the EU COPERNICUS Climate Change Services framework to carry out seasonal forecast. The system is based on the CNRM-CM6 model, with Arpege-Surfex 6.2.2 as atmosphere/land component and Nemo 3.2 as ocean component, which has directly embedded the sea-ice component Gelato 6.0. In order to have a robust diagnostic, the experiment is composed by 60 ensemble members generated with stochastic dynamic perturbations. The experiment has been performed over a 37-year re-forecast period from 1979 to 2015, with two start dates per year, respectively in May 1st and November 1st. The evaluation of the predictive skill of the model is shown under two perspectives: on the one hand, the ability of the model to faithfully respond to positive or negative ENSO, NAO and QBO events, independently of the predictability of these events. Such assessment is carried out through a composite analysis, and shows that the model succeeds in reproducing the main patterns for 2-meter temperature, precipitation and geopotential height at 500 hPa during the winter season. On the other hand, the model predictive skill of the same events (positive and negative ENSO, NAO and QBO) is evaluated.

  5. A Smallholder Socio-hydrological Modelling Framework

    Science.gov (United States)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  6. Systematic identification of crystallization kinetics within a generic modelling framework

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Meisler, Kresten Troelstrup; Gernaey, Krist

    2012-01-01

    A systematic development of constitutive models within a generic modelling framework has been developed for use in design, analysis and simulation of crystallization operations. The framework contains a tool for model identification connected with a generic crystallizer modelling tool-box, a tool...

  7. SPSPR Model - Framework for ICT Services Management

    Directory of Open Access Journals (Sweden)

    Jiri Vorisek

    2011-04-01

    Full Text Available In this paper we discuss existing frameworks for the management of ICT services and their limitations in the context of emerging enterprise computing environment characterized by use of externally sourced services. We identify the requirements for a service management framework with particular focus on definition and categorization of ICT services that facilitates the development of a service catalogue. The main section of this paper describes our approach to ICT service management as embodied in the SPSPR framework.

  8. ANLECIS-1: Version of ANLECIS Program for Calculations with the Asymetric Rotational Model

    International Nuclear Information System (INIS)

    Lopez Mendez, R.; Garcia Moruarte, F.

    1986-01-01

    A new modified version of the ANLECIS Code is reported. This version allows to fit simultaneously the cross section of the direct process by the asymetric rotational model, and the cross section of the compound nucleus process by the Hauser-Feshbach formalism with the modern statistical corrections. The calculations based in this version show a dependence of the compound nucleus cross section with respect to the asymetric parameter γ. (author). 19 refs

  9. CENTURY: Modeling Ecosystem Responses to Climate Change, Version 4 (VEMAP 1995)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The CENTURY model, Version 4, is a general model of plant-soil nutrient cycling that is being used to simulate carbon and nutrient dynamics for different...

  10. CENTURY: Modeling Ecosystem Responses to Climate Change, Version 4 (VEMAP 1995)

    Data.gov (United States)

    National Aeronautics and Space Administration — The CENTURY model, Version 4, is a general model of plant-soil nutrient cycling that is being used to simulate carbon and nutrient dynamics for different types of...

  11. Modeling interfacial dynamics using nonequilibrium thermodynamics frameworks

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2013-01-01

    In recent years several nonequilibrium thermodynamic frameworks have been developed capable of describing the dynamics of multiphase systems with complex microstructured interfaces. In this paper we present an overview of these frameworks. We will discuss interfacial dynamics in the context of the

  12. SPSPR Model - Framework for ICT Services Management

    OpenAIRE

    Jiri Vorisek; Jaroslav Jandos; Jiri Feuerlicht

    2011-01-01

    In this paper we discuss existing frameworks for the management of ICT services and their limitations in the context of emerging enterprise computing environment characterized by use of externally sourced services. We identify the requirements for a service management framework with particular focus on definition and categorization of ICT services that facilitates the development of a service catalogue. The main section of this paper describes our approach to ICT service management as embodie...

  13. Business model framework applications in health care: A systematic review.

    Science.gov (United States)

    Fredriksson, Jens Jacob; Mazzocato, Pamela; Muhammed, Rafiq; Savage, Carl

    2017-11-01

    It has proven to be a challenge for health care organizations to achieve the Triple Aim. In the business literature, business model frameworks have been used to understand how organizations are aligned to achieve their goals. We conducted a systematic literature review with an explanatory synthesis approach to understand how business model frameworks have been applied in health care. We found a large increase in applications of business model frameworks during the last decade. E-health was the most common context of application. We identified six applications of business model frameworks: business model description, financial assessment, classification based on pre-defined typologies, business model analysis, development, and evaluation. Our synthesis suggests that the choice of business model framework and constituent elements should be informed by the intent and context of application. We see a need for harmonization in the choice of elements in order to increase generalizability, simplify application, and help organizations realize the Triple Aim.

  14. A Framework for Formal Modeling and Analysis of Organizations

    NARCIS (Netherlands)

    Jonker, C.M.; Sharpanskykh, O.; Treur, J.; P., Yolum

    2007-01-01

    A new, formal, role-based, framework for modeling and analyzing both real world and artificial organizations is introduced. It exploits static and dynamic properties of the organizational model and includes the (frequently ignored) environment. The transition is described from a generic framework of

  15. Tier I Rice Model - Version 1.0 - Guidance for Estimating Pesticide Concentrations in Rice Paddies

    Science.gov (United States)

    Describes a Tier I Rice Model (Version 1.0) for estimating surface water exposure from the use of pesticides in rice paddies. The concentration calculated can be used for aquatic ecological risk and drinking water exposure assessments.

  16. Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .

  17. Approaches in highly parameterized inversion—PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models

    Science.gov (United States)

    Welter, David E.; White, Jeremy T.; Hunt, Randall J.; Doherty, John E.

    2015-09-18

    The PEST++ Version 1 object-oriented parameter estimation code is here extended to Version 3 to incorporate additional algorithms and tools to further improve support for large and complex environmental modeling problems. PEST++ Version 3 includes the Gauss-Marquardt-Levenberg (GML) algorithm for nonlinear parameter estimation, Tikhonov regularization, integrated linear-based uncertainty quantification, options of integrated TCP/IP based parallel run management or external independent run management by use of a Version 2 update of the GENIE Version 1 software code, and utilities for global sensitivity analyses. The Version 3 code design is consistent with PEST++ Version 1 and continues to be designed to lower the barriers of entry for users as well as developers while providing efficient and optimized algorithms capable of accommodating large, highly parameterized inverse problems. As such, this effort continues the original focus of (1) implementing the most popular and powerful features of the PEST software suite in a fashion that is easy for novice or experienced modelers to use and (2) developing a software framework that is easy to extend.

  18. Calibrating and Updating the Global Forest Products Model (GFPM version 2014 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai Zhu

    2014-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2014 has data and parameters to simulate changes of the forest sector from 2010 to 2030. Buongiorno and Zhu (2014) describe how to use the model for simulation....

  19. Calibrating and updating the Global Forest Products Model (GFPM version 2016 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai  Zhu

    2016-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2016 has data and parameters to simulate changes of the forest sector from 2013 to 2030. Buongiorno and Zhu (2015) describe how to use the model for...

  20. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  1. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  2. A Modeling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further...... extended by additional congurations. The framework provides the basis for fair comparison of both steady state and dynamic performance of the dierent column congurations for a given binary or multicomponent separation....

  3. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  4. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  5. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  6. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  7. An Ontology-Based Framework for Modeling User Behavior

    DEFF Research Database (Denmark)

    Razmerita, Liana

    2011-01-01

    This paper focuses on the role of user modeling and semantically enhanced representations for personalization. This paper presents a generic Ontology-based User Modeling framework (OntobUMf), its components, and its associated user modeling processes. This framework models the behavior of the users...... and classifies its users according to their behavior. The user ontology is the backbone of OntobUMf and has been designed according to the Information Management System Learning Information Package (IMS LIP). The user ontology includes a Behavior concept that extends IMS LIP specification and defines....... The results of this research may contribute to the development of other frameworks for modeling user behavior, other semantically enhanced user modeling frameworks, or other semantically enhanced information systems....

  8. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  9. Service business model framework and the service innovation scope

    OpenAIRE

    van der Aa, W.; van der Rhee, B.; Victorino, L.

    2011-01-01

    In this paper we present a framework for service business models. We build on three streams of research. The first stream is the service management and marketing literature that focuses on the specific challenges of managing a service business. The second stream consists of research on e-business models. The third and most recent stream of research includes frameworks and business models from strategic management and innovation management. The next step in our research is the development of a...

  10. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the

  11. Integrated Baseline System (IBS) Version 2.0: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  12. The MiniBIOS model (version 1A4) at the RIVM

    NARCIS (Netherlands)

    Uijt de Haag PAM; Laheij GMH

    1993-01-01

    This report is the user's guide of the MiniBIOS model, version 1A4. The model is operational at the Laboratory of Radiation Research of the RIVM. MiniBIOS is a simulation model for calculating the transport of radionuclides in the biosphere and the consequential radiation dose to humans. The

  13. The Guided System Development Framework: Modeling and Verifying Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming

    2014-01-01

    . The Guided System Development framework contributes to more secure communication systems by aiding the development of such systems. The framework features a simple modelling language, step-wise refinement from models to implementation, interfaces to security verification tools, and code generation from...... the verified specification. The refinement process carries thus security properties from the model to the implementation. Our approach also supports verification of systems previously developed and deployed. Internally, the reasoning in our framework is based on the Beliefs and Knowledge tool, a verification...

  14. Microsoft Repository Version 2 and the Open Information Model.

    Science.gov (United States)

    Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David

    1999-01-01

    Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…

  15. Programming Entity Framework

    CERN Document Server

    Lerman, Julia

    2010-01-01

    Get a thorough introduction to ADO.NET Entity Framework 4 -- Microsoft's core framework for modeling and interacting with data in .NET applications. The second edition of this acclaimed guide provides a hands-on tour of the framework latest version in Visual Studio 2010 and .NET Framework 4. Not only will you learn how to use EF4 in a variety of applications, you'll also gain a deep understanding of its architecture and APIs. Written by Julia Lerman, the leading independent authority on the framework, Programming Entity Framework covers it all -- from the Entity Data Model and Object Service

  16. Integrated Baseline Bystem (IBS) Version 1.03: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Integrated Baseline System)(IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planning and analysis. This document is the models guide for the IBS and explains how to use the emergency related computer models. This document provides information for the experienced system user, and is the primary reference for the computer modeling software supplied with the system. It is designed for emergency managers and planners, and others familiar with the concepts of computer modeling. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other IBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary.

  17. A tantalum strength model using a multiscale approach: version 2

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R; Arsenlis, A; Hommes, G; Marian, J; Rhee, M; Yang, L H

    2009-09-21

    A continuum strength model for tantalum was developed in 2007 using a multiscale approach. This was our first attempt at connecting simulation results from atomistic to continuum length scales, and much was learned that we were not able to incorporate into the model at that time. The tantalum model described in this report represents a second cut at pulling together multiscale simulation results into a continuum model. Insight gained in creating previous multiscale models for tantalum and vanadium was used to guide the model construction and functional relations for the present model. While the basic approach follows that of the vanadium model, there are significant departures. Some of the recommendations from the vanadium report were followed, but not all. Results from several new analysis techniques have not yet been incorporated due to technical difficulties. Molecular dynamics simulations of single dislocation motion at several temperatures suggested that the thermal activation barrier was temperature dependent. This dependency required additional temperature functions be included within the assumed Arrhenius relation. The combination of temperature dependent functions created a complex model with a non unique parameterization and extra model constants. The added complexity had no tangible benefits. The recommendation was to abandon the strict Arrhenius form and create a simpler curve fit to the molecular dynamics data for shear stress versus dislocation velocity. Functions relating dislocation velocity and applied shear stress were constructed vor vanadium for both edge and screw dislocations. However, an attempt to formulate a robust continuum constitutive model for vanadium using both dislocation populations was unsuccessful; the level of coupling achieved was inadequate to constrain the dislocation evolution properly. Since the behavior of BCC materials is typically assumed to be dominated by screw dislocations, the constitutive relations were ultimately

  18. Conceptualising Business Models: Definitions, Frameworks and Classifications

    Directory of Open Access Journals (Sweden)

    Erwin Fielt

    2013-12-01

    Full Text Available The business model concept is gaining traction in different disciplines but is still criticized for being fuzzy and vague and lacking consensus on its definition and compositional elements. In this paper we set out to advance our understanding of the business model concept by addressing three areas of foundational research: business model definitions, business model elements, and business model archetypes. We define a business model as a representation of the value logic of an organization in terms of how it creates and captures customer value. This abstract and generic definition is made more specific and operational by the compositional elements that need to address the customer, value proposition, organizational architecture (firm and network level and economics dimensions. Business model archetypes complement the definition and elements by providing a more concrete and empirical understanding of the business model concept. The main contributions of this paper are (1 explicitly including the customer value concept in the business model definition and focussing on value creation, (2 presenting four core dimensions that business model elements need to cover, (3 arguing for flexibility by adapting and extending business model elements to cater for different purposes and contexts (e.g. technology, innovation, strategy (4 stressing a more systematic approach to business model archetypes by using business model elements for their description, and (5 suggesting to use business model archetype research for the empirical exploration and testing of business model elements and their relationships.

  19. U.S. Coastal Relief Model - Southern California Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides a comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a seamless...

  20. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  1. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  2. Modeled Daily Thaw Depth and Frozen Ground Depth, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains modeled daily thaw depth and freezing depth for the Arctic terrestrial drainage basin. Thaw and freezing depths were calculated over the study...

  3. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baek, Young Sun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a number of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.

  4. Using the Global Forest Products Model (GFPM version 2012)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai Zhu

    2012-01-01

    The purpose of this manual is to enable users of the Global Forest Products Model to: • Install and run the GFPM software • Understand the input data • Change the input data to explore different scenarios • Interpret the output The GFPM is an economic model of global production, consumption and trade of forest products (Buongiorno et al. 2003). The GFPM2012 has data...

  5. Macro System Model (MSM) User Guide, Version 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  6. Due Regard Encounter Model Version 1.0

    Science.gov (United States)

    2013-08-19

    Note that no existing model covers encoun- ters between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters...encounters between instrument flight rules ( IFR ) and non- IFR traffic beyond 12NM. 2 TABLE 1 Encounter model categories. Aircraft of Interest Intruder...Aircraft Location Flight Rule IFR VFR Noncooperative Noncooperative Conventional Unconventional CONUS IFR C C U X VFR C U U X Offshore IFR C C U X VFR C U

  7. POSITIVE LEADERSHIP MODELS: THEORETICAL FRAMEWORK AND RESEARCH

    Directory of Open Access Journals (Sweden)

    Javier Blanch, Francisco Gil

    2016-09-01

    Full Text Available The objective of this article is twofold; firstly, we establish the theoretical boundaries of positive leadership and the reasons for its emergence. It is related to the new paradigm of positive psychology that has recently been shaping the scope of organizational knowledge. This conceptual framework has triggered the development of the various forms of positive leadership (i.e. transformational, servant, spiritual, authentic, and positive. Although the construct does not seem univocally defined, these different types of leadership overlap and share a significant affinity. Secondly, we review the empirical evidence that shows the impact of positive leadership in organizations and we highlight the positive relationship between these forms of leadership and key positive organizational variables. Lastly, we analyse future research areas in order to further develop this concept.

  8. Koopman Operator Framework for Time Series Modeling and Analysis

    Science.gov (United States)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  9. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  10. Red Storm usage model :Version 1.12.

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  11. NASA Orbital Debris Engineering Model ORDEM2008 (Beta Version)

    Science.gov (United States)

    Stansbery, Eugene G.; Krisko, Paula H.

    2009-01-01

    This is an interim document intended to accompany the beta-release of the ORDEM2008 model. As such it provides the user with a guide for its use, a list of its capabilities, a brief summary of model development, and appendices included to educate the user as to typical runtimes for different orbit configurations. More detailed documentation will be delivered with the final product. ORDEM2008 supersedes NASA's previous model - ORDEM2000. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical techniques, has enabled the construction of this more comprehensive and sophisticated model. Integrated with the software is an upgraded graphical user interface (GUI), which uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional average debris size vs. flux magnitude for chosen analysis orbits, to the more complex color-contoured two-dimensional (2-D) directional flux diagrams in terms of local spacecraft pitch and yaw.

  12. Modelling framework for groundwater flow at Sellafield

    International Nuclear Information System (INIS)

    Hooper, A.J.; Billington, D.E.; Herbert, A.W.

    1995-01-01

    The principal objective of Nirex is to develop a single deep geological repository for the safe disposal of low- and intermediate-level radioactive waste. In safety assessment, use is made of a variety of conceptual models that form the basis for modelling of the pathways by which radionuclides might return to the environment. In this paper, the development of a conceptual model for groundwater flow and transport through fractured rock on the various scales of interest is discussed. The approach is illustrated by considering how some aspects of the conceptual model are developed in particular numerical models. These representations of the conceptual model use fracture network geometries based on realistic rock properties. (author). refs., figs., tabs

  13. A Simulation and Modeling Framework for Space Situational Awareness

    Science.gov (United States)

    Olivier, S.

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. This framework includes detailed models for threat scenarios, signatures, sensors, observables and knowledge extraction algorithms. The framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the details of the modeling and simulation framework, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical and infra-red brightness calculations, generic radar system models, generic optical and infra-red system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The specific modeling of the Space Surveillance Network is performed in collaboration with the Air Force Space Command Space Control Group. We will demonstrate the use of this integrated simulation and modeling framework on specific threat scenarios, including space debris and satellite maneuvers, and we will examine the results of case studies involving the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  14. Evaluating alternate discrete outcome frameworks for modeling crash injury severity.

    Science.gov (United States)

    Yasmin, Shamsunnahar; Eluru, Naveen

    2013-10-01

    This paper focuses on the relevance of alternate discrete outcome frameworks for modeling driver injury severity. The study empirically compares the ordered response and unordered response models in the context of driver injury severity in traffic crashes. The alternative modeling approaches considered for the comparison exercise include: for the ordered response framework-ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit (MGOL) and for the unordered response framework-multinomial logit (MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. A host of comparison metrics are computed to evaluate the performance of these alternative models. The study provides a comprehensive comparison exercise of the performance of ordered and unordered response models for examining the impact of exogenous factors on driver injury severity. The research also explores the effect of potential underreporting on alternative frameworks by artificially creating an underreported data sample from the driver injury severity sample. The empirical analysis is based on the 2010 General Estimates System (GES) data base-a nationally representative sample of road crashes collected and compiled from about 60 jurisdictions across the United States. The performance of the alternative frameworks are examined in the context of model estimation and validation (at the aggregate and disaggregate level). Further, the performance of the model frameworks in the presence of underreporting is explored, with and without corrections to the estimates. The results from these extensive analyses point toward the emergence of the GOL framework (MGOL) as a strong competitor to the MMNL model in modeling driver injury severity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Connected Equipment Maturity Model Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Butzbaugh, Joshua B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whalen, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-01

    The Connected Equipment Maturity Model (CEMM) evaluates the high-level functionality and characteristics that enable equipment to provide the four categories of energy-related services through communication with other entities (e.g., equipment, third parties, utilities, and users). The CEMM will help the U.S. Department of Energy, industry, energy efficiency organizations, and research institutions benchmark the current state of connected equipment and identify capabilities that may be attained to reach a more advanced, future state.

  16. Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Michala Jakubcová

    2015-01-01

    Full Text Available The presented paper provides the analysis of selected versions of the particle swarm optimization (PSO algorithm. The tested versions of the PSO were combined with the shuffling mechanism, which splits the model population into complexes and performs distributed PSO optimization. One of them is a new proposed PSO modification, APartW, which enhances the global exploration and local exploitation in the parametric space during the optimization process through the new updating mechanism applied on the PSO inertia weight. The performances of four selected PSO methods were tested on 11 benchmark optimization problems, which were prepared for the special session on single-objective real-parameter optimization CEC 2005. The results confirm that the tested new APartW PSO variant is comparable with other existing distributed PSO versions, AdaptW and LinTimeVarW. The distributed PSO versions were developed for finding the solution of inverse problems related to the estimation of parameters of hydrological model Bilan. The results of the case study, made on the selected set of 30 catchments obtained from MOPEX database, show that tested distributed PSO versions provide suitable estimates of Bilan model parameters and thus can be used for solving related inverse problems during the calibration process of studied water balance hydrological model.

  17. System cost model user's manual, version 1.2

    International Nuclear Information System (INIS)

    Shropshire, D.

    1995-06-01

    The System Cost Model (SCM) was developed by Lockheed Martin Idaho Technologies in Idaho Falls, Idaho and MK-Environmental Services in San Francisco, California to support the Baseline Environmental Management Report sensitivity analysis for the U.S. Department of Energy (DOE). The SCM serves the needs of the entire DOE complex for treatment, storage, and disposal (TSD) of mixed low-level, low-level, and transuranic waste. The model can be used to evaluate total complex costs based on various configuration options or to evaluate site-specific options. The site-specific cost estimates are based on generic assumptions such as waste loads and densities, treatment processing schemes, existing facilities capacities and functions, storage and disposal requirements, schedules, and cost factors. The SCM allows customization of the data for detailed site-specific estimates. There are approximately forty TSD module designs that have been further customized to account for design differences for nonalpha, alpha, remote-handled, and transuranic wastes. The SCM generates cost profiles based on the model default parameters or customized user-defined input and also generates costs for transporting waste from generators to TSD sites

  18. Field evaluations of a forestry version of DRAINMOD-NII model

    Science.gov (United States)

    S. Tian; M. A. Youssef; R.W. Skaggs; D.M. Amatya; G.M. Chescheir

    2010-01-01

    This study evaluated the performance of the newly developed forestry version of DRAINMOD-NII model using a long term (21-year) data set collected from an artificially drained loblolly pine (Pinus taeda L.) plantation in eastern North Carolina, U.S.A. The model simulates the main hydrological and biogeochemical processes in drained forested lands. The...

  19. A Hemispheric Version of the Community Multiscale Air Quality (CMAQ) Modeling System

    Science.gov (United States)

    This invited presentation will be given at the 4th Biannual Western Modeling Workshop in the Plenary session on Global model development, evaluation, and new source attribution tools. We describe the development and application of the hemispheric version of the CMAQ to examine th...

  20. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    Science.gov (United States)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  1. A Computational Framework for Realistic Retina Modeling.

    Science.gov (United States)

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  2. A Framework for Cloudy Model Optimization and Database Storage

    Science.gov (United States)

    Calvén, Emilia; Helton, Andrew; Sankrit, Ravi

    2018-01-01

    We present a framework for producing Cloudy photoionization models of the nebular emission from novae ejecta and storing a subset of the results in SQL database format for later usage. The database can be searched for models best fitting observed spectral line ratios. Additionally, the framework includes an optimization feature that can be used in tandem with the database to search for and improve on models by creating new Cloudy models while, varying the parameters. The database search and optimization can be used to explore the structures of nebulae by deriving their properties from the best-fit models. The goal is to provide the community with a large database of Cloudy photoionization models, generated from parameters reflecting conditions within novae ejecta, that can be easily fitted to observed spectral lines; either by directly accessing the database using the framework code or by usage of a website specifically made for this purpose.

  3. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  4. Public–private partnership conceptual framework and models for the ...

    African Journals Online (AJOL)

    The framework for PPPs identified three models, viz. state, hybrid and private sector models. In the 'state model' the water services value chain is 100% government funded and owned infrastructure. Government is a key player in infrastructure investment and inefficiencies within the public expenditure management systems ...

  5. A DSM-based framework for integrated function modelling

    DEFF Research Database (Denmark)

    Eisenbart, Boris; Gericke, Kilian; Blessing, Lucienne T. M.

    2017-01-01

    an integrated function modelling framework, which specifically aims at relating between the different function modelling perspectives prominently addressed in different disciplines. It uses interlinked matrices based on the concept of DSM and MDM in order to facilitate cross-disciplinary modelling and analysis...

  6. Theories and Frameworks for Online Education: Seeking an Integrated Model

    Science.gov (United States)

    Picciano, Anthony G.

    2017-01-01

    This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of…

  7. Geological Model of the Olkiluoto Site. Version 2.0

    International Nuclear Information System (INIS)

    Aaltonen, I.

    2010-10-01

    The rocks of Olkiluoto can be divided into two major classes: 1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and 2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subjected to polyphased ductile deformation, consisting of five stages, the D2 being locally the most intensive phase, producing thrust-related folding, strong migmatisation and pervasive foliation. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in the outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result of polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. In addition, the largest ductile deformation zones and tectonic units are described in 3D model. The bedrock at the Olkiluoto site has been subjected to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: firstly, pervasive alteration and secondly fracturecontrolled alteration. Clay mineralisation and sulphidisation are the most prominent alteration events in the site area. Sulphides are located in the uppermost part of the model volume following roughly the foliation and lithological trend. Kaolinite is also mainly located in the

  8. A magnetic version of the Smilansky-Solomyak model

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel

    2017-01-01

    Roč. 50, č. 48 (2017), č. článku 485203. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Smilansky-Solomyak model * spectral transition * homegeneous magnetic field * discrete spectrum * essential spectrum Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  9. Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model

    Science.gov (United States)

    Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,

    2013-01-01

    In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of

  10. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  11. Real time natural object modeling framework

    International Nuclear Information System (INIS)

    Rana, H.A.; Shamsuddin, S.M.; Sunar, M.H.

    2008-01-01

    CG (Computer Graphics) is a key technology for producing visual contents. Currently computer generated imagery techniques are being developed and applied, particularly in the field of virtual reality applications, film production, training and flight simulators, to provide total composition of realistic computer graphic images. Natural objects like clouds are an integral feature of the sky without them synthetic outdoor scenes seem unrealistic. Modeling and animating such objects is a difficult task. Most systems are difficult to use, as they require adjustment of numerous, complex parameters and are non-interactive. This paper presents an intuitive, interactive system to artistically model, animate, and render visually convincing clouds using modern graphics hardware. A high-level interface models clouds through the visual use of cubes. Clouds are rendered by making use of hardware accelerated API -OpenGL. The resulting interactive design and rendering system produces perceptually convincing cloud models that can be used in any interactive system. (author)

  12. PUMA Version 6 Multiplatform with Facilities to be coupled with other Simulation Models

    International Nuclear Information System (INIS)

    Grant, Carlos

    2013-01-01

    PUMA is a code for nuclear reactor calculation used in all nuclear installations in Argentina for simulation of fuel management, power cycles and transient events by means of spatial kinetic diffusion theory in 3D. For the versions used up to now the WINDOWS platform was used with very good results. Nowadays PUMA must work in different operative systems, LINUX among others, and must also have facilities to be coupled with other models. For this reason this new version was reprogrammed in ADA, language oriented to a safe programming and be found in any operative system. In former versions PUMA was executed through macro instructions written in LOGO. For this version it is possible to use also PYTHON, which makes also possible the access in execution time to internal data of PUMA. The use of PYTHON allows a easy way to couple PUMA with other codes. The possibilities of this new version of PUMA are shown by means of examples of input data and process control using PYTHON and LOGO. It is discussed the implementation of this methodology in other codes to be coupled with PUMA for versions run in WINDOWS and LINUX. (author)

  13. Zig-zag version of the Frenkel-Kontorova model

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A.V.; Zolotaryuk, Alexander

    1996-01-01

    We study a generalization of the Frenkel-Kontorova model which describes a zig-zag chain of particles coupled by both the first- and second-neighbor harmonic forces and subjected to a planar substrate with a commensurate potential relief. The particles are supposed to have two degrees of freedom......: longitudinal and transverse displacements. Two types of two-component kink solutions corresponding to defects with topological charges Q=+/-1,+/-2 have been treated. The topological defects with positive charge (excess of one or two particles in the chain) are shown to be immobile while the negative defects...... (vacancies of one or two particles) have been proved at the same parameter values to be mobile objects. In our studies we apply a minimization scheme which has been proved to be an effective numerical method for seeking solitary wave solutions in molecular systems of large complexity. The dynamics of both...

  14. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

    DEFF Research Database (Denmark)

    Mangado Lopez, Nerea; Ceresa, Mario; Duchateau, Nicolas

    2016-01-01

    's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns....... To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient...

  15. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  16. A Conceptual Framework of Business Model Emerging Resilience

    OpenAIRE

    Goumagias, Nikolaos; Fernandes, Kiran; Cabras, Ignazio; Li, Feng; Shao, Jianhua; Devlin, Sam; Hodge, Victoria; Cowling, Peter; Kudenko, Daniel

    2016-01-01

    In this paper we introduce an environmentally driven conceptual framework of Business Model change. Business models acquired substantial momentum in academic literature during the past decade. Several studies focused on what exactly constitutes a Business Model (role model, recipe, architecture etc.) triggering a theoretical debate about the Business Model’s components and their corresponding dynamics and relationships. In this paper, we argue that for Business Models as cognitive structures,...

  17. A modelling framework for MSP-oriented cumulative effects assessment

    OpenAIRE

    Stefano Menegon; Daniel Depellegrin; Giulio Farella; Elena Gissi; Michol Ghezzo; Alessandro Sarretta; Chiara Venier; Andrea Barbanti

    2018-01-01

    This research presents a comprehensive Cumulative Eects Assessment (CEA) based on the Tools4MSP modelling framework tested for the Italian Adriatic Sea. The CEA incorporates ve methodological advancements: (1) linear and non-linear ecosystem response to anthropogenic pressures/effects, (2) modelling of additive, dominant and antagonist stressor effects, (3) implementation of a convolution distance model for stressor dispersion modelling, (4) application of a CEA backsourcing (CEA-B) model to ...

  18. Geological model of the Olkiluoto site. Version 1.0

    International Nuclear Information System (INIS)

    Mattila, J.; Aaltonen, I.; Kemppainen, K.

    2008-01-01

    The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subjected to polyphased ductile deformation, consisting of five stages, the D2 being locally the most intensive phase, producing thrust-related folding, strong migmatisation and pervasive foliation. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in the outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result of polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock at the Olkiluoto site has been subjected to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: (1) pervasive (disseminated) alteration and (2) fracture-controlled (veinlet) alteration. Kaolinisation and sulphidisation are the most prominent alteration events in the site area. Sulphides are located in the uppermost part of the model volume following roughly the lithological trend (slightly dipping to the SE). Kaolinite is also located in the uppermost part, but the orientation is opposite to the main lithological trend

  19. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  20. A general modeling framework for describing spatially structured population dynamics.

    Science.gov (United States)

    Sample, Christine; Fryxell, John M; Bieri, Joanna A; Federico, Paula; Earl, Julia E; Wiederholt, Ruscena; Mattsson, Brady J; Flockhart, D T Tyler; Nicol, Sam; Diffendorfer, Jay E; Thogmartin, Wayne E; Erickson, Richard A; Norris, D Ryan

    2018-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  1. PRMS-IV, the precipitation-runoff modeling system, version 4

    Science.gov (United States)

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  2. A Modeling Framework for Improved Agricultural Water Supply Forecasting

    Science.gov (United States)

    Leavesley, G. H.; David, O.; Garen, D. C.; Lea, J.; Marron, J. K.; Pagano, T. C.; Perkins, T. R.; Strobel, M. L.

    2008-12-01

    The National Water and Climate Center (NWCC) of the USDA Natural Resources Conservation Service is moving to augment seasonal, regression-equation based water supply forecasts with distributed-parameter, physical process models enabling daily, weekly, and seasonal forecasting using an Ensemble Streamflow Prediction (ESP) methodology. This effort involves the development and implementation of a modeling framework, and associated models and tools, to provide timely forecasts for use by the agricultural community in the western United States where snowmelt is a major source of water supply. The framework selected to support this integration is the USDA Object Modeling System (OMS). OMS is a Java-based modular modeling framework for model development, testing, and deployment. It consists of a library of stand-alone science, control, and database components (modules), and a means to assemble selected components into a modeling package that is customized to the problem, data constraints, and scale of application. The framework is supported by utility modules that provide a variety of data management, land unit delineation and parameterization, sensitivity analysis, calibration, statistical analysis, and visualization capabilities. OMS uses an open source software approach to enable all members of the scientific community to collaboratively work on addressing the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. A long-term goal in the development of these water-supply forecasting capabilities is the implementation of an ensemble modeling approach. This would provide forecasts using the results of multiple hydrologic models run on each basin.

  3. Response Surface Modeling Tool Suite, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-05

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code, a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.

  4. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    after image processing we used virtual reality modelling language (VRML). Rendering and interactive visualization provided by VRML is compatible with CellML. VRML has been used not only to enable 3D visualization of cells, but also to represent the information with minimum amount of data still representing it to the ...

  5. A Framework for Hybrid Computational Models

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman

    2003-01-01

    Roč. 2, č. 4 (2003), s. 868-873 ISSN 1109-2750 R&D Projects: GA ČR(CZ) GA526/03/Z042; GA ČR(CZ) GA201/01/1192 Institutional research plan: CEZ:AV0Z1030915 Keywords : multi-agent systems * hybrid computational models Subject RIV: BA - General Mathematics

  6. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The fundamental unit of living tissue, in fact of life itself, is the biological cell. Currently there is enormous interest in in silico modelling of the cell .... classification and cell type relationships, newer vocabulary is required to describe a single cell itself with all its sub- cellular structures. Further, this vocabulary should pave way.

  7. An Integrated Framework to Specify Domain-Specific Modeling Languages

    DEFF Research Database (Denmark)

    Zarrin, Bahram; Baumeister, Hubert

    2018-01-01

    In this paper, we propose an integrated framework that can be used by DSL designers to implement their desired graphical domain-specific languages. This framework relies on Microsoft DSL Tools, a meta-modeling framework to build graphical domain-specific languages, and an extension of ForSpec, a ...... language to define their semantics. Integrating these technologies under the umbrella of Microsoft Visual Studio IDE allows DSL designers to utilize a single development environment for developing their desired domain-specific languages....

  8. A compositional modelling framework for exploring MPSoC systems

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried out......-exist and communicate. In order to illustrate the use of the framework, a mobile digital audio processing platform, supplied by the company Bang & Olufsen ICEpower a/s, is considered....

  9. A Framework for PSS Business Models: Formalization and Application

    OpenAIRE

    Adrodegari, Federico; Saccani, Nicola; Kowalkowski, Christian

    2016-01-01

    In order to successfully move "from products to solutions", companies need to redesign their business model. Nevertheless, service oriented BMs in product-centric firms are under-investigated in the literature: very few works develop a scheme of analysis of such BMs. To provide a first step into closing this gap, we propose a new framework to describe service-oriented BMs, pointing out the main BM components and related PSS characteristics. Thus, the proposed framework aims to help companies ...

  10. Multicriteria framework for selecting a process modelling language

    Science.gov (United States)

    Scanavachi Moreira Campos, Ana Carolina; Teixeira de Almeida, Adiel

    2016-01-01

    The choice of process modelling language can affect business process management (BPM) since each modelling language shows different features of a given process and may limit the ways in which a process can be described and analysed. However, choosing the appropriate modelling language for process modelling has become a difficult task because of the availability of a large number modelling languages and also due to the lack of guidelines on evaluating, and comparing languages so as to assist in selecting the most appropriate one. This paper proposes a framework for selecting a modelling language in accordance with the purposes of modelling. This framework is based on the semiotic quality framework (SEQUAL) for evaluating process modelling languages and a multicriteria decision aid (MCDA) approach in order to select the most appropriate language for BPM. This study does not attempt to set out new forms of assessment and evaluation criteria, but does attempt to demonstrate how two existing approaches can be combined so as to solve the problem of selection of modelling language. The framework is described in this paper and then demonstrated by means of an example. Finally, the advantages and disadvantages of using SEQUAL and MCDA in an integrated manner are discussed.

  11. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we......Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  12. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    Science.gov (United States)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  13. A general model framework for multisymbol number comparison.

    Science.gov (United States)

    Huber, Stefan; Nuerk, Hans-Christoph; Willmes, Klaus; Moeller, Korbinian

    2016-11-01

    Different models have been proposed for the processing of multisymbol numbers like two- and three-digit numbers but also for negative numbers and decimals. However, these multisymbol numbers are assembled from the same set of Arabic digits and comply with the place-value structure of the Arabic number system. Considering these shared properties, we suggest that the processing of multisymbol numbers can be described in one general model framework. Accordingly, we first developed a computational model framework realizing componential representations of multisymbol numbers and evaluated its validity by simulating standard empirical effects of number magnitude comparison. We observed that the model framework successfully accounted for most of these effects. Moreover, our simulations provided first evidence supporting the notion of a fully componential processing of multisymbol numbers for the specific case of comparing two negative numbers. Thus, our general model framework indicates that the processing of different kinds of multisymbol integer and decimal numbers shares common characteristics (e.g., componential representation). The relevance and applicability of our model goes beyond the case of basic number processing. In particular, we also successfully simulated effects from applied marketing and consumer research by accounting for the left-digit effect found in processing of prices. Finally, we provide evidence that our model framework can be integrated into the more general context of multiattribute decision making. In sum, this indicates that our model framework captures a general scheme of separate processing of different attributes weighted by their saliency for the task at hand. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Programming Entity Framework

    CERN Document Server

    Lerman, Julia

    2009-01-01

    Programming Entity Framework is a thorough introduction to Microsoft's new core framework for modeling and interacting with data in .NET applications. This highly-acclaimed book not only gives experienced developers a hands-on tour of the Entity Framework and explains its use in a variety of applications, it also provides a deep understanding of its architecture and APIs -- knowledge that will be extremely valuable as you shift to the Entity Framework version in .NET Framework 4.0 and Visual Studio 2010. From the Entity Data Model (EDM) and Object Services to EntityClient and the Metadata Work

  15. Compendium of Models from a Gauge U(1) Framework

    OpenAIRE

    Ma, Ernest

    2016-01-01

    A gauge U(1) framework was established in 2002 to extend the supersymmetric standard model. It has many possible realizations. Whereas all have the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC), they differ in other essential aspects. A compendium of such models is discussed.

  16. A community-based framework for aquatic ecosystem models

    NARCIS (Netherlands)

    Trolle, D.; Hamilton, D.P.; Hipsey, M.R.; Bolding, K.; Bruggeman, J.; Mooij, W.M.; Janse, J.H.; Nielsen, A.; Jeppesen, E.; Elliot, J.A.; Makler-Pick, V.; Petzoldt, T.; Rinke, K.; Flindt, M.R.; Arhonditsis, G.; Gal, G.; Bjerring, R.; Tominaga, K.; 't Hoen, J.; Downing, A.S.; Marques, D.M.; Fragoso Jr., C.R.; Søndergaard, M.; Hanson, P.C.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a

  17. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  18. A framework for quantifying net benefits of alternative prognostic models

    NARCIS (Netherlands)

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Feskens, E.J.M.; Kromhout, D.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit)

  19. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  20. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  1. A framework for development and application of hydrological models

    Directory of Open Access Journals (Sweden)

    T. Wagener

    2001-01-01

    Full Text Available Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the level of model complexity supported by the available data with the level of performance suitable for the desired application. Tools are needed that make optimal use of the information available in the data to identify model structure and parameters, and that allow a detailed analysis of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydrological system characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to use within it, based on a multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example from the field of rainfall-runoff modelling. Keywords: hydrological modelling, multi-objective calibration, model complexity, parameter identifiability

  2. Using the Global Forest Products Model (GFPM version 2016 with BPMPD)

    Science.gov (United States)

    Joseph Buongiorno; Shushuai   Zhu

    2016-01-01

     The GFPM is an economic model of global production, consumption and trade of forest products. The original formulation and several applications are described in Buongiorno et al. (2003). However, subsequent versions, including the GFPM 2016 reflect significant changes and extensions. The GFPM 2016 software uses the...

  3. User's guide to the Yucca Mountain Integrating Model (YMIM) Version 2.1

    International Nuclear Information System (INIS)

    Gansemer, J.; Lamont, A.

    1995-04-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the engineered barrier system. It contains models of the processes of waste container failure and nuclide release from the fuel rods. YMIM is driven by scenarios of container and rod temperature, near-field chemistry, and near-field hydrology provided by other modules. It is designed to be highly modular so that a model of an individual process can be easily modified to replaced without interfering with the models of other processes. This manual describes the process models and provides instructions for setting up and running YMIM Version 2.1

  4. A software engineering perspective on environmental modeling framework design: The object modeling system

    Science.gov (United States)

    The environmental modeling community has historically been concerned with the proliferation of models and the effort associated with collective model development tasks (e.g., code generation, data provisioning and transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to...

  5. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    Science.gov (United States)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  6. Use of ARM Data to address the Climate Change Further Development and Applications of A Multi-scale Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    David A. Randall; Marat Khairoutdinov

    2007-12-14

    The Colorado State University (CSU) Multi-scale Modeling Framework (MMF) is a new type of general circulation model (GCM) that replaces the conventional parameterizations of convection, clouds and boundary layer with a cloud-resolving model (CRM) embedded into each grid column. The MMF that we have been working with is a “super-parameterized” version of the Community Atmosphere Model (CAM). As reported in the publications listed below, we have done extensive work with the model. We have explored the MMF’s performance in several studies, including an AMIP run and a CAPT test, and we have applied the MMF to an analysis of climate sensitivity.

  7. A Modeling & Simulation Implementation Framework for Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2012-10-01

    Full Text Available Classical High Level Architecture (HLA systems are facing development problems for lack of supporting fine-grained component integration and interoperation in large-scale complex simulation applications. To provide efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling & simulation framework which consists of component-based architecture, modelling methods, and simulation services to support and simplify the process of complex simulation application construction. Moreover, a standard process and simulation tools are developed to ensure the rapid and effective development of simulation application.

  8. Population balance models: a useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2015-01-01

    efforts of several current and future unit processes in wastewater treatment plants could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot...... capability. Hence, PBMs should be regarded as a complementary modelling framework to biokinetic models. This paper provides an overview of current applications, future potential and limitations of PBMs in the field of wastewater treatment modelling, thereby looking over the fence to other scientific...

  9. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  10. Threat model framework and methodology for personal networks (PNs)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.

    2007-01-01

    is to give a structured, convenient approach for building threat models. A framework for the threat model is presented with a list of requirements for methodology. The methodology will be applied to build a threat model for Personal Networks. Practical tools like UML sequence diagrams and attack trees have...... been used. Also risk assessment methods will be discussed. Threat profiles and vulnerability profiles have been presented....

  11. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.

    Science.gov (United States)

    Mugunthan, Pradeep; Russell, Kevin T; Gong, Binglei; Riley, Michael J; Chin, Arthur; McDonald, Blair G; Eastcott, Linda J

    2017-05-01

    There is an identified need for fully representing groundwater-surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state-of-the-science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field-scale two- and three-dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field-scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two-dimensional field case were consistent with site-specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water. © 2016, National Ground Water Association.

  12. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  13. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  14. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    Directory of Open Access Journals (Sweden)

    James P Sluka

    Full Text Available We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  15. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-01-01

    Full Text Available The Model for Ozone and Related chemical Tracers, version 4 (MOZART-4 is an offline global chemical transport model particularly suited for studies of the troposphere. The updates of the model from its previous version MOZART-2 are described, including an expansion of the chemical mechanism to include more detailed hydrocarbon chemistry and bulk aerosols. Online calculations of a number of processes, such as dry deposition, emissions of isoprene and monoterpenes and photolysis frequencies, are now included. Results from an eight-year simulation (2000–2007 are presented and evaluated. The MOZART-4 source code and standard input files are available for download from the NCAR Community Data Portal (http://cdp.ucar.edu.

  16. The Hamburg Oceanic Carbon Cycle Circulation Model. Version 1. Version 'HAMOCC2s' for long time integrations

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, C.; Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-11-01

    The Hamburg Ocean Carbon Cycle Circulation Model (HAMOCC, configuration HAMOCC2s) predicts the atmospheric carbon dioxide partial pressure (as induced by oceanic processes), production rates of biogenic particulate matter, and geochemical tracer distributions in the water column as well as the bioturbated sediment. Besides the carbon cycle this model version includes also the marine silicon cycle (silicic acid in the water column and the sediment pore waters, biological opal production, opal flux through the water column and opal sediment pore water interaction). The model is based on the grid and geometry of the LSG ocean general circulation model (see the corresponding manual, LSG=Large Scale Geostrophic) and uses a velocity field provided by the LSG-model in 'frozen' state. In contrast to the earlier version of the model (see Report No. 5), the present version includes a multi-layer sediment model of the bioturbated sediment zone, allowing for variable tracer inventories within the complete model system. (orig.)

  17. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks

    DEFF Research Database (Denmark)

    Saa, Pedro A.; Nielsen, Lars K.

    2017-01-01

    Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive...... capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction...

  18. Business Modeling Framework For Personalization In Mobile Business Services

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); J. Dits (Joyce)

    2002-01-01

    textabstractIs presented the structure of a formal framework for personalization features for mobile business services, which can be used to drive the business modeling of M-business services from a service provider point of view. It also allows to compute the revenue as linked to personalization

  19. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  20. Service business model framework and the service innovation scope

    NARCIS (Netherlands)

    van der Aa, W.; van der Rhee, B.; Victorino, L.

    2011-01-01

    In this paper we present a framework for service business models. We build on three streams of research. The first stream is the service management and marketing literature that focuses on the specific challenges of managing a service business. The second stream consists of research on e-business

  1. A Graph Based Framework to Model Virus Integration Sites

    Directory of Open Access Journals (Sweden)

    Raffaele Fronza

    2016-01-01

    Here, we addressed the challenge to: 1 define the notion of CIS on graph models, 2 demonstrate that the structure of CIS enters in the category of scale-free networks and 3 show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD as a testing dataset.

  2. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  3. A Model-Driven Framework to Develop Personalized Health Monitoring

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-07-01

    Full Text Available Both distributed healthcare systems and the Internet of Things (IoT are currently hot topics. The latter is a new computing paradigm to enable advanced capabilities in engineering various applications, including those for healthcare. For such systems, the core social requirement is the privacy/security of the patient information along with the technical requirements (e.g., energy consumption and capabilities for adaptability and personalization. Typically, the functionality of the systems is predefined by the patient’s data collected using sensor networks along with medical instrumentation; then, the data is transferred through the Internet for treatment and decision-making. Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven framework to develop the IoT-based prototype and its reference architecture for personalized health monitoring (PHM applications. The framework contains a multi-layered structure with feature-based modeling and feature model transformations at the top and the application software generation at the bottom. We have validated the framework using available tools and developed an experimental PHM to test some aspects of the functionality of the reference architecture in real time. The main contribution of the paper is the development of the model-driven computational framework with emphasis on the synergistic effect of security and energy issues.

  4. Application of a stochastic modelling framework to characterize the ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 36; Issue 4. Application of a stochastic modelling framework to characterize the influence of different oxide scales on the solid particle erosion behaviour of boiler grade steel. S K Das. Volume 36 Issue 4 August 2011 pp 425-440 ...

  5. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  6. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun

    2016-01-01

    equilibria, as well as kinetic mechanisms and rates. This paper presents a modelling framework for design and analysis of PTC systems that requires a minimum amount of experimental data to develop and employ the necessary thermodynamic and reaction models and embeds them into a reactor model for simulation...... in an aqueous phase. These reacting systems are receiving increased attention as novel organic synthesis options due to their flexible operation, higher product yields, and ability to avoid hazardous or expensive solvents. Major considerations in the design and analysis of PTC systems are physical and chemical....... The application of the framework is made to two cases in order to highlight the performance and issues of activity coefficient models for predicting design and operation and the effects when different organic solvents are employed....

  7. Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska

    Science.gov (United States)

    Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

    2012-12-01

    The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the

  8. A framework for quantifying net benefits of alternative prognostic models

    OpenAIRE

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Ford, I.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measure...

  9. A Practical Ontology Framework for Static Model Analysis

    Science.gov (United States)

    2011-04-26

    throughout the model. We implement our analysis framework on top of Ptolemy II [3], an extensible open source model-based design tool written in Java...While Ptolemy II makes a good testbed for im- plementing and experimenting with new analyses, we also feel that the techniques we present here are...broadly use- ful. For this reason, we aim to make our analysis frame- work orthogonal to the execution semantics of Ptolemy II, allowing it to be

  10. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    Science.gov (United States)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  11. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  12. Possibilities: A framework for modeling students' deductive reasoning in physics

    Science.gov (United States)

    Gaffney, Jonathan David Housley

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the

  13. Thermal modelling. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-01

    This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is

  14. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Sundberg, Jan

    2007-09-01

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  15. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Sundberg, Jan [Geo Innova AB (Sweden)

    2007-09-15

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  16. COMODI: an ontology to characterise differences in versions of computational models in biology.

    Science.gov (United States)

    Scharm, Martin; Waltemath, Dagmar; Mendes, Pedro; Wolkenhauer, Olaf

    2016-07-11

    Open model repositories provide ready-to-reuse computational models of biological systems. Models within those repositories evolve over time, leading to different model versions. Taken together, the underlying changes reflect a model's provenance and thus can give valuable insights into the studied biology. Currently, however, changes cannot be semantically interpreted. To improve this situation, we developed an ontology of terms describing changes in models. The ontology can be used by scientists and within software to characterise model updates at the level of single changes. When studying or reusing a model, these annotations help with determining the relevance of a change in a given context. We manually studied changes in selected models from BioModels and the Physiome Model Repository. Using the BiVeS tool for difference detection, we then performed an automatic analysis of changes in all models published in these repositories. The resulting set of concepts led us to define candidate terms for the ontology. In a final step, we aggregated and classified these terms and built the first version of the ontology. We present COMODI, an ontology needed because COmputational MOdels DIffer. It empowers users and software to describe changes in a model on the semantic level. COMODI also enables software to implement user-specific filter options for the display of model changes. Finally, COMODI is a step towards predicting how a change in a model influences the simulation results. COMODI, coupled with our algorithm for difference detection, ensures the transparency of a model's evolution, and it enhances the traceability of updates and error corrections. COMODI is encoded in OWL. It is openly available at http://comodi.sems.uni-rostock.de/ .

  17. The development of a sustainable development model framework

    International Nuclear Information System (INIS)

    Hannoura, Alim P.; Cothren, Gianna M.; Khairy, Wael M.

    2006-01-01

    The emergence of the 'sustainable development' concept as a response to the mining of natural resources for the benefit of multinational corporations has advanced the cause of long-term environmental management. A sustainable development model (SDM) framework that is inclusive of the 'whole' natural environment is presented to illustrate the integration of the sustainable development of the 'whole' ecosystem. The ecosystem approach is an inclusive framework that covers the natural environment relevant futures and constraints. These are dynamically interconnected and constitute the determinates of resources development component of the SDM. The second component of the SDM framework is the resources development patterns, i.e., the use of land, water, and atmospheric resources. All of these patterns include practices that utilize environmental resources to achieve a predefined outcome producing waste and by-products that require disposal into the environment. The water quality management practices represent the third component of the framework. These practices are governed by standards, limitations and available disposal means subject to quantity and quality permits. These interconnected standards, practices and permits shape the resulting environmental quality of the ecosystem under consideration. A fourth component, environmental indicators, of the SDM framework provides a measure of the ecosystem productivity and status that may differ based on societal values and culture. The four components of the SDM are interwoven into an outcome assessment process to form the management and feedback models. The concept of Sustainable Development is expressed in the management model as an objective function subject to desired constraints imposing the required bounds for achieving ecosystem sustainability. The development of the objective function and constrains requires monetary values for ecosystem functions, resources development activities and environmental cost. The

  18. Main modelling features of the ASTEC V2.1 major version

    International Nuclear Information System (INIS)

    Chatelard, P.; Belon, S.; Bosland, L.; Carénini, L.; Coindreau, O.; Cousin, F.; Marchetto, C.; Nowack, H.; Piar, L.; Chailan, L.

    2016-01-01

    Highlights: • Recent modelling improvements of the ASTEC European severe accident code are outlined. • Key new physical models now available in the ASTEC V2.1 major version are described. • ASTEC progress towards a multi-design reactor code is illustrated for BWR and PHWR. • ASTEC strong link with the on-going EC CESAM FP7 project is emphasized. • Main remaining modelling issues (on which IRSN efforts are now directing) are given. - Abstract: A new major version of the European severe accident integral code ASTEC, developed by IRSN with some GRS support, was delivered in November 2015 to the ASTEC worldwide community. Main modelling features of this V2.1 version are summarised in this paper. In particular, the in-vessel coupling technique between the reactor coolant system thermal-hydraulics module and the core degradation module has been strongly re-engineered to remove some well-known weaknesses of the former V2.0 series. The V2.1 version also includes new core degradation models specifically addressing BWR and PHWR reactor types, as well as several other physical modelling improvements, notably on reflooding of severely damaged cores, Zircaloy oxidation under air atmosphere, corium coolability during corium concrete interaction and source term evaluation. Moreover, this V2.1 version constitutes the back-bone of the CESAM FP7 project, which final objective is to further improve ASTEC for use in Severe Accident Management analysis of the Gen.II–III nuclear power plants presently under operation or foreseen in near future in Europe. As part of this European project, IRSN efforts to continuously improve both code numerical robustness and computing performances at plant scale as well as users’ tools are being intensified. Besides, ASTEC will continue capitalising the whole knowledge on severe accidents phenomenology by progressively keeping physical models at the state of the art through a regular feed-back from the interpretation of the current and

  19. A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.

    Science.gov (United States)

    Kolling, Jenna S; Pleim, Jonathan E; Jeffries, Harvey E; Vizuete, William

    2013-01-01

    There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is

  20. Integrating predictive frameworks and cognitive models of face perception.

    Science.gov (United States)

    Trapp, Sabrina; Schweinberger, Stefan R; Hayward, William G; Kovács, Gyula

    2018-02-08

    The idea of a "predictive brain"-that is, the interpretation of internal and external information based on prior expectations-has been elaborated intensely over the past decade. Several domains in cognitive neuroscience have embraced this idea, including studies in perception, motor control, language, and affective, social, and clinical neuroscience. Despite the various studies that have used face stimuli to address questions related to predictive processing, there has been surprisingly little connection between this work and established cognitive models of face recognition. Here we suggest that the predictive framework can serve as an important complement of established cognitive face models. Conversely, the link to cognitive face models has the potential to shed light on issues that remain open in predictive frameworks.

  1. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms.

    Science.gov (United States)

    Nguyen, Thang Tat; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2015-11-21

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  2. Incremental testing of the Community Multiscale Air Quality (CMAQ modeling system version 4.7

    Directory of Open Access Journals (Sweden)

    K. M. Foley

    2010-03-01

    Full Text Available This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ modeling system version 4.7 (v4.7 and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a updates to the heterogeneous N2O5 parameterization, (b improvement in the treatment of secondary organic aerosol (SOA, (c inclusion of dynamic mass transfer for coarse-mode aerosol, (d revisions to the cloud model, and (e new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM2.5 is dominated by overpredictions of unspeciated PM2.5 (PMother in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions. However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions.

  3. `Dhara': An Open Framework for Critical Zone Modeling

    Science.gov (United States)

    Le, P. V.; Kumar, P.

    2016-12-01

    Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.

  4. A new framework for an electrophotographic printer model

    Science.gov (United States)

    Colon-Lopez, Fermin A.

    Digital halftoning is a printing technology that creates the illusion of continuous tone images for printing devices such as electrophotographic printers that can only produce a limited number of tone levels. Digital halftoning works because the human visual system has limited spatial resolution which blurs the printed dots of the halftone image, creating the gray sensation of a continuous tone image. Because the printing process is imperfect it introduces distortions to the halftone image. The quality of the printed image depends, among other factors, on the complex interactions between the halftone image, the printer characteristics, the colorant, and the printing substrate. Printer models are used to assist in the development of new types of halftone algorithms that are designed to withstand the effects of printer distortions. For example, model-based halftone algorithms optimize the halftone image through an iterative process that integrates a printer model within the algorithm. The two main goals of a printer model are to provide accurate estimates of the tone and of the spatial characteristics of the printed halftone pattern. Various classes of printer models, from simple tone calibrations to complex mechanistic models, have been reported in the literature. Existing models have one or more of the following limiting factors: they only predict tone reproduction, they depend on the halftone pattern, they require complex calibrations or complex calculations, they are printer specific, they reproduce unrealistic dot structures, and they are unable to adapt responses to new data. The two research objectives of this dissertation are (1) to introduce a new framework for printer modeling and (2) to demonstrate the feasibility of such a framework in building an electrophotographic printer model. The proposed framework introduces the concept of modeling a printer as a texture transformation machine. The basic premise is that modeling the texture differences between the

  5. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  6. Mechanisms of Soil Aggregation: a biophysical modeling framework

    Science.gov (United States)

    Ghezzehei, T. A.; Or, D.

    2016-12-01

    Soil aggregation is one of the main crosscutting concepts in all sub-disciplines and applications of soil science from agriculture to climate regulation. The concept generally refers to adhesion of primary soil particles into distinct units that remain stable when subjected to disruptive forces. It is one of the most sensitive soil qualities that readily respond to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. These changes are commonly quantified and incorporated in soil models indirectly as alterations in carbon content and type, bulk density, aeration, permeability, as well as water retention characteristics. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against

  7. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Mock-Up Interface, which is used to link the models with the MPC system. The framework was used to develop and run initial thermal and CO2 models. Their performance and the implementation procedure are discussed in the present paper. The framework is going to be implemented in the MPC system planned...

  8. Nowcasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Toth, G.; Singer, H. J.; Millward, G. H.; Gombosi, T. I.

    2015-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized B/t predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  9. Framework for the Parametric System Modeling of Space Exploration Architectures

    Science.gov (United States)

    Komar, David R.; Hoffman, Jim; Olds, Aaron D.; Seal, Mike D., II

    2008-01-01

    This paper presents a methodology for performing architecture definition and assessment prior to, or during, program formulation that utilizes a centralized, integrated architecture modeling framework operated by a small, core team of general space architects. This framework, known as the Exploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), enables: 1) a significantly larger fraction of an architecture trade space to be assessed in a given study timeframe; and 2) the complex element-to-element and element-to-system relationships to be quantitatively explored earlier in the design process. Discussion of the methodology advantages and disadvantages with respect to the distributed study team approach typically used within NASA to perform architecture studies is presented along with an overview of EXAMINE s functional components and tools. An example Mars transportation system architecture model is used to demonstrate EXAMINE s capabilities in this paper. However, the framework is generally applicable for exploration architecture modeling with destinations to any celestial body in the solar system.

  10. Population balance models: a useful complementary modelling framework for future WWTP modelling.

    Science.gov (United States)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel; Vanrolleghem, Peter A; Gernaey, Krist V

    2015-01-01

    Population balance models (PBMs) represent a powerful modelling framework for the description of the dynamics of properties that are characterised by distributions. This distribution of properties under transient conditions has been demonstrated in many chemical engineering applications. Modelling efforts of several current and future unit processes in wastewater treatment plants could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot sufficiently capture the true behaviour and even lead to completely wrong conclusions. Examples of distributed properties are bubble size, floc size, crystal size or granule size. In these cases, PBMs can be used to develop new knowledge that can be embedded in our current models to improve their predictive capability. Hence, PBMs should be regarded as a complementary modelling framework to biokinetic models. This paper provides an overview of current applications, future potential and limitations of PBMs in the field of wastewater treatment modelling, thereby looking over the fence to other scientific disciplines.

  11. Statistical model of fractures and deformation zones. Preliminary site description, Laxemar subarea, version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, Jan; Forssberg, Ola [Golder Associates AB, Stockholm (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc., Redmond, WA (United States)

    2005-10-15

    The goal of this summary report is to document the data sources, software tools, experimental methods, assumptions, and model parameters in the discrete-fracture network (DFN) model for the local model volume in Laxemar, version 1.2. The model parameters presented herein are intended for use by other project modeling teams. Individual modeling teams may elect to simplify or use only a portion of the DFN model, depending on their needs. This model is not intended to be a flow model or a mechanical model; as such, only the geometrical characterization is presented. The derivations of the hydraulic or mechanical properties of the fractures or their subsurface connectivities are not within the scope of this report. This model represents analyses carried out on particular data sets. If additional data are obtained, or values for existing data are changed or excluded, the conclusions reached in this report, and the parameter values calculated, may change as well. The model volume is divided into two subareas; one located on the Simpevarp peninsula adjacent to the power plant (Simpevarp), and one further to the west (Laxemar). The DFN parameters described in this report were determined by analysis of data collected within the local model volume. As such, the final DFN model is only valid within this local model volume and the modeling subareas (Laxemar and Simpevarp) within.

  12. Modelling Framework and Assistive Device for Peripheral Intravenous Injections

    Science.gov (United States)

    Kam, Kin F.; Robinson, Martin P.; Gilbert, Mathew A.; Pelah, Adar

    2016-02-01

    Intravenous access for blood sampling or drug administration that requires peripheral venepuncture is perhaps the most common invasive procedure practiced in hospitals, clinics and general practice surgeries.We describe an idealised mathematical framework for modelling the dynamics of the peripheral venepuncture process. Basic assumptions of the model are confirmed through motion analysis of needle trajectories during venepuncture, taken from video recordings of a skilled practitioner injecting into a practice kit. The framework is also applied to the design and construction of a proposed device for accurate needle guidance during venepuncture administration, assessed as consistent and repeatable in application and does not lead to over puncture. The study provides insights into the ubiquitous peripheral venepuncture process and may contribute to applications in training and in the design of new devices, including for use in robotic automation.

  13. A Simulink simulation framework of a MagLev model

    Energy Technology Data Exchange (ETDEWEB)

    Boudall, H.; Williams, R.D.; Giras, T.C. [University of Virginia, Charlottesville (United States). School of Enegineering and Applied Science

    2003-09-01

    This paper presents a three-degree-of-freedom model of a section of the magnetically levitated train Maglev. The Maglev system dealt with in this article utilizes electromagnetic levitation. Each MagLev vehicle section is viewed as two separate parts, namely a body and a chassis, coupled by a set of springs and dampers. The MagLev model includes the propulsion, the guidance and the levitation systems. The equations of motion are developed. A Simulink simulation framework is implemented in order to study the interaction between the different systems and the dynamics of a MagLev vehicle. The simulation framework will eventually serve as a tool to assist the design and development of the Maglev system in the United States of America. (author)

  14. A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model

    Science.gov (United States)

    Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank

    2014-01-01

    In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.

  15. Community Land Model Version 3.0 (CLM3.0) Developer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, FM

    2004-12-21

    This document describes the guidelines adopted for software development of the Community Land Model (CLM) and serves as a reference to the entire code base of the released version of the model. The version of the code described here is Version 3.0 which was released in the summer of 2004. This document, the Community Land Model Version 3.0 (CLM3.0) User's Guide (Vertenstein et al., 2004), the Technical Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide (Levis et al., 2004) provide the developer, user, or researcher with details of implementation, instructions for using the model, a scientific description of the model, and a scientific description of the Dynamic Global Vegetation Model integrated with CLM respectively. The CLM is a single column (snow-soil-vegetation) biogeophysical model of the land surface which can be run serially (on a laptop or personal computer) or in parallel (using distributed or shared memory processors or both) on both vector and scalar computer architectures. Written in Fortran 90, CLM can be run offline (i.e., run in isolation using stored atmospheric forcing data), coupled to an atmospheric model (e.g., the Community Atmosphere Model (CAM)), or coupled to a climate system model (e.g., the Community Climate System Model Version 3 (CCSM3)) through a flux coupler (e.g., Coupler 6 (CPL6)). When coupled, CLM exchanges fluxes of energy, water, and momentum with the atmosphere. The horizontal land surface heterogeneity is represented by a nested subgrid hierarchy composed of gridcells, landunits, columns, and plant functional types (PFTs). This hierarchical representation is reflected in the data structures used by the model code. Biophysical processes are simulated for each subgrid unit (landunit, column, and PFT) independently, and prognostic variables are maintained for each subgrid unit

  16. Population Balance Models: A useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2014-01-01

    processes in WWTPs could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot sufficiently captured the true behaviour. Examples are bubble size...

  17. GEMFsim: A Stochastic Simulator for the Generalized Epidemic Modeling Framework

    OpenAIRE

    Sahneh, Faryad Darabi; Vajdi, Aram; Shakeri, Heman; Fan, Futing; Scoglio, Caterina

    2016-01-01

    The recently proposed generalized epidemic modeling framework (GEMF) \\cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algorithm for exact, continuous-time numerical simulation of GEMF-based processes. Moreover the implementation of this algorithm, GEMFsim, is available in popular scientific programming platforms such as MATLAB, R, Python, and C; GEMFsim facilitates ...

  18. Business Modeling Framework For Personalization In Mobile Business Services

    OpenAIRE

    Pau, L-F.; Dits, J.

    2002-01-01

    textabstractIs presented the structure of a formal framework for personalization features for mobile business services, which can be used to drive the business modeling of M-business services from a service provider point of view. It also allows to compute the revenue as linked to personalization levels and features. A case study has been performed in the area of personalized location based mobile services

  19. Designing for Learning and Play - The Smiley Model as Framework

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    This paper presents a framework for designing engaging learning experiences in games – the Smiley Model. In this Design-Based Research project, student-game-designers were learning inside a gamified learning design - while designing and implementing learning goals from curriculum into the small d...... was adult upper secondary general students as well as 7th grade primary school students. The intention with this article is to inspire future learning designers that would like to experiment with integrating learning and play....

  20. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....

  1. MESOI Version 2.0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables

  2. MESOI Version 2. 0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables.

  3. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  4. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    Science.gov (United States)

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-01-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  5. A framework for quantifying net benefits of alternative prognostic models

    DEFF Research Database (Denmark)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit......) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk...... risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing...

  6. How much cryosphere model complexity is just right? Exploration using the conceptual cryosphere hydrology framework

    Directory of Open Access Journals (Sweden)

    T. M. Mosier

    2016-09-01

    Full Text Available Making meaningful projections of the impacts that possible future climates would have on water resources in mountain regions requires understanding how cryosphere hydrology model performance changes under altered climate conditions and when the model is applied to ungaged catchments. Further, if we are to develop better models, we must understand which specific process representations limit model performance. This article presents a modeling tool, named the Conceptual Cryosphere Hydrology Framework (CCHF, that enables implementing and evaluating a wide range of cryosphere modeling hypotheses. The CCHF represents cryosphere hydrology systems using a set of coupled process modules that allows easily interchanging individual module representations and includes analysis tools to evaluate model outputs. CCHF version 1 (Mosier, 2016 implements model formulations that require only precipitation and temperature as climate inputs – for example variations on simple degree-index (SDI or enhanced temperature index (ETI formulations – because these model structures are often applied in data-sparse mountain regions, and perform relatively well over short periods, but their calibration is known to change based on climate and geography. Using CCHF, we implement seven existing and novel models, including one existing SDI model, two existing ETI models, and four novel models that utilize a combination of existing and novel module representations. The novel module representations include a heat transfer formulation with net longwave radiation and a snowpack internal energy formulation that uses an approximation of the cold content. We assess the models for the Gulkana and Wolverine glaciated watersheds in Alaska, which have markedly different climates and contain long-term US Geological Survey benchmark glaciers. Overall we find that the best performing models are those that are more physically consistent and representative, but no single model performs

  7. Designing Collaborative Developmental Standards by Refactoring of the Earth Science Models, Libraries, Workflows and Frameworks.

    Science.gov (United States)

    Mirvis, E.; Iredell, M.

    2015-12-01

    The operational (OPS) NOAA National Centers for Environmental Prediction (NCEP) suite, traditionally, consist of a large set of multi- scale HPC models, workflows, scripts, tools and utilities, which are very much depending on the variety of the additional components. Namely, this suite utilizes a unique collection of the in-house developed 20+ shared libraries (NCEPLIBS), certain versions of the 3-rd party libraries (like netcdf, HDF, ESMF, jasper, xml etc.), HPC workflow tool within dedicated (sometimes even vendors' customized) HPC system homogeneous environment. This domain and site specific, accompanied with NCEP's product- driven large scale real-time data operations complicates NCEP collaborative development tremendously by reducing chances to replicate this OPS environment anywhere else. The NOAA/NCEP's Environmental Modeling Center (EMC) missions to develop and improve numerical weather, climate, hydrological and ocean prediction through the partnership with the research community. Realizing said difficulties, lately, EMC has been taken an innovative approach to improve flexibility of the HPC environment by building the elements and a foundation for NCEP OPS functionally equivalent environment (FEE), which can be used to ease the external interface constructs as well. Aiming to reduce turnaround time of the community code enhancements via Research-to-Operations (R2O) cycle, EMC developed and deployed several project sub-set standards that already paved the road to NCEP OPS implementation standards. In this topic we will discuss the EMC FEE for O2R requirements and approaches in collaborative standardization, including NCEPLIBS FEE and models code version control paired with the models' derived customized HPC modules and FEE footprints. We will share NCEP/EMC experience and potential in the refactoring of EMC development processes, legacy codes and in securing model source code quality standards by using combination of the Eclipse IDE, integrated with the

  8. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  9. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  10. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  11. The ontology model of FrontCRM framework

    Science.gov (United States)

    Budiardjo, Eko K.; Perdana, Wira; Franshisca, Felicia

    2013-03-01

    Adoption and implementation of Customer Relationship Management (CRM) is not merely a technological installation, but the emphasis is more on the application of customer-centric philosophy and culture as a whole. CRM must begin at the level of business strategy, the only level that thorough organizational changes are possible to be done. Changes agenda can be directed to each departmental plans, and supported by information technology. Work processes related to CRM concept include marketing, sales, and services. FrontCRM is developed as framework to guide in identifying business processes related to CRM in which based on the concept of strategic planning approach. This leads to processes and practices identification in every process area related to marketing, sales, and services. The Ontology model presented on this paper by means serves as tools to avoid framework misunderstanding, to define practices systematically within process area and to find CRM software features related to those practices.

  12. Parametric design and analysis framework with integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2014-01-01

    control with the building designer. Consequence based design is defined by the specific use of integrated dynamic modeling, which includes the parametric capabilities of a scripting tool and building simulation features of a building performance simulation tool. The framework can lead to enhanced......In the wake of uncompromising requirements on building performance and the current emphasis on sustainability, including building energy and indoor environment, designing buildings involves elements of expertise of multiple disciplines. However, building performance analyses, including those...... of building energy and indoor environment, are generally confined to late in the design process. Consequence based design is a framework intended for the early design stage. It involves interdisciplinary expertise that secures validity and quality assurance with a simulationist while sustaining autonomous...

  13. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2005-01-01

    Full Text Available The Lagrangian particle dispersion model FLEXPART was originally (about 8 years ago designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis. Its application fields were extended from air pollution studies to other topics where atmospheric transport plays a role (e.g., exchange between the stratosphere and troposphere, or the global water cycle. It has evolved into a true community model that is now being used by at least 25 groups from 14 different countries and is seeing both operational and research applications. A user manual has been kept actual over the years and was distributed over an internet page along with the model's source code. In this note we provide a citeable technical description of FLEXPART's latest version (6.2.

  14. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  15. Modelling multimedia teleservices with OSI upper layers framework: Short paper

    Science.gov (United States)

    Widya, I.; Vanrijssen, E.; Michiels, E.

    The paper presents the use of the concepts and modelling principles of the Open Systems Interconnection (OSI) upper layers structure in the modelling of multimedia teleservices. It puts emphasis on the revised Application Layer Structure (OSI/ALS). OSI/ALS is an object based reference model which intends to coordinate the development of application oriented services and protocols in a consistent and modular way. It enables the rapid deployment and integrated use of these services. The paper emphasizes further on the nesting structure defined in OSI/ALS which allows the design of scalable and user tailorable/controllable teleservices. OSI/ALS consistent teleservices are moreover implementable on communication platforms of different capabilities. An analysis of distributed multimedia architectures which can be found in the literature, confirms the ability of the OSI/ALS framework to model the interworking functionalities of teleservices.

  16. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  17. A computational framework for modeling targets as complex adaptive systems

    Science.gov (United States)

    Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh

    2017-05-01

    Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.

  18. Vulnerability Assessment Models to Drought: Toward a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Kiumars Zarafshani

    2016-06-01

    Full Text Available Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers’ ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers’ level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought.

  19. A Formal Framework for Integrated Environment Modeling Systems

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhang

    2017-02-01

    Full Text Available Integrated Environment Modeling (IEM has become more and more important for environmental studies and applications. IEM systems have also been extended from scientific studies to much wider practical application situations. The quality and improved efficiency of IEM systems have therefore become increasingly critical. Although many advanced and creative technologies have been adopted to improve the quality of IEM systems, there is scarcely any formal method for evaluating and improving them. This paper is devoted to proposing a formal method to improve the quality and the developing efficiency of IEM systems. Two primary contributions are made. Firstly, a formal framework for IEM is proposed. The framework not only reflects the static and dynamic features of IEM but also covers different views from variant roles throughout the IEM lifecycle. Secondly, the formal operational semantics corresponding to the former model of the IEM is derived in detail; it can be used as the basis for aiding automated integrated modeling and verifying the integrated model.

  20. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  1. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    Science.gov (United States)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  2. LQCD workflow execution framework: Models, provenance and fault-tolerance

    International Nuclear Information System (INIS)

    Piccoli, Luciano; Simone, James N; Kowalkowlski, James B; Dubey, Abhishek

    2010-01-01

    Large computing clusters used for scientific processing suffer from systemic failures when operated over long continuous periods for executing workflows. Diagnosing job problems and faults leading to eventual failures in this complex environment is difficult, specifically when the success of an entire workflow might be affected by a single job failure. In this paper, we introduce a model-based, hierarchical, reliable execution framework that encompass workflow specification, data provenance, execution tracking and online monitoring of each workflow task, also referred to as participants. The sequence of participants is described in an abstract parameterized view, which is translated into a concrete data dependency based sequence of participants with defined arguments. As participants belonging to a workflow are mapped onto machines and executed, periodic and on-demand monitoring of vital health parameters on allocated nodes is enabled according to pre-specified rules. These rules specify conditions that must be true pre-execution, during execution and post-execution. Monitoring information for each participant is propagated upwards through the reflex and healing architecture, which consists of a hierarchical network of decentralized fault management entities, called reflex engines. They are instantiated as state machines or timed automatons that change state and initiate reflexive mitigation action(s) upon occurrence of certain faults. We describe how this cluster reliability framework is combined with the workflow execution framework using formal rules and actions specified within a structure of first order predicate logic that enables a dynamic management design that reduces manual administrative workload, and increases cluster-productivity.

  3. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  4. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework

    Science.gov (United States)

    Tyler Jon Smith; Lucy Amanda. Marshall

    2010-01-01

    Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...

  5. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    Science.gov (United States)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  6. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    Science.gov (United States)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  7. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  8. A hybrid parallel framework for the cellular Potts model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).

  9. A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ebenezer Out-Nyarko

    2009-11-01

    Full Text Available Using Hidden Markov Models (HMMs as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks.

  10. GIFMod: A Flexible Modeling Framework For Hydraulic and Water Quality Performance Assessment of Stormwater Green Infrastructure

    Science.gov (United States)

    A flexible framework has been created for modeling multi-dimensional hydrological and water quality processes within stormwater green infrastructures (GIs). The framework models a GI system using a set of blocks (spatial features) and connectors (interfaces) representing differen...

  11. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so...

  12. CIMS: A FRAMEWORK FOR INFRASTRUCTURE INTERDEPENDENCY MODELING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Donald D. Dudenhoeffer; May R. Permann; Milos Manic

    2006-12-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, utilities, telecommunication, and even financial networks. While modeling and simulation tools have provided insight into the behavior of individual infrastructure networks, a far less understood area is that of the interrelationships among multiple infrastructure networks including the potential cascading effects that may result due to these interdependencies. This paper first describes infrastructure interdependencies as well as presenting a formalization of interdependency types. Next the paper describes a modeling and simulation framework called CIMS© and the work that is being conducted at the Idaho National Laboratory (INL) to model and simulate infrastructure interdependencies and the complex behaviors that can result.

  13. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  14. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  15. User guide for MODPATH version 6 - A particle-tracking model for MODFLOW

    Science.gov (United States)

    Pollock, David W.

    2012-01-01

    MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.

  16. Igpet software for modeling igneous processes: examples of application using the open educational version

    Science.gov (United States)

    Carr, Michael J.; Gazel, Esteban

    2017-04-01

    We provide here an open version of Igpet software, called t-Igpet to emphasize its application for teaching and research in forward modeling of igneous geochemistry. There are three programs, a norm utility, a petrologic mixing program using least squares and Igpet, a graphics program that includes many forms of numerical modeling. Igpet is a multifaceted tool that provides the following basic capabilities: igneous rock identification using the IUGS (International Union of Geological Sciences) classification and several supplementary diagrams; tectonic discrimination diagrams; pseudo-quaternary projections; least squares fitting of lines, polynomials and hyperbolae; magma mixing using two endmembers, histograms, x-y plots, ternary plots and spider-diagrams. The advanced capabilities of Igpet are multi-element mixing and magma evolution modeling. Mixing models are particularly useful for understanding the isotopic variations in rock suites that evolved by mixing different sources. The important melting models include, batch melting, fractional melting and aggregated fractional melting. Crystallization models include equilibrium and fractional crystallization and AFC (assimilation and fractional crystallization). Theses, reports and proposals concerning igneous petrology are improved by numerical modeling. For reviewed publications some elements of modeling are practically a requirement. Our intention in providing this software is to facilitate improved communication and lower entry barriers to research, especially for students.

  17. The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)

    Science.gov (United States)

    Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.

    1995-01-01

    The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.

  18. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    Science.gov (United States)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  19. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  20. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  1. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  2. A unified framework for benchmark dose estimation applied to mixed models and model averaging

    DEFF Research Database (Denmark)

    Ritz, Christian; Gerhard, Daniel; Hothorn, Ludwig A.

    2013-01-01

    This article develops a framework for benchmark dose estimation that allows intrinsically nonlinear dose-response models to be used for continuous data in much the same way as is already possible for quantal data. This means that the same dose-response model equations may be applied to both...... continuous and quantal data, facilitating benchmark dose estimation in general for a wide range of candidate models commonly used in toxicology. Moreover, the proposed framework provides a convenient means for extending benchmark dose concepts through the use of model averaging and random effects modeling...... provides slightly conservative, yet useful, estimates of benchmark dose lower limit under realistic scenarios....

  3. Reconfigurable Model Execution in the OpenMDAO Framework

    Science.gov (United States)

    Hwang, John T.

    2017-01-01

    NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the

  4. A python framework for environmental model uncertainty analysis

    Science.gov (United States)

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  5. New Source Term Model for the RESRAD-OFFSITE Code Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Gnanapragasam, Emmanuel [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Shih-Yew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    This report documents the new source term model developed and implemented in Version 3 of the RESRAD-OFFSITE code. This new source term model includes: (1) "first order release with transport" option, in which the release of the radionuclide is proportional to the inventory in the primary contamination and the user-specified leach rate is the proportionality constant, (2) "equilibrium desorption release" option, in which the user specifies the distribution coefficient which quantifies the partitioning of the radionuclide between the solid and aqueous phases, and (3) "uniform release" option, in which the radionuclides are released from a constant fraction of the initially contaminated material during each time interval and the user specifies the duration over which the radionuclides are released.

  6. Solid Waste Projection Model: Database (Version 1.4). Technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User`s Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193).

  7. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  8. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  9. A framework for quantifying net benefits of alternative prognostic models.

    Science.gov (United States)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M; Thompson, Simon G

    2012-01-30

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple-study setting. The method is illustrated in the context of cardiovascular disease risk prediction using an individual participant data meta-analysis. We estimate the number of cardiovascular-disease-free life years gained when statin treatment is allocated based on a risk prediction model with five established risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing risks. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

    Science.gov (United States)

    Wang, Dagang; Wang, Guiling; Parr, Dana T.; Liao, Weilin; Xia, Youlong; Fu, Congsheng

    2017-07-01

    Land surface models bear substantial biases in simulating surface water and energy budgets despite the continuous development and improvement of model parameterizations. To reduce model biases, Parr et al. (2015) proposed a method incorporating satellite-based evapotranspiration (ET) products into land surface models. Here we apply this bias correction method to the Community Land Model version 4.5 (CLM4.5) and test its performance over the conterminous US (CONUS). We first calibrate a relationship between the observational ET from the Global Land Evaporation Amsterdam Model (GLEAM) product and the model ET from CLM4.5, and assume that this relationship holds beyond the calibration period. During the validation or application period, a simulation using the default CLM4.5 (CLM) is conducted first, and its output is combined with the calibrated observational-vs.-model ET relationship to derive a corrected ET; an experiment (CLMET) is then conducted in which the model-generated ET is overwritten with the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, we demonstrate that CLMET greatly improves the hydrological simulations over most of the CONUS, and the improvement is stronger in the eastern CONUS than the western CONUS and is strongest over the Southeast CONUS. For any specific region, the degree of the improvement depends on whether the relationship between observational and model ET remains time-invariant (a fundamental hypothesis of the Parr et al. (2015) method) and whether water is the limiting factor in places where ET is underestimated. While the bias correction method improves hydrological estimates without improving the physical parameterization of land surface models, results from this study do provide guidance for physically based model development effort.

  11. Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

    Directory of Open Access Journals (Sweden)

    D. Wang

    2017-07-01

    Full Text Available Land surface models bear substantial biases in simulating surface water and energy budgets despite the continuous development and improvement of model parameterizations. To reduce model biases, Parr et al. (2015 proposed a method incorporating satellite-based evapotranspiration (ET products into land surface models. Here we apply this bias correction method to the Community Land Model version 4.5 (CLM4.5 and test its performance over the conterminous US (CONUS. We first calibrate a relationship between the observational ET from the Global Land Evaporation Amsterdam Model (GLEAM product and the model ET from CLM4.5, and assume that this relationship holds beyond the calibration period. During the validation or application period, a simulation using the default CLM4.5 (CLM is conducted first, and its output is combined with the calibrated observational-vs.-model ET relationship to derive a corrected ET; an experiment (CLMET is then conducted in which the model-generated ET is overwritten with the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, we demonstrate that CLMET greatly improves the hydrological simulations over most of the CONUS, and the improvement is stronger in the eastern CONUS than the western CONUS and is strongest over the Southeast CONUS. For any specific region, the degree of the improvement depends on whether the relationship between observational and model ET remains time-invariant (a fundamental hypothesis of the Parr et al. (2015 method and whether water is the limiting factor in places where ET is underestimated. While the bias correction method improves hydrological estimates without improving the physical parameterization of land surface models, results from this study do provide guidance for physically based model development effort.

  12. A Model-driven Framework for Educational Game Design

    Directory of Open Access Journals (Sweden)

    Bill Roungas

    2016-09-01

    Full Text Available Educational games are a class of serious games whose main purpose is to teach some subject to their players. Despite the many existing design frameworks, these games are too often created in an ad-hoc manner, and typically without the use of a game design document (GDD. We argue that a reason for this phenomenon is that current ways to structure, create and update GDDs do not increase the value of the artifact in the design and development process. As a solution, we propose a model-driven, web-based knowledge management environment that supports game designers in the creation of a GDD that accounts for and relates educational and entertainment game elements. The foundation of our approach is our devised conceptual model for educational games, which also defines the structure of the design environment. We present promising results from an evaluation of our environment with eight experts in serious games.

  13. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  14. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  15. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Science.gov (United States)

    Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2014-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL

  16. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Science.gov (United States)

    Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2015-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  17. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    Science.gov (United States)

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  18. Evaluation of modeled land-atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model

    Science.gov (United States)

    Wong, Tony E.; Nusbaumer, Jesse; Noone, David C.

    2017-06-01

    All physical process models and field observations are inherently imperfect, so there is a need to both (1) obtain measurements capable of constraining quantities of interest and (2) develop frameworks for assessment in which the desired processes and their uncertainties may be characterized. Incorporation of stable water isotopes into land surface schemes offers a complimentary approach to constrain hydrological processes such as evapotranspiration, and yields acute insight into the hydrological and biogeochemical behaviors of the domain. Here a stable water isotopic scheme in the National Center for Atmospheric Research's version 4 of the Community Land Model (CLM4) is presented. An overview of the isotopic methods is given. Isotopic model results are compared to available data sets on site-level and global scales for validation. Comparisons of site-level soil moisture and isotope ratios reveal that surface water does not percolate as deeply into the soil as observed in field measurements. The broad success of the new model provides confidence in its use for a range of climate and hydrological studies, while the sensitivity of simulation results to kinetic processes stands as a reminder that new theoretical development and refinement of kinetic effect parameterizations is needed to achieve further improvements.

  19. Representation of the Great Lakes in the Coupled Model Intercomparison Project Version 5

    Science.gov (United States)

    Briley, L.; Rood, R. B.

    2017-12-01

    The U.S. Great Lakes play a significant role in modifying regional temperatures and precipitation, and as the lakes change in response to a warming climate (i.e., warmer surface water temperatures, decreased ice cover, etc) lake-land-atmosphere dynamics are affected. Because the lakes modify regional weather and are a driver of regional climate change, understanding how they are represented in climate models is important to the reliability of model based information for the region. As part of the Great Lakes Integrated Sciences + Assessments (GLISA) Ensemble project, a major effort is underway to evaluate the Coupled Model Intercomparison Project version (CMIP) 5 global climate models for how well they physically represent the Great Lakes and lake-effects. The CMIP models were chosen because they are a primary source of information in many products developed for decision making (i.e., National Climate Assessment, downscaled future climate projections, etc.), yet there is very little description of how well they represent the lakes. This presentation will describe the results of our investigation of if and how the Great Lakes are represented in the CMIP5 models.

  20. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    Science.gov (United States)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  1. Proposed framework for thermomechanical life modeling of metal matrix composites

    Science.gov (United States)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  2. Version 2.0 of the European Gas Model. Changes and their impact on the German gas sector

    International Nuclear Information System (INIS)

    Balmert, David; Petrov, Konstantin

    2015-01-01

    In January 2015 ACER, the European Agency for the Cooperation of Energy Regulators, presented an updated version of its target model for the inner-European natural gas market, also referred to as version 2.0 of the Gas Target Model. During 2014 the existing model, originally developed by the Council of European Energy Regulators (CEER) and launched in 2011, had been analysed, revised and updated in preparation of the new version. While it has few surprises to offer, the new Gas Target Model contains specifies and goes into greater detail on many elements of the original model. Some of the new content is highly relevant to the German gas sector, not least the deliberations on the current key issues, which are security of supply and the ability of the gas markets to function.

  3. A modelling framework to simulate foliar fungal epidemics using functional-structural plant models.

    Science.gov (United States)

    Garin, Guillaume; Fournier, Christian; Andrieu, Bruno; Houlès, Vianney; Robert, Corinne; Pradal, Christophe

    2014-09-01

    Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions inside these dynamic systems and may lead to innovative protection strategies. In particular, functional-structural plant models (FSPMs) have been identified as a means to optimize the use of architecture-related traits. A current limitation lies in the inherent complexity of this type of modelling, and thus the purpose of this paper is to provide a framework to both extend and simplify the modelling of pathosystems using FSPMs. Different entities and interactions occurring in pathosystems were formalized in a conceptual model. A framework based on these concepts was then implemented within the open-source OpenAlea modelling platform, using the platform's general strategy of modelling plant-environment interactions and extending it to handle plant interactions with pathogens. New developments include a generic data structure for representing lesions and dispersal units, and a series of generic protocols to communicate with objects representing the canopy and its microenvironment in the OpenAlea platform. Another development is the addition of a library of elementary models involved in pathosystem modelling. Several plant and physical models are already available in OpenAlea and can be combined in models of pathosystems using this framework approach. Two contrasting pathosystems are implemented using the framework and illustrate its generic utility. Simulations demonstrate the framework's ability to simulate multiscaled interactions within pathosystems, and also show that models are modular components within the framework and can be extended. This is illustrated by testing the impact of canopy architectural traits on fungal dispersal. This study provides a framework for modelling a large number of pathosystems using FSPMs. This structure can accommodate both

  4. Hydrogeochemical evaluation for Simpevarp model version 1.2. Preliminary site description of the Simpevarp area

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus

    2004-12-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Simpevarp groundwater analytical data collected up to April, 2004. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1.7 km. Model version 1.2 focusses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1000 m depth. The groundwater flow regimes at Laxemar/Simpevarp are considered local and extend down to depths of around 600-1000 m depending on local topography. The marked differences in the groundwater flow regimes between Laxemar and Simpevarp are reflected in the groundwater chemistry where four major hydrochemical groups of groundwaters (types A-D) have been identified: TYPE A: This type comprises dilute groundwaters ( 3 type present at shallow ( 300 m) levels at Simpevarp, and at even greater depths (approx. 1200 m) at Laxemar. At Simpevarp the groundwaters are mainly Na-Ca-Cl with increasingly enhanced Br and SO 4 with depth. At Laxemar they are mainly Ca-Na-Cl also with increasing enhancements of Br and SO 4 with depth. Main reactions involve ion exchange (Ca). At both sites a glacial component and a deep saline component are present. At Simpevarp the saline component may be potentially non marine and/or non-marine/old Littorina marine in origin; at Laxemar it is more likely to be non-marine in origin. TYPE D: This type comprises reducing highly saline groundwaters (> 20 000 mg/L Cl; to a maximum of ∼70 g/L TDS) and only has been identified at Laxemar at depths exceeding 1200 m. It is mainly Ca-Na-Cl with higher Br but lower SO 4 compared

  5. Probabilistic Model for Integrated Assessment of the Behavior at the T.D.P. Version 2

    International Nuclear Information System (INIS)

    Hurtado, A.; Eguilior, S.; Recreo, F

    2015-01-01

    This report documents the completion of the first phase of the implementation of the methodology ABACO2G (Bayes Application to Geological Storage of CO2) and the final version of the ABACO2G probabilistic model for the injection phase before its future validation in the experimental field of the Technology Development Plant in Hontom (Burgos). The model, which is based on the determination of the probabilistic risk component of a geological storage of CO2 using the formalism of Bayesian networks and Monte Carlo probability yields quantitative probability functions of the total system CO2 storage and of each one of their subsystems (storage subsystem and the primary seal; secondary containment subsystem and dispersion subsystem or tertiary one); the implementation of the stochastic time evolution of the CO2 plume during the injection period, the stochastic time evolution of the drying front, the probabilistic evolution of the pressure front, decoupled from the CO2 plume progress front, and the implementation of submodels and leakage probability functions through major leakage risk elements (fractures / faults and wells / deep boreholes) which together define the space of events to estimate the risks associated with the CO2 geological storage system. The activities included in this report have been to replace the previous qualitative estimation submodels of former ABACO2G version developed during Phase I of the project ALM-10-017, by analytical, semi-analytical or numerical submodels for the main elements of risk (wells and fractures), to obtain an integrated probabilistic model of a CO2 storage complex in carbonate formations that meets the needs of the integrated behavior evaluation of the Technology Development Plant in Hontomín

  6. Documentation for the MODFLOW 6 framework

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Banta, Edward R.

    2017-08-10

    MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Survey. Growing interest in surface and groundwater interactions, local refinement with nested and unstructured grids, karst groundwater flow, solute transport, and saltwater intrusion, has led to the development of numerous MODFLOW versions. Often times, there are incompatibilities between these different MODFLOW versions. The report describes a new MODFLOW framework called MODFLOW 6 that is designed to support multiple models and multiple types of models. The framework is written in Fortran using a modular object-oriented design. The primary framework components include the simulation (or main program), Timing Module, Solutions, Models, Exchanges, and Utilities. The first version of the framework focuses on numerical solutions, numerical models, and numerical exchanges. This focus on numerical models allows multiple numerical models to be tightly coupled at the matrix level.

  7. Concepts as Semantic Pointers: A Framework and Computational Model.

    Science.gov (United States)

    Blouw, Peter; Solodkin, Eugene; Thagard, Paul; Eliasmith, Chris

    2016-07-01

    The reconciliation of theories of concepts based on prototypes, exemplars, and theory-like structures is a longstanding problem in cognitive science. In response to this problem, researchers have recently tended to adopt either hybrid theories that combine various kinds of representational structure, or eliminative theories that replace concepts with a more finely grained taxonomy of mental representations. In this paper, we describe an alternative approach involving a single class of mental representations called "semantic pointers." Semantic pointers are symbol-like representations that result from the compression and recursive binding of perceptual, lexical, and motor representations, effectively integrating traditional connectionist and symbolic approaches. We present a computational model using semantic pointers that replicates experimental data from categorization studies involving each prior paradigm. We argue that a framework involving semantic pointers can provide a unified account of conceptual phenomena, and we compare our framework to existing alternatives in accounting for the scope, content, recursive combination, and neural implementation of concepts. Copyright © 2015 Cognitive Science Society, Inc.

  8. An Efficient Framework Model for Optimizing Routing Performance in VANETs

    Science.gov (United States)

    Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala

    2018-01-01

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884

  9. A description of the FAMOUS (version XDBUA climate model and control run

    Directory of Open Access Journals (Sweden)

    A. Osprey

    2008-12-01

    Full Text Available FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.

  10. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

  11. Hydrogeochemical evaluation of the Forsmark site, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [GeoPoint AB, Sollentuna (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Smellie, John [Conterra AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra, Montreal (Canada)

    2004-01-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Simpevarp, on the eastern coast of Sweden to determine their geological, geochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Forsmark groundwater analytical data collected up to May 1, 2003 (i.e. the first 'data freeze'). The HAG group had access to a total of 456 water samples collected mostly from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest samples reflected depths down to 200 m. Furthermore, most of the waters sampled (74%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the flat topography and closeness to the Baltic Sea resulting in relative small hydrogeological driving forces which can preserve old water types from being flushed out, b) the changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees modern or ancient water/rock interactions and mixing processes. Based on the general geochemical character and the apparent age two major water types occur in Forsmark: fresh-meteoric waters with a bicarbonate imprint and low residence times (tritium values above detection limit), and brackish-marine waters with Cl contents up to 6,000 mg/L and longer residence times (tritium

  12. Thermal modelling. Preliminary site description Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-15

    This report presents the thermal site descriptive model for the Simpevarp subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at possible canister scale has been modelled for four different lithological domains (RSMA01 (Aevroe granite), RSMB01 (Fine-grained dioritoid), RSMC01 (mixture of Aevroe granite and Quartz monzodiorite), and RSMD01 (Quartz monzodiorite)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Three alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Simpevarp subarea, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. For one rock type, the Aevroe granite (501044), density loggings within the specific rock type has also been used in the domain modelling in order to consider the spatial variability within the Aevroe granite. This has been possible due to the presented relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the mean of thermal conductivity is expected to exhibit only a small variation between the different domains, from 2.62 W/(m.K) to 2.80 W/(m.K). The standard deviation varies according to the scale considered and for the canister scale it is expected to range from 0.20 to 0.28 W/(m.K). Consequently, the lower confidence limit (95% confidence) for the canister scale is within the range 2.04-2.35 W/(m.K) for the different domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-3.4% per 100 deg C increase in temperature for the dominating rock

  13. Thermal modelling. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Back, Paer-Erik; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2006-02-15

    This report presents the thermal site descriptive model for the Laxemar subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for five different lithological domains: RSMA (Aevroe granite), RSMBA (mixture of Aevroe granite and fine-grained dioritoid), RSMD (quartz monzodiorite), RSME (diorite/gabbro) and RSMM (mix domain with high frequency of diorite to gabbro). A base modelling approach has been used to determine the mean value of the thermal conductivity. Four alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological domain model for the Laxemar subarea, version 1.2 together with rock type models based on measured and calculated (from mineral composition) thermal conductivities. For one rock type, Aevroe granite (501044), density loggings have also been used in the domain modelling in order to evaluate the spatial variability within the Aevroe granite. This has been possible due to an established relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the means of thermal conductivity for the various domains are expected to exhibit a variation from 2.45 W/(m.K) to 2.87 W/(m.K). The standard deviation varies according to the scale considered, and for the 0.8 m scale it is expected to range from 0.17 to 0.29 W/(m.K). Estimates of lower tail percentiles for the same scale are presented for all five domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-5.3% per 100 deg C increase in temperature for the dominant rock types. There are a number of important uncertainties associated with these

  14. Thermal modelling. Preliminary site description Simpevarp subarea - version 1.2

    International Nuclear Information System (INIS)

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta

    2005-08-01

    This report presents the thermal site descriptive model for the Simpevarp subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at possible canister scale has been modelled for four different lithological domains (RSMA01 (Aevroe granite), RSMB01 (Fine-grained dioritoid), RSMC01 (mixture of Aevroe granite and Quartz monzodiorite), and RSMD01 (Quartz monzodiorite)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Three alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Simpevarp subarea, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. For one rock type, the Aevroe granite (501044), density loggings within the specific rock type has also been used in the domain modelling in order to consider the spatial variability within the Aevroe granite. This has been possible due to the presented relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the mean of thermal conductivity is expected to exhibit only a small variation between the different domains, from 2.62 W/(m.K) to 2.80 W/(m.K). The standard deviation varies according to the scale considered and for the canister scale it is expected to range from 0.20 to 0.28 W/(m.K). Consequently, the lower confidence limit (95% confidence) for the canister scale is within the range 2.04-2.35 W/(m.K) for the different domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-3.4% per 100 deg C increase in temperature for the dominating rock

  15. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  16. A Learning Framework for Control-Oriented Modeling of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.; Vishnu, Abhinav; Vrabie, Draguna L.

    2018-01-18

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and big data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.

  17. TP-model transformation-based-control design frameworks

    CERN Document Server

    Baranyi, Péter

    2016-01-01

    This book covers new aspects and frameworks of control, design, and optimization based on the TP model transformation and its various extensions. The author outlines the three main steps of polytopic and LMI based control design: 1) development of the qLPV state-space model, 2) generation of the polytopic model; and 3) application of LMI to derive controller and observer. He goes on to describe why literature has extensively studied LMI design, but has not focused much on the second step, in part because the generation and manipulation of the polytopic form was not tractable in many cases. The author then shows how the TP model transformation facilitates this second step and hence reveals new directions, leading to powerful design procedures and the formulation of new questions. The chapters of this book, and the complex dynamical control tasks which they cover, are organized so as to present and analyze the beneficial aspect of the family of approaches (control, design, and optimization). Additionally, the b...

  18. A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

    Directory of Open Access Journals (Sweden)

    Tolutola Oyetunde

    2017-01-01

    Full Text Available A mathematical model for the theoretical evaluation of microbial electrochemical technologies (METs is presented that incorporates a detailed physico-chemical framework, includes multiple reactions (both at the electrodes and in the bulk phase and involves a variety of microbial functional groups. The model is applied to two theoretical case studies: (i A microbial electrolysis cell (MEC for continuous anodic volatile fatty acids (VFA oxidation and cathodic VFA reduction to alcohols, for which the theoretical system response to changes in applied voltage and VFA feed ratio (anode-to-cathode as well as membrane type are investigated. This case involves multiple parallel electrode reactions in both anode and cathode compartments; (ii A microbial fuel cell (MFC for cathodic perchlorate reduction, in which the theoretical impact of feed flow rates and concentrations on the overall system performance are investigated. This case involves multiple electrode reactions in series in the cathode compartment. The model structure captures interactions between important system variables based on first principles and provides a platform for the dynamic description of METs involving electrode reactions both in parallel and in series and in both MFC and MEC configurations. Such a theoretical modelling approach, largely based on first principles, appears promising in the development and testing of MET control and optimization strategies.

  19. Solid Waste Projection Model: Database user's guide (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1.3 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  20. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  1. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  2. Conceptual Model of an Application for Automated Generation of Webpage Mobile Versions

    Directory of Open Access Journals (Sweden)

    Todor Rachovski

    2017-11-01

    Full Text Available Accessing webpages through various types of mobile devices with different screen sizes and using different browsers has put new demands on web developers. The main challenge is the development of websites with responsive design that is adaptable depending on the mobile device used. The article presents a conceptual model of an app for automated generation of mobile pages. It has five-layer architecture: database, database management layer, business logic layer, web services layer and a presentation layer. The database stores all the data needed to run the application. The database management layer uses an ORM model to convert relational data into an object-oriented format and control the access to them. The business logic layer contains components that perform the actual work on building a mobile version of the page, including parsing, building a hierarchical model of the page and a number of transformations. The web services layer provides external applications with access to lower-level functionalities, and the presentation layer is responsible for choosing and using the appropriate CSS. A web application that uses the proposed model was developed and experiments were conducted.

  3. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    Science.gov (United States)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  4. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    International Nuclear Information System (INIS)

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the open-quotes constructionclose quotes of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc

  5. a Framework for AN Open Source Geospatial Certification Model

    Science.gov (United States)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  6. A FRAMEWORK FOR AN OPEN SOURCE GEOSPATIAL CERTIFICATION MODEL

    Directory of Open Access Journals (Sweden)

    T. U. R. Khan

    2016-06-01

    Full Text Available The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission “Making geospatial education and opportunities accessible to all”. Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the “Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM. The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and

  7. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  8. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    Science.gov (United States)

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  9. A Production Model for Construction: A Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Ricardo Antunes

    2015-03-01

    Full Text Available The building construction industry faces challenges, such as increasing project complexity and scope requirements, but shorter deadlines. Additionally, economic uncertainty and rising business competition with a subsequent decrease in profit margins for the industry demands the development of new approaches to construction management. However, the building construction sector relies on practices based on intuition and experience, overlooking the dynamics of its production system. Furthermore, researchers maintain that the construction industry has no history of the application of mathematical approaches to model and manage production. Much work has been carried out on how manufacturing practices apply to construction projects, mostly lean principles. Nevertheless, there has been little research to understand the fundamental mechanisms of production in construction. This study develops an in-depth literature review to examine the existing knowledge about production models and their characteristics in order to establish a foundation for dynamic production systems management in construction. As a result, a theoretical framework is proposed, which will be instrumental in the future development of mathematical production models aimed at predicting the performance and behaviour of dynamic project-based systems in construction.

  10. A modeling framework for the design of collector wells.

    Science.gov (United States)

    Moore, Rhett; Kelson, Vic; Wittman, Jack; Rash, Vern

    2012-01-01

    We present results of a design study performed for the Saylorville Wellfield in Iowa, which is owned and operated by the Des Moines Water Works. The purpose of this study was to estimate wellfield capacity and provide a preliminary design for two radial collector wells to be constructed in the outwash aquifer along the Des Moines River near Saylorville, Iowa. After a field investigation to characterize the aquifer, regional two-dimensional and local three-dimensional, steady-state groundwater flow modeling was performed to locate and design the wells. This modeling was the foundation for design recommendations based on the relative performance of 12 collector well designs with varying lateral numbers, elevations, screen lengths, and orientations. For each site, alternate designs were evaluated based on model estimates of the capacity, the percent of surface water captured, and the production per unit length of screen. Many of our results are consistent with current design practices based on experience and intuition, but our methods allow for a quantitative approach for comparing alternate designs. Although the results are site-specific, the framework for evaluating the hydraulic design of the Saylorville radial collector wells is broadly applicable and could be used at other riverbank filtration sites. In addition, many of the conclusions from this design study may apply at other sites where construction of radial collector wells is being considered. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  11. Internal modelling under Risk-Based Capital (RBC) framework

    Science.gov (United States)

    Ling, Ang Siew; Hin, Pooi Ah

    2015-12-01

    Very often the methods for the internal modelling under the Risk-Based Capital framework make use of the data which are in the form of run-off triangle. The present research will instead extract from a group of n customers, the historical data for the sum insured si of the i-th customer together with the amount paid yij and the amount aij reported but not yet paid in the j-th development year for j = 1, 2, 3, 4, 5, 6. We model the future value (yij+1, aij+1) to be dependent on the present year value (yij, aij) and the sum insured si via a conditional distribution which is derived from a multivariate power-normal mixture distribution. For a group of given customers with different original purchase dates, the distribution of the aggregate claims liabilities may be obtained from the proposed model. The prediction interval based on the distribution for the aggregate claim liabilities is found to have good ability of covering the observed aggregate claim liabilities.

  12. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  13. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NARCIS (Netherlands)

    Jockel, P.; Tost, H.; Pozzer, A.; Kunze, M.; Kirner, O.; Brenninkmeijer, C.A.M.; Brinkop, S.; Cai, D.S.; Dyroff, C.; Eckstein, J.; Frank, F.; Garny, H.; Gottschald, K.D.; Graf, P.; Grewe, V.; Kerkweg, A.; Kern, B.; Matthes, S; Mertens, M; Meul, S.; Neumaier, M.; Nützel, M; Oberländer-Hayn, S; Ruhnke, R.; Runde, T.; Sander, R.; Scharffe, D; Zahn, A.

    2016-01-01

    Three types of reference simulations, as recommended by the Chemistry–Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast

  14. A generic method for automatic translation between input models for different versions of simulation codes

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications

  15. VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 2 OVER THE CONTERMINOUS UNITED STATES

    Directory of Open Access Journals (Sweden)

    D. Gesch

    2012-07-01

    Full Text Available The ASTER Global Digital Elevation Model Version 2 (GDEM v2 was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1 in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of –0.20 meters is a significant improvement over the GDEM v1 mean error of –3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height, GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  16. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  17. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    Science.gov (United States)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  18. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  19. Models of Recognition, Repetition Priming, and Fluency : Exploring a New Framework

    Science.gov (United States)

    Berry, Christopher J.; Shanks, David R.; Speekenbrink, Maarten; Henson, Richard N. A.

    2012-01-01

    We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely…

  20. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    Science.gov (United States)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  1. COSMO-CLM{sup 2}: a new version of the COSMO-CLM model coupled to the Community Land Model

    Energy Technology Data Exchange (ETDEWEB)

    Davin, Edouard L.; Jaeger, Eric B.; Seneviratne, Sonia I. [ETH Zurich, Institute for Atmospheric and Climate Science, Zurich (Switzerland); Stoeckli, Reto [ETH Zurich, Institute for Atmospheric and Climate Science, Zurich (Switzerland); MeteoSwiss, Climate Services, Climate Analysis, Zurich (Switzerland); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States)

    2011-11-15

    This study presents an evaluation of a new biosphere-atmosphere Regional Climate Model. COSMO-CLM{sup 2} results from the coupling between the non-hydrostatic atmospheric model COSMO-CLM version 4.0 and the Community Land Model version 3.5 (CLM3.5). In this coupling, CLM3.5 replaces a simpler land surface parameterization (TERRA{sub M}L) used in the standard COSMO-CLM. Compared to TERRA{sub M}L, CLM3.5 comprises a more complete representation of land surface processes including hydrology, biogeophysics, biogeochemistry and vegetation dynamics. Historical climate simulations over Europe with COSMO-CLM and with the new COSMO-CLM{sup 2} are evaluated against various data products. The simulated climate is found to be substantially affected by the coupling with CLM3.5, particularly in summer. Radiation fluxes as well as turbulent fluxes at the surface are found to be more realistically represented in COSMO-CLM{sup 2}. This subsequently leads to improvements of several aspects of the simulated climate (cloud cover, surface temperature and precipitation). We show that a better partitioning of turbulent fluxes is the central factor allowing for the better performances of COSMO-CLM{sup 2} over COSMO-CLM. Despite these improvements, some model deficiencies still remain, most notably a substantial underestimation of surface net shortwave radiation. Overall, these results highlight the importance of land surface processes in shaping the European climate and the benefit of using an advanced land surface model for regional climate simulations. (orig.)

  2. Computer-aided modeling framework for efficient model development, analysis and identification

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Sales Cruz, Mauricio

    2011-01-01

    methods introduce. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms, and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task......Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy, and water. This trend is set to continue due to the substantial benefits computer-aided....... The methodology has been implemented into a computer-aided modeling framework, which combines expert skills, tools, and database connections that are required for the different steps of the model development work-flow with the goal to increase the efficiency of the modeling process. The framework has two main...

  3. Energy Integration for 2050 - A Strategic Impact Model (2050 SIM), Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-01

    The United States (U.S.) energy infrastructure is among the most reliable, accessible, and economic in the world. On the other hand, it is also excessively reliant on foreign energy sources, experiences high volatility in energy prices, does not always practice good stewardship of finite indigenous energy resources, and emits significant quantities of greenhouse gas. The U.S. Department of Energy is conducting research and development on advanced nuclear reactor concepts and technologies, including High Temperature Gas Reactor (HTGR) technologies, directed at helping the United States meet its current and future energy challenges. This report discusses the Draft Strategic Impact Model (SIM), an initial version of which was created during the later part of FY-2010. SIM was developed to analyze and depict the benefits of various energy sources in meeting the energy demand and to provide an overall system understanding of the tradeoffs between building and using HTGRs versus other existing technologies for providing energy (heat and electricity) to various energy-use sectors in the United States. This report also provides the assumptions used in the model, the rationale for the methodology, and the references for the source documentation and source data used in developing the SIM.

  4. Energy Integration for 2050 - A Strategic Impact Model (2050 SIM), Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2011-09-01

    The United States (U.S.) energy infrastructure is among the most reliable, accessible, and economic in the world. On the other hand, it is also excessively reliant on foreign energy sources, experiences high volatility in energy prices, does not always practice good stewardship of finite indigenous energy resources, and emits significant quantities of greenhouse gas. The U.S. Department of Energy is conducting research and development on advanced nuclear reactor concepts and technologies, including High Temperature Gas Reactor (HTGR) technologies, directed at helping the United States meet its current and future energy challenges. This report discusses the Draft Strategic Impact Model (SIM), an initial version of which was created during the later part of FY-2010. SIM was developed to analyze and depict the benefits of various energy sources in meeting the energy demand and to provide an overall system understanding of the tradeoffs between building and using HTGRs versus other existing technologies for providing energy (heat and electricity) to various energy-use sectors in the United States. This report also provides the assumptions used in the model, the rationale for the methodology, and the references for the source documentation and source data used in developing the SIM.

  5. A multi-sectoral version of the Post-Keynesian growth model

    Directory of Open Access Journals (Sweden)

    Ricardo Azevedo Araujo

    2015-03-01

    Full Text Available Abstract With this inquiry, we seek to develop a disaggregated version of the post-Keynesian approach to economic growth, by showing that indeed it can be treated as a particular case of the Pasinettian model of structural change and economic expansion. By relying upon vertical integration it becomes possible to carry out the analysis initiated by Kaldor (1956 and Robinson (1956, 1962, and followed by Dutt (1984, Rowthorn (1982 and later Bhaduri and Marglin (1990 in a multi-sectoral model in which demand and productivity increase at different paces in each sector. By adopting this approach it is possible to show that the structural economic dynamics is conditioned not only to patterns of evolving demand and diffusion of technological progress but also to the distributive features of the economy, which can give rise to different regimes of economic growth. Besides, we find it possible to determine the natural rate of profit that makes the mark-up rate to be constant over time.

  6. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  7. Smart Grid Maturity Model: SGMM Model Definition. Version 1.2

    Science.gov (United States)

    2011-09-01

    taking place. This might include using radio-frequency identification ( RFID ) technology to link assets to an inventory database that connects GIS and...warehoused). Automation might include workers entering the data via keyboard or barcode reader at the warehouse , or something more advanced like using... RFID tags. WAM-3.7 Modeling of asset investments for key components is underway. The asset performance and management modeling is based on real smart

  8. Application of version 3.1 of EPRI BWR radiolysis model

    International Nuclear Information System (INIS)

    Version 3.1 of the EPRI BWR vessel internals application (BWRVIA) code for calculating oxidant and electrochemical corrosion potential (ECP) around a BWR primary circuit has recently been released and this paper outlines the changes that have been carried out to the model and how the model compares with plant observations. There were two primary motivations for the development of BWRVIA V3.1 for plants injecting hydrogen into the feedwater to mitigate intergranular stress corrosion cracking (IGSCC) of reactor piping and internals; the fact that many BWRs now add Pt to the primary system to catalyze hydrogen:oxidant recombination at surfaces so the model needs to provide an accurate description of molar ratio (ratio of hydrogen to oxidant) around the primary circuit, and secondly to improve predictions of ECP in the lower plenum region for plants operating under moderate hydrogen water chemistry (HWC-M). Version 3.1 upgraded the model's benchmark for neutron and gamma dose rates and provided for model calculations with core axial power shapes that were bottom, middle and top peaked, characteristic of some core designs at beginning, middle, and end of cycle conditions. Improved reaction rate expressions also were incorporated along with refinements based on sensitivity testing and comparison to plant data under noble metal hydrogen water chemistry regimes. In the presence of Pt deposits on surfaces, molar ratios greater than 2 at a particular location in the primary circuit imply reducing conditions, low ECP and therefore protection from stress corrosion cracking. Plants that apply noble metal will therefore be protected from SCC in these locations. In recent years several HWC-M plants have obtained ECP data from local power range monitors sampling water from the bottom head of the vessel. These ECP measurements have shown that not all BWRs respond similarly to hydrogen addition with some plants requiring very high feed water hydrogen levels to achieve ECP

  9. Paleoclimate modeling of the Amazonian glacial cycles using the new version of the LMD Global Climate Model

    Science.gov (United States)

    Madeleine, J.; Forget, F.; Head, J. W.; Millour, E.; Spiga, A.; Colaitis, A.; Montabone, L.; Montmessin, F.; Maattanen, A. E.

    2011-12-01

    Our study aims at better understanding the Mars climate system through the modeling of the Amazonian glacial cycles with the LMD Global Climate Model. In recent years, many atmospheric measurements by MRO, MGS and MEx, as well as in-situ measurements by the Phoenix lander have revealed the crucial role of various processes in shaping the current climate, such as the radiative effect of water-ice clouds or the scavenging of dust particles by clouds. In parallel, geological evidence for large-scale glaciations has been discovered, and a lot is still to be learned about the origin of the associated geological features. We have been working on developing a new version of the LMD Mars GCM which includes these processes and allows us to assess their impact on the Mars climate system under present-day and past conditions. The processes that are relevant to paleoclimate modeling are the following: - Interactive aerosols: The scavenging of dust particles is made possible by a semi-interactive dust transport scheme which is coupled to the water cycle scheme. The dust particles serve as condensation nuclei for water-ice cloud formation and can be scavenged. Both dust particles and water-ice crystals can scatter radiation depending on their size. - Near-surface convection: A new parameterization of the convection in the boundary layer has been developed and accounts for the turbulent mixing produced by local thermals. This new parameterization may have an impact on ice stability under paleoclimate conditions. - Ice deposition and surface properties: A new soil conduction model allows us to account for the changes in surface thermal inertia due to ice deposition, meaning that the thermal-inertia feedback is active. Also, the coupling between the dust cycle and the water cycle gives access to the amount of dust which is included in the ice deposits, and thereby provides an assessment of the stratigraphy. During the conference, we will revisit our paleoclimate simulations and

  10. The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use

    Directory of Open Access Journals (Sweden)

    F. Souty

    2012-10-01

    Full Text Available Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii a spatially explicit distribution of potential (maximal crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL. The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.

  11. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    OpenAIRE

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models marketing performance as a sequence of intermediate performance measures ultimately leading to financial performance. This framework, called the Hierarchical Marketing Performance (HMP) framework, starts ...

  12. Hydrogeochemical evaluation for Simpevarp model version 1.2. Preliminary site description of the Simpevarp area

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden)

    2004-12-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Simpevarp groundwater analytical data collected up to April, 2004. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1.7 km. Model version 1.2 focusses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1000 m depth. The groundwater flow regimes at Laxemar/Simpevarp are considered local and extend down to depths of around 600-1000 m depending on local topography. The marked differences in the groundwater flow regimes between Laxemar and Simpevarp are reflected in the groundwater chemistry where four major hydrochemical groups of groundwaters (types A-D) have been identified: TYPE A: This type comprises dilute groundwaters (< 1000 mg/L Cl; 0.5-2.0 g/L TDS) of Na-HCO{sub 3} type present at shallow (<200 m) depths at Simpevarp, but at greater depths (0-900 m) at Laxemar. At both localities the groundwaters are marginally oxidising close to the surface, but otherwise reducing. Main reactions involve weathering, ion exchange (Ca, Mg), surface complexation, and dissolution of calcite. Redox reactions include precipitation of Fe-oxyhydroxides and some microbially mediated reactions (SRB). Meteoric recharge water is mainly present at Laxemar whilst at Simpevarp potential mixing of recharge meteoric water and a modern sea component is observed. Localised mixing of meteoric water with deeper saline groundwaters is indicated at both Laxemar and Simpevarp. TYPE B: This type comprises brackish groundwaters (1000-6000 mg/L Cl; 5-10 g/L TDS) present at

  13. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  14. Exploring Higher Education Governance: Analytical Models and Heuristic Frameworks

    Directory of Open Access Journals (Sweden)

    Burhan FINDIKLI

    2017-08-01

    Full Text Available Governance in higher education, both at institutional and systemic levels, has experienced substantial changes within recent decades because of a range of world-historical processes such as massification, growth, globalization, marketization, public sector reforms, and the emergence of knowledge economy and society. These developments have made governance arrangements and decision-making processes in higher education more complex and multidimensional more than ever and forced scholars to build new analytical and heuristic tools and strategies to grasp the intricacy and diversity of higher education governance dynamics. This article provides a systematic discussion of how and through which tools prominent scholars of higher education have analyzed governance in this sector by examining certain heuristic frameworks and analytical models. Additionally, the article shows how social scientific analysis of governance in higher education has proceeded in a cumulative way with certain revisions and syntheses rather than radical conceptual and theoretical ruptures from Burton R. Clark’s seminal work to the present, revealing conceptual and empirical junctures between them.

  15. A Hybrid Programming Framework for Modeling and Solving Constraint Satisfaction and Optimization Problems

    OpenAIRE

    Paweł Sitek; Jarosław Wikarek

    2016-01-01

    This paper proposes a hybrid programming framework for modeling and solving of constraint satisfaction problems (CSPs) and constraint optimization problems (COPs). Two paradigms, CLP (constraint logic programming) and MP (mathematical programming), are integrated in the framework. The integration is supplemented with the original method of problem transformation, used in the framework as a presolving method. The transformation substantially reduces the feasible solution space. The framework a...

  16. Modelling Supported Driving as an Optimal Control Cycle : Framework and Model Characteristics

    NARCIS (Netherlands)

    Wang, M.; Treiber, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.

    2013-01-01

    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of

  17. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  18. ASTER Global Digital Elevation Model Version 2 - summary of validation results

    Science.gov (United States)

    Tachikawa, Tetushi; Kaku, Manabu; Iwasaki, Akira; Gesch, Dean B.; Oimoen, Michael J.; Zhang, Z.; Danielson, Jeffrey J.; Krieger, Tabatha; Curtis, Bill; Haase, Jeff; Abrams, Michael; Carabajal, C.; Meyer, Dave

    2011-01-01

    On June 29, 2009, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released a Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). This “version 1” ASTER GDEM (GDEM1) was compiled from over 1.2 million scenebased DEMs covering land surfaces between 83°N and 83°S latitudes. A joint U.S.-Japan validation team assessed the accuracy of the GDEM1, augmented by a team of 20 cooperators. The GDEM1 was found to have an overall accuracy of around 20 meters at the 95% confidence level. The team also noted several artifacts associated with poor stereo coverage at high latitudes, cloud contamination, water masking issues and the stacking process used to produce the GDEM1 from individual scene-based DEMs (ASTER GDEM Validation Team, 2009). Two independent horizontal resolution studies estimated the effective spatial resolution of the GDEM1 to be on the order of 120 meters.

  19. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  20. An Airpower Application Framework: Modeling Coercive Airpower Strategies

    National Research Council Canada - National Science Library

    Weigand, Anthony

    1998-01-01

    This study focuses on the development of a theoretical framework for the application of coercive airpower strategies that can be used in the construction of a decision aid for use by airpower strategists...

  1. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  2. Landscape Environmental Assessment Framework

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-20

    LEAF Version 2.0 is a framework comprising of three models RUSLE2, WEPS, and AGNPS. The framework can predict row crop, crop residue, and energy crop yields at a sub-field resolutions for various combinations of soil, climate and crop management and residue harvesting practices. It estimates the loss of soil, carbon, and nutrients to the atmosphere, to the groundwater, and to runoff. It also models the overland flow of water and washed-off sediments, nutrients and other chemicals to provide estimates of sediment, nutrient, and chemical loadings to water bodies within a watershed. AGNPS model and wash-off calculations are the new additions to this version of LEAF. Development of LEAF software is supported by DOE's BETO program.

  3. Hydrogeochemical evaluation of the Simpevarp area, model version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra (Sweden)

    2004-02-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Simpevarp and Forsmark, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Simpevarp groundwater analytical data collected up to July 1st, 2003 (i.e. the first 'data freeze' of the site). The HAG (Hydrochemical Analytical Group) group had access to a total of 535 water samples collected from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 250 m. Furthermore, most of the waters sampled (79%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Simpevarp are a result of many factors such as: a) the flat topography and proximity to the Baltic Sea, b) changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees of modern or ancient water/rock interactions and mixing processes. Higher topography to the west of Simpevarp has resulted in hydraulic gradients which have partially flushed out old water types. Except for sea waters, most surface waters and some groundwaters from percussion boreholes are fresh, non-saline waters according to the classification used for Aespoe groundwaters. The rest

  4. Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1

    Science.gov (United States)

    Webb, Richard M.T.; Parkhurst, David L.

    2017-02-08

    The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of

  5. GENII Version 2 Users’ Guide

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.

    2004-03-08

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can

  6. On joint deterministic grid modeling and sub-grid variability conceptual framework for model evaluation

    Science.gov (United States)

    Ching, Jason; Herwehe, Jerold; Swall, Jenise

    The general situation (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing grid-based air-quality modeling results with observations. Typically, grid models ignore or parameterize processes and features that are at their sub-grid scale. Also, observations may be obtained in an area where significant spatial variability in the concentration fields exists. Consequently, model results and observations cannot be expected to be equal. To address this issue, we suggest a framework that can provide for qualitative judgments on model performance based on comparing observations to the grid predictions and its SGV distribution. Further, we (a) explore some characteristics of SGV, (b) comment on the contributions to SGV and (c) examine the implications to the modeling results at coarse grid resolution using examples from fine scale grid modeling of the Community Multi-scale Air Quality (CMAQ) modeling system.

  7. A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization

    Science.gov (United States)

    Spicknall, Ian H.; Foxman, Betsy; Marrs, Carl F.; Eisenberg, Joseph N. S.

    2013-01-01

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection. PMID:23660797

  8. A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization.

    Science.gov (United States)

    Spicknall, Ian H; Foxman, Betsy; Marrs, Carl F; Eisenberg, Joseph N S

    2013-08-15

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection.

  9. Addressing Energy System Modelling Challenges: The Contribution of the Open Energy Modelling Framework (oemof)

    DEFF Research Database (Denmark)

    Hilpert, Simon; Günther, Stephan; Kaldemeyer, Cord

    2017-01-01

    complexity of energy systems and high uncertainties on different levels. In addition, interdisciplinary modelling is necessary for getting insight in mechanisms of an integrated world. At the same time models need to meet scientific standards as public acceptance becomes increasingly important......The process of modelling energy systems is accompanied by challenges inherently connected with mathematical modelling. However, due to modern realities in the 21st century, existing challenges are gaining in magnitude and are supplemented with new ones. Modellers are confronted with a rising....... In this intricate environment model application as well as result communication and interpretation is also getting more difficult. In this paper we present the open energy modelling framework (oemof) as a novel approach for energy system modelling and derive its contribution to existing challenges. Therefore, based...

  10. Theories, models and frameworks used in capacity building interventions relevant to public health: a systematic review.

    Science.gov (United States)

    Bergeron, Kim; Abdi, Samiya; DeCorby, Kara; Mensah, Gloria; Rempel, Benjamin; Manson, Heather

    2017-11-28

    There is limited research on capacity building interventions that include theoretical foundations. The purpose of this systematic review is to identify underlying theories, models and frameworks used to support capacity building interventions relevant to public health practice. The aim is to inform and improve capacity building practices and services offered by public health organizations. Four search strategies were used: 1) electronic database searching; 2) reference lists of included papers; 3) key informant consultation; and 4) grey literature searching. Inclusion and exclusion criteria are outlined with included papers focusing on capacity building, learning plans, professional development plans in combination with tools, resources, processes, procedures, steps, model, framework, guideline, described in a public health or healthcare setting, or non-government, government, or community organizations as they relate to healthcare, and explicitly or implicitly mention a theory, model and/or framework that grounds the type of capacity building approach developed. Quality assessment were performed on all included articles. Data analysis included a process for synthesizing, analyzing and presenting descriptive summaries, categorizing theoretical foundations according to which theory, model and/or framework was used and whether or not the theory, model or framework was implied or explicitly identified. Nineteen articles were included in this review. A total of 28 theories, models and frameworks were identified. Of this number, two theories (Diffusion of Innovations and Transformational Learning), two models (Ecological and Interactive Systems Framework for Dissemination and Implementation) and one framework (Bloom's Taxonomy of Learning) were identified as the most frequently cited. This review identifies specific theories, models and frameworks to support capacity building interventions relevant to public health organizations. It provides public health practitioners

  11. A generic framework for individual-based modelling and physical-biological interaction

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mariani, Patrizio; Payne, Mark R.

    2018-01-01

    , comparison of physical circulation models, model ensemble runs and recently posterior Eulerian simulations using the IBMlib framework. We present the code design ideas behind the longevity of the code, our implementation experiences, as well as code performance benchmarking. The framework may contribute...

  12. Strategic assessment of capacity consumption in railway networks: Framework and model

    DEFF Research Database (Denmark)

    Jensen, Lars Wittrup; Landex, Alex; Nielsen, Otto Anker

    2017-01-01

    In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are gene...

  13. Designing a framework to design a business model for the 'bottom of the pyramid' population

    NARCIS (Netherlands)

    Ver loren van Themaat, Tanye; Schutte, Cornelius S.L.; Lutters, Diederick

    2013-01-01

    This article presents a framework for developing and designing a business model to target the bottom of the pyramid (BoP) population. Using blue ocean strategy and business model literature, integrated with research on the BoP, the framework offers a systematic approach for organisations to analyse

  14. Verification and Validation of Encapsulation Flow Models in GOMA, Version 1.1; TOPICAL

    International Nuclear Information System (INIS)

    MONDY, LISA ANN; RAO, REKHA R.; SCHUNK, P. RANDALL; SACKINGER, PHILIP A.; ADOLF, DOUGLAS B.

    2001-01-01

    Encapsulation is a common process used in manufacturing most non-nuclear components including: firing sets, neutron generators, trajectory sensing signal generators (TSSGs), arming, fusing and firing devices (AF and Fs), radars, programmers, connectors, and batteries. Encapsulation is used to contain high voltage, to mitigate stress and vibration and to protect against moisture. The purpose of the ASCI Encapsulation project is to develop a simulation capability that will allow us to aid in the encapsulation design process, especially for neutron generators. The introduction of an encapsulant poses many problems because of the need to balance ease of processing and properties necessary to achieve the design benefits such as tailored encapsulant properties, optimized cure schedule and reduced failure rates. Encapsulants can fail through fracture or delamination as a result of cure shrinkage, thermally induced residual stresses, voids or incomplete component embedding and particle gradients. Manufacturing design requirements include (1) maintaining uniform composition of particles in order to maintain the desired thermal coefficient of expansion (CTE) and density, (2) mitigating void formation during mold fill, (3) mitigating cure and thermally induced stresses during cure and cool down, and (4) eliminating delamination and fracture due to cure shrinkage/thermal strains. The first two require modeling of the fluid phase, and it is proposed to use the finite element code GOMA to accomplish this. The latter two require modeling of the solid state; however, ideally the effects of particle distribution would be included in the calculations, and thus initial conditions would be set from GOMA predictions. These models, once they are verified and validated, will be transitioned into the SIERRA framework and the ARIA code. This will facilitate exchange of data with the solid mechanics calculations in SIERRA/ADAGIO

  15. The Foundations Framework for Developing and Reporting New Models of Care for Multimorbidity.

    Science.gov (United States)

    Stokes, Jonathan; Man, Mei-See; Guthrie, Bruce; Mercer, Stewart W; Salisbury, Chris; Bower, Peter

    2017-11-01

    Multimorbidity challenges health systems globally. New models of care are urgently needed to better manage patients with multimorbidity; however, there is no agreed framework for designing and reporting models of care for multimorbidity and their evaluation. Based on findings from a literature search to identify models of care for multimorbidity, we developed a framework to describe these models. We illustrate the application of the framework by identifying the focus and gaps in current models of care, and by describing the evolution of models over time. Our framework describes each model in terms of its theoretical basis and target population (the foundations of the model) and of the elements of care implemented to deliver the model. We categorized elements of care into 3 types: (1) clinical focus, (2) organization of care, (3) support for model delivery. Application of the framework identified a limited use of theory in model design and a strong focus on some patient groups (elderly, high users) more than others (younger patients, deprived populations). We found changes in elements with time, with a decrease in models implementing home care and an increase in models offering extended appointments. By encouragin greater clarity about the underpinning theory and target population, and by categorizing the wide range of potentially important elements of an intervention to improve care for patients with multimorbidity, the framework may be useful in designing and reporting models of care and help advance the currently limited evidence base. © 2017 Annals of Family Medicine, Inc.

  16. The Digital Astronaut Project Computational Bone Remodeling Model (Beta Version) Bone Summit Summary Report

    Science.gov (United States)

    Pennline, James; Mulugeta, Lealem

    2013-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur [1-3]. The most commonly used countermeasure against bone loss in microgravity has been prescribed exercise [4]. However, data has shown that existing exercise countermeasures are not as effective as desired for preventing bone loss in long duration, 4 to 6 months, spaceflight [1,3,5,6]. This spaceflight related bone loss may cause early onset of osteoporosis to place the astronauts at greater risk of fracture later in their lives. Consequently, NASA seeks to have improved understanding of the mechanisms of bone demineralization in microgravity in order to appropriately quantify this risk, and to establish appropriate countermeasures [7]. In this light, NASA's Digital Astronaut Project (DAP) is working with the NASA Bone Discipline Lead to implement well-validated computational models to help predict and assess bone loss during spaceflight, and enhance exercise countermeasure development. More specifically, computational modeling is proposed as a way to augment bone research and exercise countermeasure development to target weight-bearing skeletal sites that are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip fractures can be debilitating, the initial model development focused on the femoral neck. Future efforts will focus on including other key load bearing bone sites such as the greater trochanter, lower lumbar, proximal femur and calcaneus. The DAP has currently established an initial model (Beta Version) of bone loss due to skeletal unloading in femoral neck region. The model calculates changes in mineralized volume fraction of bone in this segment and relates it to changes in bone mineral density (vBMD) measured by Quantitative Computed Tomography (QCT). The model is governed by equations describing changes in bone volume fraction (BVF), and rates of

  17. A new climate modeling framework for convection-resolving simulation at continental scale

    Science.gov (United States)

    Charpilloz, Christophe; di Girolamo, Salvatore; Arteaga, Andrea; Fuhrer, Oliver; Hoefler, Torsten; Schulthess, Thomas; Schär, Christoph

    2017-04-01

    Major uncertainties remain in our understanding of the processes that govern the water cycle in a changing climate and their representation in weather and climate models. Of particular concern are heavy precipitation events of convective origin (thunderstorms and rain showers). The aim of the crCLIM project [1] is to propose a new climate modeling framework that alleviates the I/O-bottleneck in large-scale, convection-resolving climate simulations and thus to enable new analysis techniques for climate scientists. Due to the large computational costs, convection-resolving simulations are currently restricted to small computational domains or very short time scales, unless the largest available supercomputers system such as hybrid CPU-GPU architectures are used [3]. Hence, the COSMO model has been adapted to run on these architectures for research and production purposes [2]. However, the amount of generated data also increases and storing this data becomes infeasible making the analysis of simulations results impractical. To circumvent this problem and enable high-resolution models in climate we propose a data-virtualization layer (DVL) that re-runs simulations on demand and transparently manages the data for the analysis, that means we trade off computational effort (time) for storage (space). This approach also requires a bit-reproducible version of the COSMO model that produces identical results on different architectures (CPUs and GPUs) [4] that will be coupled with a performance model in order enable optimal re-runs depending on requirements of the re-run and available resources. In this contribution, we discuss the strategy to develop the DVL, a first performance model, the challenge of bit-reproducibility and the first results of the crCLIM project. [1] http://www.c2sm.ethz.ch/research/crCLIM.html [2] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and T. Schulthess. "Towards gpu-accelerated operational weather forecasting." In The GPU Technology

  18. Professional Development Recognizing Technology Integration Modeled after the TPACK Framework

    Science.gov (United States)

    McCusker, Laura

    2017-01-01

    Public school teachers within a Pennsylvania intermediate unit are receiving inadequate job-embedded professional development that recognizes knowledge of content, pedagogy, and technology integration, as outlined by Mishra and Koehler's Technological Pedagogical Content Knowledge (TPACK) framework (2006). A school environment where teachers are…

  19. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    We describe a generalized framework as a method and design tool for creating interactive installations with a demand for exploratory meaning creation, not limited to the design stage, but extending into the stage where the installation meets participants and audience. The proposed solution is bas...

  20. Experimental development based on mapping rule between requirements analysis model and web framework specific design model.

    Science.gov (United States)

    Okuda, Hirotaka; Ogata, Shinpei; Matsuura, Saeko

    2013-12-01

    Model Driven Development is a promising approach to develop high quality software systems. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface prototype from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the prototype. We proposes a mapping rule in which design information independent of each web application framework implementation is defined based on the requirements analysis model, so as to improve the traceability to the final product from the valid requirements analysis model. This paper discusses the result of applying our method to the development of a Group Work Support System that is currently running in our department.

  1. Modeling Extreme Precipitation over East China with a Global Variable-Resolution Modeling Framework (MPAS)

    Science.gov (United States)

    Zhao, C.; Xu, M.; Wang, Y.; Guo, J.; Hu, Z.; Ruby, L.; Duda, M.; Skamarock, W. C.

    2017-12-01

    Modeling extreme precipitation requires high-resolution scales. Traditional regional downscaling modeling framework has some issues such as ill-posed boundary conditions, mismatches between the driving global and regional dynamics and physics, and the lack of regional feedback to global scales. The non-hydrostatic Model for Prediction Across Scales (MPAS), a global variable-resolution modeling framework, offers an opportunity to obtain regional features at high-resolution scales using regional mesh refinement without boundary limiting. In this study, the MPAS model is first time applied with the refined meshes over East China at various high-resolutions (16 km and 4 km) to simulate an extreme precipitation event during 26-27 June 2012. The simulations are evaluated with the ground observations from the Chinese Meteorological Administration (CMA) network and the reanalysis data. Sensitivity experiments with different physics and forecast lead time are conducted to understand the uncertainties in simulating spatial and temporal variation of precipitation. The variable-resolution simulations are also compared with the traditional global uniform-resolution simulations at a relatively low scale ( 30 km) and a relatively high scale ( 16 km). The analysis shows that the variable-resolution simulation can capture the high-scale feature of precipitation over East China as the uniform-resolution simulation at a relatively high scale. It also indicates that high-resolution significantly improves the capability of simulating extreme precipitation. The MPAS simulations are also compared with the traditional limited-area simulations at similar scales using the Weather Research and Forecasting Model (WRF). The difference between the simulations using these two different modeling framework is also discussed.

  2. Three Versions of the Interpersonal Adjective Scales and their Fit to the Circumplex Model

    Science.gov (United States)

    Adams, Ryan S.; Tracey, Terence J. G.

    2004-01-01

    The Interpersonal Adjective Scales (IAS) is a well-supported instrument that is designed to map interpersonal traits onto the interpersonal circumplex. However, three versions of the IAS exist and these vary with respect to the degree to which they included item definitions (i.e., glossary added at the end, definitions attached to each item, and…

  3. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  4. From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems

    Directory of Open Access Journals (Sweden)

    Andrzej Zalewski

    2013-06-01

    Full Text Available There exist numerous models of software architecture (box models, ADL’s, UML, architectural decisions, architecture modelling frameworks (views, enterprise architecture frameworks and even standards recommending practice for the architectural description. We show in this paper, that there is still a gap between these rather abstract frameworks/standards and existing architecture models. Frameworks and standards define what should be modelled rather than which models should be used and how these models are related to each other. We intend to prove that a less abstract modelling framework is needed for the effective modelling of large scale software intensive systems. It should provide a more precise guidance kinds of models to be employed and how they should relate to each other. The paper defines principles that can serve as base for an integrated model. Finally, structure of such a model has been proposed. It comprises three layers: the upper one – architectural policy – reflects corporate policy and strategies in architectural terms, the middle one –system organisation pattern – represents the core structural concepts and their rationale at a given level of scope, the lower one contains detailed architecture models. Architectural decisions play an important role here: they model the core architectural concepts explaining detailed models as well as organise the entire integrated model and the relations between its submodels.

  5. Framework for product knowledge and product related knowledge which supports product modelling for mass customization

    DEFF Research Database (Denmark)

    Riis, Jesper; Hansen, Benjamin Loer; Hvam, Lars

    2003-01-01

    and personalization. The framework for product knowledge and product related knowledge is based on the following theories: axiomatic design, technical systems, theory of domains, theory of structuring, theory of properties and the framework for the content of product and product related models. The framework is built...... and product related knowledge which should be or should not be included in the model. This demarcation will have a large influence on the structure of the IT systems (for example the configurator system, the CAD system or the PDM system). • The use of the framework can help achieve more structured models......The article presents a framework for product knowledge and product related knowledge which can be used to support the product modelling process which is needed for developing IT systems. These IT systems are important tools for many companies when they aim at achieving mass customization...

  6. The Investment Model Scale (IMS): further studies on construct validation and development of a shorter version (IMS-S).

    Science.gov (United States)

    Rodrigues, David; Lopes, Diniz

    2013-01-01

    The Investment Model (IM; Rusbult, 1980, 1983) has been widely used to study the development and maintenance of romantic relationships. Its components--satisfaction, quality of alternatives, investment size and commitment--are operationalized in the Investment Model Scale (IMS; Rusbult, Martz, & Agnew, 1998). Given its importance for personal relationships literature, this article presents the adaptation and validation of the IMS to Portugal, and the development and validation of a shorter version, the IMS-S. A confirmatory factor analysis replicates the IMS's original four factors structure. A similar structure was found for the IMS-S. For both versions, results show the instruments to have validity and good reliability. Results are discussed considering the scales' importance for studying romantic relationships.

  7. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  8. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  9. Checking Architectural and Implementation Constraints for Domain-Specific Component Frameworks using Models

    OpenAIRE

    Noguera, Carlos; Loiret, Frédéric

    2009-01-01

    Acceptance rate: 38%; International audience; Software components are used in various application domains, and many component models and frameworks have been proposed to fulfill domain-specific requirements. The ad-hoc development of these component frameworks hampers the reuse of tools and abstractions across different frameworks. We believe that in order to promote the reuse of components within various domain contexts an homogeneous design approach is needed. A key requirement of such an a...

  10. Towards a framework for improving goal-oriented requirement models quality

    OpenAIRE

    Cares, Carlos; Franch Gutiérrez, Javier

    2009-01-01

    Goal-orientation is a widespread and useful approach to Requirements Engineering. However, quality assessment frameworks focused on goal-oriented processes are either limited or remain on the theoretical side. Requirements quality initiatives range from simple metrics applicable to requirements documents, to general-purpose quality frameworks that include syntactic, semantic and pragmatic concerns. In some recent works, we have proposed a metrics framework for goal-oriented models, b...

  11. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Gettelman, Andrew [University Corporation For Atmospheric Research (UCAR), Boulder, CO (United States)

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  12. Programs OPTMAN and SHEMMAN Version 6 (1999) - Coupled-Channels optical model and collective nuclear structure calculation -

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Lee, Jeong Yeon; Lee, Young Ouk; Sukhovitski, Efrem Sh. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Programs SHEMMAN and OPTMAN (Version 6) have been developed for determinations of nuclear Hamiltonian parameters and for optical model calculations, respectively. The optical model calculations by OPTMAN with coupling schemes built on wave functions functions of non-axial soft-rotator are self-consistent, since the parameters of the nuclear Hamiltonian are determined by adjusting the energies of collective levels to experimental values with SHEMMAN prior to the optical model calculation. The programs have been installed at Nuclear Data Evaluation Laboratory of KAERI. This report is intended as a brief manual of these codes. 43 refs., 9 figs., 1 tabs. (Author)

  13. An Access Control Model for the Uniframe Framework

    Science.gov (United States)

    2005-05-01

    is called active software capabilities framework ( ASCap ) that centers around the idea of a policy object, which instead of being embedded into the...access control component, is delivered by the client. The client firsts requests an ASCap (policy object) from the security server. Then the client...and the object server both must instantiate proxies. The client ASCap proxy may then request additional credentials from other servers which may

  14. A Framework for Modelling Trojans and Computer Virus Infection

    OpenAIRE

    Thimbleby, H.; Anderson, S.; Cairns, P.

    1998-01-01

    It is not possible to view a computer operating in the real world, including the possibility of Trojan horse programs and computer viruses, as simply a finite realisation of a Turing machine. We consider the actions of Trojan horses and viruses in real computer systems and suggest a minimal framework for an adequate formal understanding of the phenomena. Some conventional approaches, including biological metaphors, are shown to be inadequate; some suggestions are made towards constructing vir...

  15. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area

    Directory of Open Access Journals (Sweden)

    Yinping Long

    2016-07-01

    Full Text Available Merging satellite and rain gauge data by combining accurate quantitative rainfall from stations with spatial continuous information from remote sensing observations provides a practical method of estimating rainfall. However, generating high spatiotemporal rainfall fields for catchment-distributed hydrological modeling is a problem when only a sparse rain gauge network and coarse spatial resolution of satellite data are available. The objective of the study is to present a satellite and rain gauge data-merging framework adapting for coarse resolution and data-sparse designs. In the framework, a statistical spatial downscaling method based on the relationships among precipitation, topographical features, and weather conditions was used to downscale the 0.25° daily rainfall field derived from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA precipitation product version 7. The nonparametric merging technique of double kernel smoothing, adapting for data-sparse design, was combined with the global optimization method of shuffled complex evolution, to merge the downscaled TRMM and gauged rainfall with minimum cross-validation error. An indicator field representing the presence and absence of rainfall was generated using the indicator kriging technique and applied to the previously merged result to consider the spatial intermittency of daily rainfall. The framework was applied to estimate daily precipitation at a 1 km resolution in the Qinghai Lake Basin, a data-scarce area in the northeast of the Qinghai-Tibet Plateau. The final estimates not only captured the spatial pattern of daily and annual precipitation with a relatively small estimation error, but also performed very well in stream flow simulation when applied to force the geomorphology-based hydrological model (GBHM. The proposed framework thus appears feasible for rainfall estimation at high spatiotemporal resolution in data-scarce areas.

  16. Using the Advanced Research Version of the Weather Research and Forecasting Model (WRF-ARW) to Forecast Turbulence at Small Scales

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2008-01-01

    ...) as well as for longer-range forecasting support. The model utilized to investigate fine-scale weather processes, the Advanced Research version of the Weather Research and Forecasting model (WRF-ARW...

  17. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Final Report, Version 2)

    Science.gov (United States)

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing developmen...

  18. A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)

    Science.gov (United States)

    Justus, C. G.; Johnson, D. L.; James, B. F.

    1996-01-01

    This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.

  19. U.S. Nuclear Regulatory Commission Extremely Low Probability of Rupture pilot study : xLPR framework model user's guide.

    Energy Technology Data Exchange (ETDEWEB)

    Kalinich, Donald A.; Sallaberry, Cedric M.; Mattie, Patrick D.

    2010-12-01

    For the U.S. Nuclear Regulatory Commission (NRC) Extremely Low Probability of Rupture (xLPR) pilot study, Sandia National Laboratories (SNL) was tasked to develop and evaluate a probabilistic framework using a commercial software package for Version 1.0 of the xLPR Code. Version 1.0 of the xLPR code is focused assessing the probability of rupture due to primary water stress corrosion cracking in dissimilar metal welds in pressurizer surge nozzles. Future versions of this framework will expand the capabilities to other cracking mechanisms, and other piping systems for both pressurized water reactors and boiling water reactors. The goal of the pilot study project is to plan the xLPR framework transition from Version 1.0 to Version 2.0; hence the initial Version 1.0 framework and code development will be used to define the requirements for Version 2.0. The software documented in this report has been developed and tested solely for this purpose. This framework and demonstration problem will be used to evaluate the commercial software's capabilities and applicability for use in creating the final version of the xLPR framework. This report details the design, system requirements, and the steps necessary to use the commercial-code based xLPR framework developed by SNL.

  20. A computer-aided framework for development, identification andmanagement of physiologically-based pharmacokinetic models

    DEFF Research Database (Denmark)

    Heitzig, Martina; Linninger, Andreas; Sin, Gürkan

    2014-01-01

    The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling......-based pharmacokinetic modelling of the distribution of the drug cyclosporin A in rats and humans. Four alternative candidate models for rats are derived and discriminated based on experimental data. The model candidate that is best represented by the experimental data is scaled-up to a human being applying...

  1. A "Rule of Five" Framework for Models and Modeling to Unify Mathematicians and Biologists and Improve Student Learning

    OpenAIRE

    Eaton, Carrie Diaz; Highlander, Hannah C.; Dahlquist, Kam D.; LaMar, M. Drew; Ledder, Glenn; Schugart, Richard C.

    2016-01-01

    Despite widespread calls for the incorporation of mathematical modeling into the undergraduate biology curriculum, there is lack of a common understanding around the definition of modeling, which inhibits progress. In this paper, we extend the "Rule of Four," initially used in calculus reform efforts, to a framework for models and modeling that is inclusive of varying disciplinary definitions of each. This unifying framework allows us to both build on strengths that each discipline and its st...

  2. Towards a Framework for Modelling and Verification of Relay Interlocking Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2011-01-01

    This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor...

  3. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  4. A Hybrid Programming Framework for Modeling and Solving Constraint Satisfaction and Optimization Problems

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2016-01-01

    Full Text Available This paper proposes a hybrid programming framework for modeling and solving of constraint satisfaction problems (CSPs and constraint optimization problems (COPs. Two paradigms, CLP (constraint logic programming and MP (mathematical programming, are integrated in the framework. The integration is supplemented with the original method of problem transformation, used in the framework as a presolving method. The transformation substantially reduces the feasible solution space. The framework automatically generates CSP and COP models based on current values of data instances, questions asked by a user, and set of predicates and facts of the problem being modeled, which altogether constitute a knowledge database for the given problem. This dynamic generation of dedicated models, based on the knowledge base, together with the parameters changing externally, for example, the user’s questions, is the implementation of the autonomous search concept. The models are solved using the internal or external solvers integrated with the framework. The architecture of the framework as well as its implementation outline is also included in the paper. The effectiveness of the framework regarding the modeling and solution search is assessed through the illustrative examples relating to scheduling problems with additional constrained resources.

  5. Model-based visual tracking the OpenTL framework

    CERN Document Server

    Panin, Giorgio

    2011-01-01

    This book has two main goals: to provide a unifed and structured overview of this growing field, as well as to propose a corresponding software framework, the OpenTL library, developed by the author and his working group at TUM-Informatik. The main objective of this work is to show, how most real-world application scenarios can be naturally cast into a common description vocabulary, and therefore implemented and tested in a fully modular and scalable way, through the defnition of a layered, object-oriented software architecture.The resulting architecture covers in a seamless way all processin

  6. eTOXlab, an open source modeling framework for implementing predictive models in production environments.

    Science.gov (United States)

    Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel

    2015-01-01

    Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by e

  7. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    International Nuclear Information System (INIS)

    Fayer, M.J.

    2000-01-01

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements

  8. Simulations of the mid-Pliocene Warm Period using two versions of the NASA/GISS ModelE2-R Coupled Model

    Directory of Open Access Journals (Sweden)

    M. A. Chandler

    2013-04-01

    Full Text Available The mid-Pliocene Warm Period (mPWP bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007. Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASA/GISS Earth System Model (ModelE2-R. We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM, which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates. Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasise features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean

  9. Simulations of the Mid-Pliocene Warm Period Using Two Versions of the NASA-GISS ModelE2-R Coupled Model

    Science.gov (United States)

    Chandler, M. A.; Sohl, L. E.; Jonas, J. A.; Dowsett, H. J.; Kelley, M.

    2013-01-01

    The mid-Pliocene Warm Period (mPWP) bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007). Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASAGISS Earth System Model (ModelE2-R). We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM), which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates.Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean model, have led

  10. Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: "eb_go_gs" configurations of GENIE

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2011-11-01

    Full Text Available A computationally efficient, intermediate complexity ocean-atmosphere-sea ice model (C-GOLDSTEIN has been incorporated into the Grid ENabled Integrated Earth system modelling (GENIE framework. This involved decoupling of the three component modules that were re-coupled in a modular way, to allow replacement with alternatives and coupling of further components within the framework. The climate model described here (referred to as "eb_go_gs" for short is the most basic version of GENIE in which atmosphere, ocean and sea ice all play an active role. Among improvements on the original C-GOLDSTEIN model, latitudinal grid resolution is generalized to allow a wider range of surface grids to be used. The ocean, atmosphere and sea-ice components of the "eb_go_gs" configuration of GENIE are individually described, along with details of their coupling. The setup and results from simulations using four different meshes are presented. The four alternative meshes comprise the widely-used 36 × 36 equal-area-partitioning of the Earth surface with 16 depth layers in the ocean, a version in which horizontal and vertical resolution are doubled, a setup matching the horizontal resolution of the dynamic atmospheric component available in the GENIE framework, and a setup with enhanced resolution in high-latitude areas. Results are presented for a spin-up experiment with a baseline parameter set and wind forcing typically used for current studies in which "eb_go_gs" is coupled with the ocean biogeochemistry module of GENIE, as well as for an experiment with a modified parameter set, revised wind forcing, and additional cross-basin transport pathways (Indonesian and Bering Strait throughflows. The latter experiment is repeated with the four mesh variants, with common parameter settings throughout, except for time-step length. Selected state variables and diagnostics are compared in two regards: (i between simulations at lowest resolution that are obtained with the

  11. A model independent S/W framework for search-based software testing.

    Science.gov (United States)

    Oh, Jungsup; Baik, Jongmoon; Lim, Sung-Hwa

    2014-01-01

    In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one to another, all functions of a search technique must be reimplemented because the types of models are different even if the same search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again. We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find test cases for a target model but also reduces development time by using common functions provided in the framework. We show the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by about 50% when changing the type of a model.

  12. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework

    NARCIS (Netherlands)

    Smith, M.E. (Morgan E.); B.K. Singh (Brajendra K.); M.A. Irvine (Michael A.); W.A. Stolk (Wilma); S.V. Subramanian; T.D. Hollingsworth (T. Déirdre); Michael, E. (Edwin)

    2017-01-01

    textabstractMathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to

  13. An integrated framework for modeling freight mode and route choice.

    Science.gov (United States)

    2013-10-01

    A number of statewide travel demand models have included freight as a separate component in analysis. Unlike : passenger travel, freight has not gained equivalent attention because of lack of data and difficulties in modeling. In : the current state ...

  14. A model-based framework for the analysis of team communication in nuclear power plants

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Yoon, Wan Chul; Min, Daihwan

    2009-01-01

    Advanced human-machine interfaces are rapidly changing the interaction between humans and systems, with the level of abstraction of the presented information, the human task characteristics, and the modes of communication all affected. To accommodate the changes in the human/system co-working environment, an extended communication analysis framework is needed that can describe and relate the tasks, verbal exchanges, and information interface. This paper proposes an extended analytic framework, referred to as the H-H-S (human-human-system) communication analysis framework, which can model the changes in team communication that are emerging in these new working environments. The stage-specific decision-making model and analysis tool of the proposed framework make the analysis of team communication easier by providing visual clues. The usefulness of the proposed framework is demonstrated with an in-depth comparison of the characteristics of communication in the conventional and advanced main control rooms of nuclear power plants

  15. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    Science.gov (United States)

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  16. A reference model and technical framework for mobile social software for learning

    NARCIS (Netherlands)

    De Jong, Tim; Specht, Marcus; Koper, Rob

    2008-01-01

    De Jong, T., Specht, M., & Koper, R. (2008). A reference model and technical framework for mobile social software for learning. Presented at the IADIS m-learning 2008 Conference. April, 11-13, 2008, Carvoeiro, Portugal.

  17. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models

  18. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    Science.gov (United States)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  19. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  20. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  1. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  2. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  3. Model Analyst’s Toolkit User Guide, Version 7.1.0

    Science.gov (United States)

    2015-08-01

    Analyst’s Toolkit Version 7.1.0 4 Figure 1 MAT interface elements Use the standard Windows methods for moving and resizing windows. You can also move...and resize views using the toolbar at the top of each view. Figure 2 Selected Entities view To rearrange a view  Float a view by clicking and...and click OK in the Existing Concept area to create the data feature. If you uncheck the data series, the dot next to the series is shown in red on

  4. National culture and business model change: a framework for successful expansions

    DEFF Research Database (Denmark)

    Dalby, J.; Nielsen, L.S.; Lueg, Rainer

    2014-01-01

    Dalby, J., Nielsen, Lueg, R., L. S., Pedersen, L., Tomoni, A. C. 2014. National culture and business model change: a framework for successful expansions. Journal of Enterprising Culture, 22(4): 379-498.......Dalby, J., Nielsen, Lueg, R., L. S., Pedersen, L., Tomoni, A. C. 2014. National culture and business model change: a framework for successful expansions. Journal of Enterprising Culture, 22(4): 379-498....

  5. Integrated Bayesian network framework for modeling complex ecological issues.

    Science.gov (United States)

    Johnson, Sandra; Mengersen, Kerrie

    2012-07-01

    The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development

  6. Poly(ethylene glycol) (PEG) in a Polyethylene (PE) Framework: A Simple Model for Simulation Studies of a Soluble Polymer in an Open Framework.

    Science.gov (United States)

    Xie, Liangxu; Chan, Kwong-Yu; Quirke, Nick

    2017-10-24

    Canonical molecular dynamics simulations are performed to investigate the behavior of single-chain and multiple-chain poly(ethylene glycol) (PEG) contained within a cubic framework spanned by polyethylene (PE) chains. This simple model is the first of its kind to study the chemical physics of polymer-threaded organic frameworks, which are materials with potential applications in catalysis and separation processes. For a single-chain 9-mer, 14-mer, and 18-mer in a small framework, the PEG will interact strongly with the framework and assume a more linear geometry chain with an increased radius of gyration R g compared to that of a large framework. The interaction between PEG and the framework decreases with increasing mesh size in both vacuum and water. In the limit of a framework with an infinitely large cavity (infinitely long linkers), PEG behavior approaches simulation results without a framework. The solvation of PEG is simulated by adding explicit TIP3P water molecules to a 6-chain PEG 14-mer aggregate confined in a framework. The 14-mer chains are readily solvated and leach out of a large 2.6 nm mesh framework. There are fewer water-PEG interactions in a small 1.0 nm mesh framework, as indicated by a smaller number of hydrogen bonds. The PEG aggregate, however, still partially dissolves but is retained within the 1.0 nm framework. The preliminary results illustrate the effectiveness of the simple model in studying polymer-threaded framework materials and in optimizing polymer or framework parameters for high performance.

  7. Topological models and frameworks for 3D spatial objects

    Science.gov (United States)

    Zlatanova, Siyka; Rahman, Alias Abdul; Shi, Wenzhong

    2004-05-01

    Topology is one of the mechanisms to describe relationships between spatial objects. Thus, it is the basis for many spatial operations. Models utilizing the topological properties of spatial objects are usually called topological models, and are considered by many researchers as the best suited for complex spatial analysis (i.e., the shortest path search). A number of topological models for two-dimensional and 2.5D spatial objects have been implemented (or are under consideration) by GIS and DBMS vendors. However, when we move to one more dimension (i.e., three-dimensions), the complexity of the relationships increases, and this requires new approaches, rules and representations. This paper aims to give an overview of the 3D topological models presented in the literature, and to discuss generic issues related to 3D modeling. The paper also considers models in object-oriented (OO) environments. Finally, future trends for research and development in this area are highlighted.

  8. Scoping review identifies significant number of knowledge translation theories, models and frameworks with limited use.

    Science.gov (United States)

    Strifler, Lisa; Cardoso, Roberta; McGowan, Jessie; Cogo, Elise; Nincic, Vera; Khan, Paul A; Scott, Alistair; Ghassemi, Marco; MacDonald, Heather; Lai, Yonda; Treister, Victoria; Tricco, Andrea C; Straus, Sharon E

    2018-04-13

    To conduct a scoping review of knowledge translation (KT) theories, models and frameworks that have been used to guide dissemination or implementation of evidence-based interventions targeted to prevention and/or management of cancer or other chronic diseases. We used a comprehensive multistage search process from 2000-2016, which included traditional bibliographic database searching, searching using names of theories, models and frameworks, and cited reference searching. Two reviewers independently screened the literature and abstracted data. We found 596 studies reporting on the use of 159 KT theories, models or frameworks. A majority (87%) of the identified theories, models or frameworks were used in five or fewer studies, with 60% used once. The theories, models and frameworks were most commonly used to inform planning/design, implementation and evaluation activities, and least commonly used to inform dissemination and sustainability/scalability activities. Twenty-six were used across the full implementation spectrum (from planning/design to sustainability/scalability) either within or across studies. All were used for at least individual-level behavior change, while 48% were used for organization-level, 33% for community-level and 17% for system-level change. We found a significant number of KT theories, models and frameworks with a limited evidence base describing their use. Copyright © 2018. Published by Elsevier Inc.

  9. Introducing MERGANSER: A Flexible Framework for Ecological Niche Modeling

    Science.gov (United States)

    Klawonn, M.; Dow, E. M.

    2015-12-01

    Ecological Niche Modeling (ENM) is a collection of techniques to find a "fundamental niche", the range of environmental conditions suitable for a species' survival in the absence of inter-species interactions, given a set of environmental parameters. Traditional approaches to ENM face a number of obstacles including limited data accessibility, data management problems, computational costs, interface usability, and model validation. The MERGANSER system, which stands for Modeling Ecological Residency Given A Normalized Set of Environmental Records, addresses these issues through powerful data persistence and flexible data access, coupled with a clear presentation of results and fine-tuned control over model parameters. MERGANSER leverages data measuring 72 weather related phenomena, land cover, soil type, population, species occurrence, general species information, and elevation, totaling over 1.5 TB of data. To the best of the authors' knowledge, MERGANSER uses higher-resolution spatial data sets than previously published models. Since MERGANSER stores data in an instance of Apache SOLR, layers generated in support of niche models are accessible to users via simplified Apache Lucene queries. This is made even simpler via an HTTP front end that generates Lucene queries automatically. Specifically, a user need only enter the name of a place and a species to run a model. Using this approach to synthesizing model layers, the MERGANSER system has successfully reproduced previously published niche model results with a simplified user experience. Input layers for the model are generated dynamically using OpenStreetMap and SOLR's spatial search functionality. Models are then run using either user-specified or automatically determined parameters after normalizing them into a common grid. Finally, results are visualized in the web interface, which allows for quick validation. Model results and all surrounding metadata are also accessible to the user for further study.

  10. Threat model framework and methodology for personal networks (PNs)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.

    2007-01-01

    To be able to build a secure network, it is essential to model the threats to the network. A methodology for building a threat model has been proposed in the paper. Several existing threat models and methodologies will be compared to the proposed methodology. The aim of the proposed methodology i...... been used. Also risk assessment methods will be discussed. Threat profiles and vulnerability profiles have been presented....

  11. Cross-Layer Modeling Framework for Energy-Efficient Resilience

    Science.gov (United States)

    2014-04-01

    Kevin Skadron##, Gu-Yeon Wei+ * IBM T. J. Watson Research Center, Yorktown Heights, NY ** IBM Austin Research Laboratory, Austin, TX +Dept. of...Qute model developed at IBM Research [3]. The first two are both developed around basic analytical formalisms based on Amdahl’s Law. Qute is an...Modeling Strategy Figure 1 depicts the integrated, cross-layer system modeling concept as pursued in the IBM -led project titled: “Efficient

  12. Viewpoints: a framework for object oriented database modelling and distribution

    Directory of Open Access Journals (Sweden)

    Fouzia Benchikha

    2006-01-01

    Full Text Available The viewpoint concept has received widespread attention recently. Its integration into a data model improves the flexibility of the conventional object-oriented data model and allows one to improve the modelling power of objects. The viewpoint paradigm can be used as a means of providing multiple descriptions of an object and as a means of mastering the complexity of current database systems enabling them to be developed in a distributed manner. The contribution of this paper is twofold: to define an object data model integrating viewpoints in databases and to present a federated database system integrating multiple sources following a local-as-extended-view approach.

  13. The Parallelized Large-Eddy Simulation Model (PALM version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    Directory of Open Access Journals (Sweden)

    B. Maronga

    2015-08-01

    Full Text Available In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany. PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.

  14. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    Science.gov (United States)

    Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M. O.; Sühring, M.; Raasch, S.

    2015-08-01

    In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.

  15. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, David S [ORNL; Mikkilineni, Aravind K [ORNL; Rose, Derek C [ORNL; Yoginath, Srikanth B [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Judy, Mohsen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  16. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0

    Directory of Open Access Journals (Sweden)

    V. Huijnen

    2010-10-01

    Full Text Available We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0. A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment of the stratosphere, the wet and dry deposition parameterizations, and the applied emissions. We evaluate the model against a suite of ground-based, satellite, and aircraft measurements of components critical for understanding global photochemistry for the year 2006.

    The model exhibits a realistic oxidative capacity at a global scale. The methane lifetime is ~8.9 years with an associated lifetime of methyl chloroform of 5.86 years, which is similar to that derived using an optimized hydroxyl radical field.

    The seasonal cycle in observed carbon monoxide (CO is well simulated at different regions across the globe. In the Northern Hemisphere CO concentrations are underestimated by about 20 ppbv in spring and 10 ppbv in summer, which is related to missing chemistry and underestimated emissions from higher hydrocarbons, as well as to uncertainties in the seasonal variation of CO emissions. The model also captures the spatial and seasonal variation in formaldehyde tropospheric columns as observed by SCIAMACHY. Positive model biases over the Amazon and eastern United States point to uncertainties in the isoprene emissions as well as its chemical breakdown.

    Simulated tropospheric nitrogen dioxide columns correspond well to observations from the Ozone Monitoring Instrument in terms of its seasonal and spatial variability (with a global spatial correlation coefficient of 0.89, but TM5 fields are lower by 25–40%. This is consistent with earlier studies pointing to a high bias of 0–30% in the OMI retrievals, but uncertainties in the emission inventories have probably also contributed to the discrepancy.

    TM5 tropospheric

  17. A New Perspective for Modeling Power Electronics Converters : Complementarity Framework

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto

    2009-01-01

    The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are

  18. Abdominal surgery process modeling framework for simulation using spreadsheets.

    Science.gov (United States)

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Toward the Establishment of a Common Framework for Model Evaluation

    DEFF Research Database (Denmark)

    Olesen, H. R.

    1996-01-01

    Proceedings of the Twenty-first NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held November 6-10 1995, in Baltimore, Maryland.......Proceedings of the Twenty-first NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held November 6-10 1995, in Baltimore, Maryland....

  20. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  1. A business model for IPTV service: A dynamic framework

    NARCIS (Netherlands)

    Bouwman, H.; Zhengjia, M.; Duin, P. van der; Limonard, S.

    2008-01-01

    Purpose - The purpose of this paper is to investigate a possible business model for telecom operators for entering the IPTV (digital television) market. Design/methodology/approach - The approach takes the form of a case study, literature search and interviews. Findings - The IPTV business model

  2. Integrating environmental component models. Development of a software framework

    NARCIS (Netherlands)

    Schmitz, O.

    2014-01-01

    Integrated models consist of interacting component models that represent various natural and social systems. They are important tools to improve our understanding of environmental systems, to evaluate cause–effect relationships of human–natural interactions, and to forecast the behaviour of

  3. Public–private partnership conceptual framework and models for the ...

    African Journals Online (AJOL)

    (2012c) Project to Revise the Pricing Strategy for Water Use. Charges and Develop a Funding Model for Water Infrastructure. Development and Use and a Model for the Establishment of an. Economic Regulator (Contract No. WP10465). Review of Principles and Experience for Infrastructure Finance. Department of Water.

  4. A MULTISCALE, CELL-BASED FRAMEWORK FOR MODELING CANCER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    JIANG, YI [Los Alamos National Laboratory

    2007-01-16

    Cancer remains to be one of the leading causes of death due to diseases. We use a systems approach that combines mathematical modeling, numerical simulation, in vivo and in vitro experiments, to develop a predictive model that medical researchers can use to study and treat cancerous tumors. The multiscale, cell-based model includes intracellular regulations, cellular level dynamics and intercellular interactions, and extracellular level chemical dynamics. The intracellular level protein regulations and signaling pathways are described by Boolean networks. The cellular level growth and division dynamics, cellular adhesion and interaction with the extracellular matrix is described by a lattice Monte Carlo model (the Cellular Potts Model). The extracellular dynamics of the signaling molecules and metabolites are described by a system of reaction-diffusion equations. All three levels of the model are integrated through a hybrid parallel scheme into a high-performance simulation tool. The simulation results reproduce experimental data in both avasular tumors and tumor angiogenesis. By combining the model with experimental data to construct biologically accurate simulations of tumors and their vascular systems, this model will enable medical researchers to gain a deeper understanding of the cellular and molecular interactions associated with cancer progression and treatment.

  5. A Framework for Conceptual Modeling of Geographic Data Quality

    DEFF Research Database (Denmark)

    Friis-Christensen, Anders; Christensen, J.V.; Jensen, Christian Søndergaard

    2004-01-01

    Sustained advances in wireless communications, geo-positioning, and consumer electronics pave the way to a kind of location-based service that relies on the tracking of the continuously changing positions of an entire population of service users. This type of service is characterized by large...... of geographic data and quality. The approach integrates quality information with the basic model constructs. This results in a model that enables object-oriented specification of quality requirements and of acceptable quality levels. More specifically, it extends the Unified Modeling Language with new modeling...... constructs based on standard classes, attributes, and associations that include quality information. A case study illustrates the utility of the quality-enabled model. reported....

  6. Interaction between GIS and hydrologic model: A preliminary approach using ArcHydro Framework Data Model

    Directory of Open Access Journals (Sweden)

    Silvio Jorge C. Simões

    2013-08-01

    Full Text Available In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM models, the Geographical Information System (GIS is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion, situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin’s dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial temporal model.

  7. A Framework for Modeling Human-Machine Interactions

    Science.gov (United States)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  8. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework

    NARCIS (Netherlands)

    Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D A; Brogaard, Sara; Van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut

    2016-01-01

    We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS

  9. The Community Earth System Model: A Framework for Collaborative Research

    Energy Technology Data Exchange (ETDEWEB)

    Hurrell, Jim; Holland, Marika M.; Gent, Peter R.; Ghan, Steven J.; Kay, Jennifer; Kushner, P.; Lamarque, J.-F.; Large, William G.; Lawrence, David M.; Lindsay, Keith; Lipscomb, William; Long , Matthew; Mahowald, N.; Marsh, D.; Neale, Richard; Rasch, Philip J.; Vavrus, Steven J.; Vertenstein, Mariana; Bader, David C.; Collins, William D.; Hack, James; Kiehl, J. T.; Marshall, Shawn

    2013-09-30

    The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System Model, following the incorporation of new earth system capabilities. These include the ability to simulate biogeochemical cycles, atmospheric chemistry, ice sheets, and a high-top atmosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new predictive capabilities and increasing our collective knowledge about the behavior and interactions of the earth system. Simulations with numerous configurations of the CESM have been provided to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are being analyzed by the broader community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for earth system studies, making it a true community tool. Here we describe this earth modeling system, its various possible configurations, and illustrate its capabilities with a few science highlights.

  10. A Generalized Framework for Modeling Next Generation 911 Implementations.

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, Andjelka; Aamir, Munaf Syed; Kelic, Andjelka; Jrad, Ahmad M.; Mitchell, Roger

    2018-02-01

    This document summarizes the current state of Sandia 911 modeling capabilities and then addresses key aspects of Next Generation 911 (NG911) architectures for expansion of existing models. Analysis of three NG911 implementations was used to inform heuristics , associated key data requirements , and assumptions needed to capture NG911 architectures in the existing models . Modeling of NG911 necessitates careful consideration of its complexity and the diversity of implementations. Draft heuristics for constructing NG911 models are pres ented based on the analysis along with a summary of current challenges and ways to improve future NG911 modeling efforts . We found that NG911 relies on E nhanced 911 (E911) assets such as 911 selective routers to route calls originating from traditional tel ephony service which are a majority of 911 calls . We also found that the diversity and transitional nature of NG911 implementations necessitates significant and frequent data collection to ensure that adequate model s are available for crisis action support .

  11. A General Framework for Incorporating Stochastic Recovery in Structural Models of Credit Risk

    Directory of Open Access Journals (Sweden)

    Albert Cohen

    2017-12-01

    Full Text Available In this work, we introduce a general framework for incorporating stochastic recovery into structural models. The framework extends the approach to recovery modeling developed in Cohen and Costanzino (2015, 2017 and provides for a systematic way to include different recovery processes into a structural credit model. The key observation is a connection between the partial information gap between firm manager and the market that is captured via a distortion of the probability of default. This last feature is computed by what is essentially a Girsanov transformation and reflects untangling of the recovery process from the default probability. Our framework can be thought of as an extension of Ishizaka and Takaoka (2003 and, in the same spirit of their work, we provide several examples of the framework including bounded recovery and a jump-to-zero model. One of the nice features of our framework is that, given prices from any one-factor structural model, we provide a systematic way to compute corresponding prices with stochastic recovery. The framework also provides a way to analyze correlation between Probability of Default (PD and Loss Given Default (LGD, and term structure of recovery rates.

  12. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  13. Open Models of Decision Support Towards a Framework

    OpenAIRE

    Diasio, Stephen Ray

    2012-01-01

    Aquesta tesi presenta un marc per als models oberts de suport a les decisions en les organitzacions. El treball es vehicula a través d’un compendi d’articles on s’analitzen els fluxos d’entrada i de sortida de coneixement en les organitzacions, així como les tecnologies existents de suport a les decisions. Es presenten els factors subjacents que impulsen nous models per a formes obertes de suport a la decisió. La tesis presenta un estudi de les distintes tipologies de models de suport a les d...

  14. A parametric framework for modelling of bioelectrical signals

    CERN Document Server

    Mughal, Yar Muhammad

    2016-01-01

    This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move...

  15. The Model Vision Project: A Conceptual Framework for Service Delivery

    Science.gov (United States)

    Bourgeault, Stanley E.; And Others

    1977-01-01

    Described are the conceptualization, implementation, and results to date of the George Peabody College for Teachers Model Center for Severely Handicapped Multi-impaired Children with Visual Impairment as a Primary Handicapping Condition. (Author/IM)

  16. Model Adaptation for Prognostics in a Particle Filtering Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated....

  17. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    Science.gov (United States)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  18. An architectural decision modeling framework for service oriented architecture design

    OpenAIRE

    Zimmermann, Olaf

    2009-01-01

    In this thesis, we investigate whether reusable architectural decision models can support Service-Oriented Architecture (SOA) design. In the current state of the art, architectural decisions are captured ad hoc and retrospectively on projects; this is a labor-intensive undertaking without immediate benefits. On the contrary, we investigate the role reusable architectural decision models can play during SOA design: We treat recurring architectural decisions as first-class method elements and p...

  19. Design theoretic analysis of three system modeling frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  20. Model Adaptation for Prognostics in a Particle Filtering Framework

    Science.gov (United States)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  1. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  2. Preparatory planning framework for Created Out of Mind: Shaping perceptions of dementia through art and science [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Emilie Brotherhood

    2017-11-01

    Full Text Available Created Out of Mind is an interdisciplinary project, comprised of individuals from arts, social sciences, music, biomedical sciences, humanities and operational disciplines. Collaboratively we are working to shape perceptions of dementias through the arts and sciences, from a position within the Wellcome Collection. The Collection is a public building, above objects and archives, with a porous relationship between research, museum artefacts, and the public.  This pre-planning framework will act as an introduction to Created Out of Mind. The framework explains the rationale and aims of the project, outlines our focus for the project, and explores a number of challenges we have encountered by virtue of working in this way.

  3. Introducing a boreal wetland model within the Earth System model framework

    Science.gov (United States)

    Getzieh, R. J.; Brovkin, V.; Reick, C.; Kleinen, T.; Raddatz, T.; Raivonen, M.; Sevanto, S.

    2009-04-01

    Wetlands of the northern high latitudes with their low temperatures and waterlogged conditions are prerequisite for peat accumulation. They store at least 25% of the global soil organic carbon and constitute currently the largest natural source of methane. These boreal and subarctic peat carbon pools are sensitive to climate change since the ratio of carbon sequestration and emission is closely dependent on hydrology and temperature. Global biogeochemistry models used for simulations of CO2 dynamics in the past and future climates usually ignore changes in the peat storages. Our approach aims at the evaluation of the boreal wetland feedback to climate through the CO2 and CH4 fluxes on decadal to millennial time scales. A generic model of organic matter accumulation and decay in boreal wetlands is under development in the MPI for Meteorology in cooperation with the University of Helsinki. Our approach is to develop a wetland model which is consistent with the physical and biogeochemical components of the land surface module JSBACH as a part of the Earth System model framework ECHAM5-MPIOM-JSBACH. As prototypes, we use modelling approach by Frolking et al. (2001) for the peat dynamics and the wetland model by Wania (2007) for vegetation cover and plant productivity. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). First results of the modelling approach will be presented. References: Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie and S. D. Muller (2001): Modeling Northern Peatland Decomposition and Peat Accumulation, Ecosystems, 4, 479-498. Lehner, B., Döll P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296 (1-4), 1-22. Wania, R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, 122 pp.

  4. MoVES - A Framework for Modelling and Verifying Embedded Systems

    DEFF Research Database (Denmark)

    Brekling, Aske Wiid; Hansen, Michael Reichhardt; Madsen, Jan

    2009-01-01

    The MoVES framework is being developed to assist in the early phases of embedded systems design. A system is modelled as an application running on an execution platform. The application is modelled through the individual tasks, and the execution platform is modelled through the processing elements...... consumption. A simple specification language for embedded systems and a verification backend are presented. The framework has a modular, parameterized structure supporting easy extension and adaptation of the specification language as well as of the verification backend. We show, using a number of small...... examples, how MoVES can be used to model and analyze embedded systems....

  5. Generalized Gramian Framework for Model/Controller Order Reduction of Switched Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Wisniewski, Rafal

    2011-01-01

    In this article, a general method for model/controller order reduction of switched linear dynamical systems is presented. The proposed technique is based on the generalised gramian framework for model reduction. It is shown that different classical reduction methods can be developed into a genera......In this article, a general method for model/controller order reduction of switched linear dynamical systems is presented. The proposed technique is based on the generalised gramian framework for model reduction. It is shown that different classical reduction methods can be developed...

  6. Next Generation Framework for Aquatic Modeling of the Earth System (NextFrAMES)

    Science.gov (United States)

    Fekete, B. M.; Wollheim, W. M.; Lakhankar, T.; Vorosmarty, C. J.

    2008-12-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the surrounding IT infrastructure needed to carry out these detailed model computations is growing increasingly complex as well. To be accurate and useful, Earth System models must manage a vast amount of data in heterogenous computing environments ranging from single CPU systems to Beowulf type computer clusters. Scientists developing Earth System models increasingly confront obstacles associated with IT infrastructure. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. Over the course of the last fifteen years ,the University of New Hampshire developed several modeling frameworks independently from the above-mentioned efforts (Data Assembler, Frameworks for Aquatic Modeling of the Earth System and NextFrAMES which is continued at CCNY). While the UNH modeling frameworks have numerous similarities to those developed by other teams, these frameworks, in particular the latest NextFrAMES, represent a novel model development paradigm. While other modeling frameworks focus on providing services to modelers to perform various tasks, NextFrAMES strives to hide all of those services and provide a new approach for modelers to express their scientific thoughts. From a scientific perspective, most models have two core elements: the overall model structure (defining the linkages between the simulated processes

  7. A framework for modelling the complexities of food and water security under globalisation

    Science.gov (United States)

    Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.

    2018-01-01

    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  8. framework for modelling the complexities of food and water security under globalisation

    Directory of Open Access Journals (Sweden)

    B. J. Dermody

    2018-01-01

    Full Text Available We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  9. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework

    OpenAIRE

    Hofner, Benjamin; Mayr, Andreas; Schmid, Matthias

    2014-01-01

    Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we...

  10. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.L. [California State Univ., Sacramento, CA (United States); Pollock, K.H. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  11. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    International Nuclear Information System (INIS)

    Morrison, M.L.; Pollock, K.H.

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds

  12. Towards a framework for deriving platform-independent model-driven software product lines

    Directory of Open Access Journals (Sweden)

    Andrés Paz

    2013-05-01

    Full Text Available Model-driven software product lines (MD-SPLs are created from domain models which are transformed, merged and composed with reusable core assets, until software products are produced. Model transformation chains (MTCs must be specified to generate such MD-SPLs. This paper presents a framework for creating platform-independent MD-SPLs; such framework includes a domain specific language (DSL for platform-independent MTC specification and facilities platform-specific MTC generation of several of the most used model transformation frameworks. The DSL also allows product line architects to compose generation taking the need for model transformation strategy and technology interoperability into account and specifying several types of variability involved in such generation.

  13. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  14. Surgical model-view-controller simulation software framework for local and collaborative applications.

    Science.gov (United States)

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  15. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  16. A CONCEPTUAL FRAMEWORK FOR SUSTAINABLE POULTRY SUPPLY CHAIN MODEL

    Directory of Open Access Journals (Sweden)

    Mohammad SHAMSUDDOHA

    2013-12-01

    Full Text Available Now a day, sustainable supply chain is the crucially considerable matter for future focused industries. As a result, attention in supply chain management has increasingly amplified since the 1980s when firms discovered its benefits of mutual relationships within and beyond their own organization. This is why, concern researchers are trying hard to develop new theory or model which might help the corporate sector for achieving sustainability in their supply chains. This kind of reflection can be seen by the number of papers published and in particular by journal since 1980. The objectives of this paper are twofold. First, it offers a literature review on sustainable supply chain management taking papers published in last three decades. Second, it offers a conceptual sustainable supply chain process model in light of triple bottom line theory. The model has been developed by taking in-depth interview of an entrepreneur from a Poultry case industry in Bangladesh.

  17. Magnetically charged black hole in framework of nonlinear electrodynamics model

    Science.gov (United States)

    Kruglov, S. I.

    2018-01-01

    A model of nonlinear electrodynamics is proposed and investigated in general relativity. We consider the magnetic black hole and find a regular solution which gives corrections into the Reissner-Nordström solution. At r →∞ the asymptotic space-time becomes flat. The magnetic mass of the black hole is calculated and the metric function is obtained. At some values of the model parameter there can be one, two or no horizons. Thermodynamics of black holes is studied and we calculate the Hawking temperature and heat capacity of black holes. It is demonstrated that there is a phase transition of second order. At some parameters of the model black holes are thermodynamically stable.

  18. Stochastic programming framework for Lithuanian pension payout modelling

    Directory of Open Access Journals (Sweden)

    Audrius Kabašinskas

    2014-12-01

    Full Text Available The paper provides a scientific approach to the problem of selecting a pension fund by taking into account some specific characteristics of the Lithuanian Republic (LR pension accumulation system. The decision making model, which can be used to plan a long-term pension accrual of the Lithuanian Republic (LR citizens, in an optimal way is presented. This model focuses on factors that influence the sustainability of the pension system selection under macroeconomic, social and demographic uncertainty. The model is formalized as a single stage stochastic optimization problem where the long-term optimal strategy can be obtained based on the possible scenarios generated for a particular participant. Stochastic programming methods allow including the pension fund rebalancing moment and direction of investment, and taking into account possible changes of personal income, changes of society and the global financial market. The collection of methods used to generate scenario trees was found useful to solve strategic planning problems.

  19. Development of an integrated risk assessment framework for internal/external events and all power models

    International Nuclear Information System (INIS)

    Yang, Joon Eon

    2012-01-01

    From the PSA point of view, the Fukushima accident of Japan in 2011 reveals some issues to be re-considered and/or improved in the PSA such as the limited scope of the PSA, site risk, etc. KAERI (Korea Atomic Energy Research Institute) has performed researches on the development of an integrated risk assessment framework related to some issues arisen after the Fukushima accident. This framework can cover the internal PSA model and external PSA models (fire, flooding, and seismic PSA models) in the full power and the low power-shutdown modes. This framework also integrates level 1, 2 and 3 PSA to quantify the risk of nuclear facilities more efficiently and consistently. We expect that this framework will be helpful to resolve the issue regarding the limited scope of PSA and to reduce some inconsistencies that might exist between (1) the internal and external PSA, and (2) full power mode PSA and low power-shutdown PSA models. In addition, KAERI is starting researches related to the extreme external events, the risk assessment of spent fuel pool, and the site risk. These emerging issues will be incorporated into the integrated risk assessment framework. In this paper the integrated risk assessment framework and the research activities on the emerging issues are outlined.

  20. Using social capital to construct a conceptual International Classification of Functioning, Disability, and Health Children and Youth version-based framework for stronger inclusive education policies in Europe.

    Science.gov (United States)

    Maxwell, Gregor; Koutsogeorgou, Eleni

    2012-02-01

    Inclusive education is part of social inclusion; therefore, social capital can be linked to an inclusive education policy and practice. This association is explored in this article, and a practical measure is proposed. Specifically, the World Health Organization's International Classification of Functioning, Disability and Health Children and Youth Version (ICF-CY) is proposed as the link between social capital and inclusive education. By mapping participation and trust indicators of social capital to the ICF-CY and by using the Matrix to Analyse Functioning in Education Systems (MAFES) to analyze the functioning of inclusive education policies and systems, a measure for stronger inclusive education policies is proposed. Such a tool can be used for policy planning and monitoring to ensure better inclusive education environments. In conclusion, combining enhanced social capital linked to stronger inclusive education policies, by using the ICF-CY, can lead to better health and well-being for all.

  1. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    the rotational stiffness of a connection. Based on a modelling of any beam-to-column joint using finite shell elements and springs for single components such as bolts, it is the primary hypothesis that it is possible to formulate a generalized connection model with few degrees of freedom related to a relevant...... set of deformation modes. This hypothesis is based on the idea of modal decomposition performed in generalized beam theories (GBT). The question is – is it possible to formulate an eigenvalue problem with a solution corresponding to mode shapes for the deformation of the joint by using the finite...

  2. Recent extensions and use of the statistical model code EMPIRE-II - version: 2.17 Millesimo

    International Nuclear Information System (INIS)

    Herman, M.

    2003-01-01

    This lecture notes describe new features of the modular code EMPIRE-2.17 designed to perform comprehensive calculations of nuclear reactions using variety of nuclear reaction models. Compared to the version 2.13, the current release has been extended by including Coupled-Channel mechanism, exciton model, Monte Carlo approach to preequilibrium emission, use of microscopic level densities, widths fluctuation correction, detailed calculation of the recoil spectra, and powerful plotting capabilities provided by the ZVView package. The second part of this lecture concentrates on the use of the code in practical calculations, with emphasis on the aspects relevant to nuclear data evaluation. In particular, adjusting model parameters is discussed in details. (author)

  3. A modeling framework for life history-based conservation planning

    Science.gov (United States)

    Eileen S. Burns; Sandor F. Toth; Robert G. Haight

    2013-01-01

    Reserve site selection models can be enhanced by including habitat conditions that populations need for food, shelter, and reproduction. We present a new population protection function that determines whether minimum areas of land with desired habitat features are present within the desired spatial conditions in the protected sites. Embedding the protection function as...

  4. A conceptual framework for a mentoring model for nurse educators ...

    African Journals Online (AJOL)

    Transformation in South Africa resulted in changes in the mandate of Higher Education Institutions (HEIs). Therefore, the need to design a mentoring model for recruiting and retaining nurse educators to meet the demands of teaching and learning became evident. The aim of the study was to develop a conceptual ...

  5. Development of a distributed air pollutant dry deposition modeling framework

    Science.gov (United States)

    Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak

    2012-01-01

    A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...

  6. A Framework for Modelling Connective Tissue Changes in VIIP Syndrome

    Science.gov (United States)

    Ethier, C. R.; Best, L.; Gleason, R.; Mulugeta, L.; Myers, J. G.; Nelson, E. S.; Samuels, B. C.

    2014-01-01

    Insertion of astronauts into microgravity induces a cascade of physiological adaptations, notably including a cephalad fluid shift. Longer-duration flights carry an increased risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. The slow onset of changes in VIIP, their chronic nature, and the similarity of certain clinical features of VIIP to ophthalmic findings in patients with raised intracranial pressure strongly suggest that: (i) biomechanical factors play a role in VIIP, and (ii) connective tissue remodeling must be accounted for if we wish to understand the pathology of VIIP. Our goal is to elucidate the pathophysiology of VIIP and suggest countermeasures based on biomechanical modeling of ocular tissues, suitably informed by experimental data, and followed by validation and verification. We specifically seek to understand the quasi-homeostatic state that evolves over weeks to months in space, during which ocular tissue remodeling occurs. This effort is informed by three bodies of work: (i) modeling of cephalad fluid shifts; (ii) modeling of ophthalmic tissue biomechanics in glaucoma; and (iii) modeling of connective tissue changes in response to biomechanical loading.

  7. A Framework for the Modelling of Biphasic Reacting Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sin, Gürkan; O’Connell, John P.

    2014-01-01

    Biphasic reacting systems have a broad application range from organic reactions in pharmaceutical and agro-bio industries to CO 2 capture. However, mathematical modelling of biphasic reacting systems is a formidable challenge due to many phenomena underlying the process such as chemical equilibrium...

  8. Multi-Fidelity Framework for Modeling Combustion Instability

    Science.gov (United States)

    2016-07-27

    Modeling Combustion Instability Cheng Huang*, William E. Anderson†, Charles L. Merkle‡ Purdue University, West Lafayette, IN, 47907 and...with density fluctuations," Physics of Fluids Vol. 9, No. 7, 1997, p. 2023. 11. Graham, W. R., Peraire, J., and Tang , K. Y. "Optmail Control of

  9. Technical note: River modelling to infer flood management framework

    African Journals Online (AJOL)

    River hydraulic models have successfully identified the weaknesses and areas for improvement with respect to flooding in the Sarawak River system, and can also be used to support decisions on flood management measures. Often, the big question is 'how'. This paper demonstrates a theoretical flood management ...

  10. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...

  11. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1

    Directory of Open Access Journals (Sweden)

    A. Quiquet

    2018-02-01

    Full Text Available This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km  ×  40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  12. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier

    2018-02-01

    This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  13. A framework for product analysis: Modelling and design of release and uptake of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Munir, Ahsan; Gani, Rafiqul

    2005-01-01

    This paper presents a framework for chemical product (pesticide) design and analysis. The framework consists of a set of computer-aided methods and tools that have been integrated to tackle the needs with respect to solution of chemical product design problems related to pesticide formulations. Two...... of the mathematical models (controlled release and pesticide uptake) that provide the principal calculation options are highlighted together with selected results from case studies....

  14. An Overview of Quality Frameworks in Model-Driven Engineering and Observations on Transformation Quality

    OpenAIRE

    Dehlen, Vegard

    2007-01-01

    Quality is often defined as fitness for purpose which is the key property to determine when evaluating quality. This paper presents some general requirements for evaluating quality frameworks. It also discusses characteristics of MDE that are important when building a quality framework, such as its use of models in several stages of development and maintenance, and its multi-abstraction level approach that requires consistency and traceability. MDE should strive for engineering of quality int...

  15. A business case modelling framework for smart multi-energy districts

    OpenAIRE

    Good, Nicholas; Martinez Cesena, Eduardo Alejandro; Liu, Xuezhi; Mancarella, Pierluigi

    2017-01-01

    The potential energy, environmental, technical and economic benefits that might arise from multi-energy systems are increasing interest in smart districts. However, in a liberalised market, it is essential to develop a relevant attractive business case. This paper presents a holistic techno-economic framework that couples building/district, multi-network and business case assessment models for the development of robust business cases for smart multi-energy districts. The framework is demonstr...

  16. Modelling Security Requirements Through Extending Scrum Agile Development Framework

    OpenAIRE

    Alotaibi, Minahi

    2016-01-01

    Security is today considered as a basic foundation in software development and therefore, the modelling and implementation of security requirements is an essential part of the production of secure software systems. Information technology organisations are moving towards agile development methods in order to satisfy customers' changing requirements in light of accelerated evolution and time restrictions with their competitors in software production. Security engineering is considered difficult...

  17. Multiple mortality modeling in Poisson Lee-Carter framework

    OpenAIRE

    D'Amato, V.; Haberman, S.; Piscopo, G.; Russolillo, M.; Trapani, L.

    2016-01-01

    The academic literature in longevity field has recently focused on models for detecting multiple population trends (D'Amato et al., 2012b; Njenga and Sherris, 2011; Russolillo et al., 2011, etc.). In particular, increasing interest has been shown about "related" population dynamics or "parent" populations characterized by similar socioeconomic conditions and eventually also by geographical proximity. These studies suggest dependence across multiple populations and common long-run relationship...

  18. The Residual Value Models: A Framework for Business Administration

    OpenAIRE

    Konstantinos J. Liapis

    2010-01-01

    This article investigates the relationship between a firm’s performance and Residual Value Models (RVM) which serve as decision making tools in corporate management. The main measures are the Economic Value Added (EVA®) and Cash Value Added (CVA®), with key components the Residual Income (RI), Free Cash Flow (FCF) and Weighted Average Cost of Capital (WACC). These measures have attracted considerable interest among scientists, practitioners and organizations in recent years. This work focuses...

  19. Revised Technology Acceptance Model Framework for M-Commerce Adoption

    OpenAIRE

    Manish Gupta

    2017-01-01

    Following the E-Commerce era, M-Commerce is the next big phase in the technology involvement and advancement. This paper intends to explore how Indian consumers are influenced to adopt the M-commerce. In this paper, the revised Technology Acceptance Model (TAM) has been presented on the basis of the most dominant factors that affect the adoption of M-Commerce in Indian scenario. Furthermore, an analytical questionnaire approach was carried out to collect data from Indian consumers. These coll...

  20. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....