WorldWideScience

Sample records for modeling framework electronic

  1. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  2. A New Perspective for Modeling Power Electronics Converters : Complementarity Framework

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto

    2009-01-01

    The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are

  3. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    Science.gov (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  4. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    Science.gov (United States)

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  5. Software Development Framework For Electronic Land Titles ...

    African Journals Online (AJOL)

    Software Development Framework For Electronic Land Titles Records Administration System. ... Record keeping is a fundamental activity of public administration. ... keeping system to a more reliable and decentralized information system, meant to improve reporting to stakeholders in Land Titles records administration.

  6. Software Frameworks for Model Composition

    Directory of Open Access Journals (Sweden)

    Mikel D. Petty

    2014-01-01

    Full Text Available A software framework is an architecture or infrastructure intended to enable the integration and interoperation of software components. Specialized types of software frameworks are those specifically intended to support the composition of models or other components within a simulation system. Such frameworks are intended to simplify the process of assembling a complex model or simulation system from simpler component models as well as to promote the reuse of the component models. Several different types of software frameworks for model composition have been designed and implemented; those types include common library, product line architecture, interoperability protocol, object model, formal, and integrative environment. The various framework types have different components, processes for composing models, and intended applications. In this survey the fundamental terms and concepts of software frameworks for model composition are presented, the different types of such frameworks are explained and compared, and important examples of each type are described.

  7. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  8. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  9. CMAQ Model Evaluation Framework

    Science.gov (United States)

    CMAQ is tested to establish the modeling system’s credibility in predicting pollutants such as ozone and particulate matter. Evaluation of CMAQ has been designed to assess the model’s performance for specific time periods and for specific uses.

  10. Computer-Aided Modeling Framework

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    . In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...... with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene, and, for the performance evaluation of an atomizer product. In the first case study, the reactor type is where the reactions are thermodynamically limited......, such as, steam reforming and the production of olefins from inexpensive paraffins via dehydrogenation. The generated process model is based on Fickian diffusion model, which is the most widely used to account for the intraparticle mass transfer resistance. The model of the process can help to predict...

  11. Stationary Electron Atomic Model

    Science.gov (United States)

    Pressler, David E.

    1998-04-01

    I will present a novel theory concerning the position and nature of the electron inside the atom. This new concept is consistant with present experimental evidence and adheres strictly to the valence-shell electron-pair repulsion (VSEPR) model presently used in chemistry for predicting the shapes of molecules and ions. In addition, I will discuss the atomic model concept as being a true harmonic oscillator, periodic motion at resonant frequency which produces radiation at discrete frequencies or line spectra is possible because the electron is under the action of two restoring forces, electrostatic attraction and superconducting respulsion of the electron's magnetic field by the nucleus.

  12. Examining Electronic Learning Communities through the Communities of Practice Framework

    Science.gov (United States)

    Linton, Jayme N.

    2015-01-01

    This qualitative interpretive case study used Wenger's (1998) communities of practice (CoP) framework to analyze how the electronic learning community (eLC) process at an established state virtual high school operated like a community of practice. Components of the eLC process were analyzed according to elements of the CoP framework, which…

  13. Frameworks for understanding and describing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian; Roslender, Robin

    2014-01-01

    This chapter provides in a chronological fashion an introduction to six frameworks that one can apply to describing, understanding and also potentially innovating business models. These six frameworks have been chosen carefully as they represent six very different perspectives on business models ...... Maps (2001) • Intellectual Capital Statements (2003) • Chesbrough’s framework for Open Business Models (2006) • Business Model Canvas (2008)...

  14. A Unified Framework for Systematic Model Improvement

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A unified framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation (SDE) modelling, statistical tests and multivariate nonparametric regression...

  15. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  16. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  17. A New Simulation Framework for the Electron-Ion Collider

    Science.gov (United States)

    Arrington, John

    2017-09-01

    Last year, a collaboration between Physics Division and High-Energy Physics at Argonne was formed to enable significantly broader contributions to the development of the Electron-Ion Collider. This includes efforts in accelerator R&D, theory, simulations, and detector R&D. I will give a brief overview of the status of these efforts, with emphasis on the aspects aimed at enabling the community to more easily become involved in evaluation of physics, detectors, and details of spectrometer designs. We have put together a new, easy-to-use simulation framework using flexible software tools. The goal is to enable detailed simulations to evaluate detector performance and compare detector designs. In addition, a common framework capable of providing detailed simulations of different spectrometer designs will allow for fully consistent evaluations of the physics reach of different spectrometer designs or detector systems for a variety of physics channels. In addition, new theory efforts will provide self-consistent models of GPDs (including QCD evolution) and TMDs in nucleons and light nuclei, as well as providing more detailed physics input for the evaluation of some new observables. This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  18. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  19. An Open Architecture Framework for Electronic Warfare Based Approach to HLA Federate Development

    Directory of Open Access Journals (Sweden)

    HyunSeo Kang

    2018-01-01

    Full Text Available A variety of electronic warfare models are developed in the Electronic Warfare Research Center. An Open Architecture Framework for Electronic Warfare (OAFEw has been developed for reusability of various object models participating in the electronic warfare simulation and for extensibility of the electronic warfare simulator. OAFEw is a kind of component-based software (SW lifecycle management support framework. This OAFEw is defined by six components and ten rules. The purpose of this study is to construct a Distributed Simulation Interface Model, according to the rules of OAFEw, and create Use Case Model of OAFEw Reference Conceptual Model version 1.0. This is embodied in the OAFEw-FOM (Federate Object Model for High-Level Architecture (HLA based distributed simulation. Therefore, we design and implement EW real-time distributed simulation that can work with a model in C++ and MATLAB API (Application Programming Interface. In addition, OAFEw-FOM, electronic component model, and scenario of the electronic warfare domain were designed through simple scenarios for verification, and real-time distributed simulation between C++ and MATLAB was performed through OAFEw-Distributed Simulation Interface.

  20. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... Home; Journals; Journal of Biosciences; Volume 32; Issue 5. Cytoview: Development of a cell modelling framework ... The framework serves as a first step in integrating different levels of data available for a biological cell and has the potential to lead to development of computational models in our pursuit to ...

  1. Electronic health record standards, coding systems, frameworks, and infrastructures

    CERN Document Server

    Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya

    2013-01-01

    Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an

  2. A framework for sustainable interorganizational business model

    OpenAIRE

    Neupane, Ganesh Prasad; Haugland, Sven A.

    2016-01-01

    Drawing on literature on business model innovations and sustainability, this paper develops a framework for sustainable interorganizational business models. The aim of the framework is to enhance the sustainability of firms’ business models by enabling firms to create future value by taking into account environmental, social and economic factors. The paper discusses two themes: (1) application of the term sustainability to business model innovation, and (2) implications of integrating sustain...

  3. Crystallization Kinetics within a Generic Modeling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.

    2014-01-01

    of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages...

  4. A simulation framework for the CMS Track Trigger electronics

    CERN Document Server

    Amstutz, Christian; Weber, Marc; Palla, Fabrizio

    2014-01-01

    A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows \\mbox{co-simulation} with models developed in Hardware Description Languages, e.g.~VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.

  5. A useful framework for optimal replacement models

    International Nuclear Information System (INIS)

    Aven, Terje; Dekker, Rommert

    1997-01-01

    In this note we present a general framework for optimization of replacement times. It covers a number of models, including various age and block replacement models, and allows a uniform analysis for all these models. A relation to the marginal cost concept is described

  6. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2013-01-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)

  7. Graphical Model Debugger Framework for Embedded Systems

    DEFF Research Database (Denmark)

    Zeng, Kebin

    2010-01-01

    Model Driven Software Development has offered a faster way to design and implement embedded real-time software by moving the design to a model level, and by transforming models to code. However, the testing of embedded systems has remained at the code level. This paper presents a Graphical Model...... Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...... and check the running status of the system, which offers a debugging capability on a higher level of abstraction. The framework intends to contribute a tool to the Eclipse society, especially suitable for model-driven development of embedded systems....

  8. A new kernel discriminant analysis framework for electronic nose recognition

    International Nuclear Information System (INIS)

    Zhang, Lei; Tian, Feng-Chun

    2014-01-01

    Graphical abstract: - Highlights: • This paper proposes a new discriminant analysis framework for feature extraction and recognition. • The principle of the proposed NDA is derived mathematically. • The NDA framework is coupled with kernel PCA for classification. • The proposed KNDA is compared with state of the art e-Nose recognition methods. • The proposed KNDA shows the best performance in e-Nose experiments. - Abstract: Electronic nose (e-Nose) technology based on metal oxide semiconductor gas sensor array is widely studied for detection of gas components. This paper proposes a new discriminant analysis framework (NDA) for dimension reduction and e-Nose recognition. In a NDA, the between-class and the within-class Laplacian scatter matrix are designed from sample to sample, respectively, to characterize the between-class separability and the within-class compactness by seeking for discriminant matrix to simultaneously maximize the between-class Laplacian scatter and minimize the within-class Laplacian scatter. In terms of the linear separability in high dimensional kernel mapping space and the dimension reduction of principal component analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components by an e-Nose. The NDA framework is derived in this paper as well as the specific implementations of the proposed KNDA method in training and recognition process. The KNDA is examined on the e-Nose datasets of six kinds of gas components, and compared with state of the art e-Nose classification methods. Experimental results demonstrate that the proposed KNDA method shows the best performance with average recognition rate and total recognition rate as 94.14% and 95.06% which leads to a promising feature extraction and multi-class recognition in e-Nose

  9. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  10. Calibration in a Bayesian modelling framework

    NARCIS (Netherlands)

    Jansen, M.J.W.; Hagenaars, T.H.J.

    2004-01-01

    Bayesian statistics may constitute the core of a consistent and comprehensive framework for the statistical aspects of modelling complex processes that involve many parameters whose values are derived from many sources. Bayesian statistics holds great promises for model calibration, provides the

  11. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... Here we report a framework to model various aspects of a cell and integrate knowledge encoded at different levels of abstraction, with cell morphologies at one end to atomic structures at the other. The different issues that have been addressed are ontologies, feature description and model building.

  12. Designing a framework for a unified electronic identity system ...

    African Journals Online (AJOL)

    In this paper, a Unified Identity System is proposed where single electronic identity (eID) is issued that can be used across the various platforms of business transaction. The activity/state diagram of the model is presented, and the means of authentication is based on the Secure Assertion Markup Language (SAML) ...

  13. Computer-aided modeling framework – a generic modeling template

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    This work focuses on the development of a computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured on workflows for different modeling tasks. The overall objective is to support model developers and users to generate ....... The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene...

  14. Consensus Statement on Electronic Health Predictive Analytics: A Guiding Framework to Address Challenges.

    Science.gov (United States)

    Amarasingham, Ruben; Audet, Anne-Marie J; Bates, David W; Glenn Cohen, I; Entwistle, Martin; Escobar, G J; Liu, Vincent; Etheredge, Lynn; Lo, Bernard; Ohno-Machado, Lucila; Ram, Sudha; Saria, Suchi; Schilling, Lisa M; Shahi, Anand; Stewart, Walter F; Steyerberg, Ewout W; Xie, Bin

    2016-01-01

    The recent explosion in available electronic health record (EHR) data is motivating a rapid expansion of electronic health care predictive analytic (e-HPA) applications, defined as the use of electronic algorithms that forecast clinical events in real time with the intent to improve patient outcomes and reduce costs. There is an urgent need for a systematic framework to guide the development and application of e-HPA to ensure that the field develops in a scientifically sound, ethical, and efficient manner. Building upon earlier frameworks of model development and utilization, we identify the emerging opportunities and challenges of e-HPA, propose a framework that enables us to realize these opportunities, address these challenges, and motivate e-HPA stakeholders to both adopt and continuously refine the framework as the applications of e-HPA emerge. To achieve these objectives, 17 experts with diverse expertise including methodology, ethics, legal, regulation, and health care delivery systems were assembled to identify emerging opportunities and challenges of e-HPA and to propose a framework to guide the development and application of e-HPA. The framework proposed by the panel includes three key domains where e-HPA differs qualitatively from earlier generations of models and algorithms (Data Barriers, Transparency, and ETHICS) and areas where current frameworks are insufficient to address the emerging opportunities and challenges of e-HPA (Regulation and Certification; and Education and Training). The following list of recommendations summarizes the key points of the framework: Data Barriers: Establish mechanisms within the scientific community to support data sharing for predictive model development and testing.Transparency: Set standards around e-HPA validation based on principles of scientific transparency and reproducibility. Develop both individual-centered and society-centered risk-benefit approaches to evaluate e-HPA.Regulation and Certification: Construct a

  15. Business Model Concept: An Integrative Framework Proposal

    Directory of Open Access Journals (Sweden)

    Marko Peric

    2017-09-01

    Full Text Available Every firm employs a particular business model seeking competitive advantage. However, this pursuit is difficult, and sometimes unsuccessful. The reasons for failure should be sought in the managers’ lack of understanding of their organisations’ business models, their unique building blocks, and the potential that they have. To help managers better understand business models, this paper reviews the extant literature and identifies the elements of business models cited therein. Further, considering the new needs on the changing markets and the prevailing search for sustainability beyond profit, this paper portrays essential business model elements in an integrated framework. An updated generic business model framework consists of four primary categories, namely, value proposition, value capture, value creation, and value network, and could be useful for a variety of organisations, profit and non-profit, with various mission and vision orientations and interaction with the environment.

  16. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way...... to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model...... checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems....

  17. Official dosimetry with personal electronic dosemeters - The framework in Germany

    International Nuclear Information System (INIS)

    Czarwinski, R.; Kaulard, J.; Pfeffer, W.

    2007-01-01

    In Germany, personal electronic dosemeters (AEPDs) are presently applied mainly for operational radiation protection monitoring particularly in nuclear power engineering companies, large hospitals and research centres. This is done in addition to the official dosimetry of record. Therefore, frequently, double monitoring occurs - officially and operationally. A crucial advantage of AEPDs compared with passive dosemeters is the ability to adapt the monitoring period to the working time in controlled areas and to allow an immediate readout of the dose after leaving the controlled area, e.g. a job-related monitoring is possible by correlating the readout dose with the job performed. Germany started a general research project, consisting of two parts, for an optimised implementation of personal electronic dosemeters into official dosimetry. The use of AEPDs as official dosemeters depends on an approval by Federal and Federal State ('Laender') authorities as an official dosimetry system, which has to comply with special requirements ensuring that the legal requirements are fulfilled. The formulation of these special requirements is in the focus of part one of the research project, supervised by the Federal Office for Radiation Protection (BfS) and performed by the Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) mbH. As a result of part one, a framework was developed which is the basis for a future technical implementation project. Part one is described in the paper, while part two is still to be initiated and will deal with the implementation and testing phase of the introduction of personal electronic dosemeters as official dosemeters. (authors)

  18. Spatial Modeling for Resources Framework (SMRF)

    Science.gov (United States)

    Spatial Modeling for Resources Framework (SMRF) was developed by Dr. Scott Havens at the USDA Agricultural Research Service (ARS) in Boise, ID. SMRF was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed. SMRF was developed...

  19. An Extensible Model and Analysis Framework

    Science.gov (United States)

    2010-11-01

    of a pre-existing, open-source modeling and analysis framework known as Ptolemy II (http://ptolemy.org). The University of California, Berkeley...worked with the Air Force Research Laboratory, Rome Research Site on adapting Ptolemy II for modeling and simulation of large scale dynamics of Political...capabilities were prototyped in Ptolemy II and delivered via version control and software releases. Each of these capabilities specifically supports one or

  20. A framework for API solubility modelling

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Crafts, Peter

    The solubility of solid organic compounds in water and organic solvents is a fundamental thermodynamic property for many purposes such as product-process design and optimization, for the chemical and pharmaceutical industry. Experimental literature solubility data are usually scarce and temperature......-dependent measurements are expensive in terms of time and resources. The few available data are badly organized and difficult to use for fast solubility calculations and solvent screening. Available models often require time consuming and complex implementation together with a good user expertise for their efficient use....... In addition, most of the models are not predictive and requires experimental data for the calculation of the needed parameters. This work aims at developing an efficient framework for the solubility modelling of Active Pharmaceutical Ingredients (API) in water and organic solvents. With this framework...

  1. A framework for benchmarking land models

    Directory of Open Access Journals (Sweden)

    Y. Q. Luo

    2012-10-01

    Full Text Available Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1 targeted aspects of model performance to be evaluated, (2 a set of benchmarks as defined references to test model performance, (3 metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4 model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1 a priori thresholds of acceptable model performance and (2 a scoring system to combine data–model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties

  2. Analysis of operating model of electronic invoice colombian Colombian electronic billing analysis of the operational model

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto da Silva

    2016-06-01

    Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.

  3. Environmental Modeling Framework using Stacked Gaussian Processes

    OpenAIRE

    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel

    2016-01-01

    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  4. An automated framework for QSAR model building.

    Science.gov (United States)

    Kausar, Samina; Falcao, Andre O

    2018-01-16

    In-silico quantitative structure-activity relationship (QSAR) models based tools are widely used to screen huge databases of compounds in order to determine the biological properties of chemical molecules based on their chemical structure. With the passage of time, the exponentially growing amount of synthesized and known chemicals data demands computationally efficient automated QSAR modeling tools, available to researchers that may lack extensive knowledge of machine learning modeling. Thus, a fully automated and advanced modeling platform can be an important addition to the QSAR community. In the presented workflow the process from data preparation to model building and validation has been completely automated. The most critical modeling tasks (data curation, data set characteristics evaluation, variable selection and validation) that largely influence the performance of QSAR models were focused. It is also included the ability to quickly evaluate the feasibility of a given data set to be modeled. The developed framework is tested on data sets of thirty different problems. The best-optimized feature selection methodology in the developed workflow is able to remove 62-99% of all redundant data. On average, about 19% of the prediction error was reduced by using feature selection producing an increase of 49% in the percentage of variance explained (PVE) compared to models without feature selection. Selecting only the models with a modelability score above 0.6, average PVE scores were 0.71. A strong correlation was verified between the modelability scores and the PVE of the models produced with variable selection. We developed an extendable and highly customizable fully automated QSAR modeling framework. This designed workflow does not require any advanced parameterization nor depends on users decisions or expertise in machine learning/programming. With just a given target or problem, the workflow follows an unbiased standard protocol to develop reliable QSAR models

  5. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  6. Revisioning Theoretical Framework of Electronic Performance Support Systems (EPSS within the Software Application Examples

    Directory of Open Access Journals (Sweden)

    Dr. Servet BAYRAM,

    2004-04-01

    Full Text Available Revisioning Theoretical Framework of Electronic Performance Support Systems (EPSS within the Software Application Examples Assoc. Prof. Dr. Servet BAYRAM Computer Education & Instructional Technologies Marmara University , TURKEY ABSTRACT EPSS provides electronic support to learners in achieving a performance objective; a feature which makes it universally and consistently available on demand any time, any place, regardless of situation, without unnecessary intermediaries involved in the process. The aim of this review is to develop a set of theoretical construct that provide descriptive power for explanation of EPSS and its roots and features within the software application examples (i.e., Microsoft SharePoint Server”v2.0” Beta 2, IBM Lotus Notes 6 & Domino 6, Oracle 9i Collaboration Suite, and Mac OS X v10.2. From the educational and training point of view, the paper visualizes a pentagon model for the interrelated domains of the theoretical framework of EPSS. These domains are: learning theories, information processing theories, developmental theories, instructional theories, and acceptance theories. This descriptive framework explains a set of descriptions as to which outcomes occur under given theoretical conditions for a given EPSS model within software examples. It summarizes some of the theoretical concepts supporting to the EPSS’ related features and explains how such concepts sharing same features with the example software programs in education and job training.

  7. MDM: A Mode Diagram Modeling Framework

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2012-12-01

    Full Text Available Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems.

  8. Modeling Incoherent Electron Cloud Effects

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-01-01

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed

  9. A Framework for the Multi-Level Fusion of Electronic Nose and Electronic Tongue for Tea Quality Assessment

    Directory of Open Access Journals (Sweden)

    Ruicong Zhi

    2017-05-01

    Full Text Available Electronic nose (E-nose and electronic tongue (E-tongue can mimic the sensory perception of human smell and taste, and they are widely applied in tea quality evaluation by utilizing the fingerprints of response signals representing the overall information of tea samples. The intrinsic part of human perception is the fusion of sensors, as more information is provided comparing to the information from a single sensory organ. In this study, a framework for a multi-level fusion strategy of electronic nose and electronic tongue was proposed to enhance the tea quality prediction accuracies, by simultaneously modeling feature fusion and decision fusion. The procedure included feature-level fusion (fuse the time-domain based feature and frequency-domain based feature and decision-level fusion (D-S evidence to combine the classification results from multiple classifiers. The experiments were conducted on tea samples collected from various tea providers with four grades. The large quantity made the quality assessment task very difficult, and the experimental results showed much better classification ability for the multi-level fusion system. The proposed algorithm could better represent the overall characteristics of tea samples for both odor and taste.

  10. A Framework for Global Electronic Commerce: An Executive Summary.

    Science.gov (United States)

    Office of the Press Secretary of the White House

    1997-01-01

    An abbreviated version of a longer policy document on electronic commerce released by the Clinton Administration, this article examines principles and recommendations on tariffs, taxes, electronic payment systems, uniform commercial code for electronic commerce, intellectual property protection, privacy, security, telecommunications infrastructure…

  11. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  12. Ontological modeling of electronic health information exchange.

    Science.gov (United States)

    McMurray, J; Zhu, L; McKillop, I; Chen, H

    2015-08-01

    Investments of resources to purposively improve the movement of information between health system providers are currently made with imperfect information. No inventories of system-level electronic health information flows currently exist, nor do measures of inter-organizational electronic information exchange. Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework, we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. The ontology was populated with data from a regional health system and the flows were measured. Individual instance's properties were inferred from their class associations as determined by their data and object property rules. It was also possible to visualize interoperability activity for regional analysis and planning purposes. A property called Impact was created from the total number of patients or clients that a health entity in the region served in a year, and the total number of health service providers or organizations with whom it exchanged information in support of clinical decision-making, diagnosis or treatment. Identifying providers with a high Impact but low Interoperability score could assist planners and policy-makers to optimize technology investments intended to electronically share patient information across the continuum of care. Finally, we demonstrated how linked ontologies were used to identify logical inconsistencies in self-reported data for the study. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Implementing change in primary care practices using electronic medical records: a conceptual framework

    Directory of Open Access Journals (Sweden)

    Stuart Gail W

    2008-01-01

    Full Text Available Abstract Background Implementing change in primary care is difficult, and little practical guidance is available to assist small primary care practices. Methods to structure care and develop new roles are often needed to implement an evidence-based practice that improves care. This study explored the process of change used to implement clinical guidelines for primary and secondary prevention of cardiovascular disease in primary care practices that used a common electronic medical record (EMR. Methods Multiple conceptual frameworks informed the design of this study designed to explain the complex phenomena of implementing change in primary care practice. Qualitative methods were used to examine the processes of change that practice members used to implement the guidelines. Purposive sampling in eight primary care practices within the Practice Partner Research Network-Translating Researching into Practice (PPRNet-TRIP II clinical trial yielded 28 staff members and clinicians who were interviewed regarding how change in practice occurred while implementing clinical guidelines for primary and secondary prevention of cardiovascular disease and strokes. Results A conceptual framework for implementing clinical guidelines into primary care practice was developed through this research. Seven concepts and their relationships were modelled within this framework: leaders setting a vision with clear goals for staff to embrace; involving the team to enable the goals and vision for the practice to be achieved; enhancing communication systems to reinforce goals for patient care; developing the team to enable the staff to contribute toward practice improvement; taking small steps, encouraging practices' tests of small changes in practice; assimilating the electronic medical record to maximize clinical effectiveness, enhancing practices' use of the electronic tool they have invested in for patient care improvement; and providing feedback within a culture of

  14. Reconfigurable electronics using conducting metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  15. Object-oriented framework for high-performance electronic medical imaging

    Science.gov (United States)

    Schmidt, Douglas C.; Harrison, Timothy H.; Pyarali, Irfan

    1996-02-01

    This paper describes the design and performance of an object-oriented communication framework we developed to meet the demands of next-generation distributed electronic medical imaging systems. Our framework combines the flexibility of high-level distributed object computing middleware (like CORBA) with the performance of low-level network programming mechanisms (like sockets). In the paper, we outline the design goals and software architecture of our framework, illustrate the performance of the framework over ATM, and describe how we resolved design challenges we faced when developing an object- oriented communication framework for distributed medical imaging.

  16. A framework for semantic driven electronic examination system for ...

    African Journals Online (AJOL)

    The framework is implemented using Java programming language and a prototype of the proposed system is tested and compared with the existing system. Results show that words that are synonymous to any given correct answer are equally recognize as correct option. Hence, the e - examination system reliability, ...

  17. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  18. A machine learning-based framework to identify type 2 diabetes through electronic health records.

    Science.gov (United States)

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2017-01-01

    To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature

  19. Conceptual framework for the design and conception of an electronic trade platform in agribusiness

    OpenAIRE

    Hausen, Tobias; Helbig, Ralf; Schiefer, Gerhard

    2002-01-01

    This article gives an overview of a conceptual framework for the designing and implementation of an electronic trade platform. The trade platform prototype is the basis of a general conception for the design and implementation of internet-based trade platforms in agribusiness. The main platform focus related to the concept are to convert traditional business relationships and transactions into an electronic system. The conceptual framework provides clarification with regard to the benefit of ...

  20. Model based risk assessment - the CORAS framework

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjoern Axel; Fredriksen, Rune; Thunem, Atoosa P-J.

    2004-04-15

    Traditional risk analysis and assessment is based on failure-oriented models of the system. In contrast to this, model-based risk assessment (MBRA) utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The target models are then used as input sources for complementary risk analysis and assessment techniques, as well as a basis for the documentation of the assessment results. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tested with successful outcome through a series of seven trial within the telemedicine and ecommerce areas. The CORAS project in general and the CORAS application of MBRA in particular have contributed positively to the visibility of model-based risk assessment and thus to the disclosure of several potentials for further exploitation of various aspects within this important research field. In that connection, the CORAS methodology's possibilities for further improvement towards utilization in more complex architectures and also in other application domains such as the nuclear field can be addressed. The latter calls for adapting the framework to address nuclear standards such as IEC 60880 and IEC 61513. For this development we recommend applying a trial driven approach within the nuclear field. The tool supported approach for combining risk analysis and system development also fits well with the HRP proposal for developing an Integrated Design Environment (IDE) providing efficient methods and tools to support control room systems design. (Author)

  1. A Smallholder Socio-hydrological Modelling Framework

    Science.gov (United States)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  2. Systematic identification of crystallization kinetics within a generic modelling framework

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Meisler, Kresten Troelstrup; Gernaey, Krist

    2012-01-01

    A systematic development of constitutive models within a generic modelling framework has been developed for use in design, analysis and simulation of crystallization operations. The framework contains a tool for model identification connected with a generic crystallizer modelling tool-box, a tool...

  3. SPSPR Model - Framework for ICT Services Management

    Directory of Open Access Journals (Sweden)

    Jiri Vorisek

    2011-04-01

    Full Text Available In this paper we discuss existing frameworks for the management of ICT services and their limitations in the context of emerging enterprise computing environment characterized by use of externally sourced services. We identify the requirements for a service management framework with particular focus on definition and categorization of ICT services that facilitates the development of a service catalogue. The main section of this paper describes our approach to ICT service management as embodied in the SPSPR framework.

  4. a framework for semantic driven electronic examination system for ...

    African Journals Online (AJOL)

    HOD

    equipment and devices for an assessment or evaluation of knowledge [13]. It is an assessment approach meditated by ... through the computer system where responses are electronically recorded and assessed [13]. The aim is ..... Computer-Based Test: Security and Result. Integrity. International Journal of Computer and.

  5. designing a framework for a unified electronic identity system

    African Journals Online (AJOL)

    DJFLEX

    The Italian electronic Identity Card (EIC) is a polycarbonate smart card equipped with microchip and a laser band. It contains both personal and biometric data of citizens. According to the Italian laws, the card serves dual purposes. It can be used as a traditional paper- based ID card on one hand and as an authentication.

  6. Electronic Books: Towards a Theoretical Framework for Research.

    Science.gov (United States)

    Yeaman, Andrew R. J.

    In an increasingly technological society, there is a social need for designing communication technology around the perceptual abilities and cognitive strategies of people. A growing demand for information has created additional pressure on emerging communication technologies to provide electronic alternatives to the printed page. Design depends…

  7. Modeling interfacial dynamics using nonequilibrium thermodynamics frameworks

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2013-01-01

    In recent years several nonequilibrium thermodynamic frameworks have been developed capable of describing the dynamics of multiphase systems with complex microstructured interfaces. In this paper we present an overview of these frameworks. We will discuss interfacial dynamics in the context of the

  8. The Classification of Types of Business-to-Business Electronic Commerce: A Framework Construction

    Directory of Open Access Journals (Sweden)

    Jong-min Choe

    2017-01-01

    Full Text Available Based on the degree of information sharing between buyers and suppliers as well as the level of supplier power, we suggested a framework that can be useful for classifying types of business to business (B2B electronic commerce (EC in the manufacturing firms. According to this framework, four kinds of B2B EC were theoretically proposed, classified, and empirically confirmed. These four are: an electronic marketplace, electronic procurement, electronic partnerships, and electronic distribution. Many prior studies have investigated and proposed some kinds of B2B EC. However, these studies focused mostly on one or two types of B2B EC, and did not develop or suggest a framework for the classification of forms of B2B EC. The framework constructed in this research can be utilized variously. Specifically, when a firm wants to initiate B2B EC with its suppliers, this framework can help a firm to decide and select an appropriate kind of B2B EC. This framework can also be applied to evaluate whether the proper form of B2B EC has been adopted or not.

  9. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  10. Theories, models and frameworks used in capacity building interventions relevant to public health: a systematic review.

    Science.gov (United States)

    Bergeron, Kim; Abdi, Samiya; DeCorby, Kara; Mensah, Gloria; Rempel, Benjamin; Manson, Heather

    2017-11-28

    There is limited research on capacity building interventions that include theoretical foundations. The purpose of this systematic review is to identify underlying theories, models and frameworks used to support capacity building interventions relevant to public health practice. The aim is to inform and improve capacity building practices and services offered by public health organizations. Four search strategies were used: 1) electronic database searching; 2) reference lists of included papers; 3) key informant consultation; and 4) grey literature searching. Inclusion and exclusion criteria are outlined with included papers focusing on capacity building, learning plans, professional development plans in combination with tools, resources, processes, procedures, steps, model, framework, guideline, described in a public health or healthcare setting, or non-government, government, or community organizations as they relate to healthcare, and explicitly or implicitly mention a theory, model and/or framework that grounds the type of capacity building approach developed. Quality assessment were performed on all included articles. Data analysis included a process for synthesizing, analyzing and presenting descriptive summaries, categorizing theoretical foundations according to which theory, model and/or framework was used and whether or not the theory, model or framework was implied or explicitly identified. Nineteen articles were included in this review. A total of 28 theories, models and frameworks were identified. Of this number, two theories (Diffusion of Innovations and Transformational Learning), two models (Ecological and Interactive Systems Framework for Dissemination and Implementation) and one framework (Bloom's Taxonomy of Learning) were identified as the most frequently cited. This review identifies specific theories, models and frameworks to support capacity building interventions relevant to public health organizations. It provides public health practitioners

  11. A deterministic model of electron transport for electron probe microanalysis

    Science.gov (United States)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  12. Modeling ion sensing in molecular electronics

    Science.gov (United States)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-02-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H+), alkali metal cations (M+), calcium ions (Ca2+), and hydronium ions (H3O+) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C9H7NS2), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M+ + QDT species containing monovalent cations, where M+ = H+, Li+, Na+, or K+. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from -0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  13. SPSPR Model - Framework for ICT Services Management

    OpenAIRE

    Jiri Vorisek; Jaroslav Jandos; Jiri Feuerlicht

    2011-01-01

    In this paper we discuss existing frameworks for the management of ICT services and their limitations in the context of emerging enterprise computing environment characterized by use of externally sourced services. We identify the requirements for a service management framework with particular focus on definition and categorization of ICT services that facilitates the development of a service catalogue. The main section of this paper describes our approach to ICT service management as embodie...

  14. Business model framework applications in health care: A systematic review.

    Science.gov (United States)

    Fredriksson, Jens Jacob; Mazzocato, Pamela; Muhammed, Rafiq; Savage, Carl

    2017-11-01

    It has proven to be a challenge for health care organizations to achieve the Triple Aim. In the business literature, business model frameworks have been used to understand how organizations are aligned to achieve their goals. We conducted a systematic literature review with an explanatory synthesis approach to understand how business model frameworks have been applied in health care. We found a large increase in applications of business model frameworks during the last decade. E-health was the most common context of application. We identified six applications of business model frameworks: business model description, financial assessment, classification based on pre-defined typologies, business model analysis, development, and evaluation. Our synthesis suggests that the choice of business model framework and constituent elements should be informed by the intent and context of application. We see a need for harmonization in the choice of elements in order to increase generalizability, simplify application, and help organizations realize the Triple Aim.

  15. A General Sparse Tensor Framework for Electronic Structure Theory.

    Science.gov (United States)

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I; Head-Gordon, Martin

    2017-03-14

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. However, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We avoid cumbersome machine-generated code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.

  16. A Requirement Engineering Framework for Electronic Data Sharing of Health Care Data Between Organizations

    Science.gov (United States)

    Liu, Xia; Peyton, Liam; Kuziemsky, Craig

    Health care is increasingly provided to citizens by a network of collaboration that includes multiple providers and locations. Typically, that collaboration is on an ad-hoc basis via phone calls, faxes, and paper based documentation. Internet and wireless technologies provide an opportunity to improve this situation via electronic data sharing. These new technologies make possible new ways of working and collaboration but it can be difficult for health care organizations to understand how to use the new technologies while still ensuring that their policies and objectives are being met. It is also important to have a systematic approach to validate that e-health processes deliver the performance improvements that are expected. Using a case study of a palliative care patient receiving home care from a team of collaborating health organizations, we introduce a framework based on requirements engineering. Key concerns and objectives are identified and modeled (privacy, security, quality of care, and timeliness of service). And, then, proposed business processes which use new technologies are modeled in terms of these concerns and objectives to assess their impact and ensure that electronic data sharing is well regulated.

  17. Modeling of power electronic systems with EMTP

    Science.gov (United States)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  18. A Framework for Formal Modeling and Analysis of Organizations

    NARCIS (Netherlands)

    Jonker, C.M.; Sharpanskykh, O.; Treur, J.; P., Yolum

    2007-01-01

    A new, formal, role-based, framework for modeling and analyzing both real world and artificial organizations is introduced. It exploits static and dynamic properties of the organizational model and includes the (frequently ignored) environment. The transition is described from a generic framework of

  19. Experimental study of fast electron transport in the framework of fast ignition for inertial fusion

    International Nuclear Information System (INIS)

    Vauzour, B.

    2012-01-01

    The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10 19 W.cm -2 ), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collective effects are predominant, thus producing a steep temperature profile between front (300 eV) and rear (20 eV) sides over 20μm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to

  20. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  1. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  2. A Modeling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further...... extended by additional congurations. The framework provides the basis for fair comparison of both steady state and dynamic performance of the dierent column congurations for a given binary or multicomponent separation....

  3. An Analytical Framework for Evaluating E-Commerce Business Models and Strategies.

    Science.gov (United States)

    Lee, Chung-Shing

    2001-01-01

    Considers electronic commerce as a paradigm shift, or a disruptive innovation, and presents an analytical framework based on the theories of transaction costs and switching costs. Topics include business transformation process; scale effect; scope effect; new sources of revenue; and e-commerce value creation model and strategy. (LRW)

  4. An Ontology-Based Framework for Modeling User Behavior

    DEFF Research Database (Denmark)

    Razmerita, Liana

    2011-01-01

    This paper focuses on the role of user modeling and semantically enhanced representations for personalization. This paper presents a generic Ontology-based User Modeling framework (OntobUMf), its components, and its associated user modeling processes. This framework models the behavior of the users...... and classifies its users according to their behavior. The user ontology is the backbone of OntobUMf and has been designed according to the Information Management System Learning Information Package (IMS LIP). The user ontology includes a Behavior concept that extends IMS LIP specification and defines....... The results of this research may contribute to the development of other frameworks for modeling user behavior, other semantically enhanced user modeling frameworks, or other semantically enhanced information systems....

  5. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  6. Service business model framework and the service innovation scope

    OpenAIRE

    van der Aa, W.; van der Rhee, B.; Victorino, L.

    2011-01-01

    In this paper we present a framework for service business models. We build on three streams of research. The first stream is the service management and marketing literature that focuses on the specific challenges of managing a service business. The second stream consists of research on e-business models. The third and most recent stream of research includes frameworks and business models from strategic management and innovation management. The next step in our research is the development of a...

  7. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the

  8. The Guided System Development Framework: Modeling and Verifying Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming

    2014-01-01

    . The Guided System Development framework contributes to more secure communication systems by aiding the development of such systems. The framework features a simple modelling language, step-wise refinement from models to implementation, interfaces to security verification tools, and code generation from...... the verified specification. The refinement process carries thus security properties from the model to the implementation. Our approach also supports verification of systems previously developed and deployed. Internally, the reasoning in our framework is based on the Beliefs and Knowledge tool, a verification...

  9. Conceptualising Business Models: Definitions, Frameworks and Classifications

    Directory of Open Access Journals (Sweden)

    Erwin Fielt

    2013-12-01

    Full Text Available The business model concept is gaining traction in different disciplines but is still criticized for being fuzzy and vague and lacking consensus on its definition and compositional elements. In this paper we set out to advance our understanding of the business model concept by addressing three areas of foundational research: business model definitions, business model elements, and business model archetypes. We define a business model as a representation of the value logic of an organization in terms of how it creates and captures customer value. This abstract and generic definition is made more specific and operational by the compositional elements that need to address the customer, value proposition, organizational architecture (firm and network level and economics dimensions. Business model archetypes complement the definition and elements by providing a more concrete and empirical understanding of the business model concept. The main contributions of this paper are (1 explicitly including the customer value concept in the business model definition and focussing on value creation, (2 presenting four core dimensions that business model elements need to cover, (3 arguing for flexibility by adapting and extending business model elements to cater for different purposes and contexts (e.g. technology, innovation, strategy (4 stressing a more systematic approach to business model archetypes by using business model elements for their description, and (5 suggesting to use business model archetype research for the empirical exploration and testing of business model elements and their relationships.

  10. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  11. A framework for evaluating electronic health record vendor user-centered design and usability testing processes.

    Science.gov (United States)

    Ratwani, Raj M; Zachary Hettinger, A; Kosydar, Allison; Fairbanks, Rollin J; Hodgkins, Michael L

    2017-04-01

    Currently, there are few resources for electronic health record (EHR) purchasers and end users to understand the usability processes employed by EHR vendors during product design and development. We developed a framework, based on human factors literature and industry standards, to systematically evaluate the user-centered design processes and usability testing methods used by EHR vendors. We reviewed current usability certification requirements and the human factors literature to develop a 15-point framework for evaluating EHR products. The framework is based on 3 dimensions: user-centered design process, summative testing methodology, and summative testing results. Two vendor usability reports were retrieved from the Office of the National Coordinator's Certified Health IT Product List and were evaluated using the framework. One vendor scored low on the framework (5 pts) while the other vendor scored high on the framework (15 pts). The 2 scored vendor reports demonstrate the framework's ability to discriminate between the variabilities in vendor processes and to determine which vendors are meeting best practices. The framework provides a method to more easily comprehend EHR vendors' usability processes and serves to highlight where EHR vendors may be falling short in terms of best practices. The framework provides a greater level of transparency for both purchasers and end users of EHRs. The framework highlights the need for clearer certification requirements and suggests that the authorized certification bodies that examine vendor usability reports may need to be provided with clearer guidance. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. The Impact of Electronic Commerce on the Publishing Industry: Towards a Business Value Complementarity Framework of Electronic Publishing.

    Science.gov (United States)

    Scupola, Ada

    1999-01-01

    Discussion of the publishing industry and its use of information and communication technologies focuses on the way in which electronic-commerce technologies are changing and could change the publishing processes, and develops a business complementarity model of electronic publishing to maximize profitability and improve the competitive position.…

  13. POSITIVE LEADERSHIP MODELS: THEORETICAL FRAMEWORK AND RESEARCH

    Directory of Open Access Journals (Sweden)

    Javier Blanch, Francisco Gil

    2016-09-01

    Full Text Available The objective of this article is twofold; firstly, we establish the theoretical boundaries of positive leadership and the reasons for its emergence. It is related to the new paradigm of positive psychology that has recently been shaping the scope of organizational knowledge. This conceptual framework has triggered the development of the various forms of positive leadership (i.e. transformational, servant, spiritual, authentic, and positive. Although the construct does not seem univocally defined, these different types of leadership overlap and share a significant affinity. Secondly, we review the empirical evidence that shows the impact of positive leadership in organizations and we highlight the positive relationship between these forms of leadership and key positive organizational variables. Lastly, we analyse future research areas in order to further develop this concept.

  14. Koopman Operator Framework for Time Series Modeling and Analysis

    Science.gov (United States)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  15. Modelling framework for groundwater flow at Sellafield

    International Nuclear Information System (INIS)

    Hooper, A.J.; Billington, D.E.; Herbert, A.W.

    1995-01-01

    The principal objective of Nirex is to develop a single deep geological repository for the safe disposal of low- and intermediate-level radioactive waste. In safety assessment, use is made of a variety of conceptual models that form the basis for modelling of the pathways by which radionuclides might return to the environment. In this paper, the development of a conceptual model for groundwater flow and transport through fractured rock on the various scales of interest is discussed. The approach is illustrated by considering how some aspects of the conceptual model are developed in particular numerical models. These representations of the conceptual model use fracture network geometries based on realistic rock properties. (author). refs., figs., tabs

  16. A Simulation and Modeling Framework for Space Situational Awareness

    Science.gov (United States)

    Olivier, S.

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. This framework includes detailed models for threat scenarios, signatures, sensors, observables and knowledge extraction algorithms. The framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the details of the modeling and simulation framework, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical and infra-red brightness calculations, generic radar system models, generic optical and infra-red system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The specific modeling of the Space Surveillance Network is performed in collaboration with the Air Force Space Command Space Control Group. We will demonstrate the use of this integrated simulation and modeling framework on specific threat scenarios, including space debris and satellite maneuvers, and we will examine the results of case studies involving the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  17. Evaluating alternate discrete outcome frameworks for modeling crash injury severity.

    Science.gov (United States)

    Yasmin, Shamsunnahar; Eluru, Naveen

    2013-10-01

    This paper focuses on the relevance of alternate discrete outcome frameworks for modeling driver injury severity. The study empirically compares the ordered response and unordered response models in the context of driver injury severity in traffic crashes. The alternative modeling approaches considered for the comparison exercise include: for the ordered response framework-ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit (MGOL) and for the unordered response framework-multinomial logit (MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. A host of comparison metrics are computed to evaluate the performance of these alternative models. The study provides a comprehensive comparison exercise of the performance of ordered and unordered response models for examining the impact of exogenous factors on driver injury severity. The research also explores the effect of potential underreporting on alternative frameworks by artificially creating an underreported data sample from the driver injury severity sample. The empirical analysis is based on the 2010 General Estimates System (GES) data base-a nationally representative sample of road crashes collected and compiled from about 60 jurisdictions across the United States. The performance of the alternative frameworks are examined in the context of model estimation and validation (at the aggregate and disaggregate level). Further, the performance of the model frameworks in the presence of underreporting is explored, with and without corrections to the estimates. The results from these extensive analyses point toward the emergence of the GOL framework (MGOL) as a strong competitor to the MMNL model in modeling driver injury severity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Electronic Commerce Success Model: A Search for Multiple Criteria

    Directory of Open Access Journals (Sweden)

    Didi Achjari

    2004-01-01

    Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.

  19. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  20. A Computational Framework for Realistic Retina Modeling.

    Science.gov (United States)

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  1. Modelling and simulation of beam formation in electron guns

    International Nuclear Information System (INIS)

    Sabchevski, S.; Barbarich, I.

    1996-01-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.)

  2. Modelling and simulation of beam formation in electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)

    1996-11-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).

  3. A Framework for Cloudy Model Optimization and Database Storage

    Science.gov (United States)

    Calvén, Emilia; Helton, Andrew; Sankrit, Ravi

    2018-01-01

    We present a framework for producing Cloudy photoionization models of the nebular emission from novae ejecta and storing a subset of the results in SQL database format for later usage. The database can be searched for models best fitting observed spectral line ratios. Additionally, the framework includes an optimization feature that can be used in tandem with the database to search for and improve on models by creating new Cloudy models while, varying the parameters. The database search and optimization can be used to explore the structures of nebulae by deriving their properties from the best-fit models. The goal is to provide the community with a large database of Cloudy photoionization models, generated from parameters reflecting conditions within novae ejecta, that can be easily fitted to observed spectral lines; either by directly accessing the database using the framework code or by usage of a website specifically made for this purpose.

  4. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  5. Public–private partnership conceptual framework and models for the ...

    African Journals Online (AJOL)

    The framework for PPPs identified three models, viz. state, hybrid and private sector models. In the 'state model' the water services value chain is 100% government funded and owned infrastructure. Government is a key player in infrastructure investment and inefficiencies within the public expenditure management systems ...

  6. A DSM-based framework for integrated function modelling

    DEFF Research Database (Denmark)

    Eisenbart, Boris; Gericke, Kilian; Blessing, Lucienne T. M.

    2017-01-01

    an integrated function modelling framework, which specifically aims at relating between the different function modelling perspectives prominently addressed in different disciplines. It uses interlinked matrices based on the concept of DSM and MDM in order to facilitate cross-disciplinary modelling and analysis...

  7. Theories and Frameworks for Online Education: Seeking an Integrated Model

    Science.gov (United States)

    Picciano, Anthony G.

    2017-01-01

    This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of…

  8. Defense Health Agency and the Deployment of the Electronic Health Record: Building an Organizational Framework for Implementation and Sustainment

    Science.gov (United States)

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. DEFENSE HEALTH ...AGENCY AND THE DEPLOYMENT OF THE ELECTRONIC HEALTH RECORD: BUILDING AN ORGANIZATIONAL FRAMEWORK FOR IMPLEMENTATION AND SUSTAINMENT by Anthony E...DEFENSE HEALTH AGENCY AND THE DEPLOYMENT OF THE ELECTRONIC HEALTH RECORD: BUILDING AN ORGANIZATIONAL FRAMEWORK FOR IMPLEMENTATION AND SUSTAINMENT 5

  9. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  10. Real time natural object modeling framework

    International Nuclear Information System (INIS)

    Rana, H.A.; Shamsuddin, S.M.; Sunar, M.H.

    2008-01-01

    CG (Computer Graphics) is a key technology for producing visual contents. Currently computer generated imagery techniques are being developed and applied, particularly in the field of virtual reality applications, film production, training and flight simulators, to provide total composition of realistic computer graphic images. Natural objects like clouds are an integral feature of the sky without them synthetic outdoor scenes seem unrealistic. Modeling and animating such objects is a difficult task. Most systems are difficult to use, as they require adjustment of numerous, complex parameters and are non-interactive. This paper presents an intuitive, interactive system to artistically model, animate, and render visually convincing clouds using modern graphics hardware. A high-level interface models clouds through the visual use of cubes. Clouds are rendered by making use of hardware accelerated API -OpenGL. The resulting interactive design and rendering system produces perceptually convincing cloud models that can be used in any interactive system. (author)

  11. A framework to preserve the privacy of electronic health data streams.

    Science.gov (United States)

    Kim, Soohyung; Sung, Min Kyoung; Chung, Yon Dohn

    2014-08-01

    The anonymization of health data streams is important to protect these data against potential privacy breaches. A large number of research studies aiming at offering privacy in the context of data streams has been recently conducted. However, the techniques that have been proposed in these studies generate a significant delay during the anonymization process, since they concentrate on applying existing privacy models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of electronic health data streams. Unlike existing works, our method does not generate an accumulation delay, since input streams are anonymized immediately with counterfeit values. We further devise late validation for increasing the data utility of the anonymization results and managing the counterfeit values. Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time release of data streams. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Electronic, structural, and substrate effect properties of single-layer covalent organic frameworks

    International Nuclear Information System (INIS)

    Liang, Liangbo; Zhu, Pan; Meunier, Vincent

    2015-01-01

    Recently synthesized two-dimensional covalent organic frameworks (COFs) exhibit high surface area, large pore size, and unique structural architectures, making them promising materials for various energy applications. Here, a total of nine COFs structures, including two deposited on a hexagonal boron nitride substrate, are investigated using density functional theory, quasi-particle many-body theory within the GW approximation, and an image charge model. The structures considered belong to two major families (thiophene-based COF-n (T-COF-n) and tetrakis (4-aminophenyl) porphyrin-x (TAPP-x)) differing from the presence of B—O or C=N linkers. While T-COF-n structures are shown to constitute planar networks, TAPP-x systems can display non-negligible corrugation due to the out-of-plane rotation of phenyl rings. We find that the electronic properties do not differ significantly when altering the chain molecules within each family. Many-body effects are shown to lead to large band-gap increase while the presence of the substrate yields appreciable reductions of the gaps, due to substrate polarization effects

  13. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

    DEFF Research Database (Denmark)

    Mangado Lopez, Nerea; Ceresa, Mario; Duchateau, Nicolas

    2016-01-01

    's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns....... To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient...

  14. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  15. A Conceptual Framework of Business Model Emerging Resilience

    OpenAIRE

    Goumagias, Nikolaos; Fernandes, Kiran; Cabras, Ignazio; Li, Feng; Shao, Jianhua; Devlin, Sam; Hodge, Victoria; Cowling, Peter; Kudenko, Daniel

    2016-01-01

    In this paper we introduce an environmentally driven conceptual framework of Business Model change. Business models acquired substantial momentum in academic literature during the past decade. Several studies focused on what exactly constitutes a Business Model (role model, recipe, architecture etc.) triggering a theoretical debate about the Business Model’s components and their corresponding dynamics and relationships. In this paper, we argue that for Business Models as cognitive structures,...

  16. A modelling framework for MSP-oriented cumulative effects assessment

    OpenAIRE

    Stefano Menegon; Daniel Depellegrin; Giulio Farella; Elena Gissi; Michol Ghezzo; Alessandro Sarretta; Chiara Venier; Andrea Barbanti

    2018-01-01

    This research presents a comprehensive Cumulative Eects Assessment (CEA) based on the Tools4MSP modelling framework tested for the Italian Adriatic Sea. The CEA incorporates ve methodological advancements: (1) linear and non-linear ecosystem response to anthropogenic pressures/effects, (2) modelling of additive, dominant and antagonist stressor effects, (3) implementation of a convolution distance model for stressor dispersion modelling, (4) application of a CEA backsourcing (CEA-B) model to ...

  17. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  18. A general modeling framework for describing spatially structured population dynamics.

    Science.gov (United States)

    Sample, Christine; Fryxell, John M; Bieri, Joanna A; Federico, Paula; Earl, Julia E; Wiederholt, Ruscena; Mattsson, Brady J; Flockhart, D T Tyler; Nicol, Sam; Diffendorfer, Jay E; Thogmartin, Wayne E; Erickson, Richard A; Norris, D Ryan

    2018-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  19. A Modeling Framework for Improved Agricultural Water Supply Forecasting

    Science.gov (United States)

    Leavesley, G. H.; David, O.; Garen, D. C.; Lea, J.; Marron, J. K.; Pagano, T. C.; Perkins, T. R.; Strobel, M. L.

    2008-12-01

    The National Water and Climate Center (NWCC) of the USDA Natural Resources Conservation Service is moving to augment seasonal, regression-equation based water supply forecasts with distributed-parameter, physical process models enabling daily, weekly, and seasonal forecasting using an Ensemble Streamflow Prediction (ESP) methodology. This effort involves the development and implementation of a modeling framework, and associated models and tools, to provide timely forecasts for use by the agricultural community in the western United States where snowmelt is a major source of water supply. The framework selected to support this integration is the USDA Object Modeling System (OMS). OMS is a Java-based modular modeling framework for model development, testing, and deployment. It consists of a library of stand-alone science, control, and database components (modules), and a means to assemble selected components into a modeling package that is customized to the problem, data constraints, and scale of application. The framework is supported by utility modules that provide a variety of data management, land unit delineation and parameterization, sensitivity analysis, calibration, statistical analysis, and visualization capabilities. OMS uses an open source software approach to enable all members of the scientific community to collaboratively work on addressing the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. A long-term goal in the development of these water-supply forecasting capabilities is the implementation of an ensemble modeling approach. This would provide forecasts using the results of multiple hydrologic models run on each basin.

  20. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    after image processing we used virtual reality modelling language (VRML). Rendering and interactive visualization provided by VRML is compatible with CellML. VRML has been used not only to enable 3D visualization of cells, but also to represent the information with minimum amount of data still representing it to the ...

  1. A Framework for Hybrid Computational Models

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman

    2003-01-01

    Roč. 2, č. 4 (2003), s. 868-873 ISSN 1109-2750 R&D Projects: GA ČR(CZ) GA526/03/Z042; GA ČR(CZ) GA201/01/1192 Institutional research plan: CEZ:AV0Z1030915 Keywords : multi-agent systems * hybrid computational models Subject RIV: BA - General Mathematics

  2. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The fundamental unit of living tissue, in fact of life itself, is the biological cell. Currently there is enormous interest in in silico modelling of the cell .... classification and cell type relationships, newer vocabulary is required to describe a single cell itself with all its sub- cellular structures. Further, this vocabulary should pave way.

  3. A Unified Bayesian Inference Framework for Generalized Linear Models

    Science.gov (United States)

    Meng, Xiangming; Wu, Sheng; Zhu, Jiang

    2018-03-01

    In this letter, we present a unified Bayesian inference framework for generalized linear models (GLM) which iteratively reduces the GLM problem to a sequence of standard linear model (SLM) problems. This framework provides new perspectives on some established GLM algorithms derived from SLM ones and also suggests novel extensions for some other SLM algorithms. Specific instances elucidated under such framework are the GLM versions of approximate message passing (AMP), vector AMP (VAMP), and sparse Bayesian learning (SBL). It is proved that the resultant GLM version of AMP is equivalent to the well-known generalized approximate message passing (GAMP). Numerical results for 1-bit quantized compressed sensing (CS) demonstrate the effectiveness of this unified framework.

  4. An Integrated Framework to Specify Domain-Specific Modeling Languages

    DEFF Research Database (Denmark)

    Zarrin, Bahram; Baumeister, Hubert

    2018-01-01

    In this paper, we propose an integrated framework that can be used by DSL designers to implement their desired graphical domain-specific languages. This framework relies on Microsoft DSL Tools, a meta-modeling framework to build graphical domain-specific languages, and an extension of ForSpec, a ...... language to define their semantics. Integrating these technologies under the umbrella of Microsoft Visual Studio IDE allows DSL designers to utilize a single development environment for developing their desired domain-specific languages....

  5. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: theoretical formulation.

    Science.gov (United States)

    Sirjoosingh, Andrew; Pak, Michael V; Swalina, Chet; Hammes-Schiffer, Sharon

    2013-07-21

    The nuclear-electronic orbital (NEO) method treats electrons and select nuclei quantum mechanically on the same level to extend beyond the Born-Oppenheimer approximation. Electron-nucleus dynamical correlation has been found to be highly significant due to the attractive Coulomb interaction. The explicitly correlated Hartree-Fock (NEO-XCHF) approach includes explicit electron-nucleus correlation with Gaussian-type geminal functions during the variational optimization of the nuclear-electronic wavefunction. Although accurate for small model systems, the NEO-XCHF method is computationally impractical for larger chemical systems. In this paper, we develop the reduced explicitly correlated Hartree-Fock approach, denoted NEO-RXCHF, where only select electronic orbitals are explicitly correlated to the nuclear orbitals. By explicitly correlating only the relevant electronic orbitals to the nuclear orbitals, the NEO-RXCHF approach avoids problems that can arise when all electronic orbitals are explicitly correlated to the nuclear orbitals in the same manner. We examine three different NEO-RXCHF methods that differ in the treatment of the exchange between the geminal-coupled electronic orbitals and the other electronic orbitals: NEO-RXCHF-fe is fully antisymmetric with respect to exchange of all electronic coordinates and includes all electronic exchange terms; NEO-RXCHF-ne neglects the exchange between the geminal-coupled electronic orbitals and the other electronic orbitals; and NEO-RXCHF-ae includes approximate exchange terms between the geminal-coupled electronic orbitals and the other electronic orbitals. The latter two NEO-RXCHF methods offer substantial computational savings over the NEO-XCHF approach. The NEO-RXCHF approach is applicable to a wide range of chemical systems that exhibit non-Born-Oppenheimer effects between electrons and nuclei, as well as positron-containing molecular systems.

  6. A compositional modelling framework for exploring MPSoC systems

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried out......-exist and communicate. In order to illustrate the use of the framework, a mobile digital audio processing platform, supplied by the company Bang & Olufsen ICEpower a/s, is considered....

  7. A Framework for PSS Business Models: Formalization and Application

    OpenAIRE

    Adrodegari, Federico; Saccani, Nicola; Kowalkowski, Christian

    2016-01-01

    In order to successfully move "from products to solutions", companies need to redesign their business model. Nevertheless, service oriented BMs in product-centric firms are under-investigated in the literature: very few works develop a scheme of analysis of such BMs. To provide a first step into closing this gap, we propose a new framework to describe service-oriented BMs, pointing out the main BM components and related PSS characteristics. Thus, the proposed framework aims to help companies ...

  8. Multicriteria framework for selecting a process modelling language

    Science.gov (United States)

    Scanavachi Moreira Campos, Ana Carolina; Teixeira de Almeida, Adiel

    2016-01-01

    The choice of process modelling language can affect business process management (BPM) since each modelling language shows different features of a given process and may limit the ways in which a process can be described and analysed. However, choosing the appropriate modelling language for process modelling has become a difficult task because of the availability of a large number modelling languages and also due to the lack of guidelines on evaluating, and comparing languages so as to assist in selecting the most appropriate one. This paper proposes a framework for selecting a modelling language in accordance with the purposes of modelling. This framework is based on the semiotic quality framework (SEQUAL) for evaluating process modelling languages and a multicriteria decision aid (MCDA) approach in order to select the most appropriate language for BPM. This study does not attempt to set out new forms of assessment and evaluation criteria, but does attempt to demonstrate how two existing approaches can be combined so as to solve the problem of selection of modelling language. The framework is described in this paper and then demonstrated by means of an example. Finally, the advantages and disadvantages of using SEQUAL and MCDA in an integrated manner are discussed.

  9. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices

    International Nuclear Information System (INIS)

    Chen Duan; Wei Guowei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  10. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we......Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  11. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    Science.gov (United States)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  12. A general model framework for multisymbol number comparison.

    Science.gov (United States)

    Huber, Stefan; Nuerk, Hans-Christoph; Willmes, Klaus; Moeller, Korbinian

    2016-11-01

    Different models have been proposed for the processing of multisymbol numbers like two- and three-digit numbers but also for negative numbers and decimals. However, these multisymbol numbers are assembled from the same set of Arabic digits and comply with the place-value structure of the Arabic number system. Considering these shared properties, we suggest that the processing of multisymbol numbers can be described in one general model framework. Accordingly, we first developed a computational model framework realizing componential representations of multisymbol numbers and evaluated its validity by simulating standard empirical effects of number magnitude comparison. We observed that the model framework successfully accounted for most of these effects. Moreover, our simulations provided first evidence supporting the notion of a fully componential processing of multisymbol numbers for the specific case of comparing two negative numbers. Thus, our general model framework indicates that the processing of different kinds of multisymbol integer and decimal numbers shares common characteristics (e.g., componential representation). The relevance and applicability of our model goes beyond the case of basic number processing. In particular, we also successfully simulated effects from applied marketing and consumer research by accounting for the left-digit effect found in processing of prices. Finally, we provide evidence that our model framework can be integrated into the more general context of multiattribute decision making. In sum, this indicates that our model framework captures a general scheme of separate processing of different attributes weighted by their saliency for the task at hand. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Compendium of Models from a Gauge U(1) Framework

    OpenAIRE

    Ma, Ernest

    2016-01-01

    A gauge U(1) framework was established in 2002 to extend the supersymmetric standard model. It has many possible realizations. Whereas all have the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC), they differ in other essential aspects. A compendium of such models is discussed.

  14. A community-based framework for aquatic ecosystem models

    NARCIS (Netherlands)

    Trolle, D.; Hamilton, D.P.; Hipsey, M.R.; Bolding, K.; Bruggeman, J.; Mooij, W.M.; Janse, J.H.; Nielsen, A.; Jeppesen, E.; Elliot, J.A.; Makler-Pick, V.; Petzoldt, T.; Rinke, K.; Flindt, M.R.; Arhonditsis, G.; Gal, G.; Bjerring, R.; Tominaga, K.; 't Hoen, J.; Downing, A.S.; Marques, D.M.; Fragoso Jr., C.R.; Søndergaard, M.; Hanson, P.C.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a

  15. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  16. A framework for quantifying net benefits of alternative prognostic models

    NARCIS (Netherlands)

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Feskens, E.J.M.; Kromhout, D.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit)

  17. Graphene frameworks promoted electron transport in quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhu, Yanyan; Meng, Xin; Cui, Huijuan; Jia, Suping; Dong, Jianhui; Zheng, Jianfeng; Zhao, Jianghong; Wang, Zhijian; Li, Li; Zhang, Li; Zhu, Zhenping

    2014-08-27

    Graphene frameworks (GFs) were incorporated into TiO2 photoanode as electron transport medium to improve the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs) for their excellent conductivity and isotropic framework structure that could permit rapid charge transport. Intensity modulated photocurrent/photovoltage spectroscopy and electrochemical impedance spectroscopy results show that the electron transport time (τ(d)) of 1.5 wt % GFs/TiO2 electrode is one-fifth of that of the TiO2 electrode, and electron lifetime (τ(n)) and diffusion path length (Ln) are thrice those of the TiO2 electrode. Results also revealed that the GFs/TiO2 electrode has a shorter electron transport time (τ(d)), as well as longer electron lifetime (τ(n)) and diffusion path length (Ln), than conventional 2D graphene sheets/TiO2 electrode, thus indicating that GFs could promote rapid electron transfer in TiO2 photoanodes. Photocurrent-voltage curves demonstrated that when incorporating 1.5 wt % GFs into TiO2 photoanode, a maximum power conversion efficiency of 4.2% for QDSSCs could be achieved. This value was higher than that of TiO2 photoanode and 2D graphene sheets/TiO2 electrode. In addition, the reasons behind the sensitivity of photoelectric conversion efficiency to the graphene concentration in the TiO2 were also systematically investigated. Our results provide a basic understanding of how GFs can efficiently promote electron transport in TiO2-based solar cells.

  18. A framework for development and application of hydrological models

    Directory of Open Access Journals (Sweden)

    T. Wagener

    2001-01-01

    Full Text Available Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the level of model complexity supported by the available data with the level of performance suitable for the desired application. Tools are needed that make optimal use of the information available in the data to identify model structure and parameters, and that allow a detailed analysis of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydrological system characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to use within it, based on a multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example from the field of rainfall-runoff modelling. Keywords: hydrological modelling, multi-objective calibration, model complexity, parameter identifiability

  19. Bayesian modelling of multiple diagnostics at Wendelstein 7-X using the Minerva framework

    Science.gov (United States)

    Kwak, Sehyun; Svensson, Jakob; Bozhenkov, Sergey; Trimino Mora, Humberto; Hoefel, Udo; Pavone, Andrea; Krychowiak, Maciej; Langenberg, Andreas; Ghim, Young-Chul; W7-X Team Team

    2017-10-01

    Wendelstein 7-X (W7-X) is a large scale optimised stellarator designed for steady-state operation with fusion reactor relevant conditions. Consistent inference of physics parameters and their associated uncertainties requires the capability to handle the complexity of the entire system, including physics models of multiple diagnostics. A Bayesian model has been developed in the Minerva framework to infer electron temperature and density profiles from multiple diagnostics in a consistent way. Here, the physics models predict the data of multiple diagnostics in a joint Bayesian analysis. The electron temperature and density profiles are modelled by Gaussian processes with hyperparameters. Markov chain Monte Carlo methods explore the full posterior of electron temperature and density profiles as well as possible combinations of hyperparameters and calibration factors. This results in a profile inference with proper uncertainties reflecting both statistical error and the automatic calibration for diagnostics.

  20. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    KAUST Repository

    Zhu, Yihan

    2017-02-21

    Metal–organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis1, 2, 3. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation4, 5, 6, 7. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  1. A software engineering perspective on environmental modeling framework design: The object modeling system

    Science.gov (United States)

    The environmental modeling community has historically been concerned with the proliferation of models and the effort associated with collective model development tasks (e.g., code generation, data provisioning and transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to...

  2. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  3. AREUS - a software framework for the ATLAS Readout Electronics Upgrade Simulation

    CERN Document Server

    Horn, Philipp; The ATLAS collaboration

    2018-01-01

    The design of readout electronics for the LAr calorimeters of the ATLAS detector to be operated at the future High-Luminosity LHC (HL-LHC) requires a detailed simulation of the full readout chain in order to find optimal solutions for the analog and digital processing of the detector signals. Due to the long duration of the LAr calorimeter pulses relative to the LHC bunch crossing time, out-of-time signal pile-up needs to be taken intoaccountandrealisticpulsesequencesmustbesimulatedtogetherwiththeresponseoftheelectronics. For this purpose, the ATLAS Readout Electronics Upgrade Simulation framework (AREUS) has been developed based on the Observer design pattern to provide a fast and flexible simulation tool. Energy deposits in the LAr calorimeters from fully simulated HL-LHC collision events are taken as input. Simulated and measured analog pulse shapes proportional to these energies are then combined in discrete time series with proper representation of electronics noise. Analog-to-digital conversion, gain se...

  4. A Modeling & Simulation Implementation Framework for Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2012-10-01

    Full Text Available Classical High Level Architecture (HLA systems are facing development problems for lack of supporting fine-grained component integration and interoperation in large-scale complex simulation applications. To provide efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling & simulation framework which consists of component-based architecture, modelling methods, and simulation services to support and simplify the process of complex simulation application construction. Moreover, a standard process and simulation tools are developed to ensure the rapid and effective development of simulation application.

  5. Population balance models: a useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2015-01-01

    efforts of several current and future unit processes in wastewater treatment plants could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot...... capability. Hence, PBMs should be regarded as a complementary modelling framework to biokinetic models. This paper provides an overview of current applications, future potential and limitations of PBMs in the field of wastewater treatment modelling, thereby looking over the fence to other scientific...

  6. Electron-Ionic Model of Ball Lightening

    OpenAIRE

    Fedosin, Sergey G.; Kim, Anatolii S.

    2001-01-01

    The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.

  7. Threat model framework and methodology for personal networks (PNs)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.

    2007-01-01

    is to give a structured, convenient approach for building threat models. A framework for the threat model is presented with a list of requirements for methodology. The methodology will be applied to build a threat model for Personal Networks. Practical tools like UML sequence diagrams and attack trees have...... been used. Also risk assessment methods will be discussed. Threat profiles and vulnerability profiles have been presented....

  8. Teaching Chemistry with Electron Density Models

    Science.gov (United States)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  9. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  10. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  11. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    Directory of Open Access Journals (Sweden)

    James P Sluka

    Full Text Available We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  12. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  13. WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT FRAMEWORK LEGISLATION AND MANAGEMENT SYSTEM IN EUROPE

    Directory of Open Access Journals (Sweden)

    Maria-Loredana NICOLESCU

    2015-07-01

    Full Text Available Waste electrical and electronic equipment (WEEE has become one of the most significant waste streams due to the increasing amounts and environmental impact. It is very important to know how to manage the WEEE quantities, what laws are in force in this field and what policies are available to apply. This paper presents the e-waste legislation and management system from some of the European countries, as examples. The hierarchy of the management systems is presented according to the framework Directive and legislative approaches. There are also shown the "take-back" policy, the "polluter pays" principle and the "extended producer responsibility" principle. The goal of this research is to highlight the WEEE framework legislation in Europe and to present the EU policies for the WEEE management system.

  14. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks

    DEFF Research Database (Denmark)

    Saa, Pedro A.; Nielsen, Lars K.

    2017-01-01

    Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive...... capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction...

  15. Business Modeling Framework For Personalization In Mobile Business Services

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); J. Dits (Joyce)

    2002-01-01

    textabstractIs presented the structure of a formal framework for personalization features for mobile business services, which can be used to drive the business modeling of M-business services from a service provider point of view. It also allows to compute the revenue as linked to personalization

  16. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  17. Service business model framework and the service innovation scope

    NARCIS (Netherlands)

    van der Aa, W.; van der Rhee, B.; Victorino, L.

    2011-01-01

    In this paper we present a framework for service business models. We build on three streams of research. The first stream is the service management and marketing literature that focuses on the specific challenges of managing a service business. The second stream consists of research on e-business

  18. A Graph Based Framework to Model Virus Integration Sites

    Directory of Open Access Journals (Sweden)

    Raffaele Fronza

    2016-01-01

    Here, we addressed the challenge to: 1 define the notion of CIS on graph models, 2 demonstrate that the structure of CIS enters in the category of scale-free networks and 3 show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD as a testing dataset.

  19. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  20. A Model-Driven Framework to Develop Personalized Health Monitoring

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-07-01

    Full Text Available Both distributed healthcare systems and the Internet of Things (IoT are currently hot topics. The latter is a new computing paradigm to enable advanced capabilities in engineering various applications, including those for healthcare. For such systems, the core social requirement is the privacy/security of the patient information along with the technical requirements (e.g., energy consumption and capabilities for adaptability and personalization. Typically, the functionality of the systems is predefined by the patient’s data collected using sensor networks along with medical instrumentation; then, the data is transferred through the Internet for treatment and decision-making. Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven framework to develop the IoT-based prototype and its reference architecture for personalized health monitoring (PHM applications. The framework contains a multi-layered structure with feature-based modeling and feature model transformations at the top and the application software generation at the bottom. We have validated the framework using available tools and developed an experimental PHM to test some aspects of the functionality of the reference architecture in real time. The main contribution of the paper is the development of the model-driven computational framework with emphasis on the synergistic effect of security and energy issues.

  1. Application of a stochastic modelling framework to characterize the ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 36; Issue 4. Application of a stochastic modelling framework to characterize the influence of different oxide scales on the solid particle erosion behaviour of boiler grade steel. S K Das. Volume 36 Issue 4 August 2011 pp 425-440 ...

  2. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  3. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun

    2016-01-01

    equilibria, as well as kinetic mechanisms and rates. This paper presents a modelling framework for design and analysis of PTC systems that requires a minimum amount of experimental data to develop and employ the necessary thermodynamic and reaction models and embeds them into a reactor model for simulation...... in an aqueous phase. These reacting systems are receiving increased attention as novel organic synthesis options due to their flexible operation, higher product yields, and ability to avoid hazardous or expensive solvents. Major considerations in the design and analysis of PTC systems are physical and chemical....... The application of the framework is made to two cases in order to highlight the performance and issues of activity coefficient models for predicting design and operation and the effects when different organic solvents are employed....

  4. A framework for quantifying net benefits of alternative prognostic models

    OpenAIRE

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Ford, I.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measure...

  5. A Practical Ontology Framework for Static Model Analysis

    Science.gov (United States)

    2011-04-26

    throughout the model. We implement our analysis framework on top of Ptolemy II [3], an extensible open source model-based design tool written in Java...While Ptolemy II makes a good testbed for im- plementing and experimenting with new analyses, we also feel that the techniques we present here are...broadly use- ful. For this reason, we aim to make our analysis frame- work orthogonal to the execution semantics of Ptolemy II, allowing it to be

  6. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  7. Possibilities: A framework for modeling students' deductive reasoning in physics

    Science.gov (United States)

    Gaffney, Jonathan David Housley

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the

  8. The development of a sustainable development model framework

    International Nuclear Information System (INIS)

    Hannoura, Alim P.; Cothren, Gianna M.; Khairy, Wael M.

    2006-01-01

    The emergence of the 'sustainable development' concept as a response to the mining of natural resources for the benefit of multinational corporations has advanced the cause of long-term environmental management. A sustainable development model (SDM) framework that is inclusive of the 'whole' natural environment is presented to illustrate the integration of the sustainable development of the 'whole' ecosystem. The ecosystem approach is an inclusive framework that covers the natural environment relevant futures and constraints. These are dynamically interconnected and constitute the determinates of resources development component of the SDM. The second component of the SDM framework is the resources development patterns, i.e., the use of land, water, and atmospheric resources. All of these patterns include practices that utilize environmental resources to achieve a predefined outcome producing waste and by-products that require disposal into the environment. The water quality management practices represent the third component of the framework. These practices are governed by standards, limitations and available disposal means subject to quantity and quality permits. These interconnected standards, practices and permits shape the resulting environmental quality of the ecosystem under consideration. A fourth component, environmental indicators, of the SDM framework provides a measure of the ecosystem productivity and status that may differ based on societal values and culture. The four components of the SDM are interwoven into an outcome assessment process to form the management and feedback models. The concept of Sustainable Development is expressed in the management model as an objective function subject to desired constraints imposing the required bounds for achieving ecosystem sustainability. The development of the objective function and constrains requires monetary values for ecosystem functions, resources development activities and environmental cost. The

  9. Proposing hierarchy-similarity based access control framework: A multilevel Electronic Health Record data sharing approach for interoperable environment

    Directory of Open Access Journals (Sweden)

    Shalini Bhartiya

    2017-10-01

    Full Text Available Interoperability in healthcare environment deals with sharing of patient’s Electronic Health Records (EHR with fellow professionals in inter as well as intra departments or organizations. Healthcare environment experiences frequent shifting of doctors, paramedical staff in inter as well as intra departments or hospitals. The system exhibits dynamic attributes of users and resources managed through access control policies defined for that environment. Rules obtained on merging of such policies often generate policy-conflicts thereby resulting in undue data leakages to unintended users. This paper proposes an access control framework that applies a Hierarchy Similarity Analyzer (HSA on the policies need to be merged. It calculates a Security_Level (SL and assigns it to the users sharing data. The SL determines the authorized amount of data that can be shared on successful collaboration of two policies. The proposed framework allows integration of independent policies and identifies the possible policy-conflicts arising due to attribute disparities in defined rules. The framework is implemented on XACML policies and compared with other access models designed using centralized and decentralized approaches. Conditional constraints and properties are defined that generate policy-conflicts as prevalent in the policies.

  10. Mathematical model I. Electron and quantum mechanics

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  11. Mathematical model I. Electron and quantum mechanics

    Science.gov (United States)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  12. Integrating predictive frameworks and cognitive models of face perception.

    Science.gov (United States)

    Trapp, Sabrina; Schweinberger, Stefan R; Hayward, William G; Kovács, Gyula

    2018-02-08

    The idea of a "predictive brain"-that is, the interpretation of internal and external information based on prior expectations-has been elaborated intensely over the past decade. Several domains in cognitive neuroscience have embraced this idea, including studies in perception, motor control, language, and affective, social, and clinical neuroscience. Despite the various studies that have used face stimuli to address questions related to predictive processing, there has been surprisingly little connection between this work and established cognitive models of face recognition. Here we suggest that the predictive framework can serve as an important complement of established cognitive face models. Conversely, the link to cognitive face models has the potential to shed light on issues that remain open in predictive frameworks.

  13. `Dhara': An Open Framework for Critical Zone Modeling

    Science.gov (United States)

    Le, P. V.; Kumar, P.

    2016-12-01

    Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.

  14. A new framework for an electrophotographic printer model

    Science.gov (United States)

    Colon-Lopez, Fermin A.

    Digital halftoning is a printing technology that creates the illusion of continuous tone images for printing devices such as electrophotographic printers that can only produce a limited number of tone levels. Digital halftoning works because the human visual system has limited spatial resolution which blurs the printed dots of the halftone image, creating the gray sensation of a continuous tone image. Because the printing process is imperfect it introduces distortions to the halftone image. The quality of the printed image depends, among other factors, on the complex interactions between the halftone image, the printer characteristics, the colorant, and the printing substrate. Printer models are used to assist in the development of new types of halftone algorithms that are designed to withstand the effects of printer distortions. For example, model-based halftone algorithms optimize the halftone image through an iterative process that integrates a printer model within the algorithm. The two main goals of a printer model are to provide accurate estimates of the tone and of the spatial characteristics of the printed halftone pattern. Various classes of printer models, from simple tone calibrations to complex mechanistic models, have been reported in the literature. Existing models have one or more of the following limiting factors: they only predict tone reproduction, they depend on the halftone pattern, they require complex calibrations or complex calculations, they are printer specific, they reproduce unrealistic dot structures, and they are unable to adapt responses to new data. The two research objectives of this dissertation are (1) to introduce a new framework for printer modeling and (2) to demonstrate the feasibility of such a framework in building an electrophotographic printer model. The proposed framework introduces the concept of modeling a printer as a texture transformation machine. The basic premise is that modeling the texture differences between the

  15. OpenLabNotes – An Electronic Laboratory Notebook Extension for OpenLabFramework

    Directory of Open Access Journals (Sweden)

    List Markus

    2015-09-01

    Full Text Available Electronic laboratory notebooks (ELNs are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  16. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  17. Electronic patient self-assessment and management (SAM): a novel framework for cancer survivorship.

    Science.gov (United States)

    Vickers, Andrew J; Salz, Talya; Basch, Ethan; Cooperberg, Matthew R; Carroll, Peter R; Tighe, Foss; Eastham, James; Rosen, Raymond C

    2010-06-17

    We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  18. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  19. Mechanisms of Soil Aggregation: a biophysical modeling framework

    Science.gov (United States)

    Ghezzehei, T. A.; Or, D.

    2016-12-01

    Soil aggregation is one of the main crosscutting concepts in all sub-disciplines and applications of soil science from agriculture to climate regulation. The concept generally refers to adhesion of primary soil particles into distinct units that remain stable when subjected to disruptive forces. It is one of the most sensitive soil qualities that readily respond to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. These changes are commonly quantified and incorporated in soil models indirectly as alterations in carbon content and type, bulk density, aeration, permeability, as well as water retention characteristics. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against

  20. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Mock-Up Interface, which is used to link the models with the MPC system. The framework was used to develop and run initial thermal and CO2 models. Their performance and the implementation procedure are discussed in the present paper. The framework is going to be implemented in the MPC system planned...

  1. Nowcasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Toth, G.; Singer, H. J.; Millward, G. H.; Gombosi, T. I.

    2015-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized B/t predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  2. Framework for the Parametric System Modeling of Space Exploration Architectures

    Science.gov (United States)

    Komar, David R.; Hoffman, Jim; Olds, Aaron D.; Seal, Mike D., II

    2008-01-01

    This paper presents a methodology for performing architecture definition and assessment prior to, or during, program formulation that utilizes a centralized, integrated architecture modeling framework operated by a small, core team of general space architects. This framework, known as the Exploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), enables: 1) a significantly larger fraction of an architecture trade space to be assessed in a given study timeframe; and 2) the complex element-to-element and element-to-system relationships to be quantitatively explored earlier in the design process. Discussion of the methodology advantages and disadvantages with respect to the distributed study team approach typically used within NASA to perform architecture studies is presented along with an overview of EXAMINE s functional components and tools. An example Mars transportation system architecture model is used to demonstrate EXAMINE s capabilities in this paper. However, the framework is generally applicable for exploration architecture modeling with destinations to any celestial body in the solar system.

  3. Development of an Electronic Portfolio System Success Model: An Information Systems Approach

    Science.gov (United States)

    Balaban, Igor; Mu, Enrique; Divjak, Blazenka

    2013-01-01

    This research has two main goals: to develop an instrument for assessing Electronic Portfolio (ePortfolio) success and to build a corresponding ePortfolio success model using DeLone and McLean's information systems success model as the theoretical framework. For this purpose, we developed an ePortfolio success measurement instrument and structural…

  4. Population balance models: a useful complementary modelling framework for future WWTP modelling.

    Science.gov (United States)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel; Vanrolleghem, Peter A; Gernaey, Krist V

    2015-01-01

    Population balance models (PBMs) represent a powerful modelling framework for the description of the dynamics of properties that are characterised by distributions. This distribution of properties under transient conditions has been demonstrated in many chemical engineering applications. Modelling efforts of several current and future unit processes in wastewater treatment plants could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot sufficiently capture the true behaviour and even lead to completely wrong conclusions. Examples of distributed properties are bubble size, floc size, crystal size or granule size. In these cases, PBMs can be used to develop new knowledge that can be embedded in our current models to improve their predictive capability. Hence, PBMs should be regarded as a complementary modelling framework to biokinetic models. This paper provides an overview of current applications, future potential and limitations of PBMs in the field of wastewater treatment modelling, thereby looking over the fence to other scientific disciplines.

  5. Modelling Framework and Assistive Device for Peripheral Intravenous Injections

    Science.gov (United States)

    Kam, Kin F.; Robinson, Martin P.; Gilbert, Mathew A.; Pelah, Adar

    2016-02-01

    Intravenous access for blood sampling or drug administration that requires peripheral venepuncture is perhaps the most common invasive procedure practiced in hospitals, clinics and general practice surgeries.We describe an idealised mathematical framework for modelling the dynamics of the peripheral venepuncture process. Basic assumptions of the model are confirmed through motion analysis of needle trajectories during venepuncture, taken from video recordings of a skilled practitioner injecting into a practice kit. The framework is also applied to the design and construction of a proposed device for accurate needle guidance during venepuncture administration, assessed as consistent and repeatable in application and does not lead to over puncture. The study provides insights into the ubiquitous peripheral venepuncture process and may contribute to applications in training and in the design of new devices, including for use in robotic automation.

  6. A Simulink simulation framework of a MagLev model

    Energy Technology Data Exchange (ETDEWEB)

    Boudall, H.; Williams, R.D.; Giras, T.C. [University of Virginia, Charlottesville (United States). School of Enegineering and Applied Science

    2003-09-01

    This paper presents a three-degree-of-freedom model of a section of the magnetically levitated train Maglev. The Maglev system dealt with in this article utilizes electromagnetic levitation. Each MagLev vehicle section is viewed as two separate parts, namely a body and a chassis, coupled by a set of springs and dampers. The MagLev model includes the propulsion, the guidance and the levitation systems. The equations of motion are developed. A Simulink simulation framework is implemented in order to study the interaction between the different systems and the dynamics of a MagLev vehicle. The simulation framework will eventually serve as a tool to assist the design and development of the Maglev system in the United States of America. (author)

  7. Population Balance Models: A useful complementary modelling framework for future WWTP modelling

    DEFF Research Database (Denmark)

    Nopens, Ingmar; Torfs, Elena; Ducoste, Joel

    2014-01-01

    processes in WWTPs could potentially benefit from this framework, especially when distributed dynamics have a significant impact on the overall unit process performance. In these cases, current models that rely on average properties cannot sufficiently captured the true behaviour. Examples are bubble size...

  8. GEMFsim: A Stochastic Simulator for the Generalized Epidemic Modeling Framework

    OpenAIRE

    Sahneh, Faryad Darabi; Vajdi, Aram; Shakeri, Heman; Fan, Futing; Scoglio, Caterina

    2016-01-01

    The recently proposed generalized epidemic modeling framework (GEMF) \\cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algorithm for exact, continuous-time numerical simulation of GEMF-based processes. Moreover the implementation of this algorithm, GEMFsim, is available in popular scientific programming platforms such as MATLAB, R, Python, and C; GEMFsim facilitates ...

  9. Business Modeling Framework For Personalization In Mobile Business Services

    OpenAIRE

    Pau, L-F.; Dits, J.

    2002-01-01

    textabstractIs presented the structure of a formal framework for personalization features for mobile business services, which can be used to drive the business modeling of M-business services from a service provider point of view. It also allows to compute the revenue as linked to personalization levels and features. A case study has been performed in the area of personalized location based mobile services

  10. Designing for Learning and Play - The Smiley Model as Framework

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    This paper presents a framework for designing engaging learning experiences in games – the Smiley Model. In this Design-Based Research project, student-game-designers were learning inside a gamified learning design - while designing and implementing learning goals from curriculum into the small d...... was adult upper secondary general students as well as 7th grade primary school students. The intention with this article is to inspire future learning designers that would like to experiment with integrating learning and play....

  11. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....

  12. Models of fast-electron penetration

    International Nuclear Information System (INIS)

    Perry, D.J.; Raisis, S.K.

    1994-01-01

    We introduce multiple scattering models of charged-particle penetration which are based on the previous analyses of Yang and Perry. Our development removes the main limitations of the Fermi-Eyges approach while retaining its considerable potential as a theory which is useful for applied work. We illustrate key predictions with sample calculations that are of particular interest in therapeutic applications, 5-20 MeV electrons incident on water. 8 refs., 5 figs

  13. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  14. On the estimation of emissivity of metals within the framework of electron classical theory

    International Nuclear Information System (INIS)

    Shvarev, K.M.; Baum, B.A.

    1978-01-01

    The well-known Hagen-Rubens and Ashkinass-Foot equations used for calculating the spectral and integral emissive powers of metals usually yield enhanced values of optical characteristics. Improved formulas for estimating emissive characteristics of metals from their electric conductivity are obtained with an allowance for the relaxation time and in the free-electron model approximation

  15. Next generation framework for aquatic modeling of the Earth System

    Science.gov (United States)

    Fekete, B. M.; Wollheim, W. M.; Wisser, D.; Vörösmarty, C. J.

    2009-03-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the complexity of the surrounding IT infrastructure is growing as well. Earth System models must manage a vast amount of data in heterogeneous computing environments. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. The Next generation Framework for Aquatic Modeling of the Earth System (NextFrAMES, a revised version of FrAMES) have numerous similarities to those developed by other teams, but represents a novel model development paradigm. NextFrAMES is built around a modeling XML that lets modelers to express the overall model structure and provides an API for dynamically linked plugins to represent the processes. The model XML is executed by the NextFrAMES run-time engine that parses the model definition, loads the module plugins, performs the model I/O and executes the model calculations. NextFrAMES has a minimalistic view representing spatial domains and treats every domain (regardless of its layout such as grid, network tree, individual points, polygons, etc.) as vector of objects. NextFrAMES performs computations on multiple domains and interactions between different spatial domains are carried out through couplers. NextFrAMES allows processes to operate at different frequencies by providing rudimentary aggregation and disaggregation facilities. NextFrAMES was designed primarily for

  16. A framework for quantifying net benefits of alternative prognostic models

    DEFF Research Database (Denmark)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit......) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk...... risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing...

  17. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  18. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  19. The ontology model of FrontCRM framework

    Science.gov (United States)

    Budiardjo, Eko K.; Perdana, Wira; Franshisca, Felicia

    2013-03-01

    Adoption and implementation of Customer Relationship Management (CRM) is not merely a technological installation, but the emphasis is more on the application of customer-centric philosophy and culture as a whole. CRM must begin at the level of business strategy, the only level that thorough organizational changes are possible to be done. Changes agenda can be directed to each departmental plans, and supported by information technology. Work processes related to CRM concept include marketing, sales, and services. FrontCRM is developed as framework to guide in identifying business processes related to CRM in which based on the concept of strategic planning approach. This leads to processes and practices identification in every process area related to marketing, sales, and services. The Ontology model presented on this paper by means serves as tools to avoid framework misunderstanding, to define practices systematically within process area and to find CRM software features related to those practices.

  20. Parametric design and analysis framework with integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2014-01-01

    control with the building designer. Consequence based design is defined by the specific use of integrated dynamic modeling, which includes the parametric capabilities of a scripting tool and building simulation features of a building performance simulation tool. The framework can lead to enhanced......In the wake of uncompromising requirements on building performance and the current emphasis on sustainability, including building energy and indoor environment, designing buildings involves elements of expertise of multiple disciplines. However, building performance analyses, including those...... of building energy and indoor environment, are generally confined to late in the design process. Consequence based design is a framework intended for the early design stage. It involves interdisciplinary expertise that secures validity and quality assurance with a simulationist while sustaining autonomous...

  1. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  2. Modelling multimedia teleservices with OSI upper layers framework: Short paper

    Science.gov (United States)

    Widya, I.; Vanrijssen, E.; Michiels, E.

    The paper presents the use of the concepts and modelling principles of the Open Systems Interconnection (OSI) upper layers structure in the modelling of multimedia teleservices. It puts emphasis on the revised Application Layer Structure (OSI/ALS). OSI/ALS is an object based reference model which intends to coordinate the development of application oriented services and protocols in a consistent and modular way. It enables the rapid deployment and integrated use of these services. The paper emphasizes further on the nesting structure defined in OSI/ALS which allows the design of scalable and user tailorable/controllable teleservices. OSI/ALS consistent teleservices are moreover implementable on communication platforms of different capabilities. An analysis of distributed multimedia architectures which can be found in the literature, confirms the ability of the OSI/ALS framework to model the interworking functionalities of teleservices.

  3. A computational framework for modeling targets as complex adaptive systems

    Science.gov (United States)

    Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh

    2017-05-01

    Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.

  4. Vulnerability Assessment Models to Drought: Toward a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Kiumars Zarafshani

    2016-06-01

    Full Text Available Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers’ ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers’ level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought.

  5. A Formal Framework for Integrated Environment Modeling Systems

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhang

    2017-02-01

    Full Text Available Integrated Environment Modeling (IEM has become more and more important for environmental studies and applications. IEM systems have also been extended from scientific studies to much wider practical application situations. The quality and improved efficiency of IEM systems have therefore become increasingly critical. Although many advanced and creative technologies have been adopted to improve the quality of IEM systems, there is scarcely any formal method for evaluating and improving them. This paper is devoted to proposing a formal method to improve the quality and the developing efficiency of IEM systems. Two primary contributions are made. Firstly, a formal framework for IEM is proposed. The framework not only reflects the static and dynamic features of IEM but also covers different views from variant roles throughout the IEM lifecycle. Secondly, the formal operational semantics corresponding to the former model of the IEM is derived in detail; it can be used as the basis for aiding automated integrated modeling and verifying the integrated model.

  6. Steepest entropy ascent quantum thermodynamic model of electron and phonon transport

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine

    2018-01-01

    An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.

  7. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  8. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    Science.gov (United States)

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  9. LQCD workflow execution framework: Models, provenance and fault-tolerance

    International Nuclear Information System (INIS)

    Piccoli, Luciano; Simone, James N; Kowalkowlski, James B; Dubey, Abhishek

    2010-01-01

    Large computing clusters used for scientific processing suffer from systemic failures when operated over long continuous periods for executing workflows. Diagnosing job problems and faults leading to eventual failures in this complex environment is difficult, specifically when the success of an entire workflow might be affected by a single job failure. In this paper, we introduce a model-based, hierarchical, reliable execution framework that encompass workflow specification, data provenance, execution tracking and online monitoring of each workflow task, also referred to as participants. The sequence of participants is described in an abstract parameterized view, which is translated into a concrete data dependency based sequence of participants with defined arguments. As participants belonging to a workflow are mapped onto machines and executed, periodic and on-demand monitoring of vital health parameters on allocated nodes is enabled according to pre-specified rules. These rules specify conditions that must be true pre-execution, during execution and post-execution. Monitoring information for each participant is propagated upwards through the reflex and healing architecture, which consists of a hierarchical network of decentralized fault management entities, called reflex engines. They are instantiated as state machines or timed automatons that change state and initiate reflexive mitigation action(s) upon occurrence of certain faults. We describe how this cluster reliability framework is combined with the workflow execution framework using formal rules and actions specified within a structure of first order predicate logic that enables a dynamic management design that reduces manual administrative workload, and increases cluster-productivity.

  10. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework

    Science.gov (United States)

    Tyler Jon Smith; Lucy Amanda. Marshall

    2010-01-01

    Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...

  11. High speed product development in the Danish electronics industry. A theorethical framework and some empirical evidence

    DEFF Research Database (Denmark)

    Bjarnø, Ole-Christian

    1992-01-01

    This paper deals with an investigation of high speed product development. The idea has been to create a basis for practical procedures for management of fast-responding organisations, and the work here is a part of this target. The investigation starts with a review of the literature. Based...... on this review, a framework of the speed determining steps in product development is syntesized. Some essential parts which is not seen reported earlier is developed, among them an integrated model of productfit to customer and distribution....

  12. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    Science.gov (United States)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  13. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    optimization algorithms are demonstrated. We investigated the clinical significance of MERT on spinal irradiation, breast boost irradiation, and a head and neck sarcoma cancer site using several parameters to analyze the treatment plans. Finally, we investigated the idea of mixed beam photon and electron treatment planning. Photon optimization treatment planning tools were included within the MERT planning toolkit for the purpose of mixed beam optimization. In conclusion, this thesis work has resulted in the development of an advanced framework for photon and electron Monte Carlo treatment planning studies and the development of an inverse planning system for photon, electron or mixed beam radiotherapy (MBRT). The justification and validation of this work is found within the results of the planning studies, which have demonstrated dosimetric advantages to using MERT or MBRT in comparison to clinical treatment alternatives.

  14. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  15. A hybrid parallel framework for the cellular Potts model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).

  16. A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ebenezer Out-Nyarko

    2009-11-01

    Full Text Available Using Hidden Markov Models (HMMs as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks.

  17. GIFMod: A Flexible Modeling Framework For Hydraulic and Water Quality Performance Assessment of Stormwater Green Infrastructure

    Science.gov (United States)

    A flexible framework has been created for modeling multi-dimensional hydrological and water quality processes within stormwater green infrastructures (GIs). The framework models a GI system using a set of blocks (spatial features) and connectors (interfaces) representing differen...

  18. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so...

  19. CIMS: A FRAMEWORK FOR INFRASTRUCTURE INTERDEPENDENCY MODELING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Donald D. Dudenhoeffer; May R. Permann; Milos Manic

    2006-12-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, utilities, telecommunication, and even financial networks. While modeling and simulation tools have provided insight into the behavior of individual infrastructure networks, a far less understood area is that of the interrelationships among multiple infrastructure networks including the potential cascading effects that may result due to these interdependencies. This paper first describes infrastructure interdependencies as well as presenting a formalization of interdependency types. Next the paper describes a modeling and simulation framework called CIMS© and the work that is being conducted at the Idaho National Laboratory (INL) to model and simulate infrastructure interdependencies and the complex behaviors that can result.

  20. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  1. A Framework for Conceptual Modeling of Geographic Data Quality

    DEFF Research Database (Denmark)

    Friis-Christensen, Anders; Christensen, J.V.; Jensen, Christian Søndergaard

    2004-01-01

    Sustained advances in wireless communications, geo-positioning, and consumer electronics pave the way to a kind of location-based service that relies on the tracking of the continuously changing positions of an entire population of service users. This type of service is characterized by large...... of geographic data and quality. The approach integrates quality information with the basic model constructs. This results in a model that enables object-oriented specification of quality requirements and of acceptable quality levels. More specifically, it extends the Unified Modeling Language with new modeling...... constructs based on standard classes, attributes, and associations that include quality information. A case study illustrates the utility of the quality-enabled model. reported....

  2. Modeling electronic structure and transport properties of graphene with resonant scattering centers

    NARCIS (Netherlands)

    Yuan, Shengjun; De Raedt, Hans; Katsnelson, Mikhail I.

    2010-01-01

    We present a detailed numerical study of the electronic properties of single-layer graphene with resonant (hydrogen) impurities and vacancies within a framework of noninteracting tight-binding model on a honeycomb lattice. The algorithms are based on the numerical solution of the time-dependent

  3. Sol-Terra - AN Operational Space Weather Forecasting Model Framework

    Science.gov (United States)

    Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.

    2015-12-01

    The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within

  4. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  5. A unified framework for benchmark dose estimation applied to mixed models and model averaging

    DEFF Research Database (Denmark)

    Ritz, Christian; Gerhard, Daniel; Hothorn, Ludwig A.

    2013-01-01

    This article develops a framework for benchmark dose estimation that allows intrinsically nonlinear dose-response models to be used for continuous data in much the same way as is already possible for quantal data. This means that the same dose-response model equations may be applied to both...... continuous and quantal data, facilitating benchmark dose estimation in general for a wide range of candidate models commonly used in toxicology. Moreover, the proposed framework provides a convenient means for extending benchmark dose concepts through the use of model averaging and random effects modeling...... provides slightly conservative, yet useful, estimates of benchmark dose lower limit under realistic scenarios....

  6. Reconfigurable Model Execution in the OpenMDAO Framework

    Science.gov (United States)

    Hwang, John T.

    2017-01-01

    NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the

  7. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  8. A python framework for environmental model uncertainty analysis

    Science.gov (United States)

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  9. A framework for quantifying net benefits of alternative prognostic models.

    Science.gov (United States)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M; Thompson, Simon G

    2012-01-30

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple-study setting. The method is illustrated in the context of cardiovascular disease risk prediction using an individual participant data meta-analysis. We estimate the number of cardiovascular-disease-free life years gained when statin treatment is allocated based on a risk prediction model with five established risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing risks. Copyright © 2011 John Wiley & Sons, Ltd.

  10. A Model-driven Framework for Educational Game Design

    Directory of Open Access Journals (Sweden)

    Bill Roungas

    2016-09-01

    Full Text Available Educational games are a class of serious games whose main purpose is to teach some subject to their players. Despite the many existing design frameworks, these games are too often created in an ad-hoc manner, and typically without the use of a game design document (GDD. We argue that a reason for this phenomenon is that current ways to structure, create and update GDDs do not increase the value of the artifact in the design and development process. As a solution, we propose a model-driven, web-based knowledge management environment that supports game designers in the creation of a GDD that accounts for and relates educational and entertainment game elements. The foundation of our approach is our devised conceptual model for educational games, which also defines the structure of the design environment. We present promising results from an evaluation of our environment with eight experts in serious games.

  11. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  12. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  13. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    Science.gov (United States)

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  14. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    Science.gov (United States)

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Proposed framework for thermomechanical life modeling of metal matrix composites

    Science.gov (United States)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  16. A modelling framework to simulate foliar fungal epidemics using functional-structural plant models.

    Science.gov (United States)

    Garin, Guillaume; Fournier, Christian; Andrieu, Bruno; Houlès, Vianney; Robert, Corinne; Pradal, Christophe

    2014-09-01

    Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions inside these dynamic systems and may lead to innovative protection strategies. In particular, functional-structural plant models (FSPMs) have been identified as a means to optimize the use of architecture-related traits. A current limitation lies in the inherent complexity of this type of modelling, and thus the purpose of this paper is to provide a framework to both extend and simplify the modelling of pathosystems using FSPMs. Different entities and interactions occurring in pathosystems were formalized in a conceptual model. A framework based on these concepts was then implemented within the open-source OpenAlea modelling platform, using the platform's general strategy of modelling plant-environment interactions and extending it to handle plant interactions with pathogens. New developments include a generic data structure for representing lesions and dispersal units, and a series of generic protocols to communicate with objects representing the canopy and its microenvironment in the OpenAlea platform. Another development is the addition of a library of elementary models involved in pathosystem modelling. Several plant and physical models are already available in OpenAlea and can be combined in models of pathosystems using this framework approach. Two contrasting pathosystems are implemented using the framework and illustrate its generic utility. Simulations demonstrate the framework's ability to simulate multiscaled interactions within pathosystems, and also show that models are modular components within the framework and can be extended. This is illustrated by testing the impact of canopy architectural traits on fungal dispersal. This study provides a framework for modelling a large number of pathosystems using FSPMs. This structure can accommodate both

  17. A Conceptual Framework for the Electronic Performance Support Systems within IBM Lotus Notes 6 (LN6 Example

    Directory of Open Access Journals (Sweden)

    Servet BAYRAM

    2005-10-01

    Full Text Available A Conceptual Framework for the Electronic PerformanceSupport Systems within IBM Lotus Notes 6 (LN6 Example Assoc. Prof. Dr. Servet BAYRAM Computer Education & Instructional Technologies Marmara University, TURKEYsbayram@marmara.edu.tr ABSTRACT The concept of Electronic Performance Support Systems (EPSS is containing multimedia or computer based instruction components that improves human performance by providing process simplification, performance information and decision support system. EPSS has become a hot topic for organizational development, human resources, performance technology, training, and educational development professionals. A conceptual framework of EPSS is constructed under five interrelated and interdependent domains for educational implications. The domains of the framework are online collaboration, cost-effectiveness, motivation, service management, and performance empowering. IBM Lotus Notes 6 (LN6 is used as an example application tool to illustrate the power of this framework. The framework describes a set of relevant events based upon deductive analyses for improving our understanding of the EPSS and its implications on education and training. The article is also pointed out that there are some similarities between the EPSS’ and the LN6’s specific features within this conceptual framework. It can provide some guidelines and benefits to researchers, educators, and designers as well.

  18. Concepts as Semantic Pointers: A Framework and Computational Model.

    Science.gov (United States)

    Blouw, Peter; Solodkin, Eugene; Thagard, Paul; Eliasmith, Chris

    2016-07-01

    The reconciliation of theories of concepts based on prototypes, exemplars, and theory-like structures is a longstanding problem in cognitive science. In response to this problem, researchers have recently tended to adopt either hybrid theories that combine various kinds of representational structure, or eliminative theories that replace concepts with a more finely grained taxonomy of mental representations. In this paper, we describe an alternative approach involving a single class of mental representations called "semantic pointers." Semantic pointers are symbol-like representations that result from the compression and recursive binding of perceptual, lexical, and motor representations, effectively integrating traditional connectionist and symbolic approaches. We present a computational model using semantic pointers that replicates experimental data from categorization studies involving each prior paradigm. We argue that a framework involving semantic pointers can provide a unified account of conceptual phenomena, and we compare our framework to existing alternatives in accounting for the scope, content, recursive combination, and neural implementation of concepts. Copyright © 2015 Cognitive Science Society, Inc.

  19. An Efficient Framework Model for Optimizing Routing Performance in VANETs

    Science.gov (United States)

    Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala

    2018-01-01

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884

  20. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  1. A Learning Framework for Control-Oriented Modeling of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.; Vishnu, Abhinav; Vrabie, Draguna L.

    2018-01-18

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and big data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.

  2. TP-model transformation-based-control design frameworks

    CERN Document Server

    Baranyi, Péter

    2016-01-01

    This book covers new aspects and frameworks of control, design, and optimization based on the TP model transformation and its various extensions. The author outlines the three main steps of polytopic and LMI based control design: 1) development of the qLPV state-space model, 2) generation of the polytopic model; and 3) application of LMI to derive controller and observer. He goes on to describe why literature has extensively studied LMI design, but has not focused much on the second step, in part because the generation and manipulation of the polytopic form was not tractable in many cases. The author then shows how the TP model transformation facilitates this second step and hence reveals new directions, leading to powerful design procedures and the formulation of new questions. The chapters of this book, and the complex dynamical control tasks which they cover, are organized so as to present and analyze the beneficial aspect of the family of approaches (control, design, and optimization). Additionally, the b...

  3. A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

    Directory of Open Access Journals (Sweden)

    Tolutola Oyetunde

    2017-01-01

    Full Text Available A mathematical model for the theoretical evaluation of microbial electrochemical technologies (METs is presented that incorporates a detailed physico-chemical framework, includes multiple reactions (both at the electrodes and in the bulk phase and involves a variety of microbial functional groups. The model is applied to two theoretical case studies: (i A microbial electrolysis cell (MEC for continuous anodic volatile fatty acids (VFA oxidation and cathodic VFA reduction to alcohols, for which the theoretical system response to changes in applied voltage and VFA feed ratio (anode-to-cathode as well as membrane type are investigated. This case involves multiple parallel electrode reactions in both anode and cathode compartments; (ii A microbial fuel cell (MFC for cathodic perchlorate reduction, in which the theoretical impact of feed flow rates and concentrations on the overall system performance are investigated. This case involves multiple electrode reactions in series in the cathode compartment. The model structure captures interactions between important system variables based on first principles and provides a platform for the dynamic description of METs involving electrode reactions both in parallel and in series and in both MFC and MEC configurations. Such a theoretical modelling approach, largely based on first principles, appears promising in the development and testing of MET control and optimization strategies.

  4. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  5. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  6. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  7. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...

  8. A Physics-Based Modeling Framework for Prognostic Studies

    Science.gov (United States)

    Kulkarni, Chetan S.

    2014-01-01

    Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable

  9. Modeling Electronic Properties of Complex Oxides

    Science.gov (United States)

    Krishnaswamy, Karthik

    Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schrodinger-Poisson (SP) simulation (Abstract shortened by ProQuest.

  10. a Framework for AN Open Source Geospatial Certification Model

    Science.gov (United States)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  11. A FRAMEWORK FOR AN OPEN SOURCE GEOSPATIAL CERTIFICATION MODEL

    Directory of Open Access Journals (Sweden)

    T. U. R. Khan

    2016-06-01

    Full Text Available The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission “Making geospatial education and opportunities accessible to all”. Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the “Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM. The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and

  12. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  13. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    Science.gov (United States)

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  14. A Production Model for Construction: A Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Ricardo Antunes

    2015-03-01

    Full Text Available The building construction industry faces challenges, such as increasing project complexity and scope requirements, but shorter deadlines. Additionally, economic uncertainty and rising business competition with a subsequent decrease in profit margins for the industry demands the development of new approaches to construction management. However, the building construction sector relies on practices based on intuition and experience, overlooking the dynamics of its production system. Furthermore, researchers maintain that the construction industry has no history of the application of mathematical approaches to model and manage production. Much work has been carried out on how manufacturing practices apply to construction projects, mostly lean principles. Nevertheless, there has been little research to understand the fundamental mechanisms of production in construction. This study develops an in-depth literature review to examine the existing knowledge about production models and their characteristics in order to establish a foundation for dynamic production systems management in construction. As a result, a theoretical framework is proposed, which will be instrumental in the future development of mathematical production models aimed at predicting the performance and behaviour of dynamic project-based systems in construction.

  15. A modeling framework for the design of collector wells.

    Science.gov (United States)

    Moore, Rhett; Kelson, Vic; Wittman, Jack; Rash, Vern

    2012-01-01

    We present results of a design study performed for the Saylorville Wellfield in Iowa, which is owned and operated by the Des Moines Water Works. The purpose of this study was to estimate wellfield capacity and provide a preliminary design for two radial collector wells to be constructed in the outwash aquifer along the Des Moines River near Saylorville, Iowa. After a field investigation to characterize the aquifer, regional two-dimensional and local three-dimensional, steady-state groundwater flow modeling was performed to locate and design the wells. This modeling was the foundation for design recommendations based on the relative performance of 12 collector well designs with varying lateral numbers, elevations, screen lengths, and orientations. For each site, alternate designs were evaluated based on model estimates of the capacity, the percent of surface water captured, and the production per unit length of screen. Many of our results are consistent with current design practices based on experience and intuition, but our methods allow for a quantitative approach for comparing alternate designs. Although the results are site-specific, the framework for evaluating the hydraulic design of the Saylorville radial collector wells is broadly applicable and could be used at other riverbank filtration sites. In addition, many of the conclusions from this design study may apply at other sites where construction of radial collector wells is being considered. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  16. Internal modelling under Risk-Based Capital (RBC) framework

    Science.gov (United States)

    Ling, Ang Siew; Hin, Pooi Ah

    2015-12-01

    Very often the methods for the internal modelling under the Risk-Based Capital framework make use of the data which are in the form of run-off triangle. The present research will instead extract from a group of n customers, the historical data for the sum insured si of the i-th customer together with the amount paid yij and the amount aij reported but not yet paid in the j-th development year for j = 1, 2, 3, 4, 5, 6. We model the future value (yij+1, aij+1) to be dependent on the present year value (yij, aij) and the sum insured si via a conditional distribution which is derived from a multivariate power-normal mixture distribution. For a group of given customers with different original purchase dates, the distribution of the aggregate claims liabilities may be obtained from the proposed model. The prediction interval based on the distribution for the aggregate claim liabilities is found to have good ability of covering the observed aggregate claim liabilities.

  17. Account of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rafatov, I. [Physics Department, Middle East Technical University, Ankara (Turkey); Bogdanov, E. A.; Kudryavtsev, A. A. [Saint Petersburg State University, St. Petersburg (Russian Federation)

    2012-09-15

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the 'simple' and 'extended' fluid frameworks. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  18. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  19. A Model for Teaching Electronic Commerce Students

    Directory of Open Access Journals (Sweden)

    Howard C. Woodard

    2002-10-01

    Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.

  20. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  1. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  2. Electronic Commerce publications and research in Australia: Implications of the Research Quality Framework

    Directory of Open Access Journals (Sweden)

    Helana Scheepers

    2008-05-01

    Full Text Available Australian universities and academics will soon see a major change in the way research is reported and funded. It is expected that by 2008, according to the most recent timetable (Bishop 2006, the Research Quality Framework (RQF will be implemented. The result of the announcement has been an increased activity within universities focusing on the proposed criteria. The proposed RQF will seek to have research assessed according to quality and impact. Part of both quality and impact relates to where research is published. For academics it will be increasingly important to target high quality journals if the research is to be rated as high quality. The question this raises for Information Systems academics is where do we publish for maximum impact? The Information Systems (IS field is diverse with researchers working in many areas and a publication outlet for one area may not be relevant for another. One area where many Australian IS researchers have focused their research interest is the field of electronic commerce (e-commerce. The research reported in this paper identified the publication outlets that would be regarded as amongst the highest quality for researchers wishing to publish e-commerce research. The authors analysed e-commerce research papers by Australian researchers published in the period 2000 to 2005. The results describe where Australian researchers are publishing in this field. The paper also provides guidance to those working in the e-commerce field on which journals and conferences to target to ensure their work rates highly in terms of the RQF.

  3. Modeling Electronic Skin Response to Normal Distributed Force

    Directory of Open Access Journals (Sweden)

    Lucia Seminara

    2018-02-01

    Full Text Available The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  4. Models of Recognition, Repetition Priming, and Fluency : Exploring a New Framework

    Science.gov (United States)

    Berry, Christopher J.; Shanks, David R.; Speekenbrink, Maarten; Henson, Richard N. A.

    2012-01-01

    We present a new modeling framework for recognition memory and repetition priming based on signal detection theory. We use this framework to specify and test the predictions of 4 models: (a) a single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b) a multiple-systems-1 (MS1) model, in which completely…

  5. Research on lightning stroke model and characteristics of electronic transformer

    Directory of Open Access Journals (Sweden)

    Li Mu

    2018-01-01

    Full Text Available In order to improve the reliability of power supply, a large number of electronic voltage and current transformers are used in digital substations. In this paper, the mathematical model of the electronic transformer is analyzed firstly, and its circuit model is given. According to the difference of working characteristics between voltage transformer and current transformer, the circuit model of voltage type electronic transformer and current type electronic transformer is given respectively. By analyzing their broadband transmission characteristics, the accuracy of the model is verified, and their lightning analysis models are obtained.

  6. Computer-aided modeling framework for efficient model development, analysis and identification

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Sales Cruz, Mauricio

    2011-01-01

    methods introduce. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms, and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task......Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy, and water. This trend is set to continue due to the substantial benefits computer-aided....... The methodology has been implemented into a computer-aided modeling framework, which combines expert skills, tools, and database connections that are required for the different steps of the model development work-flow with the goal to increase the efficiency of the modeling process. The framework has two main...

  7. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  8. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  9. Cosmic-ray electrons in the closed-galaxy model

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Stephens, S.A.

    1976-01-01

    We have examined the consequences of the ''closed galaxy'' cosmic-ray confinement model of Rasmussen and Peters with regard to the electron component of cosmic rays. It is found that the predictions of this model are inconsistent with the observed intensity and charge composition of electrons. The model is also inconsistent with the galactic radio emission

  10. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    OpenAIRE

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models marketing performance as a sequence of intermediate performance measures ultimately leading to financial performance. This framework, called the Hierarchical Marketing Performance (HMP) framework, starts ...

  11. The electronic-commerce-oriented virtual merchandise model

    Science.gov (United States)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  12. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  13. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  14. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations1

    OpenAIRE

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-01-01

    This article describes the WavePropaGator (WPG) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimiz...

  15. Exploring Higher Education Governance: Analytical Models and Heuristic Frameworks

    Directory of Open Access Journals (Sweden)

    Burhan FINDIKLI

    2017-08-01

    Full Text Available Governance in higher education, both at institutional and systemic levels, has experienced substantial changes within recent decades because of a range of world-historical processes such as massification, growth, globalization, marketization, public sector reforms, and the emergence of knowledge economy and society. These developments have made governance arrangements and decision-making processes in higher education more complex and multidimensional more than ever and forced scholars to build new analytical and heuristic tools and strategies to grasp the intricacy and diversity of higher education governance dynamics. This article provides a systematic discussion of how and through which tools prominent scholars of higher education have analyzed governance in this sector by examining certain heuristic frameworks and analytical models. Additionally, the article shows how social scientific analysis of governance in higher education has proceeded in a cumulative way with certain revisions and syntheses rather than radical conceptual and theoretical ruptures from Burton R. Clark’s seminal work to the present, revealing conceptual and empirical junctures between them.

  16. Modelling of electron transport and of sawtooth activity in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  17. A Hybrid Programming Framework for Modeling and Solving Constraint Satisfaction and Optimization Problems

    OpenAIRE

    Paweł Sitek; Jarosław Wikarek

    2016-01-01

    This paper proposes a hybrid programming framework for modeling and solving of constraint satisfaction problems (CSPs) and constraint optimization problems (COPs). Two paradigms, CLP (constraint logic programming) and MP (mathematical programming), are integrated in the framework. The integration is supplemented with the original method of problem transformation, used in the framework as a presolving method. The transformation substantially reduces the feasible solution space. The framework a...

  18. Modelling Supported Driving as an Optimal Control Cycle : Framework and Model Characteristics

    NARCIS (Netherlands)

    Wang, M.; Treiber, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.

    2013-01-01

    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of

  19. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  20. Electrochemical Solvent Reorganization Energies in the Framework of the Polarizable Continuum Model.

    Science.gov (United States)

    Ghosh, Soumya; Horvath, Samantha; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2014-05-13

    Electron transfer reactions at electrochemical interfaces play a critical role in a wide range of catalytic processes. A key parameter in the rate constant expressions for such processes is the reorganization energy, which reflects the energetic cost of the solute and solvent rearrangements upon electron transfer. In this paper, we present dielectric continuum methods for calculating the solvent reorganization energy for electrochemical processes. We develop a method for calculating the electrochemical solvent reorganization energies with molecular-shaped cavities within the framework of the polarizable continuum model (PCM). The electronic and inertial responses of the solvent are separated according to their respective time scales, and two limiting cases of the relation between the solute and solvent electrons are examined. The effects of the electrode are included with the integral equations formalism PCM (IEF-PCM), in which the molecule-solvent boundary is treated explicitly, but the effects of the electrode-solvent boundary are included through an external Green's function. This approach accounts for the effects of detailed molecular charge redistribution in a molecular-shaped cavity, as well as the electronic and inertial solvent responses and the effects of the electrode. The calculated total reorganization energies are in reasonable agreement with experimental measurements for a series of electrochemical systems. Inclusion of the effects of the electrode is found to be essential for obtaining even qualitatively accurate solvent reorganization energies. These approaches are applicable to a wide range of systems and can be extended to include other types of boundaries, such as a self-assembled monolayer or double layer separating the electrode and the molecule.

  1. VHDL Model of Electronic-Lock System

    Directory of Open Access Journals (Sweden)

    J. Noga

    2000-04-01

    Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.

  2. An Airpower Application Framework: Modeling Coercive Airpower Strategies

    National Research Council Canada - National Science Library

    Weigand, Anthony

    1998-01-01

    This study focuses on the development of a theoretical framework for the application of coercive airpower strategies that can be used in the construction of a decision aid for use by airpower strategists...

  3. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  4. On the weaknesses of the valence shell electron pair repulsion (VSEPR) model

    Science.gov (United States)

    Røeggen, Inge

    1986-07-01

    The validity of the valence shell electron pair repulsion model (VSEPR) is discussed within the framework of an antisymmetric product of strongly orthogonal geminals (APSG). It is shown that when a molecule is partitioned onto fragments consisting of a central fragment, lone pairs, bond pairs, and ligands, the total APSG energy including the nuclear repulsion terms, can be written as a sum of intra- and interfragment energies. The VSEPR terms can be identified as three out of 13 different energy components. The analysis is applied to the water molecule. Six of the neglected energy components in the VSEPR model have a larger variation with the bond angle than the terms which are included in the model. According to this analysis it is difficult to consider the VSEPR model as a valid framework for discussing molecular equilibrium geometries. It is suggested that energy fragment analysis might represent an alternative model.

  5. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  6. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  7. FTL Quantum Models of the Photon and the Electron

    International Nuclear Information System (INIS)

    Gauthier, Richard F.

    2007-01-01

    A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = λ/2π (where λ is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin (ℎ/2π)/2 and approximate (without small QED corrections) magnetic moment e(ℎ/2π)/2m (the Bohr magneton μB) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/(ℎ/2π), amplitude (ℎ/2π)/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation

  8. On joint deterministic grid modeling and sub-grid variability conceptual framework for model evaluation

    Science.gov (United States)

    Ching, Jason; Herwehe, Jerold; Swall, Jenise

    The general situation (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing grid-based air-quality modeling results with observations. Typically, grid models ignore or parameterize processes and features that are at their sub-grid scale. Also, observations may be obtained in an area where significant spatial variability in the concentration fields exists. Consequently, model results and observations cannot be expected to be equal. To address this issue, we suggest a framework that can provide for qualitative judgments on model performance based on comparing observations to the grid predictions and its SGV distribution. Further, we (a) explore some characteristics of SGV, (b) comment on the contributions to SGV and (c) examine the implications to the modeling results at coarse grid resolution using examples from fine scale grid modeling of the Community Multi-scale Air Quality (CMAQ) modeling system.

  9. A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization

    Science.gov (United States)

    Spicknall, Ian H.; Foxman, Betsy; Marrs, Carl F.; Eisenberg, Joseph N. S.

    2013-01-01

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection. PMID:23660797

  10. A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization.

    Science.gov (United States)

    Spicknall, Ian H; Foxman, Betsy; Marrs, Carl F; Eisenberg, Joseph N S

    2013-08-15

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection.

  11. Addressing Energy System Modelling Challenges: The Contribution of the Open Energy Modelling Framework (oemof)

    DEFF Research Database (Denmark)

    Hilpert, Simon; Günther, Stephan; Kaldemeyer, Cord

    2017-01-01

    complexity of energy systems and high uncertainties on different levels. In addition, interdisciplinary modelling is necessary for getting insight in mechanisms of an integrated world. At the same time models need to meet scientific standards as public acceptance becomes increasingly important......The process of modelling energy systems is accompanied by challenges inherently connected with mathematical modelling. However, due to modern realities in the 21st century, existing challenges are gaining in magnitude and are supplemented with new ones. Modellers are confronted with a rising....... In this intricate environment model application as well as result communication and interpretation is also getting more difficult. In this paper we present the open energy modelling framework (oemof) as a novel approach for energy system modelling and derive its contribution to existing challenges. Therefore, based...

  12. Modeling mini-orange electron spectrometers

    International Nuclear Information System (INIS)

    Canzian da Silva, Nelson; Dietzsch, Olacio

    1994-01-01

    A method for calculating the transmission of mini-orange electron spectrometers is presented. The method makes use of the analytical solution for the magnetic field of a plane magnet in the calculation of the spectrometer spatial field distribution by superimposing the fields of the several magnets that compose the system. Electron trajectories through the spectrometer are integrated numerically in a Monte Carlo calculation and the transmission of the spectrometer as a function of the electron energy is evaluated. A six-magnet mini-orange spectrometer was built and its transmission functions for several distances from source to detector were measured and compared to the calculations. The overall agreement is found to be good. The method is quite general and can be applied to the design of systems composed of plane magnets, predicting their performance before assembling them. ((orig.))

  13. Angle-correlated cross sections in the framework of the continuum shell model

    International Nuclear Information System (INIS)

    Moerschel, K.P.

    1984-01-01

    In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de

  14. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  15. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Martinolli, E.

    2003-04-01

    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of Kα rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  16. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...

  17. A generic framework for individual-based modelling and physical-biological interaction

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mariani, Patrizio; Payne, Mark R.

    2018-01-01

    , comparison of physical circulation models, model ensemble runs and recently posterior Eulerian simulations using the IBMlib framework. We present the code design ideas behind the longevity of the code, our implementation experiences, as well as code performance benchmarking. The framework may contribute...

  18. Strategic assessment of capacity consumption in railway networks: Framework and model

    DEFF Research Database (Denmark)

    Jensen, Lars Wittrup; Landex, Alex; Nielsen, Otto Anker

    2017-01-01

    In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are gene...

  19. Designing a framework to design a business model for the 'bottom of the pyramid' population

    NARCIS (Netherlands)

    Ver loren van Themaat, Tanye; Schutte, Cornelius S.L.; Lutters, Diederick

    2013-01-01

    This article presents a framework for developing and designing a business model to target the bottom of the pyramid (BoP) population. Using blue ocean strategy and business model literature, integrated with research on the BoP, the framework offers a systematic approach for organisations to analyse

  20. The Foundations Framework for Developing and Reporting New Models of Care for Multimorbidity.

    Science.gov (United States)

    Stokes, Jonathan; Man, Mei-See; Guthrie, Bruce; Mercer, Stewart W; Salisbury, Chris; Bower, Peter

    2017-11-01

    Multimorbidity challenges health systems globally. New models of care are urgently needed to better manage patients with multimorbidity; however, there is no agreed framework for designing and reporting models of care for multimorbidity and their evaluation. Based on findings from a literature search to identify models of care for multimorbidity, we developed a framework to describe these models. We illustrate the application of the framework by identifying the focus and gaps in current models of care, and by describing the evolution of models over time. Our framework describes each model in terms of its theoretical basis and target population (the foundations of the model) and of the elements of care implemented to deliver the model. We categorized elements of care into 3 types: (1) clinical focus, (2) organization of care, (3) support for model delivery. Application of the framework identified a limited use of theory in model design and a strong focus on some patient groups (elderly, high users) more than others (younger patients, deprived populations). We found changes in elements with time, with a decrease in models implementing home care and an increase in models offering extended appointments. By encouragin greater clarity about the underpinning theory and target population, and by categorizing the wide range of potentially important elements of an intervention to improve care for patients with multimorbidity, the framework may be useful in designing and reporting models of care and help advance the currently limited evidence base. © 2017 Annals of Family Medicine, Inc.

  1. DFT-based Green's function pathways model for prediction of bridge-mediated electronic coupling.

    Science.gov (United States)

    Berstis, Laura; Baldridge, Kim K

    2015-12-14

    A density functional theory-based Green's function pathway model is developed enabling further advancements towards the long-standing challenge of accurate yet inexpensive prediction of electron transfer rate. Electronic coupling predictions are demonstrated to within 0.1 eV of experiment for organic and biological systems of moderately large size, with modest computational expense. Benchmarking and comparisons are made across density functional type, basis set extent, and orbital localization scheme. The resulting framework is shown to be flexible and to offer quantitative prediction of both electronic coupling and tunneling pathways in covalently bound non-adiabatic donor-bridge-acceptor (D-B-A) systems. A new localized molecular orbital Green's function pathway method (LMO-GFM) adaptation enables intuitive understanding of electron tunneling in terms of through-bond and through-space interactions.

  2. A communicational framework for evaluating interaction with IT by analyzing user-reception of electronic texts

    DEFF Research Database (Denmark)

    Wentzer, Helle

    2006-01-01

    through semiotic texts is presented, termed the poetics of the e-text. The poetics of the e-text offers a meta-communicational framework for identifying user constraints in the possibilities of interacting with the system. Identifying communicational problems with ICT-mediated interactions again offer...

  3. Professional Development Recognizing Technology Integration Modeled after the TPACK Framework

    Science.gov (United States)

    McCusker, Laura

    2017-01-01

    Public school teachers within a Pennsylvania intermediate unit are receiving inadequate job-embedded professional development that recognizes knowledge of content, pedagogy, and technology integration, as outlined by Mishra and Koehler's Technological Pedagogical Content Knowledge (TPACK) framework (2006). A school environment where teachers are…

  4. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    We describe a generalized framework as a method and design tool for creating interactive installations with a demand for exploratory meaning creation, not limited to the design stage, but extending into the stage where the installation meets participants and audience. The proposed solution is bas...

  5. Electronic Warfare in Army Models - A Survey.

    Science.gov (United States)

    1980-08-01

    CCM) PROVING GROUND TENIAS SAMJAM EIEM SPREAD SPECTRUM US ARMY ELECTRONIC FOREIGN SCIENCE & OFFICE OF MISSILE WARFARE LAB (EWL) TECHNOLOGY CENTER...IPAR MULTIRADAR SPREAD SPECTRUM ECMFUZ IRSS OTOALOC TAC ZINGERS EIEM ITF PATCOM TAM EOCM SIM FAC MGM-H4D RFSS TENIAS GTSF MG(-H4H ROLJAM ZAP I HMSM MSL...USAFAS TRASANA USAPAS TCF ASD WPAFU TENIAS ______ ___ ECAC _________ WAR EAGLE _________CATRADA WARRANT am________ 3DBDM ZAP 1 ____________ MEW EWL ZAP 2

  6. Reliability Modeling of Critical Electronic Devices.

    Science.gov (United States)

    1983-05-01

    Electronics, Vol. QE-15, No. 1, up January 1979, pp. 11-13. 15. Newman, D.H. and Ritchie, S., Degradation Pnenomena in Gallium Aluminium Arsenide Stripe...8217RESERVOIR COLD CATHODE TRAP FIGURE 7.2-1: HELIUM-CADMIUM LASER TUBE Principle design considerations relating to the lifetime of the device include (Ref 1): o...available in two basic design types. The contact design is either screw machined or stamped and formed. The screw machined contacts are close entry

  7. Mathematical model I. Electron and quantum mechanics

    OpenAIRE

    Nitin Ramchandra Gadre

    2011-01-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like...

  8. Experimental development based on mapping rule between requirements analysis model and web framework specific design model.

    Science.gov (United States)

    Okuda, Hirotaka; Ogata, Shinpei; Matsuura, Saeko

    2013-12-01

    Model Driven Development is a promising approach to develop high quality software systems. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface prototype from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the prototype. We proposes a mapping rule in which design information independent of each web application framework implementation is defined based on the requirements analysis model, so as to improve the traceability to the final product from the valid requirements analysis model. This paper discusses the result of applying our method to the development of a Group Work Support System that is currently running in our department.

  9. Modeling Extreme Precipitation over East China with a Global Variable-Resolution Modeling Framework (MPAS)

    Science.gov (United States)

    Zhao, C.; Xu, M.; Wang, Y.; Guo, J.; Hu, Z.; Ruby, L.; Duda, M.; Skamarock, W. C.

    2017-12-01

    Modeling extreme precipitation requires high-resolution scales. Traditional regional downscaling modeling framework has some issues such as ill-posed boundary conditions, mismatches between the driving global and regional dynamics and physics, and the lack of regional feedback to global scales. The non-hydrostatic Model for Prediction Across Scales (MPAS), a global variable-resolution modeling framework, offers an opportunity to obtain regional features at high-resolution scales using regional mesh refinement without boundary limiting. In this study, the MPAS model is first time applied with the refined meshes over East China at various high-resolutions (16 km and 4 km) to simulate an extreme precipitation event during 26-27 June 2012. The simulations are evaluated with the ground observations from the Chinese Meteorological Administration (CMA) network and the reanalysis data. Sensitivity experiments with different physics and forecast lead time are conducted to understand the uncertainties in simulating spatial and temporal variation of precipitation. The variable-resolution simulations are also compared with the traditional global uniform-resolution simulations at a relatively low scale ( 30 km) and a relatively high scale ( 16 km). The analysis shows that the variable-resolution simulation can capture the high-scale feature of precipitation over East China as the uniform-resolution simulation at a relatively high scale. It also indicates that high-resolution significantly improves the capability of simulating extreme precipitation. The MPAS simulations are also compared with the traditional limited-area simulations at similar scales using the Weather Research and Forecasting Model (WRF). The difference between the simulations using these two different modeling framework is also discussed.

  10. Electronic learning and constructivism: a model for nursing education.

    Science.gov (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart

    2010-01-01

    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  11. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  12. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  13. From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems

    Directory of Open Access Journals (Sweden)

    Andrzej Zalewski

    2013-06-01

    Full Text Available There exist numerous models of software architecture (box models, ADL’s, UML, architectural decisions, architecture modelling frameworks (views, enterprise architecture frameworks and even standards recommending practice for the architectural description. We show in this paper, that there is still a gap between these rather abstract frameworks/standards and existing architecture models. Frameworks and standards define what should be modelled rather than which models should be used and how these models are related to each other. We intend to prove that a less abstract modelling framework is needed for the effective modelling of large scale software intensive systems. It should provide a more precise guidance kinds of models to be employed and how they should relate to each other. The paper defines principles that can serve as base for an integrated model. Finally, structure of such a model has been proposed. It comprises three layers: the upper one – architectural policy – reflects corporate policy and strategies in architectural terms, the middle one –system organisation pattern – represents the core structural concepts and their rationale at a given level of scope, the lower one contains detailed architecture models. Architectural decisions play an important role here: they model the core architectural concepts explaining detailed models as well as organise the entire integrated model and the relations between its submodels.

  14. Framework for product knowledge and product related knowledge which supports product modelling for mass customization

    DEFF Research Database (Denmark)

    Riis, Jesper; Hansen, Benjamin Loer; Hvam, Lars

    2003-01-01

    and personalization. The framework for product knowledge and product related knowledge is based on the following theories: axiomatic design, technical systems, theory of domains, theory of structuring, theory of properties and the framework for the content of product and product related models. The framework is built...... and product related knowledge which should be or should not be included in the model. This demarcation will have a large influence on the structure of the IT systems (for example the configurator system, the CAD system or the PDM system). • The use of the framework can help achieve more structured models......The article presents a framework for product knowledge and product related knowledge which can be used to support the product modelling process which is needed for developing IT systems. These IT systems are important tools for many companies when they aim at achieving mass customization...

  15. Electronic Business Development as a Sustainable Competitive Advantage Model

    Directory of Open Access Journals (Sweden)

    Narimantas Kazimieras Paliulis

    2012-07-01

    Full Text Available The paper examines the practical usefulness of information technologies in business reviewing electronic business concepts provided in science literature and also the newest tendencies of electronic business development. The paper offers a review of various authors works on e-strategies and IT influence on companies’ functionality. An analysis of disadvantages in various electronic business development models is provided. On the basis of analyses done on the theory of electronic business development and on disadvantages of e-business models, the main aspects of e-business development as sustainable competitive advantage are identified. A fully – formed model of electronic business development as sustainable competitive advantage is presented. Conclusions are provided.Article in Lithuanian

  16. A Unified Model of Secondary Electron Cascades in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, B; London, R A; Hajdu, J

    2004-10-13

    In this paper we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of an X-ray photon. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1-10 keV. The present paper expands our earlier work by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free-electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t {le} 1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total late time number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs, following the primary impact.

  17. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  18. Checking Architectural and Implementation Constraints for Domain-Specific Component Frameworks using Models

    OpenAIRE

    Noguera, Carlos; Loiret, Frédéric

    2009-01-01

    Acceptance rate: 38%; International audience; Software components are used in various application domains, and many component models and frameworks have been proposed to fulfill domain-specific requirements. The ad-hoc development of these component frameworks hampers the reuse of tools and abstractions across different frameworks. We believe that in order to promote the reuse of components within various domain contexts an homogeneous design approach is needed. A key requirement of such an a...

  19. Towards a framework for improving goal-oriented requirement models quality

    OpenAIRE

    Cares, Carlos; Franch Gutiérrez, Javier

    2009-01-01

    Goal-orientation is a widespread and useful approach to Requirements Engineering. However, quality assessment frameworks focused on goal-oriented processes are either limited or remain on the theoretical side. Requirements quality initiatives range from simple metrics applicable to requirements documents, to general-purpose quality frameworks that include syntactic, semantic and pragmatic concerns. In some recent works, we have proposed a metrics framework for goal-oriented models, b...

  20. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Gettelman, Andrew [University Corporation For Atmospheric Research (UCAR), Boulder, CO (United States)

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  1. New two-fluid (localized + band electron) model for manganites

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. New two-fluid (localized + band electron) model for manganites. ( With HR Krishnamurthy,GV Pai,SR Hassan,V Shenoy,. Key ideas: T Gupta ….) Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …):.

  2. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  3. Problem Resolution through Electronic Mail: A Five-Step Model.

    Science.gov (United States)

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  4. An Access Control Model for the Uniframe Framework

    Science.gov (United States)

    2005-05-01

    is called active software capabilities framework ( ASCap ) that centers around the idea of a policy object, which instead of being embedded into the...access control component, is delivered by the client. The client firsts requests an ASCap (policy object) from the security server. Then the client...and the object server both must instantiate proxies. The client ASCap proxy may then request additional credentials from other servers which may

  5. A Framework for Modelling Trojans and Computer Virus Infection

    OpenAIRE

    Thimbleby, H.; Anderson, S.; Cairns, P.

    1998-01-01

    It is not possible to view a computer operating in the real world, including the possibility of Trojan horse programs and computer viruses, as simply a finite realisation of a Turing machine. We consider the actions of Trojan horses and viruses in real computer systems and suggest a minimal framework for an adequate formal understanding of the phenomena. Some conventional approaches, including biological metaphors, are shown to be inadequate; some suggestions are made towards constructing vir...

  6. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions. Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. (Abstract shortened by UMI.).

  7. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  8. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  9. A computer-aided framework for development, identification andmanagement of physiologically-based pharmacokinetic models

    DEFF Research Database (Denmark)

    Heitzig, Martina; Linninger, Andreas; Sin, Gürkan

    2014-01-01

    The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling......-based pharmacokinetic modelling of the distribution of the drug cyclosporin A in rats and humans. Four alternative candidate models for rats are derived and discriminated based on experimental data. The model candidate that is best represented by the experimental data is scaled-up to a human being applying...

  10. A "Rule of Five" Framework for Models and Modeling to Unify Mathematicians and Biologists and Improve Student Learning

    OpenAIRE

    Eaton, Carrie Diaz; Highlander, Hannah C.; Dahlquist, Kam D.; LaMar, M. Drew; Ledder, Glenn; Schugart, Richard C.

    2016-01-01

    Despite widespread calls for the incorporation of mathematical modeling into the undergraduate biology curriculum, there is lack of a common understanding around the definition of modeling, which inhibits progress. In this paper, we extend the "Rule of Four," initially used in calculus reform efforts, to a framework for models and modeling that is inclusive of varying disciplinary definitions of each. This unifying framework allows us to both build on strengths that each discipline and its st...

  11. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    Science.gov (United States)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  12. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  13. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  14. Modelling and implementing electronic health records in Denmark

    DEFF Research Database (Denmark)

    Bernstein, Knut; Rasmussen, Morten Bruun; Vingtoft, Søren

    2003-01-01

    The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development.......The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development....

  15. Assessing modified risk tobacco and nicotine products: Description of the scientific framework and assessment of a closed modular electronic cigarette.

    Science.gov (United States)

    Murphy, James; Gaca, Marianna; Lowe, Frazer; Minet, Emmanuel; Breheny, Damien; Prasad, Krishna; Camacho, Oscar; Fearon, Ian M; Liu, Chuan; Wright, Christopher; McAdam, Kevin; Proctor, Christopher

    2017-11-01

    Cigarette smoking causes many human diseases including cardiovascular disease, lung disease and cancer. Novel tobacco products with reduced yields of toxicants compared to cigarettes, such as tobacco-heating products, snus and electronic cigarettes, hold great potential for reducing the harms associated with tobacco use. In the UK several public health agencies have advocated a potential role for novel products in tobacco harm reduction. Public Health England has stated that "The current best estimate is that e-cigarettes are around 95% less harmful than smoking" and the Royal College of Physicians has urged public health to "Promote e-cigarettes widely as substitute for smoking". Health related claims on novel products such as 'reduced exposure' and 'reduced risk' should be substantiated using a weight of evidence approach based on a comprehensive scientific assessment. The US FDA, has provided draft guidance outlining a framework to assess novel products as Modified Risk Tobacco Products (MRTP). Based on this, we now propose a framework comprising pre-clinical, clinical, and population studies to assess the risk profile of novel tobacco products. Additionally, the utility of this framework is assessed through the pre-clinical and part of the clinical comparison of a commercial e-cigarette (Vype ePen) with a scientific reference cigarette (3R4F) and the results of these studies suggest that ePen has the potential to be a reduced risk product. Copyright © 2017 British American Tobacco Ltd. Published by Elsevier Inc. All rights reserved.

  16. Towards a Framework for Modelling and Verification of Relay Interlocking Systems

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2011-01-01

    This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor...

  17. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  18. A Hybrid Programming Framework for Modeling and Solving Constraint Satisfaction and Optimization Problems

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2016-01-01

    Full Text Available This paper proposes a hybrid programming framework for modeling and solving of constraint satisfaction problems (CSPs and constraint optimization problems (COPs. Two paradigms, CLP (constraint logic programming and MP (mathematical programming, are integrated in the framework. The integration is supplemented with the original method of problem transformation, used in the framework as a presolving method. The transformation substantially reduces the feasible solution space. The framework automatically generates CSP and COP models based on current values of data instances, questions asked by a user, and set of predicates and facts of the problem being modeled, which altogether constitute a knowledge database for the given problem. This dynamic generation of dedicated models, based on the knowledge base, together with the parameters changing externally, for example, the user’s questions, is the implementation of the autonomous search concept. The models are solved using the internal or external solvers integrated with the framework. The architecture of the framework as well as its implementation outline is also included in the paper. The effectiveness of the framework regarding the modeling and solution search is assessed through the illustrative examples relating to scheduling problems with additional constrained resources.

  19. Model-based visual tracking the OpenTL framework

    CERN Document Server

    Panin, Giorgio

    2011-01-01

    This book has two main goals: to provide a unifed and structured overview of this growing field, as well as to propose a corresponding software framework, the OpenTL library, developed by the author and his working group at TUM-Informatik. The main objective of this work is to show, how most real-world application scenarios can be naturally cast into a common description vocabulary, and therefore implemented and tested in a fully modular and scalable way, through the defnition of a layered, object-oriented software architecture.The resulting architecture covers in a seamless way all processin

  20. eTOXlab, an open source modeling framework for implementing predictive models in production environments.

    Science.gov (United States)

    Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel

    2015-01-01

    Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by e

  1. A model independent S/W framework for search-based software testing.

    Science.gov (United States)

    Oh, Jungsup; Baik, Jongmoon; Lim, Sung-Hwa

    2014-01-01

    In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one to another, all functions of a search technique must be reimplemented because the types of models are different even if the same search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again. We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find test cases for a target model but also reduces development time by using common functions provided in the framework. We show the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by about 50% when changing the type of a model.

  2. Bonding and Molecular Geometry without Orbitals- The Electron Domain Model

    Science.gov (United States)

    Gillespie, Ronald J.; Spencer, James N.; Moog, Richard S.

    1996-07-01

    An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model. The electron domain model also emphasizes the importance of the Pauli principle in understanding the chemical bond and molecular geometry. A letter from Derek W. Smith in our April 2000 issue addresses the above.

  3. {OpenLabNotes} -- An Electronic Laboratory Notebook Extension for {OpenLabFramework}

    OpenAIRE

    List, M.; Franz, M.; Tan, O.; Mollenhauer, J.; Baumbach, J.

    2015-01-01

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of Commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions.To serve as legal documents, ELNs...

  4. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework

    NARCIS (Netherlands)

    Smith, M.E. (Morgan E.); B.K. Singh (Brajendra K.); M.A. Irvine (Michael A.); W.A. Stolk (Wilma); S.V. Subramanian; T.D. Hollingsworth (T. Déirdre); Michael, E. (Edwin)

    2017-01-01

    textabstractMathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to

  5. 35 years of electron scattering

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1986-01-01

    Historical aspects of electron reaction physics are presented. The presently understood picture of nuclear structure and the electron-nucleus interactions are discussed within the framework of the standard model

  6. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  7. Developing a model for application of electronic banking based on electronic trust

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Nazarpoori

    2014-05-01

    Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.

  8. A model for electron/ion recombination in ionization chambers

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment

  9. Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling.

    Science.gov (United States)

    Abdi, Jafar; Vossoughi, Manouchehr; Mahmoodi, Niyaz Mohammad; Alemzadeh, Iran

    2017-11-01

    The present research is focused on the ultrasound assisted adsorption of Acid blue 92 (AB92) and Direct red 80 (DR80) as anionic dyes in single and binary systems onto zeolitic imidazolate framework (ZIF-8) functionalized with 3-Aminopropyltrimethoxysilane (APTES). Different techniques such as Fourier transform infrared (FTIR), scanning electron microscope (SEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and thermogravimetric analyses (TGA) were used to characterize the prepared adsorbent. The individual effects and possible interactions between the various parameters including adsorbent dosage, sonication time, initial dye concentrations and pH on dyes removal efficiency were investigated by response surface methodology (RSM). The optimized experimental conditions were fixed at adsorbent dosage 0.005g for AB92 and 0.01g for DR80, pH 2.1, sonication time 15min, and initial dyes concentration 15mgL -1 to get maximum removal percentage (>95.0%). A reliable and intelligent model based on least-squares support vector machine (LS-SVM) was developed to predict dye removal efficiency. The root mean square error (RMSE) of 0.604, 0.734 and 1.549 with high determination coefficient (R 2 ) of 0.999, 0.996 and 0.997 for AB92, DR80 and binary system, respectively, were able to predict and model the adsorption process. The presented model illustrates better performance in predicting dye removal efficiency compared to the kinetic models. The results showed that the adsorption process had better conformation with pseudo-second order model. The adsorption equilibrium data was investigated by Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models and the data were well fitted by Langmuir model with maximum adsorption capacity of 633.4 and 500.2mgg -1 for AB92 and DR80 dyes, respectively. APTES@ZIF-8 was regenerated and found to be reusable after four successive cycles without considerable loss in

  10. An integrated framework for modeling freight mode and route choice.

    Science.gov (United States)

    2013-10-01

    A number of statewide travel demand models have included freight as a separate component in analysis. Unlike : passenger travel, freight has not gained equivalent attention because of lack of data and difficulties in modeling. In : the current state ...

  11. A model-based framework for the analysis of team communication in nuclear power plants

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Yoon, Wan Chul; Min, Daihwan

    2009-01-01

    Advanced human-machine interfaces are rapidly changing the interaction between humans and systems, with the level of abstraction of the presented information, the human task characteristics, and the modes of communication all affected. To accommodate the changes in the human/system co-working environment, an extended communication analysis framework is needed that can describe and relate the tasks, verbal exchanges, and information interface. This paper proposes an extended analytic framework, referred to as the H-H-S (human-human-system) communication analysis framework, which can model the changes in team communication that are emerging in these new working environments. The stage-specific decision-making model and analysis tool of the proposed framework make the analysis of team communication easier by providing visual clues. The usefulness of the proposed framework is demonstrated with an in-depth comparison of the characteristics of communication in the conventional and advanced main control rooms of nuclear power plants

  12. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    Science.gov (United States)

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  13. Task Flow Modeling in Electronic Business Environments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In recent years, internet based commerce has developed as a new paradigm. Many factors such as "at home delivery", easy ordering, and usually lower prices contributed to the success of the e-commerce. However, more recently, companies realized that one of the major factors in having a successful internet based business is the design of a user interface that is in concordance with the users' expectations, which includes both functionality and user friendly features. The func-tionality feature of an e-business interface is one of the most important elements when discussing about a specific internet based business. In our paper, we present methods to model task flows for e-business interfaces. We strengthen our study with the design modeling of a practical scenario that may appear in an on-line commercial environment.

  14. A Model for an Electronic Information Marketplace

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2005-11-01

    Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process

  15. A reference model and technical framework for mobile social software for learning

    NARCIS (Netherlands)

    De Jong, Tim; Specht, Marcus; Koper, Rob

    2008-01-01

    De Jong, T., Specht, M., & Koper, R. (2008). A reference model and technical framework for mobile social software for learning. Presented at the IADIS m-learning 2008 Conference. April, 11-13, 2008, Carvoeiro, Portugal.

  16. Modeling the marketing strategy-performance relationship : towards an hierarchical marketing performance framework

    NARCIS (Netherlands)

    Huizingh, Eelko K.R.E.; Zengerink, Evelien

    2001-01-01

    Accurate measurement of marketing performance is an important topic for both marketing academics and marketing managers. Many researchers have recognized that marketing performance measurement should go beyond financial measurement. In this paper we propose a conceptual framework that models

  17. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    Science.gov (United States)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  18. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  19. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  20. The electronic contract formation in the framework of the Andean Community

    Directory of Open Access Journals (Sweden)

    William David Hernández

    2012-12-01

    Full Text Available The influence of the Information and Communication Technology (ICT in all the aspects of the society is an unquestionable fact that implies, for the Law, the inescapable responsibility of fostering the fulfillment of the declarations or objectives of the Society of Information. Today´s world, framed in a process of globalization and regional integration, heads to the normative harmonization. In line with the above, the present document studies the elements supporting the normative unification concerning the formation of the contract by electronic means in the Andean Community.

  1. National culture and business model change: a framework for successful expansions

    DEFF Research Database (Denmark)

    Dalby, J.; Nielsen, L.S.; Lueg, Rainer

    2014-01-01

    Dalby, J., Nielsen, Lueg, R., L. S., Pedersen, L., Tomoni, A. C. 2014. National culture and business model change: a framework for successful expansions. Journal of Enterprising Culture, 22(4): 379-498.......Dalby, J., Nielsen, Lueg, R., L. S., Pedersen, L., Tomoni, A. C. 2014. National culture and business model change: a framework for successful expansions. Journal of Enterprising Culture, 22(4): 379-498....

  2. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    Science.gov (United States)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  3. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  4. Integrated Bayesian network framework for modeling complex ecological issues.

    Science.gov (United States)

    Johnson, Sandra; Mengersen, Kerrie

    2012-07-01

    The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development

  5. Poly(ethylene glycol) (PEG) in a Polyethylene (PE) Framework: A Simple Model for Simulation Studies of a Soluble Polymer in an Open Framework.

    Science.gov (United States)

    Xie, Liangxu; Chan, Kwong-Yu; Quirke, Nick

    2017-10-24

    Canonical molecular dynamics simulations are performed to investigate the behavior of single-chain and multiple-chain poly(ethylene glycol) (PEG) contained within a cubic framework spanned by polyethylene (PE) chains. This simple model is the first of its kind to study the chemical physics of polymer-threaded organic frameworks, which are materials with potential applications in catalysis and separation processes. For a single-chain 9-mer, 14-mer, and 18-mer in a small framework, the PEG will interact strongly with the framework and assume a more linear geometry chain with an increased radius of gyration R g compared to that of a large framework. The interaction between PEG and the framework decreases with increasing mesh size in both vacuum and water. In the limit of a framework with an infinitely large cavity (infinitely long linkers), PEG behavior approaches simulation results without a framework. The solvation of PEG is simulated by adding explicit TIP3P water molecules to a 6-chain PEG 14-mer aggregate confined in a framework. The 14-mer chains are readily solvated and leach out of a large 2.6 nm mesh framework. There are fewer water-PEG interactions in a small 1.0 nm mesh framework, as indicated by a smaller number of hydrogen bonds. The PEG aggregate, however, still partially dissolves but is retained within the 1.0 nm framework. The preliminary results illustrate the effectiveness of the simple model in studying polymer-threaded framework materials and in optimizing polymer or framework parameters for high performance.

  6. Theoretical model of fast electron emission from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.; Burgdoerfer, J. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)

    1993-05-01

    Electron emission in glancing-angle ion-surface collisions has become a focus of ion-surface interactions. Electron spectra can provide detailed information on the above surface neutralization dynamics of multiply charged ions, the electronic structure of the surface (surface density of states), and the long-ranged image interactions near the surface. Recent experiments have found that the convoy peak, well known from ion-atom and ion-solid collisions, is dramatically altered. The peak is broadened and shifted in energy which has been attributed to dynamical image interactions. We present a microscopic model for the emission of fast electrons in glancing-angle surface collisions. A classical trajectory Monte Carlo approach is utilized to calculate the evolution of electrons in the presence of their self image, the projectile Coulomb field and the image potential induced by the projectile. The excitation of collective surface modes is also incorporated.

  7. Topological models and frameworks for 3D spatial objects

    Science.gov (United States)

    Zlatanova, Siyka; Rahman, Alias Abdul; Shi, Wenzhong

    2004-05-01

    Topology is one of the mechanisms to describe relationships between spatial objects. Thus, it is the basis for many spatial operations. Models utilizing the topological properties of spatial objects are usually called topological models, and are considered by many researchers as the best suited for complex spatial analysis (i.e., the shortest path search). A number of topological models for two-dimensional and 2.5D spatial objects have been implemented (or are under consideration) by GIS and DBMS vendors. However, when we move to one more dimension (i.e., three-dimensions), the complexity of the relationships increases, and this requires new approaches, rules and representations. This paper aims to give an overview of the 3D topological models presented in the literature, and to discuss generic issues related to 3D modeling. The paper also considers models in object-oriented (OO) environments. Finally, future trends for research and development in this area are highlighted.

  8. Scoping review identifies significant number of knowledge translation theories, models and frameworks with limited use.

    Science.gov (United States)

    Strifler, Lisa; Cardoso, Roberta; McGowan, Jessie; Cogo, Elise; Nincic, Vera; Khan, Paul A; Scott, Alistair; Ghassemi, Marco; MacDonald, Heather; Lai, Yonda; Treister, Victoria; Tricco, Andrea C; Straus, Sharon E

    2018-04-13

    To conduct a scoping review of knowledge translation (KT) theories, models and frameworks that have been used to guide dissemination or implementation of evidence-based interventions targeted to prevention and/or management of cancer or other chronic diseases. We used a comprehensive multistage search process from 2000-2016, which included traditional bibliographic database searching, searching using names of theories, models and frameworks, and cited reference searching. Two reviewers independently screened the literature and abstracted data. We found 596 studies reporting on the use of 159 KT theories, models or frameworks. A majority (87%) of the identified theories, models or frameworks were used in five or fewer studies, with 60% used once. The theories, models and frameworks were most commonly used to inform planning/design, implementation and evaluation activities, and least commonly used to inform dissemination and sustainability/scalability activities. Twenty-six were used across the full implementation spectrum (from planning/design to sustainability/scalability) either within or across studies. All were used for at least individual-level behavior change, while 48% were used for organization-level, 33% for community-level and 17% for system-level change. We found a significant number of KT theories, models and frameworks with a limited evidence base describing their use. Copyright © 2018. Published by Elsevier Inc.

  9. Introducing MERGANSER: A Flexible Framework for Ecological Niche Modeling

    Science.gov (United States)

    Klawonn, M.; Dow, E. M.

    2015-12-01

    Ecological Niche Modeling (ENM) is a collection of techniques to find a "fundamental niche", the range of environmental conditions suitable for a species' survival in the absence of inter-species interactions, given a set of environmental parameters. Traditional approaches to ENM face a number of obstacles including limited data accessibility, data management problems, computational costs, interface usability, and model validation. The MERGANSER system, which stands for Modeling Ecological Residency Given A Normalized Set of Environmental Records, addresses these issues through powerful data persistence and flexible data access, coupled with a clear presentation of results and fine-tuned control over model parameters. MERGANSER leverages data measuring 72 weather related phenomena, land cover, soil type, population, species occurrence, general species information, and elevation, totaling over 1.5 TB of data. To the best of the authors' knowledge, MERGANSER uses higher-resolution spatial data sets than previously published models. Since MERGANSER stores data in an instance of Apache SOLR, layers generated in support of niche models are accessible to users via simplified Apache Lucene queries. This is made even simpler via an HTTP front end that generates Lucene queries automatically. Specifically, a user need only enter the name of a place and a species to run a model. Using this approach to synthesizing model layers, the MERGANSER system has successfully reproduced previously published niche model results with a simplified user experience. Input layers for the model are generated dynamically using OpenStreetMap and SOLR's spatial search functionality. Models are then run using either user-specified or automatically determined parameters after normalizing them into a common grid. Finally, results are visualized in the web interface, which allows for quick validation. Model results and all surrounding metadata are also accessible to the user for further study.

  10. Threat model framework and methodology for personal networks (PNs)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.

    2007-01-01

    To be able to build a secure network, it is essential to model the threats to the network. A methodology for building a threat model has been proposed in the paper. Several existing threat models and methodologies will be compared to the proposed methodology. The aim of the proposed methodology i...... been used. Also risk assessment methods will be discussed. Threat profiles and vulnerability profiles have been presented....

  11. Cross-Layer Modeling Framework for Energy-Efficient Resilience

    Science.gov (United States)

    2014-04-01

    Kevin Skadron##, Gu-Yeon Wei+ * IBM T. J. Watson Research Center, Yorktown Heights, NY ** IBM Austin Research Laboratory, Austin, TX +Dept. of...Qute model developed at IBM Research [3]. The first two are both developed around basic analytical formalisms based on Amdahl’s Law. Qute is an...Modeling Strategy Figure 1 depicts the integrated, cross-layer system modeling concept as pursued in the IBM -led project titled: “Efficient

  12. Viewpoints: a framework for object oriented database modelling and distribution

    Directory of Open Access Journals (Sweden)

    Fouzia Benchikha

    2006-01-01

    Full Text Available The viewpoint concept has received widespread attention recently. Its integration into a data model improves the flexibility of the conventional object-oriented data model and allows one to improve the modelling power of objects. The viewpoint paradigm can be used as a means of providing multiple descriptions of an object and as a means of mastering the complexity of current database systems enabling them to be developed in a distributed manner. The contribution of this paper is twofold: to define an object data model integrating viewpoints in databases and to present a federated database system integrating multiple sources following a local-as-extended-view approach.

  13. Modeling the customer in electronic commerce.

    Science.gov (United States)

    Helander, M G; Khalid, H M

    2000-12-01

    This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.

  14. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    Administrator

    with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). ... theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational .... Pseudo 3D map of a 2PPE measurement with. Pe' achored via the ...

  15. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  16. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  17. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  18. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  19. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, David S [ORNL; Mikkilineni, Aravind K [ORNL; Rose, Derek C [ORNL; Yoginath, Srikanth B [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Judy, Mohsen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  20. Abdominal surgery process modeling framework for simulation using spreadsheets.

    Science.gov (United States)

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Toward the Establishment of a Common Framework for Model Evaluation

    DEFF Research Database (Denmark)

    Olesen, H. R.

    1996-01-01

    Proceedings of the Twenty-first NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held November 6-10 1995, in Baltimore, Maryland.......Proceedings of the Twenty-first NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held November 6-10 1995, in Baltimore, Maryland....

  2. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  3. A business model for IPTV service: A dynamic framework

    NARCIS (Netherlands)

    Bouwman, H.; Zhengjia, M.; Duin, P. van der; Limonard, S.

    2008-01-01

    Purpose - The purpose of this paper is to investigate a possible business model for telecom operators for entering the IPTV (digital television) market. Design/methodology/approach - The approach takes the form of a case study, literature search and interviews. Findings - The IPTV business model

  4. Integrating environmental component models. Development of a software framework

    NARCIS (Netherlands)

    Schmitz, O.

    2014-01-01

    Integrated models consist of interacting component models that represent various natural and social systems. They are important tools to improve our understanding of environmental systems, to evaluate cause–effect relationships of human–natural interactions, and to forecast the behaviour of

  5. Public–private partnership conceptual framework and models for the ...

    African Journals Online (AJOL)

    (2012c) Project to Revise the Pricing Strategy for Water Use. Charges and Develop a Funding Model for Water Infrastructure. Development and Use and a Model for the Establishment of an. Economic Regulator (Contract No. WP10465). Review of Principles and Experience for Infrastructure Finance. Department of Water.

  6. A MULTISCALE, CELL-BASED FRAMEWORK FOR MODELING CANCER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    JIANG, YI [Los Alamos National Laboratory

    2007-01-16

    Cancer remains to be one of the leading causes of death due to diseases. We use a systems approach that combines mathematical modeling, numerical simulation, in vivo and in vitro experiments, to develop a predictive model that medical researchers can use to study and treat cancerous tumors. The multiscale, cell-based model includes intracellular regulations, cellular level dynamics and intercellular interactions, and extracellular level chemical dynamics. The intracellular level protein regulations and signaling pathways are described by Boolean networks. The cellular level growth and division dynamics, cellular adhesion and interaction with the extracellular matrix is described by a lattice Monte Carlo model (the Cellular Potts Model). The extracellular dynamics of the signaling molecules and metabolites are described by a system of reaction-diffusion equations. All three levels of the model are integrated through a hybrid parallel scheme into a high-performance simulation tool. The simulation results reproduce experimental data in both avasular tumors and tumor angiogenesis. By combining the model with experimental data to construct biologically accurate simulations of tumors and their vascular systems, this model will enable medical researchers to gain a deeper understanding of the cellular and molecular interactions associated with cancer progression and treatment.

  7. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    OpenAIRE

    Gonzalez-Garcia, Carlos; Pleite, Jorge

    2013-01-01

    The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means...

  8. Interaction between GIS and hydrologic model: A preliminary approach using ArcHydro Framework Data Model

    Directory of Open Access Journals (Sweden)

    Silvio Jorge C. Simões

    2013-08-01

    Full Text Available In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM models, the Geographical Information System (GIS is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion, situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin’s dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial temporal model.

  9. Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework

    Science.gov (United States)

    Cosyn, W.; Guzey, V.; Sargsian, M.; Strikman, M.; Weiss, C.

    2016-03-01

    An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging"). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments.

  10. Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Cosyn, Wim B. [University of Ghent, Belgium; Guzey, Vadim A. [Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia; Sargsian, Misak M. [Florida Intl Univ., Miami, FL (United States); Strikman, Mark M. [Pennsylvania State Univ., University Park, PA (United States); Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging''). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments.

  11. Modeling electron fractionalization with unconventional Fock spaces

    Science.gov (United States)

    Cobanera, Emilio

    2017-08-01

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality D=1,2,3,\\ldots of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  12. A Framework for Modeling Human-Machine Interactions

    Science.gov (United States)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  13. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework

    NARCIS (Netherlands)

    Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D A; Brogaard, Sara; Van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut

    2016-01-01

    We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS

  14. The Community Earth System Model: A Framework for Collaborative Research

    Energy Technology Data Exchange (ETDEWEB)

    Hurrell, Jim; Holland, Marika M.; Gent, Peter R.; Ghan, Steven J.; Kay, Jennifer; Kushner, P.; Lamarque, J.-F.; Large, William G.; Lawrence, David M.; Lindsay, Keith; Lipscomb, William; Long , Matthew; Mahowald, N.; Marsh, D.; Neale, Richard; Rasch, Philip J.; Vavrus, Steven J.; Vertenstein, Mariana; Bader, David C.; Collins, William D.; Hack, James; Kiehl, J. T.; Marshall, Shawn

    2013-09-30

    The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System Model, following the incorporation of new earth system capabilities. These include the ability to simulate biogeochemical cycles, atmospheric chemistry, ice sheets, and a high-top atmosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new predictive capabilities and increasing our collective knowledge about the behavior and interactions of the earth system. Simulations with numerous configurations of the CESM have been provided to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are being analyzed by the broader community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for earth system studies, making it a true community tool. Here we describe this earth modeling system, its various possible configurations, and illustrate its capabilities with a few science highlights.

  15. A Generalized Framework for Modeling Next Generation 911 Implementations.

    Energy Technology Data Exchange (ETDEWEB)

    Kelic, Andjelka; Aamir, Munaf Syed; Kelic, Andjelka; Jrad, Ahmad M.; Mitchell, Roger

    2018-02-01

    This document summarizes the current state of Sandia 911 modeling capabilities and then addresses key aspects of Next Generation 911 (NG911) architectures for expansion of existing models. Analysis of three NG911 implementations was used to inform heuristics , associated key data requirements , and assumptions needed to capture NG911 architectures in the existing models . Modeling of NG911 necessitates careful consideration of its complexity and the diversity of implementations. Draft heuristics for constructing NG911 models are pres ented based on the analysis along with a summary of current challenges and ways to improve future NG911 modeling efforts . We found that NG911 relies on E nhanced 911 (E911) assets such as 911 selective routers to route calls originating from traditional tel ephony service which are a majority of 911 calls . We also found that the diversity and transitional nature of NG911 implementations necessitates significant and frequent data collection to ensure that adequate model s are available for crisis action support .

  16. A General Framework for Incorporating Stochastic Recovery in Structural Models of Credit Risk

    Directory of Open Access Journals (Sweden)

    Albert Cohen

    2017-12-01

    Full Text Available In this work, we introduce a general framework for incorporating stochastic recovery into structural models. The framework extends the approach to recovery modeling developed in Cohen and Costanzino (2015, 2017 and provides for a systematic way to include different recovery processes into a structural credit model. The key observation is a connection between the partial information gap between firm manager and the market that is captured via a distortion of the probability of default. This last feature is computed by what is essentially a Girsanov transformation and reflects untangling of the recovery process from the default probability. Our framework can be thought of as an extension of Ishizaka and Takaoka (2003 and, in the same spirit of their work, we provide several examples of the framework including bounded recovery and a jump-to-zero model. One of the nice features of our framework is that, given prices from any one-factor structural model, we provide a systematic way to compute corresponding prices with stochastic recovery. The framework also provides a way to analyze correlation between Probability of Default (PD and Loss Given Default (LGD, and term structure of recovery rates.

  17. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  18. Open Models of Decision Support Towards a Framework

    OpenAIRE

    Diasio, Stephen Ray

    2012-01-01

    Aquesta tesi presenta un marc per als models oberts de suport a les decisions en les organitzacions. El treball es vehicula a través d’un compendi d’articles on s’analitzen els fluxos d’entrada i de sortida de coneixement en les organitzacions, així como les tecnologies existents de suport a les decisions. Es presenten els factors subjacents que impulsen nous models per a formes obertes de suport a la decisió. La tesis presenta un estudi de les distintes tipologies de models de suport a les d...

  19. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  20. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  1. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  2. A parametric framework for modelling of bioelectrical signals

    CERN Document Server

    Mughal, Yar Muhammad

    2016-01-01

    This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move...

  3. The Model Vision Project: A Conceptual Framework for Service Delivery

    Science.gov (United States)

    Bourgeault, Stanley E.; And Others

    1977-01-01

    Described are the conceptualization, implementation, and results to date of the George Peabody College for Teachers Model Center for Severely Handicapped Multi-impaired Children with Visual Impairment as a Primary Handicapping Condition. (Author/IM)

  4. Model Adaptation for Prognostics in a Particle Filtering Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated....

  5. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    Science.gov (United States)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  6. An architectural decision modeling framework for service oriented architecture design

    OpenAIRE

    Zimmermann, Olaf

    2009-01-01

    In this thesis, we investigate whether reusable architectural decision models can support Service-Oriented Architecture (SOA) design. In the current state of the art, architectural decisions are captured ad hoc and retrospectively on projects; this is a labor-intensive undertaking without immediate benefits. On the contrary, we investigate the role reusable architectural decision models can play during SOA design: We treat recurring architectural decisions as first-class method elements and p...

  7. Design theoretic analysis of three system modeling frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  8. Model Adaptation for Prognostics in a Particle Filtering Framework

    Science.gov (United States)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  9. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  10. Introducing a boreal wetland model within the Earth System model framework

    Science.gov (United States)

    Getzieh, R. J.; Brovkin, V.; Reick, C.; Kleinen, T.; Raddatz, T.; Raivonen, M.; Sevanto, S.

    2009-04-01

    Wetlands of the northern high latitudes with their low temperatures and waterlogged conditions are prerequisite for peat accumulation. They store at least 25% of the global soil organic carbon and constitute currently the largest natural source of methane. These boreal and subarctic peat carbon pools are sensitive to climate change since the ratio of carbon sequestration and emission is closely dependent on hydrology and temperature. Global biogeochemistry models used for simulations of CO2 dynamics in the past and future climates usually ignore changes in the peat storages. Our approach aims at the evaluation of the boreal wetland feedback to climate through the CO2 and CH4 fluxes on decadal to millennial time scales. A generic model of organic matter accumulation and decay in boreal wetlands is under development in the MPI for Meteorology in cooperation with the University of Helsinki. Our approach is to develop a wetland model which is consistent with the physical and biogeochemical components of the land surface module JSBACH as a part of the Earth System model framework ECHAM5-MPIOM-JSBACH. As prototypes, we use modelling approach by Frolking et al. (2001) for the peat dynamics and the wetland model by Wania (2007) for vegetation cover and plant productivity. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). First results of the modelling approach will be presented. References: Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie and S. D. Muller (2001): Modeling Northern Peatland Decomposition and Peat Accumulation, Ecosystems, 4, 479-498. Lehner, B., Döll P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296 (1-4), 1-22. Wania, R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, 122 pp.

  11. MoVES - A Framework for Modelling and Verifying Embedded Systems

    DEFF Research Database (Denmark)

    Brekling, Aske Wiid; Hansen, Michael Reichhardt; Madsen, Jan

    2009-01-01

    The MoVES framework is being developed to assist in the early phases of embedded systems design. A system is modelled as an application running on an execution platform. The application is modelled through the individual tasks, and the execution platform is modelled through the processing elements...... consumption. A simple specification language for embedded systems and a verification backend are presented. The framework has a modular, parameterized structure supporting easy extension and adaptation of the specification language as well as of the verification backend. We show, using a number of small...... examples, how MoVES can be used to model and analyze embedded systems....

  12. Generalized Gramian Framework for Model/Controller Order Reduction of Switched Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Wisniewski, Rafal

    2011-01-01

    In this article, a general method for model/controller order reduction of switched linear dynamical systems is presented. The proposed technique is based on the generalised gramian framework for model reduction. It is shown that different classical reduction methods can be developed into a genera......In this article, a general method for model/controller order reduction of switched linear dynamical systems is presented. The proposed technique is based on the generalised gramian framework for model reduction. It is shown that different classical reduction methods can be developed...

  13. Next Generation Framework for Aquatic Modeling of the Earth System (NextFrAMES)

    Science.gov (United States)

    Fekete, B. M.; Wollheim, W. M.; Lakhankar, T.; Vorosmarty, C. J.

    2008-12-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the surrounding IT infrastructure needed to carry out these detailed model computations is growing increasingly complex as well. To be accurate and useful, Earth System models must manage a vast amount of data in heterogenous computing environments ranging from single CPU systems to Beowulf type computer clusters. Scientists developing Earth System models increasingly confront obstacles associated with IT infrastructure. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. Over the course of the last fifteen years ,the University of New Hampshire developed several modeling frameworks independently from the above-mentioned efforts (Data Assembler, Frameworks for Aquatic Modeling of the Earth System and NextFrAMES which is continued at CCNY). While the UNH modeling frameworks have numerous similarities to those developed by other teams, these frameworks, in particular the latest NextFrAMES, represent a novel model development paradigm. While other modeling frameworks focus on providing services to modelers to perform various tasks, NextFrAMES strives to hide all of those services and provide a new approach for modelers to express their scientific thoughts. From a scientific perspective, most models have two core elements: the overall model structure (defining the linkages between the simulated processes

  14. A framework for modelling the complexities of food and water security under globalisation

    Science.gov (United States)

    Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.

    2018-01-01

    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  15. framework for modelling the complexities of food and water security under globalisation

    Directory of Open Access Journals (Sweden)

    B. J. Dermody

    2018-01-01

    Full Text Available We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  16. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework

    OpenAIRE

    Hofner, Benjamin; Mayr, Andreas; Schmid, Matthias

    2014-01-01

    Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we...

  17. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.L. [California State Univ., Sacramento, CA (United States); Pollock, K.H. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  18. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    International Nuclear Information System (INIS)

    Morrison, M.L.; Pollock, K.H.

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds

  19. Towards a framework for deriving platform-independent model-driven software product lines

    Directory of Open Access Journals (Sweden)

    Andrés Paz

    2013-05-01

    Full Text Available Model-driven software product lines (MD-SPLs are created from domain models which are transformed, merged and composed with reusable core assets, until software products are produced. Model transformation chains (MTCs must be specified to generate such MD-SPLs. This paper presents a framework for creating platform-independent MD-SPLs; such framework includes a domain specific language (DSL for platform-independent MTC specification and facilities platform-specific MTC generation of several of the most used model transformation frameworks. The DSL also allows product line architects to compose generation taking the need for model transformation strategy and technology interoperability into account and specifying several types of variability involved in such generation.

  20. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  1. Surgical model-view-controller simulation software framework for local and collaborative applications.

    Science.gov (United States)

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  2. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  3. A CONCEPTUAL FRAMEWORK FOR SUSTAINABLE POULTRY SUPPLY CHAIN MODEL

    Directory of Open Access Journals (Sweden)

    Mohammad SHAMSUDDOHA

    2013-12-01

    Full Text Available Now a day, sustainable supply chain is the crucially considerable matter for future focused industries. As a result, attention in supply chain management has increasingly amplified since the 1980s when firms discovered its benefits of mutual relationships within and beyond their own organization. This is why, concern researchers are trying hard to develop new theory or model which might help the corporate sector for achieving sustainability in their supply chains. This kind of reflection can be seen by the number of papers published and in particular by journal since 1980. The objectives of this paper are twofold. First, it offers a literature review on sustainable supply chain management taking papers published in last three decades. Second, it offers a conceptual sustainable supply chain process model in light of triple bottom line theory. The model has been developed by taking in-depth interview of an entrepreneur from a Poultry case industry in Bangladesh.

  4. Magnetically charged black hole in framework of nonlinear electrodynamics model

    Science.gov (United States)

    Kruglov, S. I.

    2018-01-01

    A model of nonlinear electrodynamics is proposed and investigated in general relativity. We consider the magnetic black hole and find a regular solution which gives corrections into the Reissner-Nordström solution. At r →∞ the asymptotic space-time becomes flat. The magnetic mass of the black hole is calculated and the metric function is obtained. At some values of the model parameter there can be one, two or no horizons. Thermodynamics of black holes is studied and we calculate the Hawking temperature and heat capacity of black holes. It is demonstrated that there is a phase transition of second order. At some parameters of the model black holes are thermodynamically stable.

  5. Stochastic programming framework for Lithuanian pension payout modelling

    Directory of Open Access Journals (Sweden)

    Audrius Kabašinskas

    2014-12-01

    Full Text Available The paper provides a scientific approach to the problem of selecting a pension fund by taking into account some specific characteristics of the Lithuanian Republic (LR pension accumulation system. The decision making model, which can be used to plan a long-term pension accrual of the Lithuanian Republic (LR citizens, in an optimal way is presented. This model focuses on factors that influence the sustainability of the pension system selection under macroeconomic, social and demographic uncertainty. The model is formalized as a single stage stochastic optimization problem where the long-term optimal strategy can be obtained based on the possible scenarios generated for a particular participant. Stochastic programming methods allow including the pension fund rebalancing moment and direction of investment, and taking into account possible changes of personal income, changes of society and the global financial market. The collection of methods used to generate scenario trees was found useful to solve strategic planning problems.

  6. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  7. Development of an integrated risk assessment framework for internal/external events and all power models

    International Nuclear Information System (INIS)

    Yang, Joon Eon

    2012-01-01

    From the PSA point of view, the Fukushima accident of Japan in 2011 reveals some issues to be re-considered and/or improved in the PSA such as the limited scope of the PSA, site risk, etc. KAERI (Korea Atomic Energy Research Institute) has performed researches on the development of an integrated risk assessment framework related to some issues arisen after the Fukushima accident. This framework can cover the internal PSA model and external PSA models (fire, flooding, and seismic PSA models) in the full power and the low power-shutdown modes. This framework also integrates level 1, 2 and 3 PSA to quantify the risk of nuclear facilities more efficiently and consistently. We expect that this framework will be helpful to resolve the issue regarding the limited scope of PSA and to reduce some inconsistencies that might exist between (1) the internal and external PSA, and (2) full power mode PSA and low power-shutdown PSA models. In addition, KAERI is starting researches related to the extreme external events, the risk assessment of spent fuel pool, and the site risk. These emerging issues will be incorporated into the integrated risk assessment framework. In this paper the integrated risk assessment framework and the research activities on the emerging issues are outlined.

  8. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    the rotational stiffness of a connection. Based on a modelling of any beam-to-column joint using finite shell elements and springs for single components such as bolts, it is the primary hypothesis that it is possible to formulate a generalized connection model with few degrees of freedom related to a relevant...... set of deformation modes. This hypothesis is based on the idea of modal decomposition performed in generalized beam theories (GBT). The question is – is it possible to formulate an eigenvalue problem with a solution corresponding to mode shapes for the deformation of the joint by using the finite...

  9. Implementation of a PETN failure model using ARIA's general chemistry framework

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model, implementation, and validation.

  10. Symptoms Versus Problems (SVP Framework on Export Barriers to SME’S Led Electronic Products in Taiwan

    Directory of Open Access Journals (Sweden)

    Kader Ali Noor N.

    2016-01-01

    Full Text Available Export barriers are a common constraints to SMEs when exporting goods. In 2013, Taiwan’s export sales dropped by 18.5% due to SMEs’ difficulty to explore the overseas market, thus, redirect their sales locally. The objective of this case study is to identify the internal and external barriers, and the export model practiced by one export case in Taipei, Taiwan. Findings via semi-structured interviews, field observation and analysis of unpublished company data are summarized using a new root-cause analysis tool called Symptoms versus Problems (SVP framework for SME LED Exports. The new SVP framework discovers many symptoms leading to recognition of six major problems, namely, high operational cost, poor marketing strategy, lack of cash flow funds, talent and skill sets, government support, and too many foreign bureaucracy regulations. These problems are categorized into three groups, namely, operation, marketing and government bureaucracies. The recommendations for each problem are structured to improve product costs, branding and advertisement strategies, cash flow management, technical know-how of foreign market behaviour, sources of information and network, and managing the foreign bureaucracies. Interestingly, this study discovers another new framework that overcome LED export barriers called “House of Pillars for LED Exports” in Taiwan.

  11. A modeling framework for life history-based conservation planning

    Science.gov (United States)

    Eileen S. Burns; Sandor F. Toth; Robert G. Haight

    2013-01-01

    Reserve site selection models can be enhanced by including habitat conditions that populations need for food, shelter, and reproduction. We present a new population protection function that determines whether minimum areas of land with desired habitat features are present within the desired spatial conditions in the protected sites. Embedding the protection function as...

  12. A conceptual framework for a mentoring model for nurse educators ...

    African Journals Online (AJOL)

    Transformation in South Africa resulted in changes in the mandate of Higher Education Institutions (HEIs). Therefore, the need to design a mentoring model for recruiting and retaining nurse educators to meet the demands of teaching and learning became evident. The aim of the study was to develop a conceptual ...

  13. Development of a distributed air pollutant dry deposition modeling framework

    Science.gov (United States)

    Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak

    2012-01-01

    A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...

  14. A Framework for Modelling Connective Tissue Changes in VIIP Syndrome

    Science.gov (United States)

    Ethier, C. R.; Best, L.; Gleason, R.; Mulugeta, L.; Myers, J. G.; Nelson, E. S.; Samuels, B. C.

    2014-01-01

    Insertion of astronauts into microgravity induces a cascade of physiological adaptations, notably including a cephalad fluid shift. Longer-duration flights carry an increased risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. The slow onset of changes in VIIP, their chronic nature, and the similarity of certain clinical features of VIIP to ophthalmic findings in patients with raised intracranial pressure strongly suggest that: (i) biomechanical factors play a role in VIIP, and (ii) connective tissue remodeling must be accounted for if we wish to understand the pathology of VIIP. Our goal is to elucidate the pathophysiology of VIIP and suggest countermeasures based on biomechanical modeling of ocular tissues, suitably informed by experimental data, and followed by validation and verification. We specifically seek to understand the quasi-homeostatic state that evolves over weeks to months in space, during which ocular tissue remodeling occurs. This effort is informed by three bodies of work: (i) modeling of cephalad fluid shifts; (ii) modeling of ophthalmic tissue biomechanics in glaucoma; and (iii) modeling of connective tissue changes in response to biomechanical loading.

  15. A Framework for the Modelling of Biphasic Reacting Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sin, Gürkan; O’Connell, John P.

    2014-01-01

    Biphasic reacting systems have a broad application range from organic reactions in pharmaceutical and agro-bio industries to CO 2 capture. However, mathematical modelling of biphasic reacting systems is a formidable challenge due to many phenomena underlying the process such as chemical equilibrium...

  16. Multi-Fidelity Framework for Modeling Combustion Instability

    Science.gov (United States)

    2016-07-27

    Modeling Combustion Instability Cheng Huang*, William E. Anderson†, Charles L. Merkle‡ Purdue University, West Lafayette, IN, 47907 and...with density fluctuations," Physics of Fluids Vol. 9, No. 7, 1997, p. 2023. 11. Graham, W. R., Peraire, J., and Tang , K. Y. "Optmail Control of

  17. Technical note: River modelling to infer flood management framework

    African Journals Online (AJOL)

    River hydraulic models have successfully identified the weaknesses and areas for improvement with respect to flooding in the Sarawak River system, and can also be used to support decisions on flood management measures. Often, the big question is 'how'. This paper demonstrates a theoretical flood management ...

  18. A GBT-framework towards modal modelling of steel structures

    DEFF Research Database (Denmark)

    Hansen, Anders Bau; Jönsson, Jeppe

    2017-01-01

    In modern structural steel frame design, the modelling of joints between beams and columns are based on very simple assumptions. The joints are most often assumed to behave as a perfect hinge or as a rigid joint. This means that in the overall static analysis relative rotations and changes...

  19. Regional 4-D modeling of the ionospheric electron density

    Science.gov (United States)

    Schmidt, M.; Bilitza, D.; Shum, C. K.; Zeilhofer, C.

    2008-08-01

    The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy. In this paper, we present different multi-dimensional approaches for modeling spatio-temporal variations of the ionospheric electron density. To be more specific, we split the target function into a reference part, computed from the International Reference Ionosphere (IRI), and an unknown correction term. Due to the localizing feature of B-spline functions we apply tensor-product spline expansions to model the correction term in a certain multi-dimensional region either completely or partly. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. For demonstration we apply three approaches to electron density data over South America.

  20. A framework for product analysis: Modelling and design of release and uptake of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Munir, Ahsan; Gani, Rafiqul

    2005-01-01

    This paper presents a framework for chemical product (pesticide) design and analysis. The framework consists of a set of computer-aided methods and tools that have been integrated to tackle the needs with respect to solution of chemical product design problems related to pesticide formulations. Two...... of the mathematical models (controlled release and pesticide uptake) that provide the principal calculation options are highlighted together with selected results from case studies....

  1. An Overview of Quality Frameworks in Model-Driven Engineering and Observations on Transformation Quality

    OpenAIRE

    Dehlen, Vegard

    2007-01-01

    Quality is often defined as fitness for purpose which is the key property to determine when evaluating quality. This paper presents some general requirements for evaluating quality frameworks. It also discusses characteristics of MDE that are important when building a quality framework, such as its use of models in several stages of development and maintenance, and its multi-abstraction level approach that requires consistency and traceability. MDE should strive for engineering of quality int...

  2. A business case modelling framework for smart multi-energy districts

    OpenAIRE

    Good, Nicholas; Martinez Cesena, Eduardo Alejandro; Liu, Xuezhi; Mancarella, Pierluigi

    2017-01-01

    The potential energy, environmental, technical and economic benefits that might arise from multi-energy systems are increasing interest in smart districts. However, in a liberalised market, it is essential to develop a relevant attractive business case. This paper presents a holistic techno-economic framework that couples building/district, multi-network and business case assessment models for the development of robust business cases for smart multi-energy districts. The framework is demonstr...

  3. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  4. Modelling Security Requirements Through Extending Scrum Agile Development Framework

    OpenAIRE

    Alotaibi, Minahi

    2016-01-01

    Security is today considered as a basic foundation in software development and therefore, the modelling and implementation of security requirements is an essential part of the production of secure software systems. Information technology organisations are moving towards agile development methods in order to satisfy customers' changing requirements in light of accelerated evolution and time restrictions with their competitors in software production. Security engineering is considered difficult...

  5. Multiple mortality modeling in Poisson Lee-Carter framework

    OpenAIRE

    D'Amato, V.; Haberman, S.; Piscopo, G.; Russolillo, M.; Trapani, L.

    2016-01-01

    The academic literature in longevity field has recently focused on models for detecting multiple population trends (D'Amato et al., 2012b; Njenga and Sherris, 2011; Russolillo et al., 2011, etc.). In particular, increasing interest has been shown about "related" population dynamics or "parent" populations characterized by similar socioeconomic conditions and eventually also by geographical proximity. These studies suggest dependence across multiple populations and common long-run relationship...

  6. The Residual Value Models: A Framework for Business Administration

    OpenAIRE

    Konstantinos J. Liapis

    2010-01-01

    This article investigates the relationship between a firm’s performance and Residual Value Models (RVM) which serve as decision making tools in corporate management. The main measures are the Economic Value Added (EVA®) and Cash Value Added (CVA®), with key components the Residual Income (RI), Free Cash Flow (FCF) and Weighted Average Cost of Capital (WACC). These measures have attracted considerable interest among scientists, practitioners and organizations in recent years. This work focuses...

  7. Revised Technology Acceptance Model Framework for M-Commerce Adoption

    OpenAIRE

    Manish Gupta

    2017-01-01

    Following the E-Commerce era, M-Commerce is the next big phase in the technology involvement and advancement. This paper intends to explore how Indian consumers are influenced to adopt the M-commerce. In this paper, the revised Technology Acceptance Model (TAM) has been presented on the basis of the most dominant factors that affect the adoption of M-Commerce in Indian scenario. Furthermore, an analytical questionnaire approach was carried out to collect data from Indian consumers. These coll...

  8. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  9. Generic framework for mining cellular automata models on protein-folding simulations.

    Science.gov (United States)

    Diaz, N; Tischer, I

    2016-05-13

    Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined.

  10. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    Science.gov (United States)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  11. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    DEFF Research Database (Denmark)

    Han, Xue; Sandels, Claes; Zhu, Kun

    2013-01-01

    operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics......, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation...

  12. A framework to assess the realism of model structures using hydrological signatures

    Directory of Open Access Journals (Sweden)

    T. Euser

    2013-05-01

    Full Text Available The use of flexible hydrological model structures for hypothesis testing requires an objective and diagnostic method to identify whether a rainfall-runoff model structure is suitable for a certain catchment. To determine if a model structure is realistic, i.e. if it captures the relevant runoff processes, both performance and consistency are important. We define performance as the ability of a model structure to mimic a specific part of the hydrological behaviour in a specific catchment. This can be assessed based on evaluation criteria, such as the goodness of fit of specific hydrological signatures obtained from hydrological data. Consistency is defined as the ability of a model structure to adequately reproduce several hydrological signatures simultaneously while using the same set of parameter values. In this paper we describe and demonstrate a new evaluation Framework for Assessing the Realism of Model structures (FARM. The evaluation framework tests for both performance and consistency using a principal component analysis on a range of evaluation criteria, all emphasizing different hydrological behaviour. The utility of this evaluation framework is demonstrated in a case study of two small headwater catchments (Maimai, New Zealand, and Wollefsbach, Luxembourg. Eight different hydrological signatures and eleven model structures have been used for this study. The results suggest that some model structures may reveal the same degree of performance for selected evaluation criteria while showing differences in consistency. The results also show that some model structures have a higher performance and consistency than others. The principal component analysis in combination with several hydrological signatures is shown to be useful to visualise the performance and consistency of a model structure for the study catchments. With this framework performance and consistency are evaluated to identify which model structure suits a catchment better

  13. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    2017-08-01

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. The evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.

  14. A framework for model-based optimization of bioprocesses under uncertainty: Identifying critical parameters and operating variables

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development and application of a systematic model-based framework for bioprocess optimization, evaluated on a cellulosic ethanol production case study. The implementation of the framework involves the use of dynamic simulations, sophisticated uncertainty analysis (Monte...

  15. Modelling Framework for the Identification of Critical Variables and Parameters under Uncertainty in the Bioethanol Production from Lignocellulose

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development of a systematic modelling framework for identification of the most critical variables and parameters under uncertainty, evaluated on a lignocellulosic ethanol production case study. The systematic framework starts with: (1) definition of the objectives; (2...

  16. Systematic narrative review of decision frameworks to select the appropriate modelling approaches for health economic evaluations.

    Science.gov (United States)

    Tsoi, B; O'Reilly, D; Jegathisawaran, J; Tarride, J-E; Blackhouse, G; Goeree, R

    2015-06-17

    In constructing or appraising a health economic model, an early consideration is whether the modelling approach selected is appropriate for the given decision problem. Frameworks and taxonomies that distinguish between modelling approaches can help make this decision more systematic and this study aims to identify and compare the decision frameworks proposed to date on this topic area. A systematic review was conducted to identify frameworks from peer-reviewed and grey literature sources. The following databases were searched: OVID Medline and EMBASE; Wiley's Cochrane Library and Health Economic Evaluation Database; PubMed; and ProQuest. Eight decision frameworks were identified, each focused on a different set of modelling approaches and employing a different collection of selection criterion. The selection criteria can be categorized as either: (i) structural features (i.e. technical elements that are factual in nature) or (ii) practical considerations (i.e. context-dependent attributes). The most commonly mentioned structural features were population resolution (i.e. aggregate vs. individual) and interactivity (i.e. static vs. dynamic). Furthermore, understanding the needs of the end-users and stakeholders was frequently incorporated as a criterion within these frameworks. There is presently no universally-accepted framework for selecting an economic modelling approach. Rather, each highlights different criteria that may be of importance when determining whether a modelling approach is appropriate. Further discussion is thus necessary as the modelling approach selected will impact the validity of the underlying economic model and have downstream implications on its efficiency, transparency and relevance to decision-makers.

  17. Applications of a Complimentary Modeling Framework to Improve Regional-Scale Groundwater Prediction

    Science.gov (United States)

    Valocchi, A. J.; Demissie, Y.

    2010-12-01

    Computational models of groundwater flow are important tools that help guide management policies and decisions. Modern inverse modeling techniques lead to improved model calibration and knowledge of parameter sensitivity and uncertainty. However, their effectiveness in real world groundwater model application is often limited because of the complexity and heterogeneity of natural subsurface systems as well as the insufficiency of representative measured data. Models are often used to make predictions to evaluate the impact of future scenarios or management policies quite different from the historical conditions that provided the data used for calibration. Models are normally calibrated to yield a good overall match (e.g., as measured by the least squares error criterion) to all the available data, while predictions often focus upon critical spatial locations with the largest impact upon social or hydro-ecological factors. We present a complementary modeling framework to improve the performance of inverse modeling by integrating a calibrated physically-based groundwater model with error-correcting data-driven models to handle the bias and uncertainties arising mainly from ignored or misrepresented processes in the groundwater model. The feasibility of adopting the framework is enhanced by advances in measurement technology and observation networks that are leading to increased amounts of hydrologic data. We have previously published an application of the framework to a hypothetical problem, showing promising results. We present application of the framework to two complex real-world case studies where calibrated MODFLOW models have been developed: the Spokane Valley Rathdrum Prairie and Republican River Compact Administration models. The MODFLOW and data-driven models are calibrated to a portion of the available data, and prediction accuracy is assessed using the remaining data. We find that in general the prediction accuracy of using the complementary model is

  18. A review of communication models and frameworks in a healthcare context.

    Science.gov (United States)

    Cheng, Brenda S S; Bridges, Susan M; Yiu, Cynthia K Y; McGrath, Colman P

    2015-03-01

    This paper reviews six key communication models and frameworks in healthcare contexts. Comparison suggests key inter-relationships between the different stages of the clinical consultations. Implications are identified for future study in healthcare provider-patient communication. Clinical Relevance: To understand the healthcare provider-patient interaction through communication models.

  19. Uncertainty in the environmental modelling process – A framework and guidance

    NARCIS (Netherlands)

    Refsgaard, J.C.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489; Hojberg, A.L.; Vanrolleghem, P.

    2007-01-01

    A terminology and typology of uncertainty is presented together with a framework for the modelling process, its interaction with the broader water management process and the role of uncertainty at different stages in the modelling processes. Brief reviews have been made of 14 different (partly

  20. Developing the multi-level functioning interface framework for DER models

    DEFF Research Database (Denmark)

    Han, Xue; Bindner, Henrik W.; You, Shi

    2013-01-01

    The paper summarises several modelling applications of distributed energy resources (DERs) for various purposes, and describes the related operational issues regarding the complexity of the future distribution grid. Furthermore, a multi-level functioning interface framework is proposed for DER mo....... The information mapping for photovoltaic panel (PV) modelling is also provided as an example....

  1. A modeling framework for evaluating streambank stabilization practices for reach-scale sediment reduction

    Science.gov (United States)

    Streambank stabilization techniques are often implemented to reduce sediment loads from unstable streambanks. Process-based models can predict sediment yields with stabilization scenarios prior to implementation. However, a framework does not exist on how to effectively utilize these models to evalu...

  2. Use of GERAM as Basis for a Virtual Enterprise Framework Model

    DEFF Research Database (Denmark)

    Vesterager, Johan; Bernus, Peter; Larsen, Lars B

    2001-01-01

    In the IMS-project Globeman21, the enterprise reference architecture GERAM was used as basis for creation of a virtual enterprise framework model. The model was used to map different industrial pilot projects, to classify virtual en-terprise concepts, and as underlying structure for a virtual ent...

  3. A model-based framework for incremental scale-up of wastewater treatment processes

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Sin, Gürkan

    Scale-up is traditionally done following specific ratios or rules of thumb which do not lead to optimal results. We present a generic framework to assist in scale-up of wastewater treatment processes based on multiscale modelling, multiobjective optimisation and a validation of the model at the new...

  4. Crops in silico: A community wide multi-scale computational modeling framework of plant canopies

    Science.gov (United States)

    Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.

    2016-12-01

    Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem

  5. Toward a generic model of trust for electronic commerce

    NARCIS (Netherlands)

    Tan, YH; Thoen, W

    2000-01-01

    The authors present a generic model of trust for electronic commerce consisting of two basic components, party trust and control trust, based on the concept that trust in a transaction with another party combines trust in the other parry and trust in the control mechanisms that ensure the successful

  6. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  7. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large v...

  8. Classical model of the Dirac electron in curved space

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1987-01-01

    The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)

  9. A unified framework for data modeling on medical information systems.

    Science.gov (United States)

    Neves, J; Cortez, P; Rocha, M; Abelha, A; Machado, J; Alves, V; Basto, S; Botelho, H; Neves, J

    1999-01-01

    Medical Information Systems (MIS) are seen as a way of optimizing the use of existing health-care infrastructure, without resorting to new and costly hospital (re)construction. The qualitative (re)design of such an environment requires a basic understanding of patient and doctors related characteristics and capabilities. Patient care, patient education, medical education, and clinical research need to be considered to meet the basic requirements on the level of services desirable, determined on the basis of the patient's length of stay; i.e., used for modeling the significant entities of such a world. The aim is to extract conclusions for the level of services provided to the users. One's concept will capture, as well as will integrate, the basic design principles under which MIS may be set.

  10. Large geospatial images discovery: metadata model and technological framework

    Directory of Open Access Journals (Sweden)

    Lukáš Brůha

    2015-12-01

    Full Text Available The advancements in geospatial web technology triggered efforts for disclosure of valuable resources of historical collections. This paper focuses on the role of spatial data infrastructures (SDI in such efforts. The work describes the interplay between SDI technologies and potential use cases in libraries such as cartographic heritage. The metadata model is introduced to link up the sources from these two distinct fields. To enhance the data search capabilities, the work focuses on the representation of the content-based metadata of raster images, which is the crucial prerequisite to target the search in a more effective way. The architecture of the prototype system for automatic raster data processing, storage, analysis and distribution is introduced. The architecture responds to the characteristics of input datasets, namely to the continuous flow of very large raster data and related metadata. Proposed solutions are illustrated on the case study of cartometric analysis of digitised early maps and related metadata encoding.

  11. Modeling of magnetic components for power electronic converters

    Science.gov (United States)

    Hranov, Tsveti; Hinov, Nikolay

    2017-12-01

    The paper presents the modelling of magnetic components, used in the power electronic devices. Non-linear inductor and transformer are presented. During the design stage are taken into account that the converters are operated with non-sinusoidal currents and voltages. The models are realized in the MATLAB environment and their verification is done using computer simulations. The advantages of these models against the existing models are that relations between the parameters are formalized and this way the computational procedure is significantly faster. This is important in the cases when the quasi-steady-state regime in devices comes significantly slower and the investigations are requiring long simulation times.

  12. A new fit-for-purpose model testing framework: Decision Crash Tests

    Science.gov (United States)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building

  13. Application of computer-aided multi-scale modelling framework – Aerosol case study

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Glarborg, Peter

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer...... numerous steps, expert skills and different modelling tools. This motivates the development of a computer-aided modelling framework that supports the user during model development, documentation, analysis, identification, application and re-use with the goal to increase the efficiency of the modelling...... generation, optimal equation ordering, eigenvalue analysis. Once the models have been constructed and analysed the modelling framework incorporates 3 application work-flows for: identification, simulation and design. For these application work-flows different solvers that can solve a large range of different...

  14. Development of a dual permeability model within a hydrological catchment modeling framework: 1D application.

    Science.gov (United States)

    Djabelkhir, K; Lauvernet, C; Kraft, P; Carluer, N

    2017-01-01

    Preferential flow contributes significantly to pesticide fast transfer from surface to groundwater. Modeling this process at several scales is an important challenge for improving the representation of this process which is often neglected. In this study, we developed a dual permeability approach in a hydrological modeling framework, CMF, which is a collaborative environment for developing spatially-integrated models of water fluxes. In the development we propose here, infiltration in macropores which are connected to the surface is activated when the first matrix layer reaches saturation. A transfer function is used to represent water fluxes from macropores to matrix. This approach is tested in 1D by comparison with the dual permeability approach included in Hydrus1D, on 4 typical soil-types (sandy-loam, silty-loam, clay-loam and sandy-clay-loam). The results showed an underestimation of the flux infiltrated in the matrix surface and important infiltration in macropores with the new model, for most of soil-types, comparing to Hydrus1D. Similarities are observed for fluxes transferred from macropores to matrix. Solute transport is then coupled to CMF-DP model considering a convection transport and a linear adsorption to represent pesticides behavior in macroporous soils. The approach we developed is similar to Hydrus though having the advantage to need less input parameters, especially for the exchange between the two porous media. In the future, it could be applied for predicting pesticides transfer in macroporous soils at different scales for operational applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electron flux models for different energies at geostationary orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-10-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  16. Effective models of inflation from a nonlocal framework

    Science.gov (United States)

    Koshelev, Alexey S.; Kumar, K. Sravan; Moniz, Paulo Vargas

    2017-11-01

    The dilaton is a possible inflaton candidate following recent CMB data allowing a nonminimal coupling to the Ricci curvature scalar in the early Universe. In this paper, we introduce an approach that has seldom been used in the literature, namely dilaton inflation with non-local features. More concretely, employing non-local features expressed in [J. High Energy Phys. 04 (2007) 029, 10.1088/1126-6708/2007/04/029], we study quadratic variations around a de Sitter geometry of an effective action with a nonlocal dilaton. The nonlocality refers to an infinite derivative kinetic term involving the operator F (□) . Algebraic roots of the characteristic equation F (z )=0 play a crucial role in determining the properties of the theory. We subsequently study the cases when F (□) has one real root and one complex root, from which we retrieve two concrete effective models of inflation. In the first case we retrieve a class of single field inflations with universal prediction of ns˜0.967 with any value of the tensor to scalar ratio r product of scalar fields. In this latter case, we obtain Starobinsky-like inflation through a spontaneously broken conformal invariance. Furthermore, an uplifted minimum of the potential, which accounts for the vacuum energy after inflation is produced naturally through this mechanism intrinsically within our approach.

  17. A Fuzzy Logic Framework for Integrating Multiple Learned Models

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)

    1999-03-01

    The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

  18. A framework for fuzzy model of thermoradiotherapy efficiency

    International Nuclear Information System (INIS)

    Kosterev, V.V.; Averkin, A.N.

    2005-01-01

    Full text: The use of hyperthermia as an adjuvant to radiation in the treatment of local and regional disease currently offers the most significant advantages. For processing of information of thermo radiotherapy efficiency, it is expedient to use the fuzzy logic based decision-support system - fuzzy system (FS). FSs are widely used in various application areas of control and decision making. Their popularity is due to the following reasons. Firstly, FS with triangular membership functions is universal approximator. Secondly, the designing of FS does not need the exact model of the process, but needs only qualitative linguistic dependences between the parameters. Thirdly, there are many program and hardware realizations of FS with very high speed of calculations. Fourthly, accuracy of the decisions received based on FS, usually is not worse and sometimes is better than accuracy of the decisions received by traditional methods. Moreover, dependence between input and output variables can be easily expressed in linguistic scales. The goal of this research is to choose the data fusion RULE's operators suitable to experimental results and taking into consideration uncertainty factor. Methods of aggregation and data fusion might be used which provide a methodology to extract comprehensible rules from data. Several data fusion algorithms have been developed and applied, individually and in combination, providing users with various levels of informational detail. In reviewing these emerging technology three basic categories (levels) of data fusion has been developed. These fusion levels are differentiated according to the amount of information they provide. Refs. 2 (author)

  19. Modeling Framework and Results to Inform Charging Infrastructure Investments

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    The plug-in electric vehicle (PEV) market is experiencing rapid growth with dozens of battery electric (BEV) and plug-in hybrid electric (PHEV) models already available and billions of dollars being invested by automotive manufacturers in the PEV space. Electric range is increasing thanks to larger and more advanced batteries and significant infrastructure investments are being made to enable higher power fast charging. Costs are falling and PEVs are becoming more competitive with conventional vehicles. Moreover, new technologies such as connectivity and automation hold the promise of enhancing the value proposition of PEVs. This presentation outlines a suite of projects funded by the U.S. Department of Energy's Vehicle Technology Office to conduct assessments of the economic value and charging infrastructure requirements of the evolving PEV market. Individual assessments include national evaluations of PEV economic value (assuming 73M PEVs on the road in 2035), national analysis of charging infrastructure requirements (with community and corridor level resolution), and case studies of PEV ownership in Columbus, OH and Massachusetts.

  20. Interrogation of possible imaging conditions for radiation sensitive metal organic frameworks in transmission electron microscopes

    Science.gov (United States)

    Patel, Harinkumar Rajendrabhai

    One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.

  1. A Framework for Relating Timed Transition Systems and Preserving TCTL Model Checking

    DEFF Research Database (Denmark)

    Jacobsen, Lasse; Jacobsen, Morten; Møller, Mikael Harkjær

    2010-01-01

    Many formal translations between time dependent models have been proposed over the years. While some of them produce timed bisimilar models, others preserve only reachability or (weak) trace equivalence. We suggest a general framework for arguing when a translation preserves Timed Computation Tree...... Logic (TCTL) or its safety fragment.The framework works at the level of timed transition systems, making it independent of the modeling formalisms and applicable to many of the translations published in the literature. Finally, we present a novel translation from extended Timed-Arc Petri Nets...... to Networks of Timed Automata and using the framework argue that itpreserves the full TCTL. The translation has been implemented in the verification tool TAPAAL....

  2. Designing A Framework To Design A Business Model For The 'Bottom Of The Pyramid' Population

    Directory of Open Access Journals (Sweden)

    Ver Loren van Themaat, Tanye

    2013-11-01

    Full Text Available This article presents a framework for developing and designing a business model to target the bottom of the pyramid (BoP population. Using blue ocean strategy and business model literature, integrated with research on the BoP, the framework offers a systematic approach for organisations to analyse and understand all aspects of the BoP and their environment, and then design a business model that minimises the risk of failure and fulfils the core requirements of the BoP. A case study on Capitec Bank demonstrates how the framework can be applied to the real world. The case study shows the practical examples that Capitec uses to target the BoP successfully, and the logic behind these actions. Further validation was done through interviews with experts in the relevant fields used in this study.

  3. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  4. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  5. A Framework For Enhancing Privacy In Location Based Services Using K-Anonymity Model

    Directory of Open Access Journals (Sweden)

    Jane Mugi

    2015-08-01

    Full Text Available Abstract This paper presents a framework for enhancing privacy in Location Based Services using K-anonymity model. Users of location based services have to reveal their location information in order to use these services however this has threatened the user privacy. K-anonymity approach has been studied extensively in various forms. However it is only effective when the user location is fixed. When a user moves and continuously sends their location information the location service provider can approximate user trajectory which poses a threat to the trajectory privacy of the user. This framework will ensure that user privacy is enhanced for both snapshot and continuous queries. The efficiency and effectiveness of the proposed framework was evaluated the results indicate that the proposed framework has high success rate and good run time performance.

  6. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  7. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Science.gov (United States)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  8. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  9. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    Directory of Open Access Journals (Sweden)

    Carlos Gonzalez-Garcia

    2013-01-01

    Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.

  10. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  11. Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster

    Science.gov (United States)

    Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael

    2009-10-01

    The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)

  12. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-06-21

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  13. The Development Model Electronic Commerce of Regional Agriculture

    Science.gov (United States)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  14. The Roy Adaptation Model: A Theoretical Framework for Nurses Providing Care to Individuals With Anorexia Nervosa.

    Science.gov (United States)

    Jennings, Karen M

    Using a nursing theoretical framework to understand, elucidate, and propose nursing research is fundamental to knowledge development. This article presents the Roy Adaptation Model as a theoretical framework to better understand individuals with anorexia nervosa during acute treatment, and the role of nursing assessments and interventions in the promotion of weight restoration. Nursing assessments and interventions situated within the Roy Adaptation Model take into consideration how weight restoration does not occur in isolation but rather reflects an adaptive process within external and internal environments, and has the potential for more holistic care.

  15. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; McAuliffe, Colin [Altair Engineering, Inc.; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors

    2016-06-06

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  16. A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model

    Science.gov (United States)

    Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi

    Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.

  17. Clarifying and illustrating the electronic energy transfer pathways in trimeric and hexameric aggregation state of cyanobacteria allophycocyanin within the framework of Förster theory.

    Science.gov (United States)

    Ren, Yanliang; Melhem, Osama; Li, Yongjian; Chi, Bo; Han, Xinya; Zhu, Hao; Feng, Lingling; Wan, Jian; Xu, Xin

    2015-01-30

    Within the framework of the Förster theory, the electronic excitation energy transfer pathways in the cyanobacteria allophycocyanin (APC) trimer and hexamer were studied. The associated physical quantities (i.e., excitation energy, oscillator strength, and transition dipole moments) of the phycocyanobilins (PCBs) located in APC were calculated at time-dependent density functional theory (TDDFT) level of theory. To estimate the influence of protein environment on the preceding calculated physical quantities, the long-range interactions were approximately considered with the polarizable continuum model at the TDDFT level of theory, and the short-range interaction caused by surrounding aspartate residue of PCBs were taken into account as well. The shortest energy transfer time calculated in the framework of the Förster model at TDDFT/B3LYP/6-31+G* level of theory are about 0.10 ps in the APC trimer and about 170 ps in the APC monomer, which are in qualitative agreement with the experimental finding that a very fast lifetime of 0.43-0.44 ps in APC trimers, whereas its monomers lacked any corresponding lifetime. These results suggest that the lifetime of 0.43-0.44 ps in the APC trimers determined by Sharkov et al. was most likely attributed to the energy transfer of α(1) -84 ↔ β(3) -84 (0.23 ps), β(1) -84 ↔ α(2) -84 (0.11 ps) or β(2) -84 ↔ α(3) -84 (0.10 ps). So far, no experimental or theoretical energy transfer rates between two APC trimmers were reported, our calculations predict that the predominate energy transfer pathway between APC trimers is likely to occur from α(3) -84 in one trimer to α(5) -84 in an adjacent trimer with a rate of 32.51 ps. © 2014 Wiley Periodicals, Inc.

  18. A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare

    OpenAIRE

    Kotiadis, Kathy; Tako, Antuela; Vasilakis, Christos

    2014-01-01

    Existing approaches to conceptual modelling (CM) in discrete-event simulation do not formally support the participation of a group of stakeholders. Simulation in healthcare can benefit from stakeholder participation as it makes possible to share multiple views and tacit knowledge from different parts of the system. We put forward a framework tailored to healthcare that supports the interaction of simulation modellers with a group of stakeholders to arrive at a common conceptual model. The fra...

  19. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    OpenAIRE

    Huang, Hui; Wan Mohamed Radzi, Che Wan Jasimah bt; Salarzadeh Jenatabadi, Hashem

    2017-01-01

    The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM) concept. Structural models are analysed in terms of the direct and indirect connections among ...

  20. Accelerated Simulation of Discrete Event Dynamic Systems via a Multi-Fidelity Modeling Framework

    Directory of Open Access Journals (Sweden)

    Seon Han Choi

    2017-10-01

    Full Text Available Simulation analysis has been performed for simulation experiments of all possible input combinations as a “what-if” analysis, which causes the simulation to be extremely time-consuming. To resolve this problem, this paper proposes a multi-fidelity modeling framework for enhancing simulation speed while minimizing simulation accuracy loss. A target system for this framework is a discrete event dynamic system. The dynamic property of the system facilitates the development of variable fidelity models for the target system due to its high computational cost; and the discrete event property allows for determining when to change the fidelity within a simulation scenario. For formal representation, the paper defines several key concepts such as an interest region, a fidelity change condition, and a selection model. These concepts are integrated into the framework to allow for the achievement of a condition-based disjunction of high- and low-fidelity simulations within a scenario. The proposed framework is applied to two case studies: unmanned underwater and urban transportation vehicles. The results show that simulation speed increases at least 1.21 times with a 5% accuracy loss. We expect that the proposed framework will resolve a computationally expensive problem in the simulation analysis of discrete event dynamic systems.