WorldWideScience

Sample records for modeling experiments show

  1. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study...... the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small...... consumed. Benzoic acid derivatives showed low concentration in the plasma (phenolic acids, likely because it is an intermediate in the phenolic acid metabolism...

  2. Duchenne muscular dystrophy models show their age

    OpenAIRE

    Chamberlain, Jeffrey S.

    2010-01-01

    The lack of appropriate animal models has hampered efforts to develop therapies for Duchenne muscular dystrophy (DMD). A new mouse model lacking both dystrophin and telomerase (Sacco et al., 2010) closely mimics the pathological progression of human DMD and shows that muscle stem cell activity is a key determinant of disease severity.

  3. Patient experience shows little relationship with hospital quality management strategies.

    NARCIS (Netherlands)

    Groene, O.; Arah, O.A.; Klazinga, N.S.; Wagner, C.; Bartels, P.D.; Kristensen, S.; Saillour, F.; Thompson, C.A.; Pfaff, H.; DerSarkissian, M.; Suñol, R.

    2015-01-01

    Objectives: Patient-reported experience measures are increasingly being used to routinely monitor the quality of care. With the increasing attention on such measures, hospital managers seek ways to systematically improve patient experience across hospital departments, in particular where outcomes

  4. Patient Experience Shows Little Relationship with Hospital Quality Management Strategies

    NARCIS (Netherlands)

    Groene, Oliver; Arah, Onyebuchi A.; Klazinga, Niek S.; Wagner, Cordula; Bartels, Paul D.; Kristensen, Solvejg; Saillour, Florence; Thompson, Andrew; Thompson, Caroline A.; Pfaff, Holger; Dersarkissian, Maral; Sunol, Rosa

    2015-01-01

    Patient-reported experience measures are increasingly being used to routinely monitor the quality of care. With the increasing attention on such measures, hospital managers seek ways to systematically improve patient experience across hospital departments, in particular where outcomes are used for

  5. Time dependent patient no-show predictive modelling development.

    Science.gov (United States)

    Huang, Yu-Li; Hanauer, David A

    2016-05-09

    Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows.

  6. Model shows future cut in U.S. ozone levels

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A joint U.S. auto-oil industry research program says modeling shows that changing gasoline composition can reduce ozone levels for Los Angeles in 2010 and for New York City and Dallas-Fort Worth in 2005. The air quality modeling was based on vehicle emissions research data released late last year (OGJ, Dec. 24, 1990, p. 20). The effort is sponsored by the big three auto manufacturers and 14 oil companies. Sponsors the cars and small trucks account for about one third of ozone generated in the three cities studied but by 2005-10 will account for only 5-9%

  7. Showing that the race model inequality is not violated

    DEFF Research Database (Denmark)

    Gondan, Matthias; Riehl, Verena; Blurton, Steven Paul

    2012-01-01

    important being race models and coactivation models. Redundancy gains consistent with the race model have an upper limit, however, which is given by the well-known race model inequality (Miller, 1982). A number of statistical tests have been proposed for testing the race model inequality in single...... participants and groups of participants. All of these tests use the race model as the null hypothesis, and rejection of the null hypothesis is considered evidence in favor of coactivation. We introduce a statistical test in which the race model prediction is the alternative hypothesis. This test controls...

  8. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  9. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  10. Showing the Unsayable: Participatory Visual Approaches and the Constitution of 'Patient Experience' in Healthcare Quality Improvement.

    Science.gov (United States)

    Papoulias, Constantina

    2018-06-01

    This article considers the strengths and potential contributions of participatory visual methods for healthcare quality improvement research. It argues that such approaches may enable us to expand our understanding of 'patient experience' and of its potential for generating new knowledge for health systems. In particular, they may open up dimensions of people's engagement with services and treatments which exceed both the declarative nature of responses to questionnaires and the narrative sequencing of self reports gathered through qualitative interviewing. I will suggest that working with such methods may necessitate a more reflexive approach to the constitution of evidence in quality improvement work. To this end, the article will first consider the emerging rationale for the use of visual participatory methods in improvement before outlining the implications of two related approaches-photo-elicitation and PhotoVoice-for the constitution of 'experience'. It will then move to a participatory model for healthcare improvement work, Experience Based Co-Design (EBCD). It will argue that EBCD exemplifies both the strengths and the limitations of adequating visual participatory approaches to quality improvement ends. The article will conclude with a critical reflection on a small photographic study, in which the author participated, and which sought to harness service user perspectives for the design of psychiatric facilities, as a way of considering the potential contribution of visual participatory methods for quality improvement.

  11. MARKETING MODELS APPLICATION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    A. Yu. Rymanov

    2011-01-01

    Full Text Available Marketing models are used for the assessment of such marketing elements as sales volume, market share, market attractiveness, advertizing costs, product pushing and selling, profit, profitableness. Classification of buying process decision taking models is presented. SWOT- and GAPbased models are best for selling assessments. Lately, there is a tendency to transfer from the assessment on the ba-sis of financial indices to that on the basis of those non-financial. From the marketing viewpoint, most important are long-term company activities and consumer drawingmodels as well as market attractiveness operative models.

  12. Modelling Urban Experiences

    DEFF Research Database (Denmark)

    Jantzen, Christian; Vetner, Mikael

    2008-01-01

    How can urban designers develop an emotionally satisfying environment not only for today's users but also for coming generations? Which devices can they use to elicit interesting and relevant urban experiences? This paper attempts to answer these questions by analyzing the design of Zuidas, a new...

  13. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  14. Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

    Directory of Open Access Journals (Sweden)

    Gaia Tavoni

    2017-10-01

    Full Text Available Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC of rats, during the performance of a cross-modal rule shift task (task epoch, and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated. Cell assemblies coding for memories are widely believed to emerge through synaptic modification resulting from learning, yet their identification from activity is very arduous. We propose a functional-connectivity-based approach to identify experience-related cell assemblies from multielectrode recordings in vivo, and apply it to the prefrontal cortex activity of rats recorded during a task epoch and the preceding and following sleep epochs. We infer functional couplings between the recorded cells in each epoch. Comparisons of the functional coupling networks across the epochs allow us

  15. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity

    Science.gov (United States)

    Smith, Milo R.; Burman, Poromendro

    2016-01-01

    Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530

  16. Variation in free jumping technique within and among horses with little experience in show jumping

    NARCIS (Netherlands)

    Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.

    2004-01-01

    Objective - To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among

  17. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    Science.gov (United States)

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  18. Meta-analysis of field experiments shows no change in racial discrimination in hiring over time.

    Science.gov (United States)

    Quillian, Lincoln; Pager, Devah; Hexel, Ole; Midtbøen, Arnfinn H

    2017-10-10

    This study investigates change over time in the level of hiring discrimination in US labor markets. We perform a meta-analysis of every available field experiment of hiring discrimination against African Americans or Latinos ( n = 28). Together, these studies represent 55,842 applications submitted for 26,326 positions. We focus on trends since 1989 ( n = 24 studies), when field experiments became more common and improved methodologically. Since 1989, whites receive on average 36% more callbacks than African Americans, and 24% more callbacks than Latinos. We observe no change in the level of hiring discrimination against African Americans over the past 25 years, although we find modest evidence of a decline in discrimination against Latinos. Accounting for applicant education, applicant gender, study method, occupational groups, and local labor market conditions does little to alter this result. Contrary to claims of declining discrimination in American society, our estimates suggest that levels of discrimination remain largely unchanged, at least at the point of hire.

  19. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. The 'model omnitron' proposed experiment

    International Nuclear Information System (INIS)

    Sestero, A.

    1997-05-01

    The Model Omitron is a compact tokamak experiment which is designed by the Fusion Engineering Unit of ENEA and CITIF CONSORTIUM. The building of Model Omitron would allow for full testing of Omitron engineering, and partial testing of Omitron physics -at about 1/20 of the cost that has been estimated for the larger parent machine. In particular, due to the unusually large ohmic power densities (up to 100 times the nominal value in the Frascati FTU experiment), in Model Omitron the radial energy flux is reaching values comparable or higher than envisaged of the larger ignition experiments Omitron, Ignitor and Iter. Consequently, conditions are expected to occur at the plasma border in the scrape-off layer of Model Omitron, which are representative of the quoted larger experiments. Moreover, since all this will occur under ohmic heating alone, one will hopefully be able to derive an energy transport model fo the ohmic heating regime that is valid over a range of plasma parameters (in particular, of the temperature parameter) wider than it was possible before. In the Model Omitron experiment, finally - by reducing the plasma current and/or the toroidal field down to, say, 1/3 or 1/4 of the nominal values -additional topics can be tackled, such as: large safety-factor configurations (of interest for improving confinement), large aspect-ratio configurations (of interest for the investigation of advanced concepts in tokamaks), high beta (with RF heating -also of interest for the investigation of advanced concepts in tokamaks), long pulse discharges (of interest for demonstrating stationary conditions in the current profile)

  1. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  2. Why do people show minimal knowledge updating with task experience: inferential deficit or experimental artifact?

    Science.gov (United States)

    Hertzog, Christopher; Price, Jodi; Burpee, Ailis; Frentzel, William J; Feldstein, Simeon; Dunlosky, John

    2009-01-01

    Students generally do not have highly accurate knowledge about strategy effectiveness for learning, such as that imagery is superior to rote repetition. During multiple study-test trials using both strategies, participants' predictions about performance on List 2 do not markedly differ for the two strategies, even though List 1 recall is substantially greater for imagery. Two experiments evaluated whether such deficits in knowledge updating about the strategy effects were due to an experimental artifact or to inaccurate inferences about the effects the strategies had on recall. Participants studied paired associates on two study-test trials--they were instructed to study half using imagery and half using rote repetition. Metacognitive judgements tapped the quality of inferential processes about the strategy effects during the List 1 test and tapped gains in knowledge about the strategies across lists. One artifactual explanation--noncompliance with strategy instructions--was ruled out, whereas manipulations aimed at supporting the data available to inferential processes improved but did not fully repair knowledge updating.

  3. Does medicine still show an unresolved discrimination against women? Experience in two European university hospitals.

    Science.gov (United States)

    Santamaría, A; Merino, A; Viñas, O; Arrizabalaga, P

    2009-02-01

    Have invisible barriers for women been broken in 2007, or do we still have to break through medicine's glass ceiling? Data from two of the most prestigious university hospitals in Barcelona with 700-800 beds, Hospital Clínic (HC) and Hospital de la Santa Creu i Sant Pau (HSCSP) address this issue. In the HSCSP, 87% of the department chairs are men and 85% of the department unit chiefs are also men. With respect to women, only 5 (13%) are in the top position (department chair) and 4 (15%) are department unit chiefs. Similar statistics are also found at the HC: 87% of the department chairs and 89% of the department unit chiefs are men. Currently, only 6 women (13%) are in the top position and 6 (11%) are department unit chiefs. Analysis of the 2002 data of internal promotions in HC showed that for the first level (senior specialist) sex distribution was similar. Nevertheless, for the second level (consultant) only 25% were women, and for the top level (senior consultant) only 8% were women. These proportions have not changed in 2007 in spite of a 10% increase in leadership positions during this period. Similar proportions were found in HSCSP where 68% of the top promotions were held by men. The data obtained from these two different medical institutions in Barcelona are probably representative of other hospitals in Spain. It would be ethically desirable to have males and females in leadership positions in the medical profession.

  4. Extracting Models in Single Molecule Experiments

    Science.gov (United States)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  5. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  6. Refining Grasp Affordance Models by Experience

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Buch, Anders Glent

    2010-01-01

    We present a method for learning object grasp affordance models in 3D from experience, and demonstrate its applicability through extensive testing and evaluation on a realistic and largely autonomous platform. Grasp affordance refers here to relative object-gripper configurations that yield stable...... with a visual model of the object they characterize. We explore a batch-oriented, experience-based learning paradigm where grasps sampled randomly from a density are performed, and an importance-sampling algorithm learns a refined density from the outcomes of these experiences. The first such learning cycle...... is bootstrapped with a grasp density formed from visual cues. We show that the robot effectively applies its experience by downweighting poor grasp solutions, which results in increased success rates at subsequent learning cycles. We also present success rates in a practical scenario where a robot needs...

  7. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our...... understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....

  8. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  9. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  11. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    Science.gov (United States)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the

  12. Experiments beyond the standard model

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references

  13. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments

    Directory of Open Access Journals (Sweden)

    Gyöngyi Munkácsy

    2016-01-01

    Full Text Available No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06. Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04. There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.

  14. Microarray profiling shows distinct differences between primary tumors and commonly used preclinical models in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Weining; Iyer, N. Gopalakrishna; Tay, Hsien Ts’ung; Wu, Yonghui; Lim, Tony K. H.; Zheng, Lin; Song, In Chin; Kwoh, Chee Keong; Huynh, Hung; Tan, Patrick O. B.; Chow, Pierce K. H.

    2015-01-01

    Despite advances in therapeutics, outcomes for hepatocellular carcinoma (HCC) remain poor and there is an urgent need for efficacious systemic therapy. Unfortunately, drugs that are successful in preclinical studies often fail in the clinical setting, and we hypothesize that this is due to functional differences between primary tumors and commonly used preclinical models. In this study, we attempt to answer this question by comparing tumor morphology and gene expression profiles between primary tumors, xenografts and HCC cell lines. Hep G2 cell lines and tumor cells from patient tumor explants were subcutaneously (ectopically) injected into the flank and orthotopically into liver parenchyma of Mus Musculus SCID mice. The mice were euthanized after two weeks. RNA was extracted from the tumors, and gene expression profiling was performed using the Gene Chip Human Genome U133 Plus 2.0. Principal component analyses (PCA) and construction of dendrograms were conducted using Partek genomics suite. PCA showed that the commonly used HepG2 cell line model and its xenograft counterparts were vastly different from all fresh primary tumors. Expression profiles of primary tumors were also significantly divergent from their counterpart patient-derived xenograft (PDX) models, regardless of the site of implantation. Xenografts from the same primary tumors were more likely to cluster together regardless of site of implantation, although heat maps showed distinct differences in gene expression profiles between orthotopic and ectopic models. The data presented here challenges the utility of routinely used preclinical models. Models using HepG2 were vastly different from primary tumors and PDXs, suggesting that this is not clinically representative. Surprisingly, site of implantation (orthotopic versus ectopic) resulted in limited impact on gene expression profiles, and in both scenarios xenografts differed significantly from the original primary tumors, challenging the long

  15. Modeling the Experience of Emotion

    OpenAIRE

    Broekens, Joost

    2009-01-01

    Affective computing has proven to be a viable field of research comprised of a large number of multidisciplinary researchers resulting in work that is widely published. The majority of this work consists of computational models of emotion recognition, computational modeling of causal factors of emotion and emotion expression through rendered and robotic faces. A smaller part is concerned with modeling the effects of emotion, formal modeling of cognitive appraisal theory and models of emergent...

  16. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    Directory of Open Access Journals (Sweden)

    Estefanía de Munck

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA, a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  17. Model of the synthesis of trisporic acid in Mucorales showing bistability.

    Science.gov (United States)

    Werner, S; Schroeter, A; Schimek, C; Vlaic, S; Wöstemeyer, J; Schuster, S

    2012-12-01

    An important substance in the signalling between individuals of Mucor-like fungi is trisporic acid (TA). This compound, together with some of its precursors, serves as a pheromone in mating between (+)- and (-)-mating types. Moreover, intermediates of the TA pathway are exchanged between the two mating partners. Based on differential equations, mathematical models of the synthesis pathways of TA in the two mating types of an idealised Mucor-fungus are here presented. These models include the positive feedback of TA on its own synthesis. The authors compare three sub-models in view of bistability, robustness and the reversibility of transitions. The proposed modelling study showed that, in a system where intermediates are exchanged, a reversible transition between the two stable steady states occurs, whereas an exchange of the end product leads to an irreversible transition. The reversible transition is physiologically favoured, because the high-production state of TA must come to an end eventually. Moreover, the exchange of intermediates and TA is compared with the 3-way handshake widely used by computers linked in a network.

  18. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Directory of Open Access Journals (Sweden)

    Isabela Rodrigues Nogueira Forti

    Full Text Available In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male and Brazil (400 female and 400 male to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001. In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour it is hard to modify, hide or disguise, and it is highly polymorphic.

  19. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  1. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  2. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Hamzah M. Maswadeh

    2015-01-01

    Full Text Available Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS. Anticancer drug etoposide (ETP was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes. The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  3. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.

    Science.gov (United States)

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Zhendre, Vanessa; Henry, Sarah; Thévenot, Julie; Dufourc, Erick J; Alves, Isabel D; Peruch, Frédéric

    2014-01-01

    The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles. © 2013.

  4. Ab Initio Modeling Of Friction Reducing Agents Shows Quantum Mechanical Interactions Can Have Macroscopic Manifestation.

    Science.gov (United States)

    Hernández Velázquez, J D; Barroso-Flores, J; Gama Goicochea, A

    2016-11-23

    Two of the most commonly encountered friction-reducing agents used in plastic sheet production are the amides known as erucamide and behenamide, which despite being almost identical chemically, lead to markedly different values of the friction coefficient. To understand the origin of this contrasting behavior, in this work we model brushes made of these two types of linear-chain molecules using quantum mechanical numerical simulations under the density functional theory at the B97D/6-31G(d,p) level of theory. Four chains of erucamide and behenamide were linked to a 2 × 10 zigzag graphene sheet and optimized both in vacuum and in continuous solvent using the SMD implicit solvation model. We find that erucamide chains tend to remain closer together through π-π stacking interactions arising from the double bonds located at C13-C14, a feature behenamide lacks, and thus a more spread configuration is obtained with the latter. It is argued that this arrangement of the erucamide chains is responsible for the lower friction coefficient of erucamide brushes, compared with behenamide brushes, which is a macroscopic consequence of cooperative quantum mechanical interactions. While only quantum level interactions are modeled here, we show that behenamide chains are more spread out in the brush than erucamide chains as a consequence of those interactions. The spread-out configuration allows more solvent particles to penetrate the brush, leading in turn to more friction, in agreement with macroscopic measurements and mesoscale simulations of the friction coefficient reported in the literature.

  5. Bucky gel actuator displacement: experiment and model

    International Nuclear Information System (INIS)

    Ghamsari, A K; Zegeye, E; Woldesenbet, E; Jin, Y

    2013-01-01

    Bucky gel actuator (BGA) is a dry electroactive nanocomposite which is driven with a few volts. BGA’s remarkable features make this tri-layered actuator a potential candidate for morphing applications. However, most of these applications would require a better understanding of the effective parameters that influence the BGA displacement. In this study, various sets of experiments were designed to investigate the effect of several parameters on the maximum lateral displacement of BGA. Two input parameters, voltage and frequency, and three material/design parameters, carbon nanotube type, thickness, and weight fraction of constituents were selected. A new thickness ratio term was also introduced to study the role of individual layers on BGA displacement. A model was established to predict BGA maximum displacement based on the effect of these parameters. This model showed good agreement with reported results from the literature. In addition, an important factor in the design of BGA-based devices, lifetime, was investigated. (paper)

  6. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    Science.gov (United States)

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  7. Modeling of microgravity combustion experiments

    Science.gov (United States)

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  8. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  9. The database for reaching experiments and models.

    Directory of Open Access Journals (Sweden)

    Ben Walker

    Full Text Available Reaching is one of the central experimental paradigms in the field of motor control, and many computational models of reaching have been published. While most of these models try to explain subject data (such as movement kinematics, reaching performance, forces, etc. from only a single experiment, distinct experiments often share experimental conditions and record similar kinematics. This suggests that reaching models could be applied to (and falsified by multiple experiments. However, using multiple datasets is difficult because experimental data formats vary widely. Standardizing data formats promises to enable scientists to test model predictions against many experiments and to compare experimental results across labs. Here we report on the development of a new resource available to scientists: a database of reaching called the Database for Reaching Experiments And Models (DREAM. DREAM collects both experimental datasets and models and facilitates their comparison by standardizing formats. The DREAM project promises to be useful for experimentalists who want to understand how their data relates to models, for modelers who want to test their theories, and for educators who want to help students better understand reaching experiments, models, and data analysis.

  10. Experience economy meets business model design

    DEFF Research Database (Denmark)

    Gudiksen, Sune Klok; Smed, Søren Graakjær; Poulsen, Søren Bolvig

    2012-01-01

    Through the last decade the experience economy has found solid ground and manifested itself as a parameter where business and organizations can differentiate from competitors. The fundamental premise is the one found in Pine & Gilmores model from 1999 over 'the progression of economic value' where...... produced, designed or staged experience that gains the most profit or creates return of investment. It becomes more obvious that other parameters in the future can be a vital part of the experience economy and one of these is business model innovation. Business model innovation is about continuous...

  11. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    NARCIS (Netherlands)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M.I.; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.

    2018-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in

  12. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    Czech Academy of Sciences Publication Activity Database

    Fronzek, S.; Pirttioja, N. K.; Carter, T. R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.

    2018-01-01

    Roč. 159, jan (2018), s. 209-224 ISSN 0308-521X Institutional support: RVO:86652079 Keywords : climate - change * crop models * probabilistic assessment * simulating impacts * british catchments * uncertainty * europe * productivity * calibration * adaptation * Classification * Climate change * Crop model * Ensemble * Sensitivity analysis * Wheat Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 2.571, year: 2016

  13. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  14. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  15. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  16. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  17. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  18. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  19. The speed of memory errors shows the influence of misleading information: Testing the diffusion model and discrete-state models.

    Science.gov (United States)

    Starns, Jeffrey J; Dubé, Chad; Frelinger, Matthew E

    2018-05-01

    In this report, we evaluate single-item and forced-choice recognition memory for the same items and use the resulting accuracy and reaction time data to test the predictions of discrete-state and continuous models. For the single-item trials, participants saw a word and indicated whether or not it was studied on a previous list. The forced-choice trials had one studied and one non-studied word that both appeared in the earlier single-item trials and both received the same response. Thus, forced-choice trials always had one word with a previous correct response and one with a previous error. Participants were asked to select the studied word regardless of whether they previously called both words "studied" or "not studied." The diffusion model predicts that forced-choice accuracy should be lower when the word with a previous error had a fast versus a slow single-item RT, because fast errors are associated with more compelling misleading memory retrieval. The two-high-threshold (2HT) model does not share this prediction because all errors are guesses, so error RT is not related to memory strength. A low-threshold version of the discrete state approach predicts an effect similar to the diffusion model, because errors are a mixture of responses based on misleading retrieval and guesses, and the guesses should tend to be slower. Results showed that faster single-trial errors were associated with lower forced-choice accuracy, as predicted by the diffusion and low-threshold models. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Modeling experiments using quantum and Kolmogorov probability

    International Nuclear Information System (INIS)

    Hess, Karl

    2008-01-01

    Criteria are presented that permit a straightforward partition of experiments into sets that can be modeled using both quantum probability and the classical probability framework of Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and lead beyond the commonly appreciated partition by relating experiments to commuting and non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In other words the space of experiments that can be understood using classical probability is larger than usually assumed. This knowledge provides advantages for areas such as nanoscience and engineering or quantum computation.

  1. Firn Model Intercomparison Experiment (FirnMICE)

    DEFF Research Database (Denmark)

    Lundin, Jessica M.D.; Stevens, C. Max; Arthern, Robert

    2017-01-01

    Evolution of cold dry snow and firn plays important roles in glaciology; however, the physical formulation of a densification law is still an active research topic. We forced eight firn-densification models and one seasonal-snow model in six different experiments by imposing step changes in tempe...

  2. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    Directory of Open Access Journals (Sweden)

    Evelyn E Nash

    Full Text Available Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC, particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans. Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH, and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  3. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    Science.gov (United States)

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  4. Argonne Bubble Experiment Thermal Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-03

    This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.

  5. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    Science.gov (United States)

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  6. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  7. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  8. CFD and FEM modeling of PPOOLEX experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-01-15

    Large-break LOCA experiment performed with the PPOOLEX experimental facility is analysed with CFD calculations. Simulation of the first 100 seconds of the experiment is performed by using the Euler-Euler two-phase model of FLUENT 6.3. In wall condensation, the condensing water forms a film layer on the wall surface, which is modelled by mass transfer from the gas phase to the liquid water phase in the near-wall grid cell. The direct-contact condensation in the wetwell is modelled with simple correlations. The wall condensation and direct-contact condensation models are implemented with user-defined functions in FLUENT. Fluid-Structure Interaction (FSI) calculations of the PPOOLEX experiments and of a realistic BWR containment are also presented. Two-way coupled FSI calculations of the experiments have been numerically unstable with explicit coupling. A linear perturbation method is therefore used for preventing the numerical instability. The method is first validated against numerical data and against the PPOOLEX experiments. Preliminary FSI calculations are then performed for a realistic BWR containment by modeling a sector of the containment and one blowdown pipe. For the BWR containment, one- and two-way coupled calculations as well as calculations with LPM are carried out. (Author)

  9. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  10. Deal or No Deal? Decision Making under Risk in a Large-Stake TV Game Show and Related Experiments

    NARCIS (Netherlands)

    M.J. van den Assem (Martijn)

    2008-01-01

    textabstractThe central theme of this dissertation is the analysis of risky choice. The first two chapters analyze the choice behavior of contestants in a TV game show named “Deal or No Deal” (DOND). DOND provides a unique opportunity to study risk behavior, because it is characterized by very large

  11. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  12. Male Wistar rats show individual differences in an animal model of conformity.

    Science.gov (United States)

    Jolles, Jolle W; de Visser, Leonie; van den Bos, Ruud

    2011-09-01

    Conformity refers to the act of changing one's behaviour to match that of others. Recent studies in humans have shown that individual differences exist in conformity and that these differences are related to differences in neuronal activity. To understand the neuronal mechanisms in more detail, animal tests to assess conformity are needed. Here, we used a test of conformity in rats that has previously been evaluated in female, but not male, rats and assessed the nature of individual differences in conformity. Male Wistar rats were given the opportunity to learn that two diets differed in palatability. They were subsequently exposed to a demonstrator that had consumed the less palatable food. Thereafter, they were exposed to the same diets again. Just like female rats, male rats decreased their preference for the more palatable food after interaction with demonstrator rats that had eaten the less palatable food. Individual differences existed for this shift, which were only weakly related to an interaction between their own initial preference and the amount consumed by the demonstrator rat. The data show that this conformity test in rats is a promising tool to study the neurobiology of conformity.

  13. Cooling tower plume - model and experiment

    Science.gov (United States)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  14. Cooling tower plume - model and experiment

    Directory of Open Access Journals (Sweden)

    Cizek Jan

    2017-01-01

    Full Text Available The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  15. KEEFEKTIFAN MODEL SHOW NOT TELL DAN MIND MAP PADA PEMBELAJARAN MENULIS TEKS EKSPOSISI BERDASARKAN MINAT PESERTA DIDIK KELAS X SMK

    Directory of Open Access Journals (Sweden)

    Wiwit Lili Sokhipah

    2015-03-01

    Full Text Available Tujuan penelitian ini adalah (1 menentukan keefektifan penggunaan model show not tell pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK Kelas X, (2 menentukan keefektifan penggunaan model mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X, (3 menentukan keefektifan interaksi show not tell dan mind map pada pembelajaran keterampilan menulis teks eksposisi berdasarkan minat peserta didik SMK kelas X. Penelitian ini adalah quasi experimental design (pretes-postes control group design. Dalam desain ini terdapat dua kelompok eksperimen yakni penerapan model show not tell dalam pembelajaran keterampilan menulis teks eksposisipeserta didik dengan minat tinggi dan penerapan model mind map dalam pembelajaran keterampilan menulis teks eksposisi  peserta didik dengan minat rendah. Hasil penelitian adalah (1 model show not tell efektif digunakan  dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, (2 model mind map efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat rendah, dan (3 model show not tell lebih efektif digunakan dalam membelajarkan menulis teks eksposisi bagi peserta didik yang memiliki minat tinggi, sedangkan model mind map efektif digunakan dalam membelajarkan teks eksposisi pagi peserta didik yang memiliki minat rendah.

  16. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  17. Thermal experiments in the ADS target model

    International Nuclear Information System (INIS)

    Efanov, A.D.; Orlov, Yu.I.; Sorokin, A.P.; Ivanov, E.F.; Bogoslovskaya, G.P.; Li, N.

    2002-01-01

    Experiments on the development of the target heat model project and method of investigation into heat exchange in target were conducted with the aim of analysis of thermomechanical and strength characteristics of device; experimental data on the temperature distribution in coolant and membrane were obtained. Obtained data demonstrate that the temperature heterogeneity of membrane and coolant are connected with the temperature distribution variability near the membrane. Peculiarities of the experiment are noted: maximal temperature of oscillations at high point of the membrane, and power bearing temperature oscillations in the range 0 - 1 Hz [ru

  18. Modeling the Nab Experiment Electronics in SPICE

    Science.gov (United States)

    Blose, Alexander; Crawford, Christopher; Sprow, Aaron; Nab Collaboration

    2017-09-01

    The goal of the Nab experiment is to measure the neutron decay coefficients a, the electron-neutrino correlation, as well as b, the Fierz interference term to precisely test the Standard Model, as well as probe for Beyond the Standard Model physics. In this experiment, protons from the beta decay of the neutron are guided through a magnetic field into a Silicon detector. Event reconstruction will be achieved via time-of-flight measurement for the proton and direct measurement of the coincident electron energy in highly segmented silicon detectors, so the amplification circuitry needs to preserve fast timing, provide good amplitude resolution, and be packaged in a high-density format. We have designed a SPICE simulation to model the full electronics chain for the Nab experiment in order to understand the contributions of each stage and optimize them for performance. Additionally, analytic solutions to each of the components have been determined where available. We will present a comparison of the output from the SPICE model, analytic solution, and empirically determined data.

  19. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, W M; Fried, L E; Vitello, P A; Druce, R L; Phillips, D; Lee, R; Mudge, S; Roeske, F

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data, including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.

  20. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  1. Background modeling for the GERDA experiment

    Science.gov (United States)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  2. Background modeling for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Becerici-Schmidt, N. [Max-Planck-Institut für Physik, München (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  3. Modelization of ratcheting in biaxial experiments

    International Nuclear Information System (INIS)

    Guionnet, C.

    1989-08-01

    A new unified viscoplastic constitutive equation has been developed in order to interpret ratcheting experiments on mechanical structures of fast reactors. The model is based essentially on a generalized Armstrong Frederick equation for the kinematic variable; the coefficients of the dynamic recovery term in this equation is a function of both instantaneous and accumulated inelastic strain which is allowed to vary in an appropriate manner in order to reproduce the experimental ratcheting rate. The validity of the model is verified by comparing predictions with experimental results for austenitic stainless steel (17-12 SPH) tubular specimens subjected to cyclic torsional loading under constant tensile stress at 600 0 C [fr

  4. Data assimilation and model evaluation experiment datasets

    Science.gov (United States)

    Lai, Chung-Cheng A.; Qian, Wen; Glenn, Scott M.

    1994-01-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.

  5. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 100-600 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  6. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 110-150 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in in the low mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  7. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-11

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  8. The Geodynamo: Models and supporting experiments

    International Nuclear Information System (INIS)

    Mueller, U.; Stieglitz, R.

    2003-03-01

    The magnetic field is a characteristic feature of our planet Earth. It shelters the biosphere against particle radiation from the space and offers by its direction orientation to creatures. The question about its origin has challenged scientists to find sound explanations. Major progress has been achieved during the last two decades in developing dynamo models and performing corroborating laboratory experiments to explain convincingly the principle of the Earth magnetic field. The article reports some significant steps towards our present understanding of this subject and outlines in particular relevant experiments, which either substantiate crucial elements of self-excitation of magnetic fields or demonstrate dynamo action completely. The authors are aware that they have not addressed all aspects of geomagnetic studies; rather, they have selected the material from the huge amount of literature such as to motivate the recently growing interest in experimental dynamo research. (orig.)

  9. The 'OMITRON' and 'MODEL OMITRON' proposed experiments

    International Nuclear Information System (INIS)

    Sestero, A.

    1997-12-01

    In the present paper the main features of the OMITRON and MODEL OMITRON proposed high field tokamaks are illustrated. Of the two, OMITRON is an ambitious experiment, aimed at attaining plasma burning conditions. its key physics issues are discussed, and a comparison is carried out with corresponding physics features in ignition experiments such as IGNITOR and ITER. Chief asset and chief challenge - in both OMITRON and MODEL OMITRON is the conspicuous 20 Tesla toroidal field value on the plasma axis. The advanced features of engineering which consent such a reward in terms of toroidal magnet performance are discussed in convenient depth and detail. As for the small, propaedeutic device MODEL OMITRON among its goals one must rank the purpose of testing key engineering issues in vivo, which are vital for the larger and more expensive parent device. Besides that, however - as indicated by ad hoc performed scoping studies - the smaller machine is found capable also of a number of quite interesting physics investigations in its own right

  10. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  11. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  12. Modeling Patient No-Show History and Predicting Future Outpatient Appointment Behavior in the Veterans Health Administration.

    Science.gov (United States)

    Goffman, Rachel M; Harris, Shannon L; May, Jerrold H; Milicevic, Aleksandra S; Monte, Robert J; Myaskovsky, Larissa; Rodriguez, Keri L; Tjader, Youxu C; Vargas, Dominic L

    2017-05-01

    Missed appointments reduce the efficiency of the health care system and negatively impact access to care for all patients. Identifying patients at risk for missing an appointment could help health care systems and providers better target interventions to reduce patient no-shows. Our aim was to develop and test a predictive model that identifies patients that have a high probability of missing their outpatient appointments. Demographic information, appointment characteristics, and attendance history were drawn from the existing data sets from four Veterans Affairs health care facilities within six separate service areas. Past attendance behavior was modeled using an empirical Markov model based on up to 10 previous appointments. Using logistic regression, we developed 24 unique predictive models. We implemented the models and tested an intervention strategy using live reminder calls placed 24, 48, and 72 hours ahead of time. The pilot study targeted 1,754 high-risk patients, whose probability of missing an appointment was predicted to be at least 0.2. Our results indicate that three variables were consistently related to a patient's no-show probability in all 24 models: past attendance behavior, the age of the appointment, and having multiple appointments scheduled on that day. After the intervention was implemented, the no-show rate in the pilot group was reduced from the expected value of 35% to 12.16% (p value < 0.0001). The predictive model accurately identified patients who were more likely to miss their appointments. Applying the model in practice enables clinics to apply more intensive intervention measures to high-risk patients. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  13. A proposed experiment on ball lightning model

    International Nuclear Information System (INIS)

    Ignatovich, Vladimir K.; Ignatovich, Filipp V.

    2011-01-01

    Highlights: → We propose to put a glass sphere inside an excited gas. → Then to put a light ray inside the glass in a whispering gallery mode. → If the light is resonant to gas excitation, it will be amplified at every reflection. → In ms time the light in the glass will be amplified, and will melt the glass. → A liquid shell kept integer by electrostriction forces is the ball lightning model. -- Abstract: We propose an experiment for strong light amplification at multiple total reflections from active gaseous media.

  14. Multiaxial behavior of foams - Experiments and modeling

    Science.gov (United States)

    Maheo, Laurent; Guérard, Sandra; Rio, Gérard; Donnard, Adrien; Viot, Philippe

    2015-09-01

    Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.

  15. Implementation of the model project: Ghanaian experience

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2003-01-01

    Upgrading of the legal infrastructure has been the most time consuming and frustrating part of the implementation of the Model project due to the unstable system of governance and rule of law coupled with the low priority given to legislation on technical areas such as safe applications of Nuclear Science and Technology in medicine, industry, research and teaching. Dwindling Governmental financial support militated against physical and human resource infrastructure development and operational effectiveness. The trend over the last five years has been to strengthen the revenue generation base of the Radiation Protection Institute through good management practices to ensure a cost effective use of the limited available resources for a self-reliant and sustainable radiation and waste safety programme. The Ghanaian experience regarding the positive and negative aspects of the implementation of the Model Project is highlighted. (author)

  16. Forces between permanent magnets: experiments and model

    International Nuclear Information System (INIS)

    González, Manuel I

    2017-01-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r −4 at large distances, as expected. (paper)

  17. Modeling reproducibility of porescale multiphase flow experiments

    Science.gov (United States)

    Ling, B.; Tartakovsky, A. M.; Bao, J.; Oostrom, M.; Battiato, I.

    2017-12-01

    Multi-phase flow in porous media is widely encountered in geological systems. Understanding immiscible fluid displacement is crucial for processes including, but not limited to, CO2 sequestration, non-aqueous phase liquid contamination and oil recovery. Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  18. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  19. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Helbo, Jan; Andersen, Brian; Blanke, Mogens

    2002-01-01

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  20. Mathematical Model of Nicholson’s Experiment

    Directory of Open Access Journals (Sweden)

    Sergey D. Glyzin

    2017-01-01

    Full Text Available Considered  is a mathematical model of insects  population dynamics,  and  an attempt is made  to explain  classical experimental results  of Nicholson with  its help.  In the  first section  of the paper  Nicholson’s experiment is described  and dynamic  equations  for its modeling are chosen.  A priori estimates  for model parameters can be made more precise by means of local analysis  of the  dynamical system,  that is carried  out in the second section.  For parameter values found there  the stability loss of the  problem  equilibrium  of the  leads to the  bifurcation of a stable  two-dimensional torus.   Numerical simulations  based  on the  estimates  from the  second section  allows to explain  the  classical Nicholson’s experiment, whose detailed  theoretical substantiation is given in the last section.  There for an atrractor of the  system  the  largest  Lyapunov  exponent is computed. The  nature of this  exponent change allows to additionally narrow  the area of model parameters search.  Justification of this experiment was made possible  only  due  to  the  combination of analytical and  numerical  methods  in studying  equations  of insects  population dynamics.   At the  same time,  the  analytical approach made  it possible to perform numerical  analysis  in a rather narrow  region of the  parameter space.  It is not  possible to get into this area,  based only on general considerations.

  1. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  2. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  3. The Context-Dependency of the Experience of Auditory Succession and Prospects for Embodying Philosophical Models of Temporal Experience

    OpenAIRE

    Maria Kon

    2015-01-01

    Recent philosophical work on temporal experience offers generic models that are often assumed to apply to all sensory modalities. I show that the models serve as broad frameworks in which different aspects of cognitive science can be slotted and, thus, are beneficial to furthering research programs in embodied music cognition. Here I discuss a particular feature of temporal experience that plays a key role in such philosophical work: a distinction between the experience of succession and the ...

  4. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Sandberg, Anne; Baudoux, Pierre

    2009-01-01

    was maintained (maximal relative efficacy [E(max)], 1.0- to 1.3-log reduction in CFU) even though efficacy was inferior to that of extracellular killing (E(max), >4.5-log CFU reduction). Animal studies included a novel use of the mouse peritonitis model, exploiting extra- and intracellular differentiation assays...... concentration. These findings stress the importance of performing studies of extra- and intracellular activity since these features cannot be predicted from traditional MIC and killing kinetic studies. Application of both the THP-1 and the mouse peritonitis models showed that the in vitro results were similar...

  5. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  6. Photogrammetry experiments with a model eye.

    Science.gov (United States)

    Rosenthal, A R; Falconer, D G; Pieper, I

    1980-01-01

    Digital photogrammetry was performed on stereophotographs of the optic nerve head of a modified Zeiss model eye in which optic cups of varying depths could be simulated. Experiments were undertaken to determine the impact of both photographic and ocular variables on the photogrammetric measurements of cup depth. The photogrammetric procedure tolerates refocusing, repositioning, and realignment as well as small variations in the geometric position of the camera. Progressive underestimation of cup depth was observed with increasing myopia, while progressive overestimation was noted with increasing hyperopia. High cylindrical errors at axis 90 degrees led to significant errors in cup depth estimates, while high cylindrical errors at axis 180 degrees did not materially affect the accuracy of the analysis. Finally, cup depths were seriously underestimated when the pupil diameter was less than 5.0 mm. Images PMID:7448139

  7. Pipe missile impact experiments on concrete models

    International Nuclear Information System (INIS)

    McHugh, S.; Gupta, Y.; Seaman, L.

    1981-06-01

    The experiments described in this study are a part of SRI studies for EPRI on the local response of reinforced concrete panels to missile impacts. The objectives of this task were to determine the feasibility of using scale model tests to reproduce the impact response of reinforced concrete panels observed in full-scale tests with pipe missiles and to evaluate the effect of concrete strength on the impact response. The experimental approach consisted of replica scaling: the missile and target materials were similar to those used in the full-scale tests, with all dimensions scaled by 5/32. Four criteria were selected for comparing the scaled and full-scale test results: frontface penetration, backface scabbing threshold, internal cracking in the panel, and missile deformation

  8. Josephson cross-sectional model experiment

    International Nuclear Information System (INIS)

    Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.

    1985-01-01

    This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time

  9. Food pattern modeling shows that the 2010 Dietary Guidelines for sodium and potassium cannot be met simultaneously

    Science.gov (United States)

    Maillot, Matthieu; Monsivais, Pablo; Drewnowski, Adam

    2013-01-01

    The 2010 US Dietary Guidelines recommended limiting intake of sodium to 1500 mg/d for people older than 50 years, African Americans, and those suffering from chronic disease. The guidelines recommended that all other people consume less than 2300 mg sodium and 4700 mg of potassium per day. The theoretical feasibility of meeting the sodium and potassium guidelines while simultaneously maintaining nutritional adequacy of the diet was tested using food pattern modeling based on linear programming. Dietary data from the National Health and Nutrition Examination Survey 2001-2002 were used to create optimized food patterns for 6 age-sex groups. Linear programming models determined the boundary conditions for the potassium and sodium content of the modeled food patterns that would also be compatible with other nutrient goals. Linear programming models also sought to determine the amounts of sodium and potassium that both would be consistent with the ratio of Na to K of 0.49 and would cause the least deviation from the existing food habits. The 6 sets of food patterns were created before and after an across-the-board 10% reduction in sodium content of all foods in the Food and Nutrition Database for Dietary Studies. Modeling analyses showed that the 2010 Dietary Guidelines for sodium were incompatible with potassium guidelines and with nutritionally adequate diets, even after reducing the sodium content of all US foods by 10%. Feasibility studies should precede or accompany the issuing of dietary guidelines to the public. PMID:23507224

  10. Modelling the Grimsel migration field experiments at PSI

    International Nuclear Information System (INIS)

    Heer, W.

    1997-01-01

    For several years tracer migration experiments have been performed at Nagra's Grimsel Test Site as a joint undertaking of Nagra, PNC and PSI. The aims of modelling the migration experiments are (1) to better understand the nuclide transport through crystalline rock; (2) to gain information on validity of methods and correlating parameters; (3) to improve models for safety assessments. The PSI modelling results, presented here, show a consistent picture for the investigated tracers (the non-sorbing uranine, the weakly sorbing sodium, the moderately sorbing strontium and the more strongly sorbing cesium). They represent an important step in building up confidence in safety assessments for radioactive waste repositories. (author) 5 figs., 1 tab., 12 refs

  11. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

    Science.gov (United States)

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola

    2016-12-01

    : Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from

  12. Model of an Evaporating Drop Experiment

    Science.gov (United States)

    Rodriguez, Nicolas

    2017-11-01

    A computational model of an experimental procedure to measure vapor distributions surrounding sessile drops is developed to evaluate the uncertainty in the experimental results. Methanol, which is expected to have predominantly diffusive vapor transport, is chosen as a validation test for our model. The experimental process first uses a Fourier transform infrared spectrometer to measure the absorbance along lines passing through the vapor cloud. Since the measurement contains some errors, our model allows adding random noises to the computational integrated absorbance to mimic this. Then the resulting data are interpolated before passing through a computed tomography routine to generate the vapor distribution. Next, the gradients of the vapor distribution are computed along a given control volume surrounding the drop so that the diffusive flux can be evaluated as the net rate of diffusion out of the control volume. Our model of methanol evaporation shows that the accumulated errors of the whole experimental procedure affect the diffusive fluxes at different control volumes and are sensitive to how the noisy data of integrated absorbance are interpolated. This indicates the importance of investigating a variety of data fitting methods to choose which is best to present the data. Trinity University Mach Fellowship.

  13. Climate Modelling Shows Increased Risk to Eucalyptus sideroxylon on the Eastern Coast of Australia Compared to Eucalyptus albens

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2017-11-01

    Full Text Available Aim: To identify the extent and direction of range shift of Eucalyptus sideroxylon and E. albens in Australia by 2050 through an ensemble forecast of four species distribution models (SDMs. Each was generated using four global climate models (GCMs, under two representative concentration pathways (RCPs. Location: Australia. Methods: We used four SDMs of (i generalized linear model, (ii MaxEnt, (iii random forest, and (iv boosted regression tree to construct SDMs for species E. sideroxylon and E. albens under four GCMs including (a MRI-CGCM3, (b MIROC5, (c HadGEM2-AO and (d CCSM4, under two RCPs of 4.5 and 6.0. Here, the true skill statistic (TSS index was used to assess the accuracy of each SDM. Results: Results showed that E. albens and E. sideroxylon will lose large areas of their current suitable range by 2050 and E. sideroxylon is projected to gain in eastern and southeastern Australia. Some areas were also projected to remain suitable for each species between now and 2050. Our modelling showed that E. sideroxylon will lose suitable habitat on the western side and will not gain any on the eastern side because this region is one the most heavily populated areas in the country, and the populated areas are moving westward. The predicted decrease in E. sideroxylon’s distribution suggests that land managers should monitor its population closely, and evaluate whether it meets criteria for a protected legal status. Main conclusions: Both Eucalyptus sideroxylon and E. albens will be negatively affected by climate change and it is projected that E. sideroxylon will be at greater risk of losing habitat than E. albens.

  14. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model

    Directory of Open Access Journals (Sweden)

    Maswadeh HM

    2015-04-01

    Full Text Available Hamzah M Maswadeh,1 Ahmed N Aljarbou,1 Mohammed S Alorainy,2 Arshad H Rahmani,3 Masood A Khan3 1Department of Pharmaceutics, College of Pharmacy, 2Department of Pharmacology and Therapeutics, College of Medicine, 3College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia Abstract: Small unilamellar vesicles from camel milk phospholipids (CML mixture or from 1,2 dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC were prepared, and anticancer drugs doxorubicin (Dox or etoposide (ETP were loaded. Liposomal formulations were used against fibrosarcoma in a murine model. Results showed a very high percentage of Dox encapsulation (~98% in liposomes (Lip prepared from CML-Lip or DPPC-Lip, whereas the percentage of encapsulations of ETP was on the lower side, 22% of CML-Lip and 18% for DPPC-Lip. Differential scanning calorimetry curves show that Dox enhances the lamellar formation in CML-Lip, whereas ETP enhances the nonlamellar formation. Differential scanning calorimetry curves also showed that the presence of Dox and ETP together into DPPC-Lip produced the interdigitation effect. The in vivo anticancer activity of liposomal formulations of Dox or ETP or a combination of both was assessed against benzopyrene (BAP-induced fibrosarcoma in a murine model. Tumor-bearing mice treated with a combination of Dox and ETP loaded into CML-Lip showed increased survival and reduced tumor growth compared to other groups, including the combination of Dox and ETP in DPPC-Lip. Fibrosarcoma-bearing mice treated with a combination of free (Dox + ETP showed much higher tumor growth compared to those groups treated with CML-Lip-(Dox + ETP or DPPC-Lip-(Dox + ETP. Immunohistochemical study was also performed to show the expression of tumor-suppressor PTEN, and it was found that the tumor tissues from the group of mice treated with a combination of free (Dox + ETP showed greater loss of cytoplasmic PTEN than tumor tissues obtained from the

  15. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model.

    Science.gov (United States)

    Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi

    2017-06-01

    Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.

  16. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models.

    Science.gov (United States)

    Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf

    2013-01-01

    Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  17. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV and hepatitis C virus (HCV replication in preclinical models.

    Directory of Open Access Journals (Sweden)

    Daniela Paulsen

    Full Text Available Inactivated orf virus (iORFV, strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV and hepatitis B virus (HBV. Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  18. Analysis of NIF experiments with the minimal energy implosion model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B., E-mail: bcheng@lanl.gov; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cerjan, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.

  19. Analysis of NIF experiments with the minimal energy implosion model

    International Nuclear Information System (INIS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H.; Cerjan, C. J.

    2015-01-01

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments

  20. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  1. The OECI model: the CRO Aviano experience.

    Science.gov (United States)

    Da Pieve, Lucia; Collazzo, Raffaele; Masutti, Monica; De Paoli, Paolo

    2015-01-01

    In 2012, the "Centro di Riferimento Oncologico" (CRO) National Cancer Institute joined the accreditation program of the Organisation of European Cancer Institutes (OECI) and was one of the first institutes in Italy to receive recognition as a Comprehensive Cancer Center. At the end of the project, a strengths, weaknesses, opportunities, and threats (SWOT) analysis aimed at identifying the pros and cons, both for the institute and of the accreditation model in general, was performed. The analysis shows significant strengths, such as the affinity with other improvement systems and current regulations, and the focus on a multidisciplinary approach. The proposed suggestions for improvement concern mainly the structure of the standards and aim to facilitate the assessment, benchmarking, and sharing of best practices. The OECI accreditation model provided a valuable executive tool and a framework in which we can identify several important development projects. An additional impact for our institute is the participation in the project BenchCan, of which the OECI is lead partner.

  2. Atmospheric statistical dynamic models. Climate experiments: albedo experiments with a zonal atmospheric model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts

  3. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    McClean, Paula L; Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  5. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Virginie Desestret

    Full Text Available THE INFLAMMATORY RESPONSE FOLLOWING ISCHEMIC STROKE IS DOMINATED BY INNATE IMMUNE CELLS: resident microglia and blood-derived macrophages. The ambivalent role of these cells in stroke outcome might be explained in part by the acquisition of distinct functional phenotypes: classically (M1 and alternatively activated (M2 macrophages. To shed light on the crosstalk between hypoxic neurons and macrophages, an in vitro model was set up in which bone marrow-derived macrophages were co-cultured with hippocampal slices subjected to oxygen and glucose deprivation. The results showed that macrophages provided potent protection against neuron cell loss through a paracrine mechanism, and that they expressed M2-type alternative polarization. These findings raised the possibility of using bone marrow-derived M2 macrophages in cellular therapy for stroke. Therefore, 2 million M2 macrophages (or vehicle were intravenously administered during the subacute stage of ischemia (D4 in a model of transient middle cerebral artery occlusion. Functional neuroscores and magnetic resonance imaging endpoints (infarct volumes, blood-brain barrier integrity, phagocytic activity assessed by iron oxide uptake were longitudinally monitored for 2 weeks. This cell-based treatment did not significantly improve any outcome measure compared with vehicle, suggesting that this strategy is not relevant to stroke therapy.

  6. Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament.

    Science.gov (United States)

    Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H

    2017-08-01

    The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.

  7. Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM.

    Science.gov (United States)

    Vitorino, Luciana Cristina; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G

    2016-10-13

    We studied the phylogeography and demographical history of Tabebuia serratifolia (Bignoniaceae) to understand the disjunct geographical distribution of South American seasonally dry tropical forests (SDTFs). We specifically tested if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the last glacial maximum (LGM), the so called South American dry forest refugia hypothesis, using ecological niche modelling (ENM) and statistical phylogeography. We sampled 235 individuals of T. serratifolia in 17 populations in Brazil and analysed the polymorphisms at three intergenic chloroplast regions and ITS nuclear ribosomal DNA. Coalescent analyses showed a demographical expansion at the last c. 130 ka (thousand years before present). Simulations and ENM also showed that the current spatial pattern of genetic diversity is most likely due to a scenario of range expansion and range shift towards the Amazon Basin during the colder and arid climatic conditions associated with the LGM, matching the expected for the South American dry forest refugia hypothesis, although contrasting to the Pleistocene Arc hypothesis. Populations in more stable areas or with higher suitability through time showed higher genetic diversity. Postglacial range shift towards the Southeast and Atlantic coast may have led to spatial genome assortment due to leading edge colonization as the species tracks suitable environments, leading to lower genetic diversity in populations at higher distance from the distribution centroid at 21 ka. Haplotype sharing or common ancestry among populations from Caatinga in Northeast Brazil, Atlantic Forest in Southeast and Cerrado biome and ENM evince the past connection among these biomes.

  8. Methane emissions from rice paddies. Experiments and modelling

    International Nuclear Information System (INIS)

    Van Bodegom, P.M.

    2000-01-01

    This thesis describes model development and experimentation on the comprehension and prediction of methane (CH4) emissions from rice paddies. The large spatial and temporal variability in CH4 emissions and the dynamic non-linear relationships between processes underlying CH4 emissions impairs the applicability of empirical relations. Mechanistic concepts are therefore starting point of analysis throughout the thesis. The process of CH4 production was investigated by soil slurry incubation experiments at different temperatures and with additions of different electron donors and acceptors. Temperature influenced conversion rates and the competitiveness of microorganisms. The experiments were used to calibrate and validate a mechanistic model on CH4 production that describes competition for acetate and H2/CO2, inhibition effects and chemolithotrophic reactions. The redox sequence leading eventually to CH4 production was well predicted by the model, calibrating only the maximum conversion rates. Gas transport through paddy soil and rice plants was quantified by experiments in which the transport of SF6 was monitored continuously by photoacoustics. A mechanistic model on gas transport in a flooded rice system based on diffusion equations was validated by these experiments and could explain why most gases are released via plant mediated transport. Variability in root distribution led to highly variable gas transport. Experiments showed that CH4 oxidation in the rice rhizosphere was oxygen (O2) limited. Rice rhizospheric O2 consumption was dominated by chemical iron oxidation, and heterotrophic and methanotrophic respiration. The most abundant methanotrophs and heterotrophs were isolated and kinetically characterised. Based upon these experiments it was hypothesised that CH4 oxidation mainly occurred at microaerophilic, low acetate conditions not very close to the root surface. A mechanistic rhizosphere model that combined production and consumption of O2, carbon and iron

  9. Ceramic bar impact experiments for improved material model

    International Nuclear Information System (INIS)

    Brar, N.S.; Proud, W.G.; Rajendran, A.M.

    2004-01-01

    Ceramic bar-on-bar (uniaxial stress) experiments are performed to extend uniaxial strain deformation states imposed in flyer plate impact experiments. A number of investigators engaged in modeling the bar-on-bar experiments have varying degrees of success in capturing the observed fracture modes in bars and correctly simulating the measured in-situ axial stress or free surface velocity histories. The difficulties encountered are related to uncertainties in understanding the dominant failure mechanisms as a function of different stress states imposed in bar impacts. Free surface velocity of the far end of the target AD998 bar were measured using a VISAR in a series of bar-on-bar impact experiments at nominal impact speeds of 100 m/s, 220 m/s, and 300 m/s. Velocity history data at an impact of 100 m/s show the material response as elastic. At higher impact velocities of 200 m/s and 300 m/s the velocity history data suggest an inelastic material response. A high-speed (Imacon) camera was employed to examine the fracture and failure of impactor and target bars. High speed photographs provide comprehensive data on geometry of damage and failure patterns as a function of time to check the validity of a particular constitutive material model for AD998 alumina used in numerical simulations of fracture and failure of the bars on impact

  10. Sensitivity experiments to mountain representations in spectral models

    Directory of Open Access Journals (Sweden)

    U. Schlese

    2000-06-01

    Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.

  11. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE......, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...

  12. Xiao-Qing-Long-Tang shows preventive effect of asthma in an allergic asthma mouse model through neurotrophin regulation

    Science.gov (United States)

    2013-01-01

    Background This study investigates the effect of Xiao-Qing-Long-Tang (XQLT) on neurotrophin in an established mouse model of Dermatophagoides pteronyssinus (Der p)-induced acute allergic asthma and in a LA4 cell line model of lung adenoma. The effects of XQLT on the regulation of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), airway hyper-responsiveness (AHR) and immunoglobulin E were measured. Methods LA4 cells were stimulated with 100 μg/ml Der p 24 h and the supernatant was collected for ELISA analysis. Der p-stimulated LA4 cells with either XQLT pre-treatment or XQLT co-treatment were used to evaluate the XQLT effect on neurotrophin. Balb/c mice were sensitized on days 0 and 7 with a base-tail injection of 50 μg Dermatophagoides pteronyssinus (Der p) that was emulsified in 50 μl incomplete Freund’s adjuvant (IFA). On day 14, mice received an intra-tracheal challenge of 50 μl Der p (2 mg/ml). XQLT (1g/Kg) was administered orally to mice either on days 2, 4, 6, 8, 10 and 12 as a preventive strategy or on day 15 as a therapeutic strategy. Results XQLT inhibited expression of those NGF, BDNF and thymus-and activation-regulated cytokine (TARC) in LA4 cells that were subjected to a Der p allergen. Both preventive and therapeutic treatments with XQLT in mice reduced AHR. Preventive treatment with XQLT markedly decreased NGF in broncho-alveolar lavage fluids (BALF) and BDNF in serum, whereas therapeutic treatment reduced only serum BDNF level. The reduced NGF levels corresponded to a decrease in AHR by XQLT treatment. Reduced BALF NGF and TARC and serum BDNF levels may have been responsible for decreased eosinophil infiltration into lung tissue. Immunohistochemistry showed that p75NTR and TrkA levels were reduced in the lungs of mice under both XQLT treatment protocols, and this reduction may have been correlated with the prevention of the asthmatic reaction by XQLT. Conclusion XQLT alleviated allergic inflammation including AHR, Ig

  13. The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model

    Directory of Open Access Journals (Sweden)

    Fabian Anders

    2017-11-01

    Full Text Available Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP, followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced by episcleral vein cauterization resulted in a considerable impairment of the RGCs and the retinal nerve fiber layer. An intravitreal injection of α-crystallin B at the time of the IOP increase was able to rescue the RGCs, as measured in a functional photopic electroretinogram, retinal nerve fiber layer thickness, and RGC counts. Mass-spectrometry-based proteomics and antibody-microarray measurements indicated that a α-crystallin injection distinctly up-regulated all of the subclasses (α, β, and γ of the crystallin protein family. The creation of an interactive protein network revealed clear correlations between individual proteins, which showed a regulatory shift resulting from the crystallin injection. The neuroprotective properties of α-crystallin B further demonstrate the potential importance of crystallin proteins in developing therapeutic options for glaucoma.

  14. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p avoiding progression of the disease.

  15. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model

  16. Coalescence of liquid drops: Different models versus experiment

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    The process of coalescence of two identical liquid drops is simulated numerically in the framework of two essentially different mathematical models, and the results are compared with experimental data on the very early stages of the coalescence process reported recently. The first model tested is the "conventional" one, where it is assumed that coalescence as the formation of a single body of fluid occurs by an instant appearance of a liquid bridge smoothly connecting the two drops, and the subsequent process is the evolution of this single body of fluid driven by capillary forces. The second model under investigation considers coalescence as a process where a section of the free surface becomes trapped between the bulk phases as the drops are pressed against each other, and it is the gradual disappearance of this "internal interface" that leads to the formation of a single body of fluid and the conventional model taking over. Using the full numerical solution of the problem in the framework of each of the two models, we show that the recently reported electrical measurements probing the very early stages of the process are better described by the interface formation/disappearance model. New theory-guided experiments are suggested that would help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different "scaling laws" advanced as approximate solutions to the problem formulated using the conventional model is established. © 2012 American Institute of Physics.

  17. Exploration in free word association networks: models and experiment.

    Science.gov (United States)

    Ludueña, Guillermo A; Behzad, Mehran Djalali; Gros, Claudius

    2014-05-01

    Free association is a task that requires a subject to express the first word to come to their mind when presented with a certain cue. It is a task which can be used to expose the basic mechanisms by which humans connect memories. In this work, we have made use of a publicly available database of free associations to model the exploration of the averaged network of associations using a statistical and the adaptive control of thought-rational (ACT-R) model. We performed, in addition, an online experiment asking participants to navigate the averaged network using their individual preferences for word associations. We have investigated the statistics of word repetitions in this guided association task. We find that the considered models mimic some of the statistical properties, viz the probability of word repetitions, the distance between repetitions and the distribution of association chain lengths, of the experiment, with the ACT-R model showing a particularly good fit to the experimental data for the more intricate properties as, for instance, the ratio of repetitions per length of association chains.

  18. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  19. Experiments and Modelling of Coal Devolatilization

    Institute of Scientific and Technical Information of China (English)

    QiuKuanrong; LiuQianxin

    1994-01-01

    The coal devolatilization process of different coals was studied by means of thermogravimetric analysis method.The experimental results and the kinetic parameters of devolatilization.K and E,have been obtained. A mathematical model for coal devolatiliztion has been proposed.and the model is simple and practical.The predictions of the model are shown to be in agreement with experimental results.

  20. Some Experiences with Numerical Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.

    2007-01-01

    across the edge of the overflow. To ensure critical flow across the edge, the upstream flow must be subcritical whereas the downstream flow is either supercritical or a free jet. Experimentally overflows are well studied. Based on laboratory experiments and Froude number scaling, numerous accurate...

  1. Quality of experience models for multimedia streaming

    NARCIS (Netherlands)

    Menkovski, V.; Exarchakos, G.; Liotta, A.; Cuadra Sánchez, A.

    2010-01-01

    Understanding how quality is perceived by viewers of multimedia streaming services is essential for efficient management of those services. Quality of Experience (QoE) is a subjective metric that quantifies the perceived quality, which is crucial in the process of optimizing tradeoff between quality

  2. A Cross-Discipline Modeling Capstone Experience

    Science.gov (United States)

    Frazier, Marian L.; LoFaro, Thomas; Pillers Dobler, Carolyn

    2018-01-01

    The Mathematical Association of America (MAA) and the American Statistical Association (ASA) have both updated and revised their curriculum guidelines. The guidelines of both associations recommend that students engage in a "capstone" experience, be exposed to applications, and have opportunities to communicate mathematical and…

  3. Experiments with a Regional Vector-Vorticity Model, and Comparison with Other Models

    Science.gov (United States)

    Konor, C. S.; Dazlich, D. A.; Jung, J.; Randall, D. A.

    2017-12-01

    The Vector-Vorticity Model (VVM) is an anelastic model with a unique dynamical core that predicts the three-dimensional vorticity instead of the three-dimensional momentum. The VVM is used in the CRMs of the Global Quasi-3D Multiscale Modeling Framework, which is discussed by Joon-Hee Jung and collaborators elsewhere in this session. We are updating the physics package of the VVM, replacing it with the physics package of the System for Atmosphere Modeling (SAM). The new physics package includes a double-moment microphysics, Mellor-Yamada turbulence, Monin-Obukov surface fluxes, and the RRTMG radiation parameterization. We briefly describe the VVM and show results from standard test cases, including TWP-ICE. We compare the results with those obtained using the earlier physics. We also show results from experiments on convection aggregation in radiative-convective equilibrium, and compare with those obtained using both SAM and the Regional Atmospheric Modeling System (RAMS).

  4. Optimal experiment design for identification of grey-box models

    DEFF Research Database (Denmark)

    Sadegh, Payman; Melgaard, Henrik; Madsen, Henrik

    1994-01-01

    Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measur...... estimation results in a considerable reduction of the experimental length. Besides, it is established that the physical knowledge of the system enables us to design experiments, with the goal of maximizing information about the physical parameters of interest.......Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measure...... of average information, and the relationship between the choice of information related criteria and some estimators (MAP and MLE) is established. A continuous time physical model of the heat dynamics of a building is considered and the results show that performing an optimal experiment corresponding to a MAP...

  5. Mathematical Modeling: Are Prior Experiences Important?

    Science.gov (United States)

    Czocher, Jennifer A.; Moss, Diana L.

    2017-01-01

    Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…

  6. Towards Generic Models of Player Experience

    DEFF Research Database (Denmark)

    Shaker, Noor; Shaker, Mohammad; Abou-Zleikha, Mohamed

    2015-01-01

    Context personalisation is a flourishing area of research with many applications. Context personalisation systems usually employ a user model to predict the appeal of the context to a particular user given a history of interactions. Most of the models used are context-dependent and their applicab...

  7. Corpos sob controle: Um estudo de caso sobre a relação entre corpo e signo no reality show estadunidense America’s Next Top Model

    Directory of Open Access Journals (Sweden)

    Júnior Ratts

    2015-08-01

    Full Text Available Este trabalho tem como objetivo analisar as potencialidades corporais do individuo contemporâneo em sua luta diária pela conquista da individualidade e do reconhecimento coletivo. Para tanto, a pesquisa toma como objeto o reality show estadunidense America’s Next Top Model a fim de tentar compreender melhor, a partir das experiências das candidatas do programa, como se estabelecem as relações táticas e estratégicas entre o sujeito e o mundo e de que forma as expectativas e consequências geradas por esses “embates cotidianos” com a realidade e com o Outro chegam ao corpo, transformando-o numa “arma” e num produto sociocultural

  8. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family

    International Nuclear Information System (INIS)

    Herga, Sameh; Brutus, Alexandre; Vitale, Rosa Maria; Miche, Helene; Perrier, Josette; Puigserver, Antoine; Scaloni, Andrea; Giardina, Thierry

    2005-01-01

    Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure

  9. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  10. Large scale experiments as a tool for numerical model development

    DEFF Research Database (Denmark)

    Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper

    2003-01-01

    Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...

  11. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  12. Model Experiments for the Determination of Airflow in Large Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Model experiments are one of the methods used for the determination of airflow in large spaces. This paper will discuss the formation of the governing dimensionless numbers. It is shown that experiments with a reduced scale often will necessitate a fully developed turbulence level of the flow....... Details of the flow from supply openings are very important for the determination of room air distribution. It is in some cases possible to make a simplified supply opening for the model experiment....

  13. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  14. Modeling of modification experiments involving neutral-gas release

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1983-01-01

    Many experiments involve the injection of neutral gases into the upper atmosphere. Examples are critical velocity experiments, MHD wave generation, ionospheric hole production, plasma striation formation, and ion tracing. Many of these experiments are discussed in other sessions of the Active Experiments Conference. This paper limits its discussion to: (1) the modeling of the neutral gas dynamics after injection, (2) subsequent formation of ionosphere holes, and (3) use of such holes as experimental tools

  15. Hybrid liposomes showing enhanced accumulation in tumors as theranostic agents in the orthotopic graft model mouse of colorectal cancer.

    Science.gov (United States)

    Okumura, Masaki; Ichihara, Hideaki; Matsumoto, Yoko

    2018-11-01

    Hybrid liposomes (HLs) can be prepared by simply sonicating a mixture of vesicular and micellar molecules in a buffer solution. This study aimed to elucidate the therapeutic effects and ability of HLs to detect (diagnosis) cancer in an orthotopic graft mouse model of colorectal cancer with HCT116 cells for the use of HLs as theranostic agents. In the absence of a chemotherapeutic drug, HLs exhibited therapeutic effects by inhibiting the growth of HCT116 colorectal cancer cells in vitro, possibly through an increase in apoptosis. Intravenously administered HLs also caused a remarkable reduction in the relative cecum weight in an orthotopic graft mouse model of colorectal cancer. A decrease in tumor size in the cecal sections was confirmed by histological analysis using HE staining. TUNEL staining indicated an induction of apoptosis in HCT116 cells in the orthotopic graft mouse model of colorectal cancer. For the detection (diagnosis) of colorectal cancer by HLs, the accumulation of HLs encapsulating a fluorescent probe (ICG) was observed in HCT116 cells in the in vivo colorectal cancer model following intravenous administration. These data indicate that HLs can accumulate in tumor cells in the cecum of the orthotopic graft mouse model of colorectal cancer for a prolonged period of time, and inhibit the growth of HCT116 cells.

  16. Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)

    2011-12-15

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.

  17. Evaporation experiments and modelling for glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.

    2007-01-01

    A laboratory test facility has been developed to measure evaporation rates of different volatile components from commercial and model glass compositions. In the set-up the furnace atmosphere, temperature level, gas velocity and batch composition are controlled. Evaporation rates have been measured

  18. Double tracer experiments to evaluate atmospheric transport and dose models

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Gryning, S.-E.; Thykier-Nielsen, S.; Karlberg, O.; Lyck, E.

    1986-05-01

    Two tracers, sulphurhexafluoride (SF 6 ) and radioactive noble gases, were released simultaneously from a 110-m stack and detected downwind at distances of 3-4 km. The experiments were made at the Swedish nuclear power plant Ringhals in 1981. The radioactive tracer was routine emissions from unit 1 (BWR). The one-hour measurements yielded crosswind profiles at ground level of SF 6 -concentrations and of gamma radiation from the plume. The measured profiles were compared to profiles calculated with computer models. The comparison showed that the models sometimes underestimate and sometimes overestimate the results, which seems to indicate that the models within their limited accuracy yield unbiased results. The ratios between measured and calculated values range from 0.2 to 3. The measurements revealed a surplus of gamma radiations from the noble gas daughters compared to those from the gases. This was interpreted as due to ground desposition and the estimated deposition velocities range from 2 to 10 cm/s. The meteorological conditions were monitored from a 100-m meteorological tower and from an 11-m mast. Measurements were made of wind speed, wind direction, and temperatures at different heights, and during each experiment a mini-radiosonde was released giving information on a possible inversion layer. The SF 6 -tracer was injected to the stack prior to the experiments. Air-samples were collected downwind in plastic bags by radio-controlled sampling units. The SF 6 -concentrations in the bags were determined with gas chromatography. Measurements of the gamma radiation from the plume were made with ionisation chambers and GM-counters. Furthermore, a few mobile gamma spectrometers were available giving information on the unscattered gamma radiation, thereby permitting identification of the radioactive isotopes. The work was partly financed by the Nuclear Safety Board of the Swedish Utilities and by the Danish association of utilities in Jutland and on Funen, Elsam

  19. Bioavailability of particulate metal to zebra mussels: biodynamic modelling shows that assimilation efficiencies are site-specific.

    Science.gov (United States)

    Bourgeault, Adeline; Gourlay-Francé, Catherine; Priadi, Cindy; Ayrault, Sophie; Tusseau-Vuillemin, Marie-Hélène

    2011-12-01

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.

    2004-01-01

    The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...

  1. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    Science.gov (United States)

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Micro- and nanoflows modeling and experiments

    CERN Document Server

    Rudyak, Valery Ya; Maslov, Anatoly A; Minakov, Andrey V; Mironov, Sergey G

    2018-01-01

    This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are di...

  3. Previous Experience a Model of Practice UNAE

    OpenAIRE

    Ormary Barberi Ruiz; María Dolores Pesántez Palacios

    2017-01-01

    The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP) of the National University of Education (UNAE) of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials), pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subj...

  4. Pyroelectric Energy Harvesting: Model and Experiments

    Science.gov (United States)

    2016-05-01

    consisting of a current source for the pyroelectric current, a dielectric capacitor for the adiabatic charging and discharging, and optionally a resistor to...polarization) in a piezoelectric material. To extract work from the pyroelectric effect, the material acts as the dielectric in a capacitor that is...amplifier was chosen for the setup. The pyroelectric element is commonly modeled as a dielectric capacitor and a current source in parallel, as seen in

  5. The Context-Dependency of the Experience of Auditory Succession and Prospects for Embodying Philosophical Models of Temporal Experience

    Directory of Open Access Journals (Sweden)

    Maria Kon

    2015-05-01

    Full Text Available Recent philosophical work on temporal experience offers generic models that are often assumed to apply to all sensory modalities. I show that the models serve as broad frameworks in which different aspects of cognitive science can be slotted and, thus, are beneficial to furthering research programs in embodied music cognition. Here I discuss a particular feature of temporal experience that plays a key role in such philosophical work: a distinction between the experience of succession and the mere succession of experiences. I question the presupposition that there is such an evident, clear distinction and suggest that, instead, how the distinction is drawn is context-dependent. After suggesting a way to modify the philosophical models of temporal experience to accommodate this context-dependency, I illustrate that these models can fruitfully incorporate features of research projects in embodied musical cognition. To do so I supplement a modified retentionalist model with aspects of recent work that links bodily movement with musical perception (Godøy, 2006; 2010a; Jensenius, Wanderley, Godøy, and Leman, 2010. The resulting model is shown to facilitate novel hypotheses, refine the notion of context-dependency and point towards means of extending the philosophical model and an existent research program.

  6. Design and modeling of precision solid liner experiments on Pegasus

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Lee, H.; McLenithan, K.D.; Scannapieco, A.J.; Shanahan, W.R.

    1998-01-01

    Pulsed power driven solid liners may be used for a variety of physics experiments involving materials at high stresses. These include shock formation and propagation, material strain-rate effects, material melt, instability growth, and ejecta from shocked surfaces. We describe the design and performance of a cylindrical solid liner that can attain velocities in the several mm/μs regime, and that can be used to drive high-stress experiments. An approximate theoretical analysis of solid liner implosions is used to establish the basic parameters (mass, materials, and initial radius) of the driver. We then present one-dimensional and two-dimensional simulations of magnetically driven, liner implosions which include resistive heating and elastic endash plastic behavior. The two-dimensional models are used to study the effects of electrode glide planes on the liner close-quote s performance, to examine sources of perturbations of the liner, and to assess possible effects of instability growth during the implosion. Finally, simulations are compared with experimental data to show that the solid liner performed as predicted computationally. Experimental data indicate that the liner imploded from an initial radius of 2.4 cm to a target radius of 1.5 cm, and that it was concentric and cylindrical to better than the experimental resolution (60 μm) at the target. The results demonstrate that a precision solid liner can be produced for high-stress, pulsed power applications experiments. copyright 1998 American Institute of Physics

  7. Advanced imaging techniques show progressive arthropathy following experimentally induced knee bleeding in a factor VIII-/- rat model

    DEFF Research Database (Denmark)

    Sorensen, K. R.; Roepstorff, K.; Petersen, M.

    2015-01-01

    Background: Joint pathology is most commonly assessed by radiogra-phy, but ultrasonography (US) is increasingly recognized for its acces-sibility, safety and ability to show soft tissue changes, the earliestindicators of haemophilic arthropathy (HA). US, however, lacks theability to visualize...

  8. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17.

    Science.gov (United States)

    Portal, Esteban; Riess, Olaf; Nguyen, Huu Phuc

    2013-08-01

    Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury

    Directory of Open Access Journals (Sweden)

    Samal Zhussupbekova

    2016-07-01

    Full Text Available A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7 demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity.

  10. Betting on change: Tenet deal with Vanguard shows it's primed to try ACO effort, new payment model.

    Science.gov (United States)

    Kutscher, Beth

    2013-07-01

    Tenet Healthcare Corp.'s acquisition of Vanguard Health Systems is a sign the investor-owned chain is willing to take a chance on alternative payment models such as accountable care organizations. There's no certainty that ACOs will deliver the improvements on quality or cost savings, but Vanguard Vice Chairman Keith Pitts, left, says his system's Pioneer ACO in Detroit has already achieved some cost savings.

  11. Numerical Experiments Based on the Catastrophe Model of Solar Eruptions

    Science.gov (United States)

    Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.

    2017-11-01

    On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which

  12. Previous Experience a Model of Practice UNAE

    Directory of Open Access Journals (Sweden)

    Ormary Barberi Ruiz

    2017-02-01

    Full Text Available The statements presented in this article represents a preliminary version of the proposed model of pre-professional practices (PPP of the National University of Education (UNAE of Ecuador, an urgent institutional necessity is revealed in the descriptive analyzes conducted from technical support - administrative (reports, interviews, testimonials, pedagogical foundations of UNAE (curricular directionality, transverse axes in practice, career plan, approach and diagnostic examination as subject nature of the pre professional practice and the demand of socio educational contexts where the practices have been emerging to resize them. By relating these elements allowed conceiving the modeling of the processes of the pre-professional practices for the development of professional skills of future teachers through four components: contextual projective, implementation (tutoring, accompaniment (teaching couple and monitoring (meetings at the beginning, during and end of practice. The initial training of teachers is inherent to teaching (academic and professional training, research and links with the community, these are fundamental pillars of Ecuadorian higher education.

  13. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    Science.gov (United States)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  14. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  15. Show them the money? The role of pay, managerial need support, and justice in a self-determination theory model of intrinsic work motivation.

    Science.gov (United States)

    Olafsen, Anja H; Halvari, Hallgeir; Forest, Jacques; Deci, Edward L

    2015-08-01

    The link between money and motivation has been a debated topic for decades, especially in work organizations. However, field studies investigating the amount of pay in relation to employee motivation is lacking and there have been calls for empirical studies addressing compensation systems and motivation in the work domain. The purpose of this study was to examine outcomes associated with the amount of pay, and perceived distributive and procedural justice regarding pay in relation to those for perceived managerial need support. Participants were 166 bank employees who also reported on their basic psychological need satisfaction and intrinsic work motivation. SEM-analyses tested a self-determination theory (SDT) model, with satisfaction of the competence and autonomy needs as an intervening variable. The primary findings were that amount of pay and employees' perceived distributive justice regarding their pay were unrelated to employees' need satisfaction and intrinsic work motivation, but procedural justice regarding pay did affect these variables. However, managerial need support was the most important factor for promoting need satisfaction and intrinsic work motivation both directly, indirectly, and as a moderator in the model. Hence, the results of the present organizational field study support earlier laboratory experiments within the SDT framework showing that monetary rewards did not enhance intrinsic motivation. This seems to have profound implications for organizations concerned about motivating their employees. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  16. Honored Teacher Shows Commitment.

    Science.gov (United States)

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  17. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  18. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments

    NARCIS (Netherlands)

    Vermeulen, Peter J.; Ruijven, van Jasper; Anten, Niels P.R.; Werf, van der Wopke; Satake, Akiko

    2017-01-01

    1.The relationship between diversity and ecosystem functioning is often analysed by partitioning the change in species performance in mixtures into a complementarity effect (CE) and a selection effect (SE). There is continuing ambiguity in the literature on the interpretation of these effects,

  19. Modelled seasonal influenza mortality shows marked differences in risk by age, sex, ethnicity and socioeconomic position in New Zealand.

    Science.gov (United States)

    Khieu, Trang Q T; Pierse, Nevil; Telfar-Barnard, Lucy Frances; Zhang, Jane; Huang, Q Sue; Baker, Michael G

    2017-09-01

    Influenza is responsible for a large number of deaths which can only be estimated using modelling methods. Such methods have rarely been applied to describe the major socio-demographic characteristics of this disease burden. We used quasi Poisson regression models with weekly counts of deaths and isolates of influenza A, B and respiratory syncytial virus for the period 1994 to 2008. The estimated average mortality rate was 13.5 per 100,000 people which was 1.8% of all deaths in New Zealand. Influenza mortality differed markedly by age, sex, ethnicity and socioeconomic position. Relatively vulnerable groups were males aged 65-79 years (Rate ratio (RR) = 1.9, 95% CI: 1.9, 1.9 compared with females), Māori (RR = 3.6, 95% CI: 3.6, 3.7 compared with European/Others aged 65-79 years), Pacific (RR = 2.4, 95% CI: 2.4, 2.4 compared with European/Others aged 65-79 years) and those living in the most deprived areas (RR = 1.8, 95% CI: 1.3, 2.4) for New Zealand Deprivation (NZDep) 9&10 (the most deprived) compared with NZDep 1&2 (the least deprived). These results support targeting influenza vaccination and other interventions to the most vulnerable groups, in particular Māori and Pacific people and men aged 65-79 years and those living in the most deprived areas. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine.

    Science.gov (United States)

    Greco, Rosaria; Siani, Francesca; Demartini, Chiara; Zanaboni, Annamaria; Nappi, Giuseppe; Davinelli, Sergio; Scapagnini, Giovanni; Tassorelli, Cristina

    2016-01-01

    Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.

  1. Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model.

    Science.gov (United States)

    Sturgeon, Craig; Lan, Jinggang; Fasano, Alessio

    2017-06-01

    Increased small intestinal permeability (IP) has been proposed to be an integral element, along with genetic makeup and environmental triggers, in the pathogenies of chronic inflammatory diseases (CIDs). We identified zonulin as a master regular of intercellular tight junctions linked to the development of several CIDs. We aim to study the role of zonulin-mediated IP in the pathogenesis of CIDs. Zonulin transgenic Hp2 mice (Ztm) were subjected to dextran sodium sulfate (DSS) treatment for 7 days, followed by 4-7 days' recovery and compared to C57Bl/6 (wild-type (WT)) mice. IP was measured in vivo and ex vivo, and weight, histology, and survival were monitored. To mechanistically link zonulin-dependent impairment of small intestinal barrier function with clinical outcome, Ztm were treated with the zonulin inhibitor AT1001 added to drinking water in addition to DSS. We observed increased morbidity (more pronounced weight loss and colitis) and mortality (40-70% compared with 0% in WT) at 11 days post-DSS treatment in Ztm compared with WT mice. Both in vivo and ex vivo measurements showed an increased IP at baseline in Ztm compared to WT mice, which was exacerbated by DSS treatment and was associated with upregulation of zonulin gene expression (fourfold in the duodenum, sixfold in the jejunum). Treatment with AT1001 prevented the DSS-induced increased IP both in vivo and ex vivo without changing zonulin gene expression and completely reverted morbidity and mortality in Ztm. Our data show that zonulin-dependent small intestinal barrier impairment is an early step leading to the break of tolerance with subsequent development of CIDs. © 2017 New York Academy of Sciences.

  2. Where and what TMS activates: Experiments and modeling.

    Science.gov (United States)

    Laakso, Ilkka; Murakami, Takenobu; Hirata, Akimasa; Ugawa, Yoshikazu

    Despite recent developments in navigation and modeling techniques, the type and location of the structures that are activated by transcranial magnetic stimulation (TMS) remain unknown. We studied the relationships between electrophysiological measurements and electric fields induced in the brain to locate the TMS activation site. The active and resting motor thresholds of the first dorsal interosseous muscle were recorded in 19 subjects (7 female, 12 male, age 22 ± 4 years) using anteromedially oriented monophasic TMS at multiple locations over the left primary motor cortex (M1). Structural MR images were used to construct electric field models of each subject's head and brain. The cortical activation site was estimated by finding where the calculated electric fields best explained the coil-location dependency of the measured MTs. The experiments and modeling showed individual variations both in the measured motor thresholds (MTs) and in the computed electric fields. When the TMS coil was moved on the scalp, the calculated electric fields in the hand knob region were shown to vary consistently with the measured MTs. Group-level analysis indicated that the electric fields were significantly correlated with the measured MTs. The strongest correlations (R 2  = 0.69), which indicated the most likely activation site, were found in the ventral and lateral part of the hand knob. The site was independent of voluntary contractions of the target muscle. The study showed that TMS combined with personalized electric field modeling can be used for high-resolution mapping of the motor cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  4. Individual Diet Modeling Shows How to Balance the Diet of French Adults with or without Excessive Free Sugar Intakes.

    Science.gov (United States)

    Lluch, Anne; Maillot, Matthieu; Gazan, Rozenn; Vieux, Florent; Delaere, Fabien; Vaudaine, Sarah; Darmon, Nicole

    2017-02-20

    Dietary changes needed to achieve nutritional adequacy for 33 nutrients were determined for 1719 adults from a representative French national dietary survey. For each individual, an iso-energy nutritionally adequate diet was generated using diet modeling, staying as close as possible to the observed diet. The French food composition table was completed with free sugar (FS) content. Results were analyzed separately for individuals with FS intakes in their observed diets ≤10% or >10% of their energy intake (named below FS-ACCEPTABLE and FS-EXCESS, respectively). The FS-EXCESS group represented 41% of the total population (average energy intake of 14.2% from FS). Compared with FS-ACCEPTABLE individuals, FS-EXCESS individuals had diets of lower nutritional quality and consumed more energy (2192 vs. 2123 kcal/day), particularly during snacking occasions (258 vs. 131 kcal/day) (all p -values diets were significant increases in fresh fruits, starchy foods, water, hot beverages and plain yogurts; and significant decreases in mixed dishes/sandwiches, meat/eggs/fish and cheese. For FS-EXCESS individuals only, the optimization process significantly increased vegetables and significantly decreased sugar-sweetened beverages, sweet products and fruit juices. The diets of French adults with excessive intakes of FS are of lower nutritional quality, but can be optimized via specific dietary changes.

  5. Landscape evolution models using the stream power incision model show unrealistic behavior when m ∕ n equals 0.5

    Directory of Open Access Journals (Sweden)

    J. S. Kwang

    2017-12-01

    Full Text Available Landscape evolution models often utilize the stream power incision model to simulate river incision: E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents satisfies m ∕ n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only on small scales is neglected, the choice m ∕ n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.

  6. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D

    2008-06-01

    In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.

  7. An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model.

    Science.gov (United States)

    Krumm, Stefanie A; Yan, Dan; Hovingh, Elise S; Evers, Taylor J; Enkirch, Theresa; Reddy, G Prabhakar; Sun, Aiming; Saindane, Manohar T; Arrendale, Richard F; Painter, George; Liotta, Dennis C; Natchus, Michael G; von Messling, Veronika; Plemper, Richard K

    2014-04-16

    Measles virus is a highly infectious morbillivirus responsible for major morbidity and mortality in unvaccinated humans. The related, zoonotic canine distemper virus (CDV) induces morbillivirus disease in ferrets with 100% lethality. We report an orally available, shelf-stable pan-morbillivirus inhibitor that targets the viral RNA polymerase. Prophylactic oral treatment of ferrets infected intranasally with a lethal CDV dose reduced viremia and prolonged survival. Ferrets infected with the same dose of virus that received post-infection treatment at the onset of viremia showed low-grade viral loads, remained asymptomatic, and recovered from infection, whereas control animals succumbed to the disease. Animals that recovered also mounted a robust immune response and were protected against rechallenge with a lethal CDV dose. Drug-resistant viral recombinants were generated and found to be attenuated and transmission-impaired compared to the genetic parent virus. These findings may pioneer a path toward an effective morbillivirus therapy that could aid measles eradication by synergizing with vaccination to close gaps in herd immunity due to vaccine refusal.

  8. Edge effect modeling and experiments on active lap processing.

    Science.gov (United States)

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  9. An experiment on a ball-lightning model

    International Nuclear Information System (INIS)

    Ignatovich, F.V.; Ignatovich, V.K.

    2010-01-01

    We discuss total internal reflection (TIR) from an interface between glass and gainy gaseous media and propose an experiment for strong light amplification related to investigation of a ball-lightning model

  10. Model and Computing Experiment for Research and Aerosols Usage Management

    Directory of Open Access Journals (Sweden)

    Daler K. Sharipov

    2012-09-01

    Full Text Available The article deals with a math model for research and management of aerosols released into the atmosphere as well as numerical algorithm used as hardware and software systems for conducting computing experiment.

  11. Modeling and experiment to threshing unit of stripper combine ...

    African Journals Online (AJOL)

    Modeling and experiment to threshing unit of stripper combine. ... were conducted with the different feed rates and drum rotator speeds for the rice stripped mixtures. ... and damage as well as for threshing unit design and process optimization.

  12. Amniotic fluid stem cells with low γ-interferon response showed behavioral improvement in Parkinsonism rat model.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chang

    Full Text Available Amniotic fluid stem cells (AFSCs are multipotent stem cells that may be used in transplantation medicine. In this study, AFSCs established from amniocentesis were characterized on the basis of surface marker expression and differentiation potential. To further investigate the properties of AFSCs for translational applications, we examined the cell surface expression of human leukocyte antigens (HLA of these cells and estimated the therapeutic effect of AFSCs in parkinsonian rats. The expression profiles of HLA-II and transcription factors were compared between AFSCs and bone marrow-derived mesenchymal stem cells (BMMSCs following treatment with γ-IFN. We found that stimulation of AFSCs with γ-IFN prompted only a slight increase in the expression of HLA-Ia and HLA-E, and the rare HLA-II expression could also be observed in most AFSCs samples. Consequently, the expression of CIITA and RFX5 was weakly induced by γ-IFN stimulation of AFSCs compared to that of BMMSCs. In the transplantation test, Sprague Dawley rats with 6-hydroxydopamine lesioning of the substantia nigra were used as a parkinsonian-animal model. Following the negative γ-IFN response AFSCs injection, apomorphine-induced rotation was reduced by 75% in AFSCs engrafted parkinsonian rats but was increased by 53% in the control group after 12-weeks post-transplantation. The implanted AFSCs were viable, and were able to migrate into the brain's circuitry and express specific proteins of dopamine neurons, such as tyrosine hydroxylase and dopamine transporter. In conclusion, the relative insensitivity AFSCs to γ-IFN implies that AFSCs might have immune-tolerance in γ-IFN inflammatory conditions. Furthermore, the effective improvement of AFSCs transplantation for apomorphine-induced rotation paves the way for the clinical application in parkinsonian therapy.

  13. Engineering teacher training models and experiences

    Science.gov (United States)

    González-Tirados, R. M.

    2009-04-01

    Education Area, we renewed the programme, content and methodology, teaching the course under the name of "Initial Teacher Training Course within the framework of the European Higher Education Area". Continuous Training means learning throughout one's life as an Engineering teacher. They are actions designed to update and improve teaching staff, and are systematically offered on the current issues of: Teaching Strategies, training for research, training for personal development, classroom innovations, etc. They are activities aimed at conceptual change, changing the way of teaching and bringing teaching staff up-to-date. At the same time, the Institution is at the disposal of all teaching staff as a meeting point to discuss issues in common, attend conferences, department meetings, etc. In this Congress we present a justification of both training models and their design together with some results obtained on: training needs, participation, how it is developing and to what extent students are profiting from it.

  14. "I like that He Always Shows Who He Is": The Perceptions and Experiences of Siblings with a Brother with Autism Spectrum Disorder

    Science.gov (United States)

    Petalas, Michael A.; Hastings, Richard P.; Nash, Susie; Dowey, Alan; Reilly, Deirdre

    2009-01-01

    Semi-structured interviews were used to explore the perceptions and experiences of eight typically developing siblings in middle childhood who had a brother with autism spectrum disorder (ASD). The interviews were analysed using interpretative phenomenological analysis (IPA). The analysis yielded five main themes: (i) siblings' perceptions of the…

  15. Large scale FCI experiments in subassembly geometry. Test facility and model experiments

    International Nuclear Information System (INIS)

    Beutel, H.; Gast, K.

    A program is outlined for the study of fuel/coolant interaction under SNR conditions. The program consists of a) under water explosion experiments with full size models of the SNR-core, in which the fuel/coolant system is simulated by a pyrotechnic mixture. b) large scale fuel/coolant interaction experiments with up to 5kg of molten UO 2 interacting with liquid sodium at 300 deg C to 600 deg C in a highly instrumented test facility simulating an SNR subassembly. The experimental results will be compared to theoretical models under development at Karlsruhe. Commencement of the experiments is expected for the beginning of 1975

  16. TF insert experiment log book. 2nd Experiment of CS model coil

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Isono, Takaaki; Matsui, Kunihiro

    2001-12-01

    The cool down of CS model coil and TF insert was started on August 20, 2001. It took almost one month and immediately started coil charge since September 17, 2001. The charge test of TF insert and CS model coil was completed on October 19, 2001. In this campaign, total shot numbers were 88 and the size of the data file in the DAS (Data Acquisition System) was about 4 GB. This report is a database that consists of the log list and the log sheets of every shot. This is an experiment logbook for 2nd experiment of CS model coil and TF insert for charge test. (author)

  17. Model experiments related to outdoor propagation over an earth berm

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1994-01-01

    A series of scale model experiments related to outdoor propagation over an earth berm is described. The measurements are performed with a triggered spark source. The results are compared with data from an existing calculation model based upon uniform diffraction theory. Comparisons are made...

  18. Model of CSR Induced Bursts in Slicing Experiments

    International Nuclear Information System (INIS)

    Stupakov, G.; Heifets, S.

    2006-01-01

    We suggest a model describing the CSR bursts observed in recent experiments at the Advanced Light Source at the LBL. The model is based on the linear theory of the CSR instability in electron rings. We describe how an initial perturbation of the beam generated by the laser pulse evolves in time when the beam is unstable due to the CSR wakefield

  19. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  20. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Science.gov (United States)

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  1. "Sometimes You Feel Like the Freak Show": A Qualitative Assessment of Emergency Care Experiences Among Transgender and Gender-Nonconforming Patients.

    Science.gov (United States)

    Samuels, Elizabeth A; Tape, Chantal; Garber, Naomi; Bowman, Sarah; Choo, Esther K

    2018-02-01

    Transgender, gender-variant, and intersex (trans) people have decreased access to care and poorer health outcomes compared with the general population. Little has been studied and documented about such patients' emergency department (ED) experiences and barriers to care. Using survey and qualitative research methods, this study aims to identify specific areas for improvement and generate testable hypotheses about the barriers and challenges for trans individuals needing acute care. A survey and 4 focus groups were conducted with trans individuals older than 18 years who had been to an ED in the last 5 years. Participants were recruited by trans e-mail listservs; outreach to local trans organizations; and lesbian, gay, bisexual, and transgender periodical advertisements. The interview guide was reviewed by qualitative research and trans health content experts. Deidentified participant demographic information was collected with a standardized instrument. All discussions were captured on digital audio recorders and professionally transcribed. Interview coding and thematic analysis were conducted with a grounded theory approach. Among 32 participants, 71.9% were male identified and 78.1% were white. Nearly half (43.8%) reported avoiding the ED when they needed acute care. The factors that had the greatest influence on ED avoidance were fear of discrimination, length of wait, and negative previous experiences. There were 4 overarching discussion themes: system structure, care competency, discrimination and trauma, and avoidance of emergency care. Improvement recommendations focused on staff and provider training about gender and trans health, assurance of private gender identity disclosure, and accurate capture of sex, gender, and sexual orientation information in the electronic medical record. Efforts to improve trans ED experiences should focus on provider competency and communication training, electronic medical record modifications, and assurance of private means

  2. Designing Experiments to Discriminate Families of Logic Models.

    Science.gov (United States)

    Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito

    2015-01-01

    Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.

  3. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  4. Cognitive Modeling of Video Game Player User Experience

    Science.gov (United States)

    Bohil, Corey J.; Biocca, Frank A.

    2010-01-01

    This paper argues for the use of cognitive modeling to gain a detailed and dynamic look into user experience during game play. Applying cognitive models to game play data can help researchers understand a player's attentional focus, memory status, learning state, and decision strategies (among other things) as these cognitive processes occurred throughout game play. This is a stark contrast to the common approach of trying to assess the long-term impact of games on cognitive functioning after game play has ended. We describe what cognitive models are, what they can be used for and how game researchers could benefit by adopting these methods. We also provide details of a single model - based on decision field theory - that has been successfUlly applied to data sets from memory, perception, and decision making experiments, and has recently found application in real world scenarios. We examine possibilities for applying this model to game-play data.

  5. The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    Science.gov (United States)

    Finnerty, P.; Aguayo, E.; Amman, M.; Avignone, F. T., Iii; Barabash, A. S.; Barton, P. J.; Beene, J. R.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Fraenkle, F. M.; Galindo-Uribarri, A.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; Luke, P. N.; MacMullin, S.; Marino, M. G.; Martin, R. D.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Perumpilly, G.; Phillips, D. G., Ii; Poon, A. W. P.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Yaver, H.; Young, A. R.; Yu, C.-H.; Yumatov, V.; Majorana Collaboration

    2014-03-01

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2).

  6. Topographic evolution of sandbars: Flume experiment and computational modeling

    Science.gov (United States)

    Kinzel, Paul J.; Nelson, Jonathan M.; McDonald, Richard R.; Logan, Brandy L.

    2010-01-01

    Measurements of sandbar formation and evolution were carried out in a laboratory flume and the topographic characteristics of these barforms were compared to predictions from a computational flow and sediment transport model with bed evolution. The flume experiment produced sandbars with approximate mode 2, whereas numerical simulations produced a bed morphology better approximated as alternate bars, mode 1. In addition, bar formation occurred more rapidly in the laboratory channel than for the model channel. This paper focuses on a steady-flow laboratory experiment without upstream sediment supply. Future experiments will examine the effects of unsteady flow and sediment supply and the use of numerical models to simulate the response of barform topography to these influences.

  7. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN number-sign 85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper

  8. Complementarity of technical skills with art and culture: theoretical reflections, the Talent Show Project experiment at IFRJ – campus Realengo and a proposal for its expansion

    Directory of Open Access Journals (Sweden)

    Maria Célia Dantas Pollig

    2016-12-01

    Full Text Available This paper presents the theoretical basis I have used to better understand the dimension of the task I intend to accomplish. As Educational Advisor at the Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ, campus Realengo, my plan is to develop and expand the so called Talent Show Project, by complementing technical training, and providing opportunities for artistic and cultural expression. The study also presents several reflections for achieving the expansion of the scope of the Project intervention, which can become an institutional program developed at IFRJ.

  9. Detecting physics beyond the Standard Model with the REDTOP experiment

    Science.gov (United States)

    González, D.; León, D.; Fabela, B.; Pedraza, M. I.

    2017-10-01

    REDTOP is an experiment at its proposal stage. It belongs to the High Intensity class of experiments. REDTOP will use a 1.8 GeV continuous proton beam impinging on a fixed target. It is expected to produce about 1013 η mesons per year. The main goal of REDTOP is to look for physics beyond the Standard Model by detecting rare η decays. The detector is designed with innovative technologies based on the detection of prompt Cherenkov light, such that interesting events can be observed and the background events are efficiently rejected. The experimental design, the physics program and the running plan of the experiment is presented.

  10. Grimsel Test Site: modelling radionuclide migration field experiments

    International Nuclear Information System (INIS)

    Heer, W.; Hadermann, J.

    1994-09-01

    In the migration field experiments at Nagra's Grimsel Test Site, the processes of nuclide transport through a well defined fractured shear-zone in crystalline rock are being investigated. For these experiments, model calculations have been performed to obtain indications on validity and limitation of the model applied and the data deduced under field conditions. The model consists of a hydrological part, where the dipole flow fields of the experiments are determined, and a nuclide transport part, where the flow field driven nuclide propagation through the shear-zone is calculated. In addition to the description of the model, analytical expressions are given to guide the interpretation of experimental results. From the analysis of experimental breakthrough curves for conservative uranine, weakly sorbing sodium and more stronger sorbing strontium tracers, the following main results can be derived: i) The model is able to represent the breakthrough curves of the migration field experiments to a high degree of accuracy, ii) The process of matrix diffusion is manifest through the tails of the breakthrough curves decreasing with time as t -3/2 and through the special shape of the tail ends, both confirmed by the experiments, iii) For nuclide sorbing rapidly, not too strongly, linearly, and exhibiting a reversible cation exchange process on fault gouge, the laboratory sorption coefficient can reasonably well be extrapolated to field conditions. Adequate care in selecting and preparing the rock samples is, of course, a necessary requirement. Using the parameters determined in the previous analysis, predictions are made for experiments in a smaller an faster flow field. For conservative uranine and weakly sorbing sodium, the agreement of predicted and measured breakthrough curves is good, for the more stronger sorbing strontium reasonable, confirming that the model describes the main nuclide transport processes adequately. (author) figs., tabs., 29 refs

  11. Reactive transport modeling of the ABM experiment with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Pekala, Marek; Idiart, Andres; Arcos, David

    2012-01-01

    Document available in extended abstract form only. The Swedish Organisation for Radioactive Waste Disposal (SKB) is considering disposal of the High Level Waste in a deep underground repository in a crystalline rock. According to the disposal concept, bentonite clay will be used in the near-field of the waste packages as buffer material. From solute transport point of view, the bentonite buffer is expected to provide a favourable environment, where radionuclide migration would be limited to slow diffusion and further retarded by sorption. In the KBS-3 repository design, the MX-80 bentonite is the reference buffer material. However, SKB has also been investigating alternative buffer materials. To this end, the field experiment Alternative Buffer Materials (ABM) was started at the Aespoe URL in 2006. Three packages of eleven different compacted bentonite blocks in different configurations have been tested over varying time scales. The packages with outer diameter of 0.28 m were deposited into 3 meter deep boreholes. After installation, packages were saturated and heated differently to target values. This contribution concerns the evolution of Package 1, which was initiated in December 2006 and ran for about 2.5 years. Post-mortem examination after retrieval showed that the initially contrasting chloride concentrations and cation-exchanger compositions between different bentonite blocks became significantly homogenised. It is thought that this behaviour could be explained as a first approximation by diffusion of major ions between the bentonite blocks coupled with cation-exchange. In this work, a modelling study to verify this hypothesis has been undertaken. In addition, the feasibility of implementing a reactive transport model into the Finite Element code COMSOL Multiphysics has been tested. The model considers a two-dimensional axisymmetric geometry of the depositional borehole, and includes coupled diffusion and cation-exchange of Na, K, Ca and Mg (as a chloride

  12. Modelling of laboratory high-pressure infiltration experiments

    International Nuclear Information System (INIS)

    Smith, P.A.

    1992-02-01

    This report describes the modelling of break-through curves from a series of two-tracer dynamic infiltration experiments, which are intended to complement larger scale experiments at the Nagra Grimsel Test Site. The tracers are 82 Br, which is expected to be non-sorbing, and 24 Na, which is weakly sorbing. The 24 Na concentration is well below the natural Na concentration in the infiltration fluid, so that sorption on the rock is governed by isotopic exchange, exhibiting a linear isotherm. The rock specimens are sub-samples (cores) of granodiorite from the Grimsel Test Site, each containing a distinct shear zone. Best-fits to the break-through curves using single-porosity and dual-porosity transport models are compared and several physical parameters are extracted. It is shown that the dual-porosity model is required in order to reproduce the tailing part of the break-through curves for the non-sorbing tracer. The single-porosity model is sufficient to reproduce the break-through curves for the sorbing tracer within the estimated experimental errors. Extracted K d values are shown to agree well with a field rock-water interaction experiment and in situ migration experiments. Static, laboratory batch-sorption experiments give a larger K d , but this difference could be explained by the larger surface area available for sorption in the artificially crushed samples used in the laboratory and by a slightly different water chemistry. (author) 13 figs., tabs., 19 refs

  13. Hohlraum modeling for opacity experiments on the National Ignition Facility

    Science.gov (United States)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  14. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  15. Integrated multiscale biomaterials experiment and modelling: a perspective

    Science.gov (United States)

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  16. Show and Tell: Video Modeling and Instruction Without Feedback Improves Performance but Is Not Sufficient for Retention of a Complex Voice Motor Skill.

    Science.gov (United States)

    Look, Clarisse; McCabe, Patricia; Heard, Robert; Madill, Catherine J

    2018-02-02

    Modeling and instruction are frequent components of both traditional and technology-assisted voice therapy. This study investigated the value of video modeling and instruction in the early acquisition and short-term retention of a complex voice task without external feedback. Thirty participants were randomized to two conditions and trained to produce a vocal siren over 40 trials. One group received a model and verbal instructions, the other group received a model only. Sirens were analyzed for phonation time, vocal intensity, cepstral peak prominence, peak-to-peak time, and root-mean-square error at five time points. The model and instruction group showed significant improvement on more outcome measures than the model-only group. There was an interaction effect for vocal intensity, which showed that instructions facilitated greater improvement when they were first introduced. However, neither group reproduced the model's siren performance across all parameters or retained the skill 1 day later. Providing verbal instruction with a model appears more beneficial than providing a model only in the prepractice phase of acquiring a complex voice skill. Improved performance was observed; however, the higher level of performance was not retained after 40 trials in both conditions. Other prepractice variables may need to be considered. Findings have implications for traditional and technology-assisted voice therapy. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chulhwa

    2012-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system

  18. Experiments and Modeling of G-Jitter Fluid Mechanics

    Science.gov (United States)

    Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.

  19. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  20. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  1. First experiments results about the engineering model of Rapsodie

    International Nuclear Information System (INIS)

    Chalot, A.; Ginier, R.; Sauvage, M.

    1964-01-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [fr

  2. Assessment of the Eu migration experiments and their modelling

    International Nuclear Information System (INIS)

    Klotz, D.

    2001-01-01

    The humic acid transport of heavy metals in underground water was investigated in laboratory experiments using the lanthanide Eu in the form of 152 Eu 3+ , which is both a model heavy metal and an indicator for assessing the potential hazards of ultimate storage sites for radioactive waste [de

  3. Breakthrough without subsidies? : PV business model experiments in the Netherlands.

    NARCIS (Netherlands)

    Huijben, J.C.C.M.; Verbong, G.P.J.

    2013-01-01

    Despite a lack of steady governmental support for PV in the Netherlands over the last decade, from 2008 onwards an increased number of initiatives started experimenting with new business models for PV. Though absolute numbers of installed capacity are still low, this is a promising sign. In this

  4. Design of spatial experiments: Model fitting and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.V.

    1996-03-01

    The main objective of the paper is to describe and develop model oriented methods and algorithms for the design of spatial experiments. Unlike many other publications in this area, the approach proposed here is essentially based on the ideas of convex design theory.

  5. The LHCf experiment modelling cosmic rays at LHC

    CERN Document Server

    Tricomi, A; Bonechi, L; Bongi, M; Castellini, G; D'Alessandro, R; Faus, A; Fukui, K; Haguenauer, M; Itow, Y; Kasahara, K; Macina, D; Mase, T; Masuda, K; Matsubara, Y; Mizuishi, M; Menjo, H; Muraki, Y; Papini, P; Perrot, A L; Ricciarini, S B; Sako, T; Shimizu, Y; Tamura, T; Taki, K; Torii, S; Tricomi, A; Turner, W C; Velasco, J; Watanabe, H; Yoshida, K

    2008-01-01

    The LHCf experiment at LHC has been designed to provide a calibration of nuclear interaction models used in cosmic ray physics up to energies relevant to test the region between the knee and the GZK cut-off. Details of the detector and its performances are discussed.

  6. The developments and verifications of trace model for IIST LOCA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W. X. [Inst. of Nuclear Engineering and Science, National Tsing-Hua Univ., Taiwan, No. 101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Wang, J. R.; Lin, H. T. [Inst. of Nuclear Energy Research, Taiwan, No. 1000, Wenhua Rd., Longtan Township, Taoyuan County 32546, Taiwan (China); Shih, C.; Huang, K. C. [Inst. of Nuclear Engineering and Science, National Tsing-Hua Univ., Taiwan, No. 101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Dept. of Engineering and System Science, National Tsing-Hua Univ., Taiwan, No. 101, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2012-07-01

    The test facility IIST (INER Integral System Test) is a Reduced-Height and Reduced-Pressure (RHRP) integral test loop, which was constructed for the purposes of conducting thermal hydraulic and safety analysis of the Westinghouse three-loop PWR Nuclear Power Plants. The main purpose of this study is to develop and verify TRACE models of IIST through the IIST small break loss of coolant accident (SBLOCA) experiments. First, two different IIST TRACE models which include a pipe-vessel model and a 3-D vessel component model have been built. The steady state and transient calculation results show that both TRACE models have the ability to simulate the related IIST experiments. Comparing with IIST SBLOCA experiment data, the 3-D vessel component model has shown better simulation capabilities so that it has been chosen for all further thermal hydraulic studies. The second step is the sensitivity studies of two phase multiplier and subcooled liquid multiplier in choked flow model; and two correlation constants in CCFL model respectively. As a result, an appropriate set of multipliers and constants can be determined. In summary, a verified IIST TRACE model with 3D vessel component, and fine-tuned choked flow model and CCFL model is established for further studies on IIST experiments in the future. (authors)

  7. Vibrational kinetics in CO electric discharge lasers - Modeling and experiments

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    A model of CO laser vibrational kinetics is developed, and predicted vibrational distributions are compared with measurements. The experimental distributions were obtained at various flow locations in a transverse CW discharge in supersonic (M = 3) flow. Good qualitative agreement is obtained in the comparisons, including the prediction of a total inversion at low discharge current densities. The major area of discrepancy is an observed loss in vibrational energy downstream of the discharge which is not predicted by the model. This discrepancy may be due to three-dimensional effects in the experiment which are not included in the model. Possible kinetic effects which may contribute to vibrational energy loss are also examined.

  8. Turkish experience with the use of IAEA planning models

    International Nuclear Information System (INIS)

    Fikret, H.

    1997-01-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country's planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs

  9. Turkish experience with the use of IAEA planning models

    Energy Technology Data Exchange (ETDEWEB)

    Fikret, H [Ministry of Energy and Natural Resouces, Ankara (Turkey)

    1997-09-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country`s planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs.

  10. Modeling and experiments of biomass combustion in a large-scale grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2007-01-01

    is inherently more difficult due to the complexity of the solid biomass fuel bed on the grate, the turbulent reacting flow in the combustion chamber and the intensive interaction between them. This paper presents the CFD validation efforts for a modern large-scale biomass-fired grate boiler. Modeling...... and experiments are both done for the grate boiler. The comparison between them shows an overall acceptable agreement in tendency. However at some measuring ports, big discrepancies between the modeling and the experiments are observed, mainly because the modeling-based boundary conditions (BCs) could differ...

  11. PARAMETRIC MODELING, CREATIVITY, AND DESIGN: TWO EXPERIENCES WITH ARCHITECTURE’ STUDENTS

    Directory of Open Access Journals (Sweden)

    Wilson Florio

    2012-02-01

    Full Text Available The aim of this article is to reflect on the use of the parametric modeling in two didactic experiences. The first experiment involved resources of the Paracloud program and its relation with the Rhinoceros program, that resulted in the production of physical models produced with the aid of the laser cutting. In the second experiment, the students had produced algorithms in the Grasshopper, resulting in families of structures and coverings. The study objects are both the physical models and digital algorithms resultants from this experimentation. For the analysis and synthesis of the results, we adopted four important assumptions: 1. the value of attitudes and environment of work; 2. the importance of experimentation and improvisation; 3. understanding of the design process as a situated act and as a ill-defined problem; 4. the inclusion of creative and critical thought in the disciplines. The results allow us to affirm that the parametric modeling stimulates creativity, therefore allowing combination of different parameters, that result in unexpected discoveries. Keywords: Teach-Learning, Parametric Modeling, Laser Cutter, Grasshopper, Design Process, Creativity.

  12. Modeling and experiment to threshing unit of stripper combine

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... L was the free grain which had reached the end of the threshing unit but still not separated. On the designed testing equipment, experiments of threshing performances were conducted with the different feed rates and drum rotator speeds for the rice stripped mixtures. Experimental results showed that the ...

  13. The Living Dead: Transformative Experiences in Modelling Natural Selection

    Science.gov (United States)

    Petersen, Morten Rask

    2017-01-01

    This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative…

  14. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... been modelled using a state-of-the-art model and compared with satisfying result to the performed experiments. The numerical model has been used for a parametric study, investigating the redistribution of residual stresses during the process of drilling. This is done for investigating the possibility...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  15. Equation of state experiments and theory relevant to planetary modelling

    International Nuclear Information System (INIS)

    Ross, M.; Graboske, H.C. Jr.; Nellis, W.J.

    1981-01-01

    In recent years there have been a number of static and shockwave experiments on the properties of planetary materials. The highest pressure measurements, and the ones most relevant to planetary modelling, have been obtained by shock compression. Of particular interest to the Jovian group are results for H 2 , H 2 O, CH 4 and NH 3 . Although the properties of metallic hydrogen have not been measured, they have been the subject of extensive calculations. In addition recent shock wave experiments on iron report to have detected melting under Earth core conditions. From this data theoretical models have been developed for computing the equations of state of materials used in planetary studies. A compelling feature that has followed from the use of improved material properties is a simplification in the planetary models. (author)

  16. Comment on ''a classical model of EPR experiment with quantum mechanical correlations and Bell inequalities''

    International Nuclear Information System (INIS)

    Aspect, A.

    1986-01-01

    The author states that ''It is impossible to mimick the quantum mechanical predictions for the EPR correlations, with a reasonable classical-looking model, in the spirit of Einstein's ideas''. The author feels that if he is wrong somebody could make a classical model (i.e. following the laws of classical physics) mimicking all the quantum mechanical predictions for the EPR correlations. He attempts to show that it is not the case for Barut's model for the following reasons: the first version of his model is classical, but doesn't mimick at all an EPR type experiment; and by reinterpretation one can get a model that does mimick the experiment, but this model is no longer ''reasonably classical looking'' since it involves negative probabilities. The claim is put in the form of a challenge. It is shown that the model under discussion can be reinterpreted by adding a chip converting the continuous outputs into two-valved outputs

  17. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  18. Dynamically Scaled Model Experiment of a Mooring Cable

    Directory of Open Access Journals (Sweden)

    Lars Bergdahl

    2016-01-01

    Full Text Available The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments.

  19. Thermal experiments in the model of ADS target

    International Nuclear Information System (INIS)

    Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li

    2002-01-01

    The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)

  20. Modelling and experiments on NTM stabilisation at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Urso, Laura

    2009-07-27

    In the next fusion device ITER the so-called neoclassical tearing modes (NTMs) are foreseen as being extremely detrimental to plasma confinement. This type of resistive instability is related to the presence in the plasma of magnetic islands. These are experimentally controlled with local electron cyclotron current drive (ECCD) and the island width decay during NTM stabilisation is modelled using the so-called Modified Rutherford equation. In this thesis, a modelling of the Modified Rutherford equation is carried out and simulations of the island width decay are compared with the experimentally observed ones in order to fit the two free machine-independent parameters present in the equation. A systematic study on a database of NTM stabilisation discharges from ASDEX Upgrade and JT-60U is done within the context of a multi-machine benchmark for extrapolating the ECCD power requirements for ITER. The experimental measurements in both devices are discussed by means of consistency checks and sensitivity analysis and used to evaluate the two fitting parameters present in the Modified Rutherford equation. The influence of the asymmetry of the magnetic island on stabilisation is for the first time included in the model and the effect of ECCD on the marginal island after which the mode naturally decays is quantified. The effect of radial misalignment and over-stabilisation during the experiment are found to be the key quantities affecting the NTM stabilisation. As a main result of this thesis, the extrapolation to ITER of the NTM stabilisation results from ASDEX Upgrade and JT-60U shows that 10MW of ECCD power are enough to stabilise large NTMs as long as the O-point of the island and the ECCD beam are perfectly aligned. In fact, the high ratio between the island size at saturation and the deposition width of the ECCD beam foreseen for ITER is found to imply a maximum allowable radial misalignment of 2-3 cm and little difference in terms of gained performance between

  1. Modelling and experiments on NTM stabilisation at ASDEX upgrade

    International Nuclear Information System (INIS)

    Urso, Laura

    2009-01-01

    In the next fusion device ITER the so-called neoclassical tearing modes (NTMs) are foreseen as being extremely detrimental to plasma confinement. This type of resistive instability is related to the presence in the plasma of magnetic islands. These are experimentally controlled with local electron cyclotron current drive (ECCD) and the island width decay during NTM stabilisation is modelled using the so-called Modified Rutherford equation. In this thesis, a modelling of the Modified Rutherford equation is carried out and simulations of the island width decay are compared with the experimentally observed ones in order to fit the two free machine-independent parameters present in the equation. A systematic study on a database of NTM stabilisation discharges from ASDEX Upgrade and JT-60U is done within the context of a multi-machine benchmark for extrapolating the ECCD power requirements for ITER. The experimental measurements in both devices are discussed by means of consistency checks and sensitivity analysis and used to evaluate the two fitting parameters present in the Modified Rutherford equation. The influence of the asymmetry of the magnetic island on stabilisation is for the first time included in the model and the effect of ECCD on the marginal island after which the mode naturally decays is quantified. The effect of radial misalignment and over-stabilisation during the experiment are found to be the key quantities affecting the NTM stabilisation. As a main result of this thesis, the extrapolation to ITER of the NTM stabilisation results from ASDEX Upgrade and JT-60U shows that 10MW of ECCD power are enough to stabilise large NTMs as long as the O-point of the island and the ECCD beam are perfectly aligned. In fact, the high ratio between the island size at saturation and the deposition width of the ECCD beam foreseen for ITER is found to imply a maximum allowable radial misalignment of 2-3 cm and little difference in terms of gained performance between

  2. Modeling, analysis and experiments for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.A.; Hadid, A.H.; Raffray, A.R.; Tillack, M.S.; Iizuka, T.

    1988-01-01

    Selected issues in the development of fusion nuclear technology (FNT) have been studied. These relate to (1) near-term experiments, modeling, and analysis for several key FNT issues, and (2) FNT testing in future fusion facilities. A key concern for solid breeder blankets is to reduce the number of candidate materials and configurations for advanced experiments to emphasize those with the highest potential. Based on technical analysis, recommendations have been developed for reducing the size of the test matrix and for focusing the testing program on important areas of emphasis. The characteristics of an advanced liquid metal MHD experiment have also been studied. This facility is required in addition to existing facilities in order to address critical uncertainties in MHD fluid flow and heat transfer. In addition to experiments, successful development of FNT will require models for interpreting experimental data, for planning experiments, and for use as a design tool for fusion components. Modeling of liquid metal fluid flows is a particular area of need in which substantial progress is expected, and initial efforts are reported here. Preliminary results on the modeling of tritium transport and inventory in solid breeders are also summarized. Finally, the thermo-mechanical behavior of liquid-metal-cooled limiters is analyzed and the parameter space for feasible designs is explored. Because of the renewed strong interest in a fusion engineering facility, a critical review and analysis of the important FNT testing requirements have been performed. Several areas have been emphasized due to their strong impact on the design and cost of the test facility. These include (1) the length of the plasma burn and the mode of operation (pulsed vs. steady-state), and (2) the need for a tritium-producing blanket and its impact on the availability of the device. (orig.)

  3. Future high precision experiments and new physics beyond Standard Model

    International Nuclear Information System (INIS)

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here

  4. Modeling and conduct of turbine missile concrete impact experiments

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1981-01-01

    The overall objective of the subject experiments was to provide full scale data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. These data can be used to validate analytical or scale modeling methods and to assess the applicability of current design formulas to penetration by large, irregularly shaped missiles. These data and results will be used in providing more realistic estimates of turbine missile damage probability in nuclear power plants with a non-peninsula arrangement. This paper describes the derivation of the test matrix and the method of conducting the experiments. (orig./HP)

  5. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    International Nuclear Information System (INIS)

    Wanne, Toivo; Johansson, Erik; Potyondy, David

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  6. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  7. Bayesian model calibration of ramp compression experiments on Z

    Science.gov (United States)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Characteristics of the Nordic Seas overflows in a set of Norwegian Earth System Model experiments

    Science.gov (United States)

    Guo, Chuncheng; Ilicak, Mehmet; Bentsen, Mats; Fer, Ilker

    2016-08-01

    Global ocean models with an isopycnic vertical coordinate are advantageous in representing overflows, as they do not suffer from topography-induced spurious numerical mixing commonly seen in geopotential coordinate models. In this paper, we present a quantitative diagnosis of the Nordic Seas overflows in four configurations of the Norwegian Earth System Model (NorESM) family that features an isopycnic ocean model. For intercomparison, two coupled ocean-sea ice and two fully coupled (atmosphere-land-ocean-sea ice) experiments are considered. Each pair consists of a (non-eddying) 1° and a (eddy-permitting) 1/4° horizontal resolution ocean model. In all experiments, overflow waters remain dense and descend to the deep basins, entraining ambient water en route. Results from the 1/4° pair show similar behavior in the overflows, whereas the 1° pair show distinct differences, including temperature/salinity properties, volume transport (Q), and large scale features such as the strength of the Atlantic Meridional Overturning Circulation (AMOC). The volume transport of the overflows and degree of entrainment are underestimated in the 1° experiments, whereas in the 1/4° experiments, there is a two-fold downstream increase in Q, which matches observations well. In contrast to the 1/4° experiments, the coarse 1° experiments do not capture the inclined isopycnals of the overflows or the western boundary current off the Flemish Cap. In all experiments, the pathway of the Iceland-Scotland Overflow Water is misrepresented: a major fraction of the overflow proceeds southward into the West European Basin, instead of turning westward into the Irminger Sea. This discrepancy is attributed to excessive production of Labrador Sea Water in the model. The mean state and variability of the Nordic Seas overflows have significant consequences on the response of the AMOC, hence their correct representations are of vital importance in global ocean and climate modelling.

  9. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    Science.gov (United States)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  10. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  11. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris

    2017-01-01

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.

  12. A New Tube Gastrostomy Model in Animal Experiments

    Directory of Open Access Journals (Sweden)

    Atakan Sezer

    2013-01-01

    Full Text Available Aim: The orogastric route is the most preferred application method in the vast majority of the animal experiments in which application can be achieved by adding the material to the water of the experiment animal, through an orogastric tube or with a surgically managed ostomy. Material and Method: This experiment was constructed with twelve male Sprague-Dawley rats which were randomly assigned to one of two groups consist of control group ( group C, n: 6 and tube gastrostomy group ( group TG, n: 6.A novel and simple gastrostomy tube was derivated from a silicone foley catheter. Tube gastrostomy apparatus was constituted with a silicone foley catheter (6 French. In the group TG an incision was performed, and the stomach was visualized. A 1 cm incision was made in the midline and opening of the peritoneum. Anchoring sutures were placed and anterior gastric wall was lifted. The gastric wall is then opened. The apparatus was placed into the stomach and pulled through from a tunnel under the skin and fixed to the lateral abdominal wall with a 2/0 silk suture. Result: The procedure was ended in the 10th day of experiment. No mortality was observed in group C. The rats were monitored daily and no abnormal behavior consists of self harming incision site, resistance to oral intake or attending to displace. There was statistically significant difference in increasing alanine transaminase level (p<0.05 and decrease in the total protein and body weight (p<0.05 at the group TG at the end of experiment. There was significant increase in urea levels in Group C (p<0.05 at the end of experiment. The statistically significant decrease was observed in the same period in group C between aspartate transaminase, albumin, total protein, and body weight (p<0.05.  Glucose (p=0.047 and aspartate transaminase (p=0.050 level decrease changes and weight loose (p=0.034 from preoperative period to the end of the experiment between gastrostomy and laparotomy groups were

  13. Experiences with testing PCRV concrete and epoxy resin models

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Schnellenbach, G.

    1979-01-01

    A 1:5 scale model of a prestressed concrete pressure vessel was used to investigate its operating behaviour when only partially prestressed so as to allow cracking even under operating conditions. Further experimental work consisted in the building and testing of epoxy resin models to check the results of three-dimensional numerical calculations. Results show that a partially prestressed vessel will operate reliably and that deformations under both short and long-term internal pressure are essentially reversible. The results from the epoxy resin models show that building such models also with complicated geometries and with embedded strain gauges can be successfully carried out and that testing such models is a good tool for checking computer calculations

  14. Nb3Al insert experiment log book. 3rd experiment of CS model coil

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Koizumi, Norikiyo; Isono, Takaaki

    2002-10-01

    The cool down of CS model coil and Nb 3 Al insert was started on March 4, 2002. It took almost one month and immediately started coil charge since April 3, 2002. The charge test of Nb 3 Al insert and CS model coil was completed on May 2, 2002. All of the experiments including the warm up was also completed on May 30, 2002. In this campaign, total shot numbers were 102 and the size of the data file in the DAS (Data Acquisition System) was about 5.2 GB. This report is a database that consists of the log list and the log sheets of every shot. (author)

  15. Danish heathland manipulation experiment data in Model-Data-Fusion

    Science.gov (United States)

    Thum, Tea; Peylin, Philippe; Ibrom, Andreas; Van Der Linden, Leon; Beier, Claus; Bacour, Cédric; Santaren, Diego; Ciais, Philippe

    2013-04-01

    In ecosystem manipulation experiments (EMEs) the ecosystem is artificially exposed to different environmental conditions that aim to simulate circumstances in future climate. At Danish EME site Brandbjerg the responses of a heathland to drought, warming and increased atmospheric CO2 concentration are studied. The warming manipulation is realized by passive nighttime warming. The measurements include control plots as well as replicates for each three treatment separately and in combination. The Brandbjerg heathland ecosystem is dominated by heather and wavy hairgrass. These experiments provide excellent data for validation and development of ecosystem models. In this work we used a generic vegetation model ORCHIDEE with Model-Data-Fusion (MDF) approach. ORCHIDEE model is a process-based model that describes the exchanges of carbon, water and energy between the atmosphere and the vegetation. It can be run at different spatial scales from global to site level. Different vegetation types are described in ORCHIDEE as plant functional types. In MDF we are using observations from the site to optimize the model parameters. This enables us to assess the modelling errors and the performance of the model for different manipulation treatments. This insight will inform us whether the different processes are adequately modelled or if the model is missing some important processes. We used a genetic algorithm in the MDF. The data available from the site included measurements of aboveground biomass, heterotrophic soil respiration and total ecosystem respiration from years 2006-2008. The biomass was measured six times doing this period. The respiration measurements were done with manual chamber measurements. For the soil respiration we used results from an empirical model that has been developed for the site. This enabled us to have more data for the MDF. Before the MDF we performed a sensitivity analysis of the model parameters to different data streams. Fifteen most influential

  16. Coupling of continuum mechanics and electrodynamics:an investigation of electromagnetic force models by means of experiments and selected problems

    OpenAIRE

    Reich, Felix Alexander

    2017-01-01

    In the literature, many models of electromagnetic momentum are proposed. Each model implies a form of the electromagnetic force density, which acts as a source in the mechanical momentum balance. The debate as to which model of the electromagnetic force is "correct" for arbitrary materials and processes is ongoing. Most authors argue in favor or against specific models by virtue of thought experiments, e.g, with light waves. The topic of this work is to show that experiments conducted on a ma...

  17. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Baek, W. P.; Yoon, B. J.

    2010-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system

  18. Hypergraph-Based Recognition Memory Model for Lifelong Experience

    Science.gov (United States)

    2014-01-01

    Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning. PMID:25371665

  19. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...... the Medieval Climate Anomaly and the Little Ice Age estimated from paleoclimate reconstructions. This in turn could be a result of errors in the reconstructions of volcanic and/or solar radiative forcing used to drive the models or the incomplete representation of certain processes or variability within...

  20. Early experiences building a software quality prediction model

    Science.gov (United States)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  1. The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments

    Science.gov (United States)

    Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.

    2008-01-01

    Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…

  2. Modeling and experiments on tritium permeation in fusion reactor blankets

    Science.gov (United States)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  3. Modeling and experiments on tritium permeation in fusion reactor blankets

    International Nuclear Information System (INIS)

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  4. Mangling the models: Real-life experiences in voluntary siting

    International Nuclear Information System (INIS)

    Roche, C.S.

    1993-01-01

    Social scientists are accumulating a growing body of research to guide the development of communications models for siting controversial facilities. The models emphasize building consensus by involving all stakeholders, including opponents, in the decision-making process from its earliest stages. Communications should focus on issues and concerns that are most relevant to the people in the involved community. Finally, trust must be built through local control of the decision-making process. This paper presents experiences in the voluntary siting process for the Monitored Retrievable Storage (MRS) facility for spent nuclear fuel in three locations: Grant County, North Dakota, Fremont County, Wyoming, and the Mescalero Apache nation in New Mexico

  5. Reference analysis of the signal + background model in counting experiments

    Science.gov (United States)

    Casadei, D.

    2012-01-01

    The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.

  6. Soil remediation by heat injection: Experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others

    1995-03-01

    In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.

  7. Analogue experiments as benchmarks for models of lava flow emplacement

    Science.gov (United States)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  8. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    Science.gov (United States)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  9. Numerical modeling of NI-monitored 3D infiltration experiment

    Science.gov (United States)

    Dohnal, Michal; Dusek, Jaromir; Snehota, Michal; Sacha, Jan; Vogel, Tomas; Votrubova, Jana

    2014-05-01

    It is well known that the temporal changes of saturated hydraulic conductivity caused by the occurrence of air phase discontinuities often play an important role in water flow and solute transport experiments. In the present study, a series of infiltration-outflow experiments was conducted to test several working hypotheses about the mechanism of air phase trapping. The experiments were performed on a porous sample with artificial internal structure, using three sandy materials with contrasting hydraulic properties. The sample was axially symmetric with continuous preferential pathways and separate porous matrix blocks (the sample was 3.4 cm in diameter and 8.8 cm high). The infiltration experiments were monitored by neutron imaging (NI). The NI data were then used to quantify the water content of the selected sample regions. The flow regime in the sample was studied using a three-dimensional model based on Richards' equation. The equation was solved by the finite element method. The results of the numerical simulations of the infiltration experiments were compared with the measured outflow rates and with the spatial distribution of water content determined by NI. The research was supported by the Czech Science Foundation Project No. 14-03691S.

  10. Modeling of high power ICRF heating experiments on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Murakami, M.

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P rf ∼ 6 MW) in the TFTR experiments

  11. Evaluation for the design of experience in virtual environments: modeling breakdown of interaction and illusion.

    Science.gov (United States)

    Marsh, T; Wright, P; Smith, S

    2001-04-01

    New and emerging media technologies have the potential to induce a variety of experiences in users. In this paper, it is argued that the inducement of experience presupposes that users are absorbed in the illusion created by these media. Looking to another successful visual medium, film, this paper borrows from the techniques used in "shaping experience" to hold spectators' attention in the illusion of film, and identifies what breaks the illusion/experience for spectators. This paper focuses on one medium, virtual reality (VR), and advocates a transparent or "invisible style" of interaction. We argue that transparency keeps users in the "flow" of their activities and consequently enhances experience in users. Breakdown in activities breaks the experience and subsequently provides opportunities to identify and analyze potential causes of usability problems. Adopting activity theory, we devise a model of interaction with VR--through consciousness and activity--and introduce the concept of breakdown in illusion. From this, a model of effective interaction with VR is devised and the occurrence of breakdown in interaction and illusion is identified along a continuum of engagement. Evaluation guidelines for the design of experience are proposed and applied to usability problems detected in an empirical study of a head-mounted display (HMD) VR system. This study shows that the guidelines are effective in the evaluation of VR. Finally, we look at the potential experiences that may be induced in users and propose a way to evaluate user experience in virtual environments (VEs) and other new and emerging media.

  12. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    Science.gov (United States)

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  13. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    Science.gov (United States)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  14. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  15. Gravitational Acceleration Effects on Macrosegregation: Experiment and Computational Modeling

    Science.gov (United States)

    Leon-Torres, J.; Curreri, P. A.; Stefanescu, D. M.; Sen, S.

    1999-01-01

    Experiments were performed under terrestrial gravity (1g) and during parabolic flights (10-2 g) to study the solidification and macrosegregation patterns of Al-Cu alloys. Alloys having 2% and 5% Cu were solidified against a chill at two different cooling rates. Microscopic and Electron Microprobe characterization was used to produce microstructural and macrosegregation maps. In all cases positive segregation occurred next to the chill because shrinkage flow, as expected. This positive segregation was higher in the low-g samples, apparently because of the higher heat transfer coefficient. A 2-D computational model was used to explain the experimental results. The continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the solidification phenomena, for a two-phase system. The model considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The solidification event was divided into two stages. In the first one, the liquid containing freely moving equiaxed grains was described through the relative viscosity concept. In the second stage, when a fixed dendritic network was formed after dendritic coherency, the mushy zone was treated as a porous medium. The macrosegregation maps and the cooling curves obtained during experiments were used for validation of the solidification and segregation model. The model can explain the solidification and macrosegregation patterns and the differences between low- and high-gravity results.

  16. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  17. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  18. Multi-scale modelling for HEDP experiments on Orion

    Science.gov (United States)

    Sircombe, N. J.; Ramsay, M. G.; Hughes, S. J.; Hoarty, D. J.

    2016-05-01

    The Orion laser at AWE couples high energy long-pulse lasers with high intensity short-pulses, allowing material to be compressed beyond solid density and heated isochorically. This experimental capability has been demonstrated as a platform for conducting High Energy Density Physics material properties experiments. A clear understanding of the physics in experiments at this scale, combined with a robust, flexible and predictive modelling capability, is an important step towards more complex experimental platforms and ICF schemes which rely on high power lasers to achieve ignition. These experiments present a significant modelling challenge, the system is characterised by hydrodynamic effects over nanoseconds, driven by long-pulse lasers or the pre-pulse of the petawatt beams, and fast electron generation, transport, and heating effects over picoseconds, driven by short-pulse high intensity lasers. We describe the approach taken at AWE; to integrate a number of codes which capture the detailed physics for each spatial and temporal scale. Simulations of the heating of buried aluminium microdot targets are discussed and we consider the role such tools can play in understanding the impact of changes to the laser parameters, such as frequency and pre-pulse, as well as understanding effects which are difficult to observe experimentally.

  19. Beyond Performance: A Motivational Experiences Model of Stereotype Threat

    Science.gov (United States)

    Thoman, Dustin B.; Smith, Jessi L.; Brown, Elizabeth R.; Chase, Justin; Lee, Joo Young K.

    2013-01-01

    The contributing role of stereotype threat (ST) to learning and performance decrements for stigmatized students in highly evaluative situations has been vastly documented and is now widely known by educators and policy makers. However, recent research illustrates that underrepresented and stigmatized students’ academic and career motivations are influenced by ST more broadly, particularly through influences on achievement orientations, sense of belonging, and intrinsic motivation. Such a focus moves conceptualizations of ST effects in education beyond the influence on a student’s performance, skill level, and feelings of self-efficacy per se to experiencing greater belonging uncertainty and lower interest in stereotyped tasks and domains. These negative experiences are associated with important outcomes such as decreased persistence and domain identification, even among students who are high in achievement motivation. In this vein, we present and review support for the Motivational Experience Model of ST, a self-regulatory model framework for integrating research on ST, achievement goals, sense of belonging, and intrinsic motivation to make predictions for how stigmatized students’ motivational experiences are maintained or disrupted, particularly over long periods of time. PMID:23894223

  20. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    Science.gov (United States)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  1. Modeling, simulation, and experiments of coating growth on nanofibers

    International Nuclear Information System (INIS)

    Clemons, C. B.; Hamrick, P.; Heminger, J.; Kreider, K. L.; Young, G. W.; Buldum, A.; Evans, E.; Zhang, G.

    2008-01-01

    This work is a comparison of modeling and simulation results with experiments for an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface around an isolated nanofiber. This evolution equation was previously derived and solved under conditions of a nearly circular coating, with a concentration field that was only radially dependent and that was independent of the location of the coating free surface. These assumptions permitted the development of analytical expressions for the concentration field. The present work does not impose the above-mentioned conditions and considers numerical simulations of the concentration field that couple with level set simulations of the evolution equation for the coating free surface. Further, the cases of coating an isolated fiber as well as a multiple fiber mat are considered. Simulation results are compared with experimental results as the reactor pressure and power, as well as the nanofiber mat porosity, are varied

  2. Implementation of the GFS physical package in the GRAPES regional model: single column experiment

    Science.gov (United States)

    Chen, Baode; Huang, Wei; Bao, Jian-wen

    2015-04-01

    There is a growing concern about coupling among physical components in NWP models. The Physics package of the NCEP Global Forecast System (GFS) has been considerably turned and connection among various components is well considered. Thus, the full GFS physical package was implemented into the GRAPES-MESO and its single column version as well. Using the data collected at ARM Southern Great Plain site during the summer 1997 Intensive Observing Period, several experiments of single-column model (SCM) were conducted to test performance of a set of original physical processes of GRAPES(CTL experiment) and the GFS physics package implemented(GFS experiment). Temperature, moisture, radiation, surface heat flux, surface air temperature and precipitation are evaluated. It is found that potential temperature and vapor mixing ratio simulated by GFS experiment is more accurate than that of CTL experiment. Errors of surface downward solar and long-wave radiation simulated by GFS experiment are less than that of CTL experiment and upward latent and sensible heat flux are also better agreeing with observation. The maximum and minimum 2-m air temperatures of the GFS experiment are close to observation compared with that of CTL experiment. Analysis of precipitation simulated shows that both sets of physical processes well reproduce heavy rainfall events. Failure and delay of moderate rainfall events and over predictions of drizzle events are commonly found for two sets of experiments. For the case of three rainfall events, the errors of potential temperature and vapor mixing ratio simulated by GFS experiment were smaller than that of CTL experiment. It is shown that the late occurrences of rainfall are resulted from a more stable temperature profile and lower moisture simulated in boundary layer than those from the observation prior to rainfall. When the simulated rainfall occurs, the simulated temperature and moisture become more favorable to the precipitation than observation.

  3. Unconfined deflagrative explosions without turbulence: experiments and model

    International Nuclear Information System (INIS)

    Lannoy, A.

    1989-01-01

    This paper reviews laboratory, balloon and open field experiments which have been performed to study the deflagration regime in free air. In a first part, are considered different models available to estimate deflagrative unconfined explosions effects, without turbulence. Then, a description is given of the known performed tests, which indicate the effective scale of various experiments, their operating conditions and the type of measurements carried out. Results are presented and discussed. The influence on the explosion force of different parameters (fuel concentration gradients, flammable mixture shape and size, ignition energy) is estimated. The overall conclusion of this survey is that flammable mixtures drifting over open field and ignited, will burn with low flame speed and consequently will generate very weak pressure effects [fr

  4. Uterus transplantation: Experimental animal models and recent experience in humans

    Directory of Open Access Journals (Sweden)

    Sadık Şahin

    2015-03-01

    Full Text Available Uterus transplantation has been considered as an alternative management modality in the last few years for adoption or gestational surrogacy for women with absence of uterus due to congenital or acquired reasons. Surrogacy is legal in only a few countries because of ethical, social and legal issues. Up to date, a total of 11 uterus transplantation cases have been reported in which uteri were harvested from ten live donors and one donor with brain death. After unsuccessful attempt of first uterus transplantation, many studies have been conducted in animals and these experimental models enabled our knowledge to increase on this topic. First experimental studies were performed in rodents; later uterus transplantation was accomplished in sheep, pigs and rabbits. Recently, researches in non-human primates have led the experience regarding transplantation technique and success to improve. In this review, we reviewed the experimental animal researches in the area of uterus transplantation and recent experience in humans.

  5. Analytic models of NH4+ uptake and regeneration experiments

    International Nuclear Information System (INIS)

    Laws, E.A.

    1985-01-01

    Differential equations describing the uptake and regeneration of NH 4 + in both laboratory and field experiments are shown to have analytic solutions which can easily be inverted to determine the rate constants of interest. The solutions are used to study the descriptive ability of two fundamentally different models of NH 4 + cycling, one in which NH 4 + regeneration is regarded as a process that transfers N from participate N to NH 4 + , the other in which regeneration is regarded as a process that introduced NH 4 + to the dissolved phase without removing N from the particulate phase. The former model was found to give a good description of experimental field data and reasonable parameter values in all cases studied. The latter model was much less successful in describing the data and in producing reasonable parameter values. It is concluded that transfer of nitrogen from particulate N to NH 4 + is a process which must be taken into account in analyzing NH 4 + uptake and regeneration experiments

  6. Mode I Failure of Armor Ceramics: Experiments and Modeling

    Science.gov (United States)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  7. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the

  8. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  9. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  10. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  11. Behaviour modelling of two aluminas in divergent spherical pyrotechnical experiments

    International Nuclear Information System (INIS)

    Malaise, F.; Tranchet, J.Y.; Collombet, F.

    1997-01-01

    Two pure aluminas of different characteristics have been subjected to the propagation of a longitudinal divergent spherical shock wave through pyrotechnical experiments. An approach combining a phenomenological analysis and numerical 1D-calculations is proposed to study the behaviour of these aluminas submitted to that type of wave loading. The modelling, proposed in a previous paper, is refined and gives satisfying experimentation-calculation correlations. An analysis of the influence exerted by the various encountered phenomena (plastic activity, pore closure, microcracking) is performed. The significant consequence of the activation of damage with an extension criterion is also underlined. (orig.)

  12. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    Science.gov (United States)

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  13. Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation.

    Science.gov (United States)

    Cordes, Henrik; Thiel, Christoph; Baier, Vanessa; Blank, Lars M; Kuepfer, Lars

    2018-01-01

    Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-line antibacterial agent against Mycobacterium tuberculosis , which is known to cause idiosyncratic drug-induced liver injuries (DILI). We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future.

  14. A Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo Models.

    Directory of Open Access Journals (Sweden)

    Sandhya Boyapalle

    Full Text Available Human immunodeficiency virus (HIV types 1 and 2 (HIV-1 and HIV-2 are the etiologic agents of AIDS. Most HIV-1 infected individuals worldwide are women, who acquire HIV infections during sexual contact. Blocking HIV mucosal transmission and local spread in the female lower genital tract is important in preventing infection and ultimately eliminating the pandemic. Microbicides work by destroying the microbes or preventing them from establishing an infection. Thus, a number of different types of microbicides are under investigation, however, the lack of their solubility and bioavailability, and toxicity has been major hurdles. Herein, we report the development of multifunctional chitosan-lipid nanocomplexes that can effectively deliver plasmids encoding siRNA(s as microbicides without adverse effects and provide significant protection against HIV in both in vitro and in vivo models. Chitosan or chitosan-lipid (chlipid was complexed with a cocktail of plasmids encoding HIV-1-specific siRNAs (psiRNAs and evaluated for their efficacy in HEK-293 cells, PBMCs derived from nonhuman primates, 3-dimensional human vaginal ectocervical tissue (3D-VEC model and also in non-human primate model. Moreover, prophylactic administration of the chlipid to deliver a psiRNA cocktail intravaginally with a cream formulation in a non-human primate model showed substantial reduction of SHIV (simian/human immunodeficiency virus SF162 viral titers. Taken together, these studies demonstrate the potential of chlipid-siRNA nanocomplexes as a potential genetic microbicide against HIV infections.

  15. First experience of vectorizing electromagnetic physics models for detector simulation

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G. [Sao Paulo State U.; Apostolakis, J. [CERN; Bandieramonte, M. [Catania Astrophys. Observ.; Bianchini, C. [Mackenzie Presbiteriana U.; Bitzes, G. [CERN; Brun, R. [CERN; Canal, P. [Fermilab; Carminati, F. [CERN; Licht, J.de Fine [U. Copenhagen (main); Duhem, L. [Intel, Santa Clara; Elvira, D. [Fermilab; Gheata, A. [CERN; Jun, S. Y. [Fermilab; Lima, G. [Fermilab; Novak, M. [CERN; Presbyterian, M. [Bhabha Atomic Res. Ctr.; Shadura, O. [CERN; Seghal, R. [Bhabha Atomic Res. Ctr.; Wenzel, S. [CERN

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  16. First experience of vectorizing electromagnetic physics models for detector simulation

    International Nuclear Information System (INIS)

    Amadio, G; Bianchini, C; Apostolakis, J; Bitzes, G; Brun, R; Carminati, F; Gheata, A; Novak, M; Shadura, O; Wenzel, S; Bandieramonte, M; Canal, P; Elvira, D; Jun, S Y; Lima, G; Licht, J de Fine; Duhem, L; Presbyterian, M; Seghal, R

    2015-01-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project. (paper)

  17. First experience of vectorizing electromagnetic physics models for detector simulation

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  18. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  19. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  20. Social aggregation in pea aphids: experiment and random walk modeling.

    Directory of Open Access Journals (Sweden)

    Christa Nilsen

    Full Text Available From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  1. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    Science.gov (United States)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  2. Teaching as a fractal: from experience to model

    Directory of Open Access Journals (Sweden)

    Patricia COMPAÑ-ROSIQUE

    2015-12-01

    Full Text Available The aim of this work is to improve students’ learning by designing a teaching model that seeks to increase student motivation to acquire new knowledge. To design the model, the methodology is based on the study of the students’ opinion on several aspects we think importantly affect the quality of teaching (such as the overcrowded classrooms, time intended for the subject or type of classroom where classes are taught, and on our experience when performing several experimental activities in the classroom (for instance, peer reviews and oral presentations. Besides the feedback from the students, it is essential to rely on the experience and reflections of lecturers who have been teaching the subject several years. This way we could detect several key aspects that, in our opinion, must be considered when designing a teaching proposal: motivation, assessment, progressiveness and autonomy. As a result we have obtained a teaching model based on instructional design as well as on the principles of fractal geometry, in the sense that different levels of abstraction for the various training activities are presented and the activities are self-similar, that is, they are decomposed again and again. At each level, an activity decomposes into a lower level tasks and their corresponding evaluation. With this model the immediate feedback and the student motivation are encouraged. We are convinced that a greater motivation will suppose an increase in the student’s working time and in their performance. Although the study has been done on a subject, the results are fully generalizable to other subjects.

  3. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  4. Experiences in applying Bayesian integrative models in interdisciplinary modeling: the computational and human challenges

    DEFF Research Database (Denmark)

    Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari

    2011-01-01

    We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...

  5. Surface complexation modelling: Experiments on the sorption of nickel on quartz

    International Nuclear Information System (INIS)

    Puukko, E.; Hakanen, M.

    1995-10-01

    Assessing the safety of a final repository for nuclear wastes requires knowledge concerning the way in which the radionuclides released are retarded in the geosphere. The aim of the work is to aquire knowledge of empirical methods repeating the experiments on the sorption of nickel on quartz described in the reports published by the British Geological Survey (BGS). The experimental results were modelled with computer models at the Technical Research Centre of Finland (VTT Chemical Technology). The results showed that the experimental knowledge of the sorption of Ni on quartz have been acheved by repeating the experiments of BGS. Experiments made with the two quartz types, Min-U-Sil 5 (MUS) and Nilsiae, showed the difference in sorption of Ni in the low ionic strength solution (0.001 M NaNO 3 ). The sorption of Ni on MUS was higher than predicted by the Surface Complexation Model (SCM). The phenomenon was also observed by the BGS, and may be due to the different amounts of inpurities in the MUS and in the NLS. In other respects, the results of the sorption experiments fitted quite well with those predicted by the SCM model. (8 refs., 8 figs., 11 tabs.)

  6. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  7. Modelling, simulation and experiment of the spherical flexible joint stiffness

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated. The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM is used to verify the analytical solution and analyze the stiffness. The Mooney–Rivlin, Neo Hooke and Yeoh constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but the error in the nearly linear district is bigger than the Mooney–Rivlin model. The Mooney–Rivlin model can fit the test result very well and the analytical solution can also be used when the rubber deformation in the flexible joint is small. The increase of Poisson's ratio of the rubber layers will enhance the vertical compression stiffness but barely have effect on the rotational stiffness.

  8. Dynamical phase separation using a microfluidic device: experiments and modeling

    Science.gov (United States)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  9. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments

    International Nuclear Information System (INIS)

    Michalik, A.M.; Sipe, J.E.

    2006-01-01

    We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs

  10. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  11. Climate Envelope Modeling and Dispersal Simulations Show Little Risk of Range Extension of the Shipworm, Teredo navalis (L.), in the Baltic Sea

    Science.gov (United States)

    Appelqvist, Christin; Al-Hamdani, Zyad K.; Jonsson, Per R.; Havenhand, Jon N.

    2015-01-01

    The shipworm, Teredo navalis, is absent from most of the Baltic Sea. In the last 20 years, increased frequency of T. navalis has been reported along the southern Baltic Sea coasts of Denmark, Germany, and Sweden, indicating possible range-extensions into previously unoccupied areas. We evaluated the effects of historical and projected near-future changes in salinity, temperature, and oxygen on the risk of spread of T. navalis in the Baltic. Specifically, we developed a simple, GIS-based, mechanistic climate envelope model to predict the spatial distribution of favourable conditions for adult reproduction and larval metamorphosis of T. navalis, based on published environmental tolerances to these factors. In addition, we used a high-resolution three-dimensional hydrographic model to simulate the probability of spread of T. navalis larvae within the study area. Climate envelope modeling showed that projected near-future climate change is not likely to change the overall distribution of T. navalis in the region, but will prolong the breeding season and increase the risk of shipworm establishment at the margins of the current range. Dispersal simulations indicated that the majority of larvae were philopatric, but those that spread over a wider area typically spread to areas unfavourable for their survival. Overall, therefore, we found no substantive evidence for climate-change related shifts in the distribution of T. navalis in the Baltic Sea, and no evidence for increased risk of spread in the near-future. PMID:25768305

  12. Climate envelope modeling and dispersal simulations show little risk of range extension of the Shipworm, Teredo navalis (L., in the Baltic sea.

    Directory of Open Access Journals (Sweden)

    Christin Appelqvist

    Full Text Available The shipworm, Teredo navalis, is absent from most of the Baltic Sea. In the last 20 years, increased frequency of T. navalis has been reported along the southern Baltic Sea coasts of Denmark, Germany, and Sweden, indicating possible range-extensions into previously unoccupied areas. We evaluated the effects of historical and projected near-future changes in salinity, temperature, and oxygen on the risk of spread of T. navalis in the Baltic. Specifically, we developed a simple, GIS-based, mechanistic climate envelope model to predict the spatial distribution of favourable conditions for adult reproduction and larval metamorphosis of T. navalis, based on published environmental tolerances to these factors. In addition, we used a high-resolution three-dimensional hydrographic model to simulate the probability of spread of T. navalis larvae within the study area. Climate envelope modeling showed that projected near-future climate change is not likely to change the overall distribution of T. navalis in the region, but will prolong the breeding season and increase the risk of shipworm establishment at the margins of the current range. Dispersal simulations indicated that the majority of larvae were philopatric, but those that spread over a wider area typically spread to areas unfavourable for their survival. Overall, therefore, we found no substantive evidence for climate-change related shifts in the distribution of T. navalis in the Baltic Sea, and no evidence for increased risk of spread in the near-future.

  13. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hund, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesian model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.

  14. Elucidating the role of recovery experiences in the job demands-resources model.

    Science.gov (United States)

    Moreno-Jiménez, Bernardo; Rodríguez-Muñoz, Alfredo; Sanz-Vergel, Ana Isabel; Garrosa, Eva

    2012-07-01

    Based on the Job Demands-Resources (JD-R) model, the current study examined the moderating role of recovery experiences (i.e., psychological detachment from work, relaxation, mastery experiences, and control over leisure time) on the relationship between one job demand (i.e., role conflict) and work- and health-related outcomes. Results from our sample of 990 employees from Spain showed that psychological detachment from work and relaxation buffered the negative impact of role conflict on some of the proposed outcomes. Contrary to our expectations, we did not find significant results for mastery and control regarding moderating effects. Overall, findings suggest a differential pattern of the recovery experiences in the health impairment process proposed by the JD-R model.

  15. Period adding cascades: experiment and modeling in air bubbling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  16. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    were performed with a cylindrical four-electrode sample-holder (cylinder made of PVC with 30 cm in length and 19 cm in diameter) associated with a SIP-Fuchs II impedance meter and non-polarizing Cu/CuSO 4 electrodes. These electrodes were installed at 10 cm from the base of the sample holder and regularly spaced (each 90 degree). The results illustrate the strong impact of the Cationic Exchange Capacity (CEC) of the clay minerals upon the complex conductivity. The amplitude of the in-phase conductivity of the kaolinite-clay samples is strongly dependent to saturating fluid salinity for all volumetric clay fractions, whereas the in-phase conductivity of the smectite-clay samples is quite independent on the salinity, except at the low clay content (5% and 1% of clay in volume). This is due to the strong and constant surface conductivity of smectite associated with its very high CEC. The quadrature conductivity increases steadily with the CEC and the clay content. We observe that the dependence on frequency of the quadrature conductivity of sand-kaolinite mixtures is more important than for sand-bentonite mixtures. For both types of clay, the quadrature conductivity seems to be fairly independent on the pore fluid salinity except at very low clay contents (1% in volume of kaolinite-clay). This is due to the constant surface site density of Na counter-ions in the Stern layer of clay materials. At the lowest clay content (1%), the magnitude of the quadrature conductivity increases with the salinity, as expected for silica sands. In this case, the surface site density of Na counter-ions in the Stern layer increases with salinity. The experimental data show good agreement with predicted values given by our Spectral Induced Polarization (SIP) model. This complex conductivity model considers the electrochemical polarization of the Stern layer coating the clay particles and the Maxwell-Wagner polarization. We use the differential effective medium theory to calculate the complex

  17. Showing Value (Editorial

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2009-06-01

    librarians on student achievement. Todd notes, “If we do not show value, we will not have a future. Evidence-based practice is not about the survival of school librarians, it’s about the survival of our students” (40. In this issue we feature school libraries and their connection to evidence based practice. Former Editor-in-Chief, Lindsay Glynn, began putting the wheels in motion for this feature almost a year ago. She invited Carol Gordon and Ross Todd to act as guest editors of the section, drawing upon their contacts and previous work in this field. The result is an issue with five feature articles exploring different aspects of the connection between school libraries and evidence based practice, from the theoretical to the practical. In addition, there is a thought-provoking Commentary by David Loertscher, asking whether we need the evolutionary model of evidence based practice, or something more revolutionary!In addition to the Feature section, we have a well-rounded issue with articles on the topics of library human resources, and the development of a scholars’ portal. As well, there are a record 10 evidence summaries and our educational EBL101 column. I hope there is something for everyone in this issue of EBLIP – enjoy, and see you soon in Stockholm!

  18. Optimum coagulant forecasting by modeling jar test experiments using ANNs

    Science.gov (United States)

    Haghiri, Sadaf; Daghighi, Amin; Moharramzadeh, Sina

    2018-01-01

    Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform experimental jar tests

  19. Show-Bix &

    DEFF Research Database (Denmark)

    2014-01-01

    The anti-reenactment 'Show-Bix &' consists of 5 dias projectors, a dial phone, quintophonic sound, and interactive elements. A responsive interface will enable the Dias projectors to show copies of original dias slides from the Show-Bix piece ”March på Stedet”, 265 images in total. The copies are...

  20. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  1. Effective media models for unsaturated fractured rock: A field experiment

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1995-01-01

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  2. Validation of the containment code Sirius: interpretation of an explosion experiment on a scale model

    International Nuclear Information System (INIS)

    Blanchet, Y.; Obry, P.; Louvet, J.; Deshayes, M.; Phalip, C.

    1979-01-01

    The explicit 2-D axisymmetric Langrangian code SIRIUS, developed at the CEA/DRNR, Cadarache, deals with transient compressive flows in deformable primary tanks with more or less complex internal component geometries. This code has been subjected to a two-year intensive validation program on scale model experiments and a number of improvements have been incorporated. This paper presents a recent calculation of one of these experiments using the SIRIUS code, and the comparison with experimental results shows the encouraging possibilities of this Lagrangian code

  3. A Nonlinear Ship Manoeuvering Model: Identification and adaptive control with experiments for a model ship

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2004-01-01

    Full Text Available Complete nonlinear dynamic manoeuvering models of ships, with numerical values, are hard to find in the literature. This paper presents a modeling, identification, and control design where the objective is to manoeuver a ship along desired paths at different velocities. Material from a variety of references have been used to describe the ship model, its difficulties, limitations, and possible simplifications for the purpose of automatic control design. The numerical values of the parameters in the model is identified in towing tests and adaptive manoeuvering experiments for a small ship in a marine control laboratory.

  4. Modelling the effects of phase change materials on the energy use in buildings. Results of Experiments and System Dynamics Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prins, J.

    2012-02-15

    The current era is in need for more and more sustainable energy solutions. Phase Change Materials (PCM's) are a solution for a more sustainable build environment because they can help to reduce the energy use of buildings during heating and cooling of the indoor air. This paper presents the results of recent experiments that have been executed with test boxes. In addition a System Dynamics model has been developed to find out how PCM's can be used efficiently without testing in reality. The first experiment, in which PCM's were applied in a concrete floor, shows a reduction of peak temperatures with 4C {+-} 0.7C on maximum temperatures and over 1.5C {+-} 0.7C on minimum temperatures during warm periods. The model confirmed these findings, although the predicted reductions were slightly. During the second experiment more PCM's were applied by mounting them into the walls using gypsum plasterboard to increase the latent heat capacity. Remarkably, both the experimental set-up as the model showed that the increase of PCM's (of almost 98%) causes hardly any difference compared to the first situation. Adapting the exterior in a way to absorb more solar energy, increases the average indoor temperature but decreases the reduction of peak temperatures. Again the model confirmed these findings of the experiment. These results show that the effect of PCM's varies on different climatological contexts and with different construction components physics. This means no straight forward advice on the use of PCM's for a building design can be given. The solution for this problem is provided by the model, showing that the effects of PCM's can be modelled in order to use PCM's in an effective way in different climatological contexts and with different characteristics of construction components. The research shows that a simple model is already capable of predicting PCM performance in test boxes with reasonable accuracy. Therefore it can be

  5. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  6. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90 0 torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this

  7. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  8. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  9. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    Science.gov (United States)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  10. The BaBar experiment's distributed computing model

    International Nuclear Information System (INIS)

    Boutigny, D.

    2001-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multitier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT format and later in Objectivity format. GRID tools will be used for remote job submission

  11. A model surveillance program based on regulatory experience

    International Nuclear Information System (INIS)

    Conte, R.J.

    1980-01-01

    A model surveillance program is presented based on regulatory experience. The program consists of three phases: Program Delineation, Data Acquistion and Data Analysis. Each phase is described in terms of key quality assurance elements and some current philosophies is the United States Licensing Program. Other topics include the application of these ideas to test equipment used in the surveillance progam and audits of the established program. Program Delineation discusses the establishment of administrative controls for organization and the description of responsibilities using the 'Program Coordinator' concept, with assistance from Data Acquisition and Analysis Teams. Ideas regarding frequency of surveillance testing are also presented. The Data Acquisition Phase discusses various methods for acquiring data including operator observations, test procedures, operator logs, and computer output, for trending equipment performance. The Data Analysis Phase discusses the process for drawing conclusions regarding component/equipment service life, proper application, and generic problems through the use of trend analysis and failure rate data. (orig.)

  12. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  13. The BaBar Experiment's Distributed Computing Model

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multi-tier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT[1] format and later in Objectivity[2] format. GRID tools will be used for remote job submission

  14. Decision dynamics of departure times: Experiments and modeling

    Science.gov (United States)

    Sun, Xiaoyan; Han, Xiao; Bao, Jian-Zhang; Jiang, Rui; Jia, Bin; Yan, Xiaoyong; Zhang, Boyu; Wang, Wen-Xu; Gao, Zi-You

    2017-10-01

    A fundamental problem in traffic science is to understand user-choice behaviors that account for the emergence of complex traffic phenomena. Despite much effort devoted to theoretically exploring departure time choice behaviors, relatively large-scale and systematic experimental tests of theoretical predictions are still lacking. In this paper, we aim to offer a more comprehensive understanding of departure time choice behaviors in terms of a series of laboratory experiments under different traffic conditions and feedback information provided to commuters. In the experiment, the number of recruited players is much larger than the number of choices to better mimic the real scenario, in which a large number of commuters will depart simultaneously in a relatively small time window. Sufficient numbers of rounds are conducted to ensure the convergence of collective behavior. Experimental results demonstrate that collective behavior is close to the user equilibrium, regardless of different scales and traffic conditions. Moreover, the amount of feedback information has a negligible influence on collective behavior but has a relatively stronger effect on individual choice behaviors. Reinforcement learning and Fermi learning models are built to reproduce the experimental results and uncover the underlying mechanism. Simulation results are in good agreement with the experimentally observed collective behaviors.

  15. ITER transient consequences for material damage: modelling versus experiments

    International Nuclear Information System (INIS)

    Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V

    2007-01-01

    Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed

  16. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  17. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Directory of Open Access Journals (Sweden)

    Erik Karl Håkan Clemensson

    Full Text Available The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  18. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Science.gov (United States)

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  19. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Science.gov (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  20. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    One-dimensional and two-dimensional radial flow numerical models were used to evaluate the results for a 60.5 h ponded infiltration experiment done around a 24 m deep, 0.15 m diameter, cased borehole at Yucca Mountain, NV. Nine distinct morphological horizons in the soil profile has been identified; physical and hydraulic properties had been measured for each horizon; and a porosity profile at the borehole had been measured. During the infiltration experiment, 10 cm of water was ponded in a 3.5 m diameter infiltrometer around the borehole, the volume of water applied was measured, and water content profiles were measured with a neutron moisture meter. The infiltrometer applied 86.9 cm of water during the first 60.5 h of infiltration, but only 52.8 cm of additional water was measured in the borehole profiles. Assuming a linear relationship between cumulative infiltration (I) and the square root of time (t 0.5 ), an experimental sorptivity of 11.5 cm h -1 was estimated for the first 4.5 h of infiltration. An assumed washout zone around the borehole casing accounted for the discrepancy between the measured water content profiles and the applied water. A uniform property, 1-D model with an applied flux upper boundary described by the sorptivity confirmed the probable washout zone, and indicated that significant lateral flow into the dry soil around the infiltrometer could occur. A 2-D radial flow model with the same properties and upper boundary demonstrated that significant lateral flow occurred. The upper boundary in this model caused the upper portion of the profile to drain. This suggested using a saturated upper boundary to keep the upper portion of the profile saturated. When the saturated upper boundary was used, the permeability of the soil was decreased from the measured value of 3.28 E-11 m 2 to 1.5E-12 m 2 so that the simulated wetting front at a similar depth as the observed wetting front after 60.5 h

  1. Vibration behavior of PWR reactor internals Model experiments and analysis

    International Nuclear Information System (INIS)

    Assedo, R.; Dubourg, M.; Livolant, M.; Epstein, A.

    1975-01-01

    In the late 1971, the CEA and FRAMATOME decided to undertake a comprehensive joint program of studying the vibration behavior of PWR internals of the 900 MWe, 50 cycle, 3 loop reactor series being built by FRAMATOME in France. The PWR reactor internals are submitted to several sources of excitation during normal operation. Two main sources of excitation may effect the internals behavior: the large flow turbulences which could generate various instabilities such as: vortex shedding: the pump pressure fluctuations which could generate acoustic noise in the circuit at frequencies corresponding to shaft speed frequencies or blade passing frequencies, and their respective harmonics. The flow induced vibrations are of complex nature and the approach selected, for this comprehensive program, is semi-empirical and based on both theoretical analysis and experiments on a reduced scale model and full scale internals. The experimental support of this program consists of: the SAFRAN test loop which consists of an hydroelastic similitude of a 1/8 scale model of a PWR; harmonic vibration tests in air performed on full scale reactor internals in the manufacturing shop; the GENNEVILLIERS facilities which is a full flow test facility of primary pump; the measurements carried out during start up on the Tihange reactor. This program will be completed in April 1975. The results of this program, the originality of which consists of studying separately the effects of random excitations and acoustic noises, on the internals behavior, and by establishing a comparison between experiments and analysis, will bring a major contribution for explaining the complex vibration phenomena occurring in a PWR

  2. Daily Supplementation of D-ribose Shows No Therapeutic Benefits in the MHC-I Transgenic Mouse Model of Inflammatory Myositis

    Science.gov (United States)

    Coley, William; Rayavarapu, Sree; van der Meulen, Jack H.; Duba, Ayyappa S.; Nagaraju, Kanneboyina

    2013-01-01

    Background Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. Results Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. Conclusions Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis. PMID:23785461

  3. Daily supplementation of D-ribose shows no therapeutic benefits in the MHC-I transgenic mouse model of inflammatory myositis.

    Directory of Open Access Journals (Sweden)

    William Coley

    Full Text Available BACKGROUND: Current treatments for idiopathic inflammatory myopathies (collectively called myositis focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1, leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. RESULTS: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. CONCLUSIONS: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.

  4. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  5. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  6. INTRAVAL Finnsjoen Test - modelling results for some tracer experiments

    International Nuclear Information System (INIS)

    Jakob, A.; Hadermann, J.

    1994-09-01

    This report presents the results within Phase II of the INTRAVAL study. Migration experiments performed at the Finnsjoen test site were investigated. The study was done to gain an improved understanding of not only the mechanisms of tracer transport, but also the accuracy and limitations of the model used. The model is based on the concept of a dual porosity medium, taking into account one dimensional advection, longitudinal dispersion, sorption onto the fracture surfaces, diffusion into connected pores of the matrix rock, and sorption onto matrix surfaces. The number of independent water carrying zones, represented either as planar fractures or tubelike veins, may be greater than one, and the sorption processes are described either by linear or non-linear Freundlich isotherms assuming instantaneous sorption equilibrium. The diffusion of the tracer out of the water-carrying zones into connected pore space of the adjacent rock is calculated perpendicular to the direction of the advective/dispersive flow. In the analysis, the fluid flow parameters are calibrated by the measured breakthrough curves for the conservative tracer (iodide). Subsequent fits to the experimental data for the two sorbing tracers strontium and cesium then involve element dependent parameters providing information on the sorption processes and on its representation in the model. The methodology of fixing all parameters except those for sorption with breakthrough curves for non-sorbing tracers generally worked well. The investigation clearly demonstrates the necessity of taking into account pump flow rate variations at both boundaries. If this is not done, reliable conclusions on transport mechanisms or geometrical factors can not be achieved. A two flow path model reproduces the measured data much better than a single flow path concept. (author) figs., tabs., 26 refs

  7. Physical modeling of the boiling crisis: theory and experiment

    International Nuclear Information System (INIS)

    Nikolayev, Vadim; Beysens, Daniel; Chatain, Denis

    2008-01-01

    Full text of publication follows: In this presentation we describe a physical approach to the boiling crisis called also the critical heat flux (CHF) phenomenon. This approach is based on the hypothesis that the boiling crisis is triggered by spreading of individual vapor bubbles over the heater or equivalently by the growth of individual dry spots under the bubbles. The role of bubble coalescence is assumed to be secondary. The spreading is due to forces acting at the microscopic scale, in the neighborhood of the line of triple contact of liquid, vapor and heater where the local heat fluxes are the strongest. This picture is supposed to be independent on boiling conditions. It is confirmed by the pool boiling experiments carried out at extremely high pressures close to the gas-liquid critical point. Such unusual conditions are chosen to slow down the bubble growth sufficiently to be able to observe the dryout dynamics. In the above experiments it lasted during about a minute. To keep the usual bubble geometry, it is necessary to perform such experiments under reduced gravity. The numerical simulations are carried out for high pressures. They show two regimes of bubble growth. When the heat flux is smaller than a threshold value associated with the CHF, a vapor bubble grows and then leaves the heater by buoyancy. When the heat flux is larger than the CHF, the bubble spreads over the heater without leaving it in agreement with the experimental data. This occurs because the vapor recoil force causes both bubble spreading and strong adhesion to the heater. The CHF variation with system parameters predicted by simulations is briefly discussed. (authors) [fr

  8. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    Science.gov (United States)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  9. Little Earth Experiment: An instrument to model planetary cores.

    Science.gov (United States)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  10. Interpretation of experiments and modeling of internal strains in Beryllium using a polycrystal model

    International Nuclear Information System (INIS)

    Tome, C.; Bourke, M.A.M.; Daymond, M.R.

    2000-01-01

    The elastic and plastic anisotropy of Be have been examined during a uniaxial compression test, by in-situ monitoring in a pulsed neutron beam. Comparisons between the measured hkil strains and the predictions from an elasto-plastic self-consistent (EPSC) model are made. Agreement is qualitatively correct for most planes in the elasto-plastic regime. Possible mechanisms responsible for the quantitative discrepancies between model and experiment are discussed

  11. The scintillating optical fiber isotope experiment: Bevalac calibrations of test models

    International Nuclear Information System (INIS)

    Connell, J.J.; Binns, W.R.; Dowkontt, P.F.; Epstein, J.W.; Israel, M.H.; Klarmann, J.; Washington Univ., St. Louis, MO; Webber, W.R.; Kish, J.C.

    1990-01-01

    The Scintillating Optical Fiber Isotope Experiment (SOFIE) is a Cherenkov dE/dx-range experiment being developed to study the isotopic composition of cosmic rays in the iron region with sufficient resolution to resolve isotopes separated by one mass unit at iron. This instrument images stopping particles with a block of scintillating optical fibers coupled to an image intensified video camera. From the digitized video data the trajectory and range of particles stopping in the fiber bundle can be determined; this information, together with a Cherenkov measurement, is used to determine mass. To facilitate this determination, a new Cherenkov response equation was derived for heavy ions at energies near threshold in thick Cherenkov radiators. Test models of SOFIE were calibrated at the Lawrence Berkeley Laboratory's Bevalac heavy ion accelerator in 1985 and 1986 using beams of iron nuclei with energies of 465 to 515 MeV/nucleon. This paper presents the results of these calibrations and discusses the design of the SOFIE Bevalac test models in the context of the scientific objectives of the eventual balloon experiment. The test models show a mass resolution of σ A ≅0.30 amu and a range resolution of σ R ≅250 μm. These results are sufficient for a successful cosmic ray isotope experiment, thus demonstrating the feasibility of the detector system. The SOFIE test models represent the first successful application in the field of cosmic ray astrophysics of the emerging technology of scintillating optical fibers. (orig.)

  12. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  13. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    Directory of Open Access Journals (Sweden)

    Gryk Michael R

    2007-01-01

    Full Text Available Abstract Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting

  14. Modeling decisions from experience: How models with a set of parameters for aggregate choices explain individual choices

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2017-10-01

    Full Text Available One of the paradigms (called “sampling paradigm” in judgment and decision-making involves decision-makers sample information before making a final consequential choice. In the sampling paradigm, certain computational models have been proposed where a set of single or distribution parameters is calibrated to the choice proportions of a group of participants (aggregate and hierarchical models. However, currently little is known on how aggregate and hierarchical models would account for choices made by individual participants in the sampling paradigm. In this paper, we test the ability of aggregate and hierarchical models to explain choices made by individual participants. Several models, Ensemble, Cumulative Prospect Theory (CPT, Best Estimation and Simulation Techniques (BEAST, Natural-Mean Heuristic (NMH, and Instance-Based Learning (IBL, had their parameters calibrated to individual choices in a large dataset involving the sampling paradigm. Later, these models were generalized to two large datasets in the sampling paradigm. Results revealed that the aggregate models (like CPT and IBL accounted for individual choices better than hierarchical models (like Ensemble and BEAST upon generalization to problems that were like those encountered during calibration. Furthermore, the CPT model, which relies on differential valuing of gains and losses, respectively, performed better than other models during calibration and generalization on datasets with similar set of problems. The IBL model, relying on recency and frequency of sampled information, and the NMH model, relying on frequency of sampled information, performed better than other models during generalization to a challenging dataset. Sequential analyses of results from different models showed how these models accounted for transitions from the last sample to final choice in human data. We highlight the implications of using aggregate and hierarchical models in explaining individual choices

  15. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    International Nuclear Information System (INIS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-01-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)

  16. Bifactor Models Show a Superior Model Fit: Examination of the Factorial Validity of Parent-Reported and Self-Reported Symptoms of Attention-Deficit/Hyperactivity Disorders in Children and Adolescents.

    Science.gov (United States)

    Rodenacker, Klaas; Hautmann, Christopher; Görtz-Dorten, Anja; Döpfner, Manfred

    2016-01-01

    Various studies have demonstrated that bifactor models yield better solutions than models with correlated factors. However, the kind of bifactor model that is most appropriate is yet to be examined. The current study is the first to test bifactor models across the full age range (11-18 years) of adolescents using self-reports, and the first to test bifactor models with German subjects and German questionnaires. The study sample included children and adolescents aged between 6 and 18 years recruited from a German clinical sample (n = 1,081) and a German community sample (n = 642). To examine the factorial validity, we compared unidimensional, correlated factors and higher-order and bifactor models and further tested a modified incomplete bifactor model for measurement invariance. Bifactor models displayed superior model fit statistics compared to correlated factor models or second-order models. However, a more parsimonious incomplete bifactor model with only 2 specific factors (inattention and impulsivity) showed a good model fit and a better factor structure than the other bifactor models. Scalar measurement invariance was given in most group comparisons. An incomplete bifactor model would suggest that the specific inattention and impulsivity factors represent entities separable from the general attention-deficit/hyperactivity disorder construct and might, therefore, give way to a new approach to subtyping of children beyond and above attention-deficit/hyperactivity disorder. © 2016 S. Karger AG, Basel.

  17. Model of lumbar spinal stenosis in the experiment

    Directory of Open Access Journals (Sweden)

    Oleg Perepechai

    2015-07-01

      Abstracts The description of an experimental model of lumbar spinal stenosis on 20 rats. The experiment was symmetrical dissection of arc plates to the inside thin cortical layer plates, and then dissection of the latter. The middle part of the arc with the spinous processes of the vertebrae is separated from the rest of the arc, and articular processes. The separated middle part of the arc with yellow ligament is shifted in the ventral direction, reducing the size of the cavity of the spinal canal and fix the contacting bone edges with bone cement. Degenerative changes of the nerve roots were evaluated histologically by endoneural and epineural changes using a 7-point scale of G. Byrond and others. In the studied group of animals 7 days after spinal canal stenosis simulations appeared degenerative changes of nerve fibers, but the degree is low, and there is virtually no endoneural inflammation. The epineurium determined expressed or gross changes, indicating epineural inflammatory processes. After 1 month. There appeared dystrophic and degenerative changes of nerve fibers of the overwhelming majority (over 75%. At a later date (3 months, endoneural change remained practically the same as in the 1th month after surgery, epineural violations were preserved, there were groups and single fibroblasts as a sign of epineural fibrosis, as well as portions of connective tissue neoplasms and hyalinosis.   Keywords: lumbar spinal stenosis, an experimental model.

  18. Integrated modeling of cryogenic layered highfoot experiments at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.; Hurricane, O. A.; Clark, D.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Haan, S.; Berzak Hopkins, L. F.; Jones, O.; Landen, O.; Ma, T.; Meezan, N.; Milovich, J. L.; Pak, A. E.; Park, H.-S.; Patel, P. K. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2016-05-15

    Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10–12)/(13–15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1–2.5× for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. These calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several.

  19. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    Science.gov (United States)

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  20. Aespoe modelling task force - experiences of the site specific flow and transport modelling (in detailed and site scale)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Stroem, A.; Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co. , Stockholm (Sweden)

    1998-09-01

    The Aespoe Task Force on modelling of groundwater flow and transport of solutes was initiated in 1992. The Task Force shall be a forum for the organisations supporting the Aespoe Hard Rock Laboratory Project to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Much emphasis is put on building of confidence in the approaches and methods in use for modelling of groundwater flow and nuclide migration in order to demonstrate their use for performance and safety assessment. The modelling work within the Task Force is linked to the experiments performed at the Aespoe Laboratory. As the first Modelling Task, a large scale pumping and tracer experiment called LPT2 was chosen. This was the final part of the characterisation work for the Aespoe site before the construction of the laboratory in 1990. The construction of the Aespoe HRL access tunnel caused an even larger hydraulic disturbance on a much larger scale than that caused by the LPT2 pumping test. This was regarded as an interesting test case for the conceptual and numerical models of the Aespoe site developed during Task No 1, and was chosen as the third Modelling Task. The aim of Task 3 can be seen from two different perspectives. The Aespoe HRL project saw it as a test of their ability to define a conceptual and structural model of the site that can be utilised by independent modelling groups and be transformed to a predictive groundwater flow model. The modelling groups saw it as a means of understanding groundwater flow in a large fractured rock volume and of testing their computational tools. A general conclusion is that Task 3 has served these purposes well. Non-sorbing tracers tests, made as a part of the TRUE-experiments were chosen as the next predictive modelling task. A preliminary comparison between model predictions made by the Aespoe Task Force and the experimental results, shows that most modelling teams predicted breakthrough from

  1. Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

    Science.gov (United States)

    Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.

    2012-01-01

    Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145

  2. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    Science.gov (United States)

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  3. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2013-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20...

  4. Design and experiments with scale model of a ship with dynamic positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Eduardo S.; Morishita, Helio M.; Moratelli Junior, Lazaro; Lago, Glenan A.; Tannuri, Eduardo A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2008-07-01

    Dynamic Positioning Systems (DPS) are used to keep a floating vessel on a specific position or follow pre-defined path through the action of controlled propellers. This paper describes a facility used to experimentally analyze DPS and to validate a numerical simulator. It is composed by a scale model of a DP tanker with 3 thrusters, a measurement system based on computational vision and a control software with the same DP algorithms used in industrial systems. Simple wind and current generators were also implemented. This work shows preliminary results of experiments, which has been useful to calibrate the simulator and to validate the mathematical model. (author)

  5. Experiments and CFD Modelling of Turbulent Mass Transfer in a Mixing Channel

    DEFF Research Database (Denmark)

    Hjertager Osenbroch, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron

    2006-01-01

    . Three different flow cases are studied. The 2D numerical predictions of the mixing channel show that none of the k-ε turbulence models tested is suitable for the flow cases studied here. The turbulent Schmidt number is reduced to obtain a better agreement between measured and predicted mean......Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration fields...... and fluctuating concentrations. The multi-peak presumed PDF mixing model is tested....

  6. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    International Nuclear Information System (INIS)

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-01-01

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  7. Adhesive behaviour of gecko-inspired nanofibrillar arrays: combination of experiments and finite element modelling

    International Nuclear Information System (INIS)

    Wang Zhengzhi; Xu Yun; Gu Ping

    2012-01-01

    A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories. (fast track communication)

  8. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    mitigation measures. Based on sensitivity analyses and parameter studies performed on the THAI HM2 test, quality guidelines are developed by NRG for the practical application of this CFD containment model. In order to confirm the general applicability of the containment model and model settings, more experimental tests have been analyzed. In this paper, the CFD containment model of NRG is further validated in the context of hydrogen distribution with experiments from the TOSQAN, THAI and PANDA facility. The selected experimental tests cover different processes and conditions typical for a severe accident. The CFD based containment model shows an overall good agreement with the experiments

  9. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    mitigation measures. Based on sensitivity analyses and parameter studies performed on the THAI HM2 test, quality guidelines are developed by NRG for the practical application of this CFD containment model. In order to confirm the general applicability of the containment model and model settings, more experimental tests have been analyzed. In this paper, the CFD containment model of NRG is further validated in the context of hydrogen distribution with experiments from the TOSQAN, THAI and PANDA facility. The selected experimental tests cover different processes and conditions typical for a severe accident. The CFD based containment model shows an overall good agreement with the experiments.

  10. Divertor plasma studies on DIII-D: Experiment and modeling

    International Nuclear Information System (INIS)

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process

  11. Data from the Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, Pierre; Kimball, Bruce A.; Ottman, Michael J.; Wall, Gerard W.; White, Jeffrey W.; Asseng, Senthold; Ewert, Frank; Cammarano, Davide; Maiorano, Andrea; Aggarwal, Pramod K.; Supit, I.; Wolf, J.

    2018-01-01

    The dataset reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid

  12. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2O disease.

    Science.gov (United States)

    Sabblah, Thywill T; Nandini, Swaran; Ledray, Aaron P; Pasos, Julio; Calderon, Jami L Conley; Love, Rachal; King, Linda E; King, Stephen J

    2018-01-29

    Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.

  13. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches.

    Science.gov (United States)

    Bhattacharjee, Snehasish; Chakraborty, Sandipan; Sengupta, Pradeep K; Bhowmik, Sudipta

    2016-09-01

    Guanine-rich sequences have the propensity to fold into a four-stranded DNA structure known as a G-quadruplex (G4). G4 forming sequences are abundant in the promoter region of several oncogenes and become a key target for anticancer drug binding. Here we have studied the interactions of two structurally similar dietary plant flavonoids fisetin and naringenin with G4 as well as double stranded (duplex) DNA by using different spectroscopic and modeling techniques. Our study demonstrates the differential binding ability of the two flavonoids with G4 and duplex DNA. Fisetin more strongly interacts with parallel G4 structure than duplex DNA, whereas naringenin shows stronger binding affinity to duplex rather than G4 DNA. Molecular docking results also corroborate our spectroscopic results, and it was found that both of the ligands are stacked externally in the G4 DNA structure. C-ring planarity of the flavonoid structure appears to be a crucial factor for preferential G4 DNA recognition of flavonoids. The goal of this study is to explore the critical effects of small differences in the structure of closely similar chemical classes of such small molecules (flavonoids) which lead to the contrasting binding properties with the two different forms of DNA. The resulting insights may be expected to facilitate the designing of the highly selective G4 DNA binders based on flavonoid scaffolds.

  14. Talking with TV shows

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Laursen, Ditte

    2014-01-01

    User interaction with radio and television programmes is not a new thing. However, with new cross-media production concepts such as X Factor and Voice, this is changing dramatically. The second-screen logic of these productions encourages viewers, along with TV’s traditional one-way communication...... mode, to communicate on interactive (dialogue-enabling) devices such as laptops, smartphones and tablets. Using the TV show Voice as our example, this article shows how the technological and situational set-up of the production invites viewers to engage in new ways of interaction and communication...

  15. Model experiments for {sup 14}C water-age determinations

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, I; Stahl, W; Geyh, M; Fauth, F [Bundesanstalt fuer Bodenforschung, Hannover (Germany)

    1967-05-15

    The {sup 14}C age of water samples is calculated by assuming that fossil carbonate is dissolved by biogenic CO{sub 2} according to the equation x{sub 1} {center_dot} CaCO{sub 3} + (x{sub 1}+y{sub 1}) {center_dot} CO{sub 2} + H{sub 2}O = 2x{sub 1} {center_dot} HCO{sub 3} + y{sub 1} {center_dot} CO{sub 2} where x and y are the number of moles of the two carbon components before and after the dissolution process. In a closed system the relation y{sub 1} = K(T) (x{sub 1}){sup 3} must be satisfied additionally. The equilibrium constant K(T), which depends on the temperature, controls the concentrations of free CO{sub 2} and HCO{sub 3}. To investigate the mechanism of the dissolution, laboratory experiments under controlled conditions were carried out. Non-radioactive CaCO{sub 3}, which had a {delta}{sup 13}C-value of +30 per mille, and radioactive CO{sub 2} with {delta}{sup 13}C = -22 per mille were used. The purpose of these investigations was to check the validity of theoretical assumptions regarding the average {sup 14}C-activity and the {delta}{sup 13}C-value of the total carbon which is dissolved as CO{sub 2} and HCO{sub 3}. Furthermore, it was investigated whether, within the duration of the experiment, a possible exchange takes place between the undissolved carbon present in the CaCO{sub 3} and that present in the HCO{sub 3}. The importance of this lies in the fact that the method of {sup 14}C age determination is based on the assumption that such an exchange does not take place. The experiments which have been performed up to now show that in case of the simple CaCO{sub 3} - CO{sub 2} system, which has been considered first, this assumption is not justified even for a constant water temperature. If variations in the water temperature occur during the history of the water sample, precipitation and redissolution processes influence the {sup 14}C- and {delta}{sup 13}C -values differently. This is due to isotopic fractionation processes between the HCO{sub 3} and CO

  16. Model-independent curvature determination with 21 cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-06-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  17. Talk Show Science.

    Science.gov (United States)

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  18. Obesity in show cats.

    Science.gov (United States)

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  19. Flooding Experiments and Modeling for Improved Reactor Safety

    International Nuclear Information System (INIS)

    Solmos, M.; Hogan, K.J.; VIerow, K.

    2008-01-01

    Countercurrent two-phase flow and 'flooding' phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing

  20. Model for Fuel-Sodium Interaction - Application to the JEF Experiments

    International Nuclear Information System (INIS)

    Breton, J.P.; Antonakas, D.

    1976-01-01

    A model of sodium-fuel interaction, referred to as TRACONABUEE, has been developed. The fuel particles are assumed to be introduces in the interacting zone within a finite mixing time, according to a given function (not necessarily linear). The equations for heat transfer inside fuel particles are those of Cho and Wright (transient conduction for phase A and quasi-steady state heat transfer for phase B). During phase B several options for heat transfer from fuel to sodium can be assumed (no transfer, transfer proportional to the volume fraction of liquid sodium, given duration of transfer, etc... ) Two versions are available: a spherical one (EPISCOPOS) and an axial one (TEXAS). For application to the JEF experiments a model of heat losses along the cold column had to be introduced into TEXAS. It was found that the phenomenon is essentially governed by the heat losses. The velocity of the cold sodium in the column presents marked maxima and minima. The agreement with experiment is satisfactory. In conclusion: Due to their simple well-defined geometry, the JEF experiments can be profitably interpreted. They are inadequate for the determination of the interacting sodium mass. On the other hand they allow to fit a simple, parametric, two-phase heat transfer model, suitable for this type of experiments. Finally they show the great importance of the heat losses when the mass of molten fuel is small. These- latter alone explain the phenomenon

  1. Experiences with a procedure for modeling product knowledge

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Hvam, Lars

    2002-01-01

    This paper presents experiences with a procedure for building configurators. The procedure has been used in an American company producing custom-made precision air conditioning equipment. The paper describes experiences with the use of the procedure and experiences with the project in general....

  2. A Model for Designing Adaptive Laboratory Evolution Experiments

    DEFF Research Database (Denmark)

    LaCroix, Ryan A.; Palsson, Bernhard O.; Feist, Adam M.

    2017-01-01

    in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized fashion and can design experiments to generate greater fitness in an accelerated time frame, thereby pushing the limits of what...

  3. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Fritsching, G.; Wolf, G. [Internationale Atomreaktorbau G.m.b.H. (INTERATOM), Bergisch Gladbach (Germany, F.R.)

    1981-01-15

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen.

  4. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    International Nuclear Information System (INIS)

    Fritsching, G.; Wolf, G.

    1981-01-01

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen

  5. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    International Nuclear Information System (INIS)

    Vierow, Karen

    2008-01-01

    This project is investigating countercurrent flow and 'flooding' phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the 'surge line' and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008

  6. Assessing a five factor model of PTSD: is dysphoric arousal a unique PTSD construct showing differential relationships with anxiety and depression?

    Science.gov (United States)

    Armour, Cherie; Elhai, Jon D; Richardson, Don; Ractliffe, Kendra; Wang, Li; Elklit, Ask

    2012-03-01

    Posttraumatic stress disorder's (PTSD) latent structure has been widely debated. To date, two four-factor models (Numbing and Dysphoria) have received the majority of factor analytic support. Recently, Elhai et al. (2011) proposed and supported a revised (five-factor) Dysphoric Arousal model. Data were gathered from two separate samples; War veterans and Primary Care medical patients. The three models were compared and the resultant factors of the Dysphoric Arousal model were validated against external constructs of depression and anxiety. The Dysphoric Arousal model provided significantly better fit than the Numbing and Dysphoria models across both samples. When differentiating between factors, the current results support the idea that Dysphoric Arousal can be differentiated from Anxious Arousal but not from Emotional Numbing when correlated with depression. In conclusion, the Dysphoria model may be a more parsimonious representation of PTSD's latent structure in these trauma populations despite superior fit of the Dysphoric Arousal model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Zeng YX

    2016-04-01

    Full Text Available Yixuan Zeng,1,2,* Wenyuan Guo,1,* Guangqing Xu,3 Qinmei Wang,4 Luyang Feng,1,2 Simei Long,1 Fengyin Liang,1 Yi Huang,1 Xilin Lu,1 Shichang Li,5 Jiebin Zhou,5 Jean-Marc Burgunder,6 Jiyan Pang,5 Zhong Pei1,2 1Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, 2Guangzhou Center, Chinese Huntington’s Disease Network, 3Department of Rehabilitation, The First Affiliated Hospital, 4Key laboratory on Assisted Circulation, Ministry of Health, Department of Cardiovascular Medicine of the First Affiliated Hospital, 5School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China; 6Swiss Huntington’s Disease Center, Department of Neurology, University of Bern, Bern, Switzerland *These authors contributed equally to this work Abstract: Huntington’s disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt. Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington’s disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson’s and Alzheimer’s diseases. To identify potential neuroprotective molecules for Huntington’s disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington’s disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a

  8. Microfluidic model experiments on the injectability of monoclonal antibody solutions

    Science.gov (United States)

    Duchene, Charles; Filipe, Vasco; Nakach, Mostafa; Huille, Sylvain; Lindner, Anke

    2017-11-01

    Autoinjection devices that allow patients to self-administer medicine are becoming used more frequently; however, this advance comes with an increased need for precision in the injection process. The rare occurrence of protein aggregates in solutions of monoclonal antibodies constitutes a threat to the reliability of such devices. Here we study the flow of protein solutions containing aggregates in microfluidic model systems, mimicking injection devices, to gain fundamental understanding of the catastrophic clogging of constrictions of given size. We form aggregates by mechanically shaking or heating antibody solutions and then inject these solutions into microfluidic channels with varying types of constrictions. Geometrical clogging occurs when aggregates reach the size of the constriction and can in some cases be undone by increasing the applied pressure. We perform systematic experiments varying the relative aggregate size and the flow rate or applied pressure. The mechanical deformation of aggregates during their passage through constrictions is investigated to gain a better understanding of the clogging and unclogging mechanisms.

  9. Experiments and Modeling to Support Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-25

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested at several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.

  10. High-anxious individuals show increased chronic stress burden, decreased protective immunity, and increased cancer progression in a mouse model of squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Firdaus S Dhabhar

    Full Text Available In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2-3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED, 3 times/week, 10-weeks. The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome, and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th, cytolytic (CTL, and regulatory (Treg T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden, increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression, lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity, and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis. These results suggest that the deleterious effects of high trait anxiety

  11. The energy show

    International Nuclear Information System (INIS)

    1988-01-01

    The Energy Show is a new look at the problems of world energy, where our supplies come from, now and in the future. The programme looks at how we need energy to maintain our standards of living. Energy supply is shown as the complicated set of problems it is - that Fossil Fuels are both raw materials and energy sources, that some 'alternatives' so readily suggested as practical options are in reality a long way from being effective. (author)

  12. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    Science.gov (United States)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  13. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments

    International Nuclear Information System (INIS)

    Woods, Jason; Kozubal, Eric

    2013-01-01

    Highlights: ► We studied a new process combining liquid desiccants and evaporative cooling. ► We modeled the process using a finite-difference numerical model. ► We measured the performance of the process with experimental prototypes. ► Results show agreement between model and experiment of ±10%. ► Results add confidence to previous modeled energy savings estimates of 40–85%. - Abstract: This article presents modeling and experimental results on a recently proposed liquid desiccant air conditioner, which consists of two stages: a liquid desiccant dehumidifier and an indirect evaporative cooler. Each stage is a stack of channel pairs, where a channel pair is a process air channel separated from an exhaust air channel with a thin plastic plate. In the first stage, a liquid desiccant film, which lines the process air channels, removes moisture from the air through a porous hydrophobic membrane. An evaporating water film wets the surface of the exhaust channels and transfers the enthalpy of vaporization from the liquid desiccant into an exhaust airstream, cooling the desiccant and enabling lower outlet humidity. The second stage is a counterflow indirect evaporative cooler that siphons off and uses a portion of the cool-dry air exiting the second stage as the evaporative sink. The objectives of this article are to (1) present fluid-thermal numerical models for each stage, (2) present experimental results of prototypes for each stage, and (3) compare the modeled and experimental results. Several experiments were performed on the prototypes over a range of inlet temperatures and humidities, process and exhaust air flow rates, and desiccant concentrations and flow rates. The model predicts the experiments within ±10%.

  14. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model.

    Science.gov (United States)

    Tan, Jianlong; Li, Min; Zhong, Wen; Hu, Chengping; Gu, Qihua; Xie, Yali

    2017-11-17

    Brain metastasis is an increasing problem in non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs), including gefitinib, erlotinib, and icotinib, are reported to be effective in patients with brain metastases. However, direct comparative studies of the pharmacokinetics and efficacy of these three drugs in treating brain metastases are lacking. In the present investigation, we found that gefitinib penetrated the blood-tumor barrier and was distributed to brain metastases more effectively than erlotinib or icotinib in a nude mouse model. The 1-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 9.82±1.03%, 4.83±0.25%, and 2.62±0.21%, respectively. The 2-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 15.11±2.00%, 5.73±1.31%, and 2.69±0.31%, respectively. Gefitinib exhibited the strongest antitumor activity ( p gefitinib vs. erlotinib =0.005; p gefitinib vs. icotinib =0.002). Notably, erlotinib exhibited a better treatment efficacy than icotinib ( p =0.037). Consistently, immunohistochemical data showed that TKIs differentially inhibit the proliferation of metastatical tumor cells. Gefitinib and erlotinib markedly inhibited the proliferation of tumor cells, while there were more ki-67-positive tumor cells in the icotinib group. Additionally, gefitinib inhibited the phosphorylation of EGFR better than the other drugs, whereas pEGFR expression levels in erlotinib groups were lower than levels in the icotinib group ( p gefitinib vs. erlotinib =0.995; p gefitinib vs. icotinib =0.028; p erlotinib vs. icotinib =0.042).Altogether, our findings suggest that gefitinib and erlotinib can inhibit the growth of PC-9-luc brain tumors. Gefitinib demonstrated better antitumor activity and penetration rate in brain metastases than erlotinib or icotinib.

  15. Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model.

    Science.gov (United States)

    Olmo, F; Guardia, J J; Marin, C; Messouri, I; Rosales, M J; Urbanová, K; Chayboun, I; Chahboun, R; Alvarez-Manzaneda, E J; Sánchez-Moreno, M

    2015-01-07

    Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is an example of extended parasitaemia with unmet medical needs. Current treatments based on old-featured benznidazole (Bz) and nifurtimox are expensive and do not fulfil the criteria of effectiveness, and a lack of toxicity devoid to modern drugs. In this work, a group of abietic acid derivatives that are chemically stable and well characterised were introduced as candidates for the treatment of Chagas disease. In vitro and in vivo assays were performed in order to test the effectiveness of these compounds. Finally, those which showed the best activity underwent additional studies in order to elucidate the possible mechanism of action. In vitro results indicated that some compounds have low toxicity (i.e. >150 μM, against Vero cell) combined with high efficacy (i.e. <20 μM) against some forms of T. cruzi. Further in vivo studies on mice models confirmed the expectations of improvements in infected mice. In vivo tests on the acute phase gave parasitaemia inhibition values higher those of Bz, and a remarkable decrease in the reactivation of parasitaemia was found in the chronic phase after immunosuppression of the mice treated with one of the compounds. The morphological alterations found in treated parasites with our derivatives confirmed extensive damage; energetic metabolism disturbances were also registered by (1)H NMR. The demonstrated in vivo activity and low toxicity, together with the use of affordable starting products and the lack of synthetic complexity, put these abietic acid derivatives in a remarkable position toward the development of an anti-Chagasic agent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. MODELLING CONSUMERS' DEMAND FOR ORGANIC FOOD PRODUCTS: THE SWEDISH EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Manuchehr Irandoust

    2016-07-01

    Full Text Available This paper attempts to examine a few factors characterizing consumer preferences and behavior towards organic food products in the south of Sweden using a proportional odds model which captures the natural ordering of dependent variables and any inherent nonlinearities. The findings show that consumer's choice for organic food depends on perceived benefits of organic food (environment, health, and quality and consumer's perception and attitudes towards labelling system, message framing, and local origin. In addition, high willingness to pay and income level will increase the probability to buy organic food, while the cultural differences and socio-demographic characteristics have no effect on consumer behaviour and attitudes towards organic food products. Policy implications are offered.

  17. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  18. Intrinsic dynamics of heart regulatory systems on short timescales: from experiment to modelling

    International Nuclear Information System (INIS)

    Khovanov, I A; Khovanova, N A; McClintock, P V E; Stefanovska, A

    2009-01-01

    We discuss open problems related to the stochastic modelling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short timescales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modelling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics

  19. Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment

    Science.gov (United States)

    He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.

    2017-02-01

    In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.

  20. Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling

    DEFF Research Database (Denmark)

    Kessler, Adam J.; Glud, Ronnie N.; Cardenas, M. Bayani

    2012-01-01

    We measured denitrification in permeable sediments in a sealed flume tank with environmentally representative fluid flow and solute transport behavior using novel measurements. Numerical flow and reactive transport models representing the flume experiments were implemented to provide mechanistic...... insight into the coupled hydrodynamic and biogeochemical processes. There was broad agreement between the model results and experimental data. The model showed that the coupling between nitrification and denitrification was relatively weak in comparison to that in cohesive sediments. This was due...... of permeable sediments with nonmigratory ripples to remove bioavailable nitrogen from coastal ecosystems is lower than that of cohesive sediments. We conclude that while experimental measurements provide a good starting point for constraining key parameters, reactive transport models with realistic kinetic...

  1. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  2. CERN on show

    CERN Multimedia

    2012-01-01

    Last week I was in Ankara to discuss Turkish accession to CERN, and to take part in the opening of CERN’s main travelling exhibition at the Middle East Technical University. I was astonished at the crowds of people the exhibition drew in, and I’m told that it’s a similar story wherever it goes. Our smaller exhibition stands are also much in demand across our Member States.   You don’t have to travel to Ankara, however, to experience the same phenomenon – just go to Building 33 any time from Monday to Saturday and you’ll get the idea. But although we’ve worked hard over recent years to increase our capacity for visits to a level approaching 80,000 per year, there’s still a long waiting list. And that’s a problem. The success of the Visits Service rests on the goodwill of all the CERNois who volunteer to be guides, as well as those who graciously allow increasing numbers of visitors into their workplaces...

  3. GTS-LCS, in-situ experiment 2. Modeling of tracer test 09-03

    International Nuclear Information System (INIS)

    Manette, M.; Saaltink, M.W.; Soler, J.M.

    2015-02-01

    Within the framework of the GTS-LCS project (Grimsel Test Site - Long-Term Cement Studies), an in-situ experiment lasting about 5 years was started in 2009 to study water-cement-rock interactions in a fractured granite. Prior to the experiment, a tracer test was performed to characterize the initial flow and transport properties of the rock around the experimental boreholes. This study reports on the model interpretation of tracer test 09-03. The calculations were performed by means of a two-dimensional model (homogeneous fracture plane including 3 boreholes) using the Retraso-CodeBright software package. In the tracer test, Grimsel groundwater containing the tracer (uranine) was circulated in the emplacement borehole during 43 days (zero injection flow rate). Circulation continued without tracer afterwards. Water was extracted at the observation and extraction boreholes. Results from a model sensitivity analysis comparing model results with measured tracer concentrations showed 3 cases where the evolution of tracer concentrations in the 3 different boreholes was satisfactory. In these cases a low-permeability skin affected the emplacement and observation boreholes. No skin appeared to affect the extraction borehole. The background hydraulic gradient seems to have no effect on the results of the tracer test. These results will be applied in the calculation of the initial flow field for the reactive transport phase of in-situ experiment 2 (interaction between pre-hardened cement and fractured granite at Grimsel). (orig.)

  4. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    International Nuclear Information System (INIS)

    Li, Lu; Huang, Xianjia; Bi, Kun; Liu, Xiaoshuang

    2016-01-01

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  5. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Sate Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027 (China); Huang, Xianjia, E-mail: huangxianjia@gziit.ac.cn [Joint Laboratory of Fire Safety in Nuclear Power Plants, Institute of Industry Technology Guangzhou & Chinese Academy of Sciences, Guangzhou 511458 (China); Bi, Kun; Liu, Xiaoshuang [China Nuclear Power Design Co., Ltd., Shenzhen 518045 (China)

    2016-05-15

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  6. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    Science.gov (United States)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  7. Densification of sintered molybdenum during hot upsetting: experiments and modelling

    International Nuclear Information System (INIS)

    Parteder, E.; Kopp, R.

    1999-01-01

    The densification behaviour of sintered molybdenum is investigated experimentally and by modelling using a pressure dependent plasticity model. Therefore the yield condition of Gurson, extended by Tvergaard is used. The uniaxial compression test is applied to determine the evolution of the density as well as the stress-strain curves for the porous metal. Powder metallurgical molybdenum exhibits closed porosity after consolidation due to sintering with nearly spherical shaped pores. The experimental results show that the densification, especially during the first stage of deformation, is different from that of powder compacts or partially consolidated powder materials with open porosity. During hot upsetting, the pores change their size and shape. This behaviour strongly affects the densification rate. For an accurate prediction of the evolution of the density using Gurson's model, the parameters q 1 and q 2 introduced by Tvergaard, will be defined as internal variables. The use of internal variables is justified by the fact that the pores change their shape during deformation, although the link between the internal variables and the pore shape is not explicitly established in this paper. If the loading is proportional (which means that the ratio of the stress-components does not change with plastic strain), the pore shape can be associated with the applied plastic strain. With this association the parameters q i can be defined as a function from the invariant quantity equivalent plastic strain, which can be used as the internal variable in the finite element simulation. The influence of the porosity on the flow stress at different levels of plastic strain will also be investigated and is used as a second information to fit both parameters q 1 and q 2 . (orig.)

  8. Structural Adjustment Policy Experiments: The Use of Philippine CGE Models

    OpenAIRE

    Cororaton, Caesar B.

    1994-01-01

    This paper reviews the general structure of the following general computable general equilibrium (CGE): the APEX model, Habito’s second version of the PhilCGE model, Cororaton’s CGE model and Bautista’s first CGE model. These models are chosen as they represent the range of recently constructed CGE models of the Philippine economy. They also represent two schools of thought in CGE modeling: the well defined neoclassical, Walrasian, general equilibrium school where the market-clearing variable...

  9. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    International Nuclear Information System (INIS)

    Hoyer, Michael

    2017-01-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  10. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Michael

    2017-07-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  11. Unpacking buyer-seller differences in valuation from experience: A cognitive modeling approach.

    Science.gov (United States)

    Pachur, Thorsten; Scheibehenne, Benjamin

    2017-12-01

    People often indicate a higher price for an object when they own it (i.e., as sellers) than when they do not (i.e., as buyers)-a phenomenon known as the endowment effect. We develop a cognitive modeling approach to formalize, disentangle, and compare alternative psychological accounts (e.g., loss aversion, loss attention, strategic misrepresentation) of such buyer-seller differences in pricing decisions of monetary lotteries. To also be able to test possible buyer-seller differences in memory and learning, we study pricing decisions from experience, obtained with the sampling paradigm, where people learn about a lottery's payoff distribution from sequential sampling. We first formalize different accounts as models within three computational frameworks (reinforcement learning, instance-based learning theory, and cumulative prospect theory), and then fit the models to empirical selling and buying prices. In Study 1 (a reanalysis of published data with hypothetical decisions), models assuming buyer-seller differences in response bias (implementing a strategic-misrepresentation account) performed best; models assuming buyer-seller differences in choice sensitivity or memory (implementing a loss-attention account) generally fared worst. In a new experiment involving incentivized decisions (Study 2), models assuming buyer-seller differences in both outcome sensitivity (as proposed by a loss-aversion account) and response bias performed best. In both Study 1 and 2, the models implemented in cumulative prospect theory performed best. Model recovery studies validated our cognitive modeling approach, showing that the models can be distinguished rather well. In summary, our analysis supports a loss-aversion account of the endowment effect, but also reveals a substantial contribution of simple response bias.

  12. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Bacelli

    2017-04-01

    Full Text Available Empirically based modeling is an essential aspect of design for a wave energy converter. Empirically based models are used in structural, mechanical and control design processes, as well as for performance prediction. Both the design of experiments and methods used in system identification have a strong impact on the quality of the resulting model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followed for wave tank testing. The general system identification processes are shown to have a number of advantages, including an increased signal-to-noise ratio, reduced experimental time and higher frequency resolution. The experimental wave tank data is used to produce multiple models using different formulations to represent the dynamics of the wave energy converter. These models are validated and their performance is compared against one another. While most models of wave energy converters use a formulation with surface elevation as an input, this study shows that a model using a hull pressure measurement to incorporate the wave excitation phenomenon has better accuracy.

  13. The role of inertia in modeling decisions from experience with instance-based learning.

    Science.gov (United States)

    Dutt, Varun; Gonzalez, Cleotilde

    2012-01-01

    One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.

  14. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    stochastic Lanchester campaign model that contains 18 Blue and 25 Red submarines. The outputs of the campaign models are analyzed statistically. The...sampled in a variety of ways, including just the mean, and used to calculate the attrition coefficients for a stochastic Lanchester campaign model...9 2. Lanchester Models .............................................................................10 III. SCENARIO AND MODEL DEVELOPMENT

  15. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    simple empirical models [Versace et al., 2003] based on correlation between some features of rainfall records (cumulated height, duration, season etc.) and the correspondent observed landslides. Laboratory experiments on instrumented small scale slope models represent an effective way to provide data sets [Eckersley, 1990; Wang and Sassa, 2001] useful for building up more complex models of landslide triggering prediction. At the Geotechnical Laboratory of C.I.R.I.AM. an instrumented flume to investigate on the mechanics of landslides in unsaturated deposits of granular soils is available [Olivares et al. 2003; Damiano, 2004; Olivares et al., 2007]. In the flume a model slope is reconstituted by a moist-tamping technique and subjected to an artificial uniform rainfall since failure happens. The state of stress and strain of the slope is monitored during the entire test starting from the infiltration process since the early post-failure stage: the monitoring system is constituted by several mini-tensiometers placed at different locations and depths, to measure suction, mini-transducers to measure positive pore pressures, laser sensors, to measure settlements of the ground surface, and high definition video-cameras to obtain, through a software (PIV) appositely dedicated, the overall horizontal displacement field. Besides, TDR sensors, used with an innovative technique [Greco, 2006], allow to reconstruct the water content profile of soil along the entire thickness of the investigated deposit and to monitor its continuous changes during infiltration. In this paper a series of laboratory tests carried out on model slopes in granular pyroclastic soils taken in the mountainous area north-eastern of Napoli, are presented. The experimental results demonstrate the completeness of information provided by the various sensors installed. In particular, very useful information is given by the coupled measurements of soil water content by TDR and suction by tensiometers. Knowledge of

  16. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  17. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  18. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model.

    Directory of Open Access Journals (Sweden)

    Patricia Ferrer

    Full Text Available Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S3"-(HO-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC(50 of 6 µM for Plasmodium falciparum in contrast to the IC(50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials.

  19. Fund choice behavior and estimation of switching models: an experiment*

    NARCIS (Netherlands)

    Anufriev, M.; Bao, T.; Tuinstra, J.

    2013-01-01

    We run a laboratory experiment that contributes to the finance literature on "return chasing behavior" studying how investors switch between mutual funds driven by past performance of the funds. The subjects in this experiment make discrete choices between several (2, 3 or 4) experimental funds in

  20. The VLAB OER Experience: Modeling Potential-Adopter Student Acceptance

    Science.gov (United States)

    Raman, Raghu; Achuthan, Krishnashree; Nedungadi, Prema; Diwakar, Shyam; Bose, Ranjan

    2014-01-01

    Virtual Labs (VLAB) is a multi-institutional Open Educational Resources (OER) initiative, exclusively focused on lab experiments for engineering education. This project envisages building a large OER repository, containing over 1650 virtual experiments mapped to the engineering curriculum. The introduction of VLAB is a paradigm shift in an…

  1. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  2. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal; Pryor, Owen; Koroglu, Batikan; Sarathy, Mani; Masunov, Artë m E.; Vasu, Subith S.

    2017-01-01

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  3. Verification of MC{sup 2}-3 Doppler Sample Models in ZPPR-15 D Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Jae; Hartanto, Donny; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the change of reaction rate and broadened cross section were estimated by as-built MCNP models for metallic uranium sample in ZPPR-15D using ENDF/B-VII.0 library, and the results were compared with deterministic calculations provided in previous work. The Doppler broadening is an instant feedback mechanism that improves safety and stability for both thermal and fast reactors. Therefore, the accuracy of Doppler coefficient becomes an important parameter in reactor design as well as in the safety analysis. The capability of the Doppler worth calculation by a modern computer code suites such as MC2-3 and DIF3DVARIANT, has been validated against the Zero Power Physics Reactor-15 (ZPPR-15) Doppler worth measurement experiments. For the same experiments, our previous work suggested four different MC2-3 Doppler sample models for enhanced accuracy, which are combinations of heterogeneous models and the super cell approach. The MOC and MOC-SPC models showed the smallest error in estimating the U-238 total cross section of Doppler sample N-11, and the Doppler broadening effects are well applied to the cross section compared to other two models, HOM and SPC. The effects of the super cell approach can be hardly seen, since the broadened cross section is almost the same with and without the super cell approach. Comparing the transition of reaction density, MOC and MOC-SPC models also show similar behavior as MCNP's with minor errors. As a conclusion, we could obtain more consistent broadened cross section as well as reaction density transition by providing heterogeneous models from MC2-3's MOC module.

  4. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-01-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed

  5. The Importance of Business Model Factors for Cloud Computing Adoption: Role of Previous Experiences

    Directory of Open Access Journals (Sweden)

    Bogataj Habjan Kristina

    2017-08-01

    Full Text Available Background and Purpose: Bringing several opportunities for more effective and efficient IT governance and service exploitation, cloud computing is expected to impact the European and global economies significantly. Market data show that despite many advantages and promised benefits the adoption of cloud computing is not as fast and widespread as foreseen. This situation shows the need for further exploration of the potentials of cloud computing and its implementation on the market. The purpose of this research was to identify individual business model factors with the highest impact on cloud computing adoption. In addition, the aim was to identify the differences in opinion regarding the importance of business model factors on cloud computing adoption according to companies’ previous experiences with cloud computing services.

  6. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    Science.gov (United States)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  7. PODIO: An Event-Data-Model Toolkit for High Energy Physics Experiments

    Science.gov (United States)

    Gaede, F.; Hegner, B.; Mato, P.

    2017-10-01

    PODIO is a C++ library that supports the automatic creation of event data models (EDMs) and efficient I/O code for HEP experiments. It is developed as a new EDM Toolkit for future particle physics experiments in the context of the AIDA2020 EU programme. Experience from LHC and the linear collider community shows that existing solutions partly suffer from overly complex data models with deep object-hierarchies or unfavorable I/O performance. The PODIO project was created in order to address these problems. PODIO is based on the idea of employing plain-old-data (POD) data structures wherever possible, while avoiding deep object-hierarchies and virtual inheritance. At the same time it provides the necessary high-level interface towards the developer physicist, such as the support for inter-object relations and automatic memory-management, as well as a Python interface. To simplify the creation of efficient data models PODIO employs code generation from a simple yaml-based markup language. In addition, it was developed with concurrency in mind in order to support the use of modern CPU features, for example giving basic support for vectorization techniques.

  8. A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment

    Science.gov (United States)

    Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; hide

    2013-01-01

    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  9. ForCent model development and testing using the Enriched Background Isotope Study experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parton, W.J.; Hanson, P. J.; Swanston, C.; Torn, M.; Trumbore, S. E.; Riley, W.; Kelly, R.

    2010-10-01

    The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool {sup 14}C signature ({Delta} {sup 14}C) data from the Enriched Background Isotope Study {sup 14}C experiment (1999-2006) shows that the model correctly simulates the temporal dynamics of the {sup 14}C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass {Delta} {sup 14}C data, and with soil respiration {Delta} {sup 14}C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study {sup 14}C experimental treatments on soil respiration {Delta} {sup 14}C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.

  10. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  11. Variable recruitment fluidic artificial muscles: modeling and experiments

    International Nuclear Information System (INIS)

    Bryant, Matthew; Meller, Michael A; Garcia, Ephrahim

    2014-01-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  12. Granular filtration for airborne particles : correlation between experiments and models

    Energy Technology Data Exchange (ETDEWEB)

    Golshahi, L.; Tan, Z. [Calgary Univ., AB (Canada). Schulich School of Engineering, Mechanical and Manufacturing Dept.; Abedi, J. [Calgary Univ., AB (Canada). Schulich School of Engineering, Chemical and Petroleum Engineering Dept.

    2009-10-15

    A new design for a packed bed granular filter was presented. The cylindrical packed bed was designed to filter particles in the range of approximately 10 nm to 15 {mu}m in diameter in different kinetic conditions and configurations. The aim of the study was to develop a precise empirical model to predict the filtration efficiency of the packed beds. A collision-type atomizer was used to generate polydisperse sodium chloride aerosol particles. The effect of flow rates was studied using a thermal mass flow meter. A regression analysis technique was used to determine the correlation between single granule and total packed bed efficiency for the entire granular filter. The experimental data were then compared with results obtained from the theoretical analysis. The least square method was used to correlate experimental data and to develop generalized equations for single granule efficiency. The study showed that the granular filter media has a high filtration efficiency for both micron and submicron particles. It was concluded that the effect of media thickness was more significant at higher flow rates than at lower flow rates. 10 refs., 3 figs.

  13. Visual Prompts or Volunteer Models: An Experiment in Recycling

    Directory of Open Access Journals (Sweden)

    Zi Yin Lin

    2016-05-01

    Full Text Available Successful long-term programs for urban residential food waste sorting are very rare, despite the established urgent need for them in cities for waste reduction, pollution reduction and circular resource economy reasons. This study meets recent calls to bridge policy makers and academics, and calls for more thorough analysis of operational work in terms of behavioral determinants, to move the fields on. It takes a key operational element of a recently reported successful food waste sorting program—manning of the new bins by volunteers—and considers the behavioral determinants involved in order to design a more scalable and cheaper alternative—the use of brightly colored covers with flower designs on three sides of the bin. The two interventions were tested in a medium-scale, real-life experimental set-up that showed that they had statistically similar results: high effective capture rates of 32%–34%, with low contamination rates. The success, low cost and simple implementation of the latter suggests it should be considered for large-scale use. Candidate behavioral determinants are prompts, emotion and knowledge for the yellow bin intervention, and for the volunteer intervention they are additionally social influence, modeling, role clarification, and moderators of messenger type and interpersonal or tailored messaging.

  14. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  15. A Large-Scale Multibody Manipulator Soft Sensor Model and Experiment Validation

    Directory of Open Access Journals (Sweden)

    Wu Ren

    2014-01-01

    Full Text Available Stress signal is difficult to obtain in the health monitoring of multibody manipulator. In order to solve this problem, a soft sensor method is presented. In the method, stress signal is considered as dominant variable and angle signal is regarded as auxiliary variable. By establishing the mathematical relationship between them, a soft sensor model is proposed. In the model, the stress information can be deduced by angle information which can be easily measured for such structures by experiments. Finally, test of ground and wall working conditions is done on a multibody manipulator test rig. The results show that the stress calculated by the proposed method is closed to the test one. Thus, the stress signal is easier to get than the traditional method. All of these prove that the model is correct and the method is feasible.

  16. Architectural design of experience based factory model for software ...

    African Journals Online (AJOL)

    architectural design. Automation features are incorporated in the design in which workflow system and intelligent agents are integrated, and the facilitation of cloud environment is empowered to further support the automation. Keywords: architectural design; knowledge management; experience factory; workflow;

  17. The effects of nutrition labeling on consumer food choice: a psychological experiment and computational model.

    Science.gov (United States)

    Helfer, Peter; Shultz, Thomas R

    2014-12-01

    The widespread availability of calorie-dense food is believed to be a contributing cause of an epidemic of obesity and associated diseases throughout the world. One possible countermeasure is to empower consumers to make healthier food choices with useful nutrition labeling. An important part of this endeavor is to determine the usability of existing and proposed labeling schemes. Here, we report an experiment on how four different labeling schemes affect the speed and nutritional value of food choices. We then apply decision field theory, a leading computational model of human decision making, to simulate the experimental results. The psychology experiment shows that quantitative, single-attribute labeling schemes have greater usability than multiattribute and binary ones, and that they remain effective under moderate time pressure. The computational model simulates these psychological results and provides explanatory insights into them. This work shows how experimental psychology and computational modeling can contribute to the evaluation and improvement of nutrition-labeling schemes. © 2014 New York Academy of Sciences.

  18. Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline.

    Directory of Open Access Journals (Sweden)

    Liliana B Menalled

    2010-03-01

    Full Text Available Previous studies of the effects of coenzyme Q10 and minocycline on mouse models of Huntington's disease have produced conflicting results regarding their efficacy in behavioral tests. Using our recently published best practices for husbandry and testing for mouse models of Huntington's disease, we report that neither coenzyme Q10 nor minocycline had significant beneficial effects on measures of motor function, general health (open field, rotarod, grip strength, rearing-climbing, body weight and survival in the R6/2 mouse model. The higher doses of minocycline, on the contrary, reduced survival. We were thus unable to confirm the previously reported benefits for these two drugs, and we discuss potential reasons for these discrepancies, such as the effects of husbandry and nutrition.

  19. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  20. Adaptive stimulus optimization and model-based experiments for sensory systems neuroscience

    Directory of Open Access Journals (Sweden)

    Christopher eDiMattina

    2013-06-01

    Full Text Available In this paper we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical textit{optimal stimulus} paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the textit{iso-response} paradigm which finds sets of stimuli giving rise to constant responses, and the textit{system identification} paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of nonlinear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify nonlinear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and towards a new paradigm of real-time model estimation and comparison.

  1. Modeling, experiments and optimization of an on-pipe thermoelectric generator

    International Nuclear Information System (INIS)

    Chen, Jie; Zuo, Lei; Wu, Yongjia; Klein, Jackson

    2016-01-01

    Highlights: • A novel design of on-pipe thermoelectric generator using heat pipe. • A heat pipe is used and increases power output by more than 6 times. • Detailed system level modeling on the heat transfer and energy conversion. • Lab-based experiments shows that system can harvest more than 2 W of energy. • An optimization towards the design indicates further improvement can be achieved. - Abstract: A thermoelectric energy harvester composed of two thermoelectric modules, a wicked copper-water heat pipe, and finned heat sinks has been designed, modeled, and tested. The harvester is proposed to power sensor nodes on heating/cooling, steam, or exhaust pipes like these in power stations, chemical plants and vehicle systems. A model to analyze the heat transfer and thermoelectric performance of the energy harvesting system has been developed and validated against experiments. The results show that the model predicts the system power output and temperature response with reasonable accuracy. The model developed in this paper can be adapted for use with general heat sink, heat pipe, and thermoelectric systems. The design, incorporating a heat pipe and two 1.1″ by 1.1″ Bi_2Te_3 modules generates 2.25 W ± 0.13 W power output with a temperature difference of 128 °C ± 1.12 °C and source temperature of 246 °C ± 1.9 °C, which is more than enough to operate wireless sensors or some actuators. The use of a heat pipe in this design increased the power output by 6 times over conventional designs. Based on the model, further improvement of the power output and energy harvesting efficiency of the system has been suggested by optimizing the number of thermoelectric modules.

  2. Experiment selection for the discrimination of semi-quantitative models of dynamical systems

    NARCIS (Netherlands)

    Vatcheva, [No Value; de Jong, H; Bernard, O; Mars, NJI

    Modeling an experimental system often results in a number of alternative models that are all justified by the available experimental data. To discriminate among these models, additional experiments are needed. Existing methods for the selection of discriminatory experiments in statistics and in

  3. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation......A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  4. Models of Plankton Community Changes during a Warm Water Anomaly in Arctic Waters Show Altered Trophic Pathways with Minimal Changes in Carbon Export

    Directory of Open Access Journals (Sweden)

    Maria Vernet

    2017-05-01

    Full Text Available Carbon flow through pelagic food webs is an expression of the composition, biomass and activity of phytoplankton as primary producers. In the near future, severe environmental changes in the Arctic Ocean are expected to lead to modifications of phytoplankton communities. Here, we used a combination of linear inverse modeling and ecological network analysis to study changes in food webs before, during, and after an anomalous warm water event in the eastern Fram Strait of the West Spitsbergen Current (WSC that resulted in a shift from diatoms to flagellates during the summer (June–July. The model predicts substantial differences in the pathways of carbon flow in diatom- vs. Phaeocystis/nanoflagellate-dominated phytoplankton communities, but relatively small differences in carbon export. The model suggests a change in the zooplankton community and activity through increasing microzooplankton abundance and the switching of meso- and macrozooplankton feeding from strict herbivory to omnivory, detritivory and coprophagy. When small cells and flagellates dominated, the phytoplankton carbon pathway through the food web was longer and the microbial loop more active. Furthermore, one step was added in the flow from phytoplankton to mesozooplankton, and phytoplankton carbon to higher trophic levels is available via detritus or microzooplankton. Model results highlight how specific changes in phytoplankton community composition, as expected in a climate change scenario, do not necessarily lead to a reduction in carbon export.

  5. Testing the HTA core model: experiences from two pilot projects

    DEFF Research Database (Denmark)

    Pasternack, Iris; Anttila, Heidi; Mäkelä, Marjukka

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze and describe process and outcomes of two pilot assessments based on the HTA Core Model, discuss the applicability of the model, and explore areas of development. METHODS: Data were gathered from HTA Core Model and pilot Core HTA documents, their va...

  6. Towards a sufficiency-driven business model : Experiences and opportunities

    NARCIS (Netherlands)

    Bocken, N.M.P.; Short, SW

    2016-01-01

    Business model innovation is an important lever for change to tackle pressing sustainability issues. In this paper, ‘sufficiency’ is proposed as a driver of business model innovation for sustainability. Sufficiency-driven business models seek to moderate overall resource consumption by curbing

  7. From Sakata model to Goldberg-Ne'eman quarks and Nambu QCD phenomenology and 'right' and 'wrong' experiments

    International Nuclear Information System (INIS)

    Lipkin, Harry J.

    2007-01-01

    The basic theoretical milestones were the Sakata SU(3) symmetry, the Goldberg-Ne'eman composite model with SU(3) triplets having baryon number (1/3) and the Nambu color gauge Lagrangian. The transition was led in right and wrong directions by experiments interpreted by phenomenology. A 'good' experiment on p-bar p annihilation at rest showed that the Sakata model predictions disagreed with experiment. A 'bad' experiment prevented the use of the Goldberg-Ne'eman triplet model to predict the existence and masses of the Ξ * and Ω - . More 'good' experiments revealed the existence and mass of the Ξ * and the Ω - and the absence of positive strangeness baryon resonances, thus confirming the 'tenfold way'. Further 'good experiments' revealed the existence of the vector meson nonet, SU(3) breaking with singlet-octet mixing and the suppression of the φ → ρπ decay. These led to the quark triplet model. The paradox of peculiar statistics then arose as the Δ ++ and Ω - contained three identical spin-1/2 fermions coupled symmetrically to spin (3/2). This led to color and the Nambu QCD. The book 'Lie Groups for Pedestrians' used the Sakata model with the name 'sakaton' for the pnΛ triplet to teach the algebra of SU(3) to particle physicists in the U.S. and Europe who knew no group theory. The Sakata model had a renaissance in hypernuclear physics in the 1970's. (author)

  8. Measuring performance at trade shows

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2004-01-01

    Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built...... that captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence...

  9. Model-independent curvature determination with 21cm intensity mapping experiments

    Science.gov (United States)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-04-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21cm intensity mapping experiments such as HIRAX are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  10. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  11. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  12. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  13. Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis

    DEFF Research Database (Denmark)

    Ruano, MV; Ribes, J; de Pauw, DJW

    2007-01-01

    to describe nitrogen and phosphorus removal in the Haaren WWTP (The Netherlands). The parameter significance ranking shows that the temperature correction coefficients are among the most influential parameters on the model output. This outcome confronts the previous identifiability studies and the experience...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast......, although the experience-based approach is computationally affordable, it is unable to take into account the information content issue and therefore can be either too optimistic (giving poorly identifiable sets) or pessimistic (small size of sets while much more can be estimated from the data...

  14. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    Science.gov (United States)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  15. Modelling ohmic confinement experiments on the START tokamak

    International Nuclear Information System (INIS)

    Roach, C.M.

    1996-05-01

    Ohmic confinement data from the tight aspect ratio tokamak START has been analysed using the ASTRA transport simulation code. Neoclassical expressions have been modified to describe tight aspect ratio configurations, and the comparison between START data and models of anomalous transport has been made quantitative using the standard χ 2 test from statistics. Four confinement models (T11, Rebut-Lallia-Watkins, Lackner-Gottardi, and Taroni et al's Bohm model) have been compared with the START data. Three of the models are found to simulate START's electron temperature data moderately well, while Taroni et al's Bohm model overestimates electron temperatures in START by an order of magnitude. Thus comparison with START data tends to discriminate against Bohm models; these models are pessimistic or ITER. (author)

  16. Isogenic Human iPSC Parkinson’s Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription

    OpenAIRE

    Ryan, Scott D.; Dolatabadi, Nima; Chan, Shing Fai; Zhang, Xiaofei; Akhtar, Mohd Waseem; Parker, James; Soldner, Frank; Sunico, Carmen R.; Nagar, Saumya; Talantova, Maria; Lee, Brian; Lopez, Kevin; Nutter, Anthony; Shan, Bing; Molokanova, Elena

    2013-01-01

    Parkinson’s disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A...

  17. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics andAdvanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  18. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    International Nuclear Information System (INIS)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics and Advanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  19. Fission neutrons experiments, evaluation, modeling and open problems

    CERN Document Server

    Kornilov, Nikolay

    2014-01-01

    Although the fission of heavy nuclei was discovered over 75 years ago, many problems and questions still remain to be addressed and answered. The reader will be presented with an old, but persistent problem of this field: The contradiction between Prompt Fission Neutron (PFN) spectra measured with differential (microscopic) experiments and integral (macroscopic and benchmark) experiments (the Micro-Macro problem). The difference in average energy is rather small ~3% but it is stable and we cannot explain the difference due to experimental uncertainties. Can we measure the PFN spectrum with hig

  20. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  1. SME International Business Models: The Role of Context and Experience

    DEFF Research Database (Denmark)

    Child, John; Hsieh, Linda; Elbanna, Said

    2017-01-01

    This paper addresses two questions through a study of 180 SMEs located in contrasting industry and home country contexts. First, which business models for international markets prevail among SMEs and do they configure into different types? Second, which factors predict the international business...... models that SMEs follow? Three distinct international business models (traditional market-adaptive, technology exploiter, and ambidextrous explorer) are found among the SMEs studied. The likelihood of SMEs adopting one business model rather than another is to a high degree predictable with reference...

  2. A Feedback Model for Data-Rich Learning Experiences

    Science.gov (United States)

    Pardo, Abelardo

    2018-01-01

    Feedback has been identified as one of the factors with the largest potential for a positive impact in a learning experience. There is a significant body of knowledge studying feedback and providing guidelines for its implementation in learning environments. In parallel, the areas of learning analytics or educational data mining have emerged to…

  3. Applying the Job Characteristics Model to the College Education Experience

    Science.gov (United States)

    Kass, Steven J.; Vodanovich, Stephen J.; Khosravi, Jasmine Y.

    2011-01-01

    Boredom is one of the most common complaints among university students, with studies suggesting its link to poor grades, drop out, and behavioral problems. Principles borrowed from industrial-organizational psychology may help prevent boredom and enrich the classroom experience. In the current study, we applied the core dimensions of the job…

  4. A model experiment to study swallowing of spherical and elongated particles

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force. Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.

  5. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.

    Science.gov (United States)

    Šarolić, A; Živković, Z; Reilly, J P

    2016-06-21

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  6. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  7. Left ventricular shear strain in model and experiment

    NARCIS (Netherlands)

    Ubbink, S.; Bovendeerd, P.H.M.; Delhaas, T.; Arts, M.G.J.; Vosse, van de F.N.

    2005-01-01

    Mathematical modeling of cardiac mechanics could be a useful clinical tool, both in translating measured abnormalities in cardiac deformation into the underlying pathology, and in selecting a propertreatment. We investigated to what extent a previously published model of cardiac mechanics could

  8. The fence experiment - a first evaluation of shelter models

    DEFF Research Database (Denmark)

    Peña, Alfredo; Bechmann, Andreas; Conti, Davide

    2016-01-01

    We present a preliminary evaluation of shelter models of different degrees of complexity using full-scale lidar measurements of the shelter on a vertical plane behind and orthogonal to a fence. Model results accounting for the distribution of the relative wind direction within the observed direct...

  9. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  10. A model based estimate of the geometrical acceptance of the e+e- experiment on the HYPERON spectrometer

    International Nuclear Information System (INIS)

    Cerny, V.

    1983-01-01

    A model based estimate is presented of the geometrical acceptance of the HYPERON spectrometer for the detection of the e + e - pairs in the proposed lepton experiment. The results of the Monte Carlo calculation show that the expected acceptance is fairly high. (author)

  11. Computer experiments with a coarse-grid hydrodynamic climate model

    International Nuclear Information System (INIS)

    Stenchikov, G.L.

    1990-01-01

    A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO 2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity

  12. Comparison of G protein sequences of South African street rabies viruses showing distinct progression of the disease in a mouse model of experimental rabies.

    Science.gov (United States)

    Seo, Wonhyo; Servat, Alexandre; Cliquet, Florence; Akinbowale, Jenkins; Prehaud, Christophe; Lafon, Monique; Sabeta, Claude

    Rabies is a fatal zoonotic disease and infections generally lead to a fatal encephalomyelitis in both humans and animals. In South Africa, domestic (dogs) and the wildlife (yellow mongoose) host species maintain the canid and mongoose rabies variants respectively. In this study, pathogenicity differences of South African canid and mongoose rabies viruses were investigated in a murine model, by assessing the progression of clinical signs and survivorship. Comparison of glycoprotein gene sequences revealed amino acid differences that may underpin the observed pathogenicity differences. Cumulatively, our results suggest that the canid rabies virus may be more neurovirulent in mice than the mongoose rabies variant. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways.

    Science.gov (United States)

    Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P

    2017-07-01

    Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.

  14. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model.

    Science.gov (United States)

    Gabbard, Jon D; Dlugolenski, Daniel; Van Riel, Debby; Marshall, Nicolle; Galloway, Summer E; Howerth, Elizabeth W; Campbell, Patricia J; Jones, Cheryl; Johnson, Scott; Byrd-Leotis, Lauren; Steinhauer, David A; Kuiken, Thijs; Tompkins, S Mark; Tripp, Ralph; Lowen, Anice C; Steel, John

    2014-02-01

    The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.

  15. Novel H7N9 Influenza Virus Shows Low Infectious Dose, High Growth Rate, and Efficient Contact Transmission in the Guinea Pig Model

    Science.gov (United States)

    Gabbard, Jon D.; Dlugolenski, Daniel; Van Riel, Debby; Marshall, Nicolle; Galloway, Summer E.; Howerth, Elizabeth W.; Campbell, Patricia J.; Jones, Cheryl; Johnson, Scott; Byrd-Leotis, Lauren; Steinhauer, David A.; Kuiken, Thijs; Tompkins, S. Mark; Tripp, Ralph; Lowen, Anice C.

    2014-01-01

    The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation. PMID:24227867

  16. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. Macrophage inflammatory protein-1α shows predictive value as a risk marker for subjects and sites vulnerable to bone loss in a longitudinal model of aggressive periodontitis.

    Science.gov (United States)

    Fine, Daniel H; Markowitz, Kenneth; Fairlie, Karen; Tischio-Bereski, Debbie; Ferrandiz, Javier; Godboley, Dipti; Furgang, David; Gunsolley, John; Best, Al

    2014-01-01

    Improved diagnostics remains a fundamental goal of biomedical research. This study was designed to assess cytokine biomarkers that could predict bone loss (BL) in localized aggressive periodontitis. 2,058 adolescents were screened. Two groups of 50 periodontally healthy adolescents were enrolled in the longitudinal study. One group had Aggregatibacter actinomycetemcomitans (Aa), the putative pathogen, while the matched cohort did not. Cytokine levels were assessed in saliva and gingival crevicular fluid (GCF). Participants were sampled, examined, and radiographed every 6 months for 2-3 years. Disease was defined as radiographic evidence of BL. Saliva and GCF was collected at each visit, frozen, and then tested retrospectively after detection of BL. Sixteen subjects with Aa developed BL. Saliva from Aa-positive and Aa-negative healthy subjects was compared to subjects who developed BL. GCF was collected from 16 subjects with BL and from another 38 subjects who remained healthy. GCF from BL sites in the 16 subjects was compared to healthy sites in these same subjects and to healthy sites in subjects who remained healthy. Results showed that cytokines in saliva associated with acute inflammation were elevated in subjects who developed BL (i.e., MIP-1α MIP-1β IL-α, IL-1β and IL-8; p<0.01). MIP-1α was elevated 13-fold, 6 months prior to BL. When MIP-1α levels were set at 40 pg/ml, 98% of healthy sites were below that level (Specificity); whereas, 93% of sites with BL were higher (Sensitivity), with comparable Predictive Values of 98%; p<0.0001; 95% C.I. = 42.5-52.7). MIP-1α consistently showed elevated levels as a biomarker for BL in both saliva and GCF, 6 months prior to BL. MIP-1α continues to demonstrate its strong candidacy as a diagnostic biomarker for both subject and site vulnerability to BL.

  18. Macrophage inflammatory protein-1α shows predictive value as a risk marker for subjects and sites vulnerable to bone loss in a longitudinal model of aggressive periodontitis.

    Directory of Open Access Journals (Sweden)

    Daniel H Fine

    Full Text Available Improved diagnostics remains a fundamental goal of biomedical research. This study was designed to assess cytokine biomarkers that could predict bone loss (BL in localized aggressive periodontitis. 2,058 adolescents were screened. Two groups of 50 periodontally healthy adolescents were enrolled in the longitudinal study. One group had Aggregatibacter actinomycetemcomitans (Aa, the putative pathogen, while the matched cohort did not. Cytokine levels were assessed in saliva and gingival crevicular fluid (GCF. Participants were sampled, examined, and radiographed every 6 months for 2-3 years. Disease was defined as radiographic evidence of BL. Saliva and GCF was collected at each visit, frozen, and then tested retrospectively after detection of BL. Sixteen subjects with Aa developed BL. Saliva from Aa-positive and Aa-negative healthy subjects was compared to subjects who developed BL. GCF was collected from 16 subjects with BL and from another 38 subjects who remained healthy. GCF from BL sites in the 16 subjects was compared to healthy sites in these same subjects and to healthy sites in subjects who remained healthy. Results showed that cytokines in saliva associated with acute inflammation were elevated in subjects who developed BL (i.e., MIP-1α MIP-1β IL-α, IL-1β and IL-8; p<0.01. MIP-1α was elevated 13-fold, 6 months prior to BL. When MIP-1α levels were set at 40 pg/ml, 98% of healthy sites were below that level (Specificity; whereas, 93% of sites with BL were higher (Sensitivity, with comparable Predictive Values of 98%; p<0.0001; 95% C.I. = 42.5-52.7. MIP-1α consistently showed elevated levels as a biomarker for BL in both saliva and GCF, 6 months prior to BL. MIP-1α continues to demonstrate its strong candidacy as a diagnostic biomarker for both subject and site vulnerability to BL.

  19. CELSS experiment model and design concept of gas recycle system

    Science.gov (United States)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  20. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    Science.gov (United States)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  1. On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments

    DEFF Research Database (Denmark)

    Vansteelandt, S.; Martinussen, Torben; Tchetgen, E. J Tchetgen

    2014-01-01

    We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least-squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard...... that, in view of its robustness against model misspecification, Aalen least-squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and the primary reasons to consider baseline covariate adjustment in such settings could be interest in subgroup......'s dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We furthermore show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the estimator of the effect of a randomized treatment. We conclude...

  2. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    Science.gov (United States)

    Rest, J.

    1989-12-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solids depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism.

  3. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    International Nuclear Information System (INIS)

    Rest, J.

    1989-01-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solid depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism. (orig.)

  4. Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae Experimentos de laboratorio para examinar las defensas inducibles muestran respuestas variables en macroalgas pardas y rojas de ambientes templados

    Directory of Open Access Journals (Sweden)

    EVA ROTHÄUSLER

    2005-12-01

    Full Text Available Macroalgae can defend themselves against generalist and specialist herbivores via morphological and/or chemical traits. Herein we examined the defensive responses (via relative palatability of two brown (Lessonia nigrescens, Glossophora kunthii and two red algae (Grateloupia doryphora, Chondracanthus chamissoi from the northern-central coast of Chile against selected generalist meso-herbivores. Two laboratory experiments were conducted to investigate whether (i algae can respond generally to grazing pressure of meso-herbivores (amphipods, isopods and juvenile sea urchins and whether (ii these algal responses were inducible. In order to examine palatability and thus effectiveness of responses, feeding assays were run after each experiment using fresh algal pieces and artificial agar-based food. Lessonia nigrescens responded to amphipods but not to sea urchins, and G. kunthii showed inducible response against one species of amphipods. Grateloupia doryphora did not respond against any of the tested grazers, whereas C. chamissoi responded against one species of amphipods and the tested isopod. Our results indicate variable responses of macroalgae against selected generalist meso-herbivores and evidence of an inducible defense in the brown alga G. kunthii.Muchas macroalgas poseen la capacidad de defenderse contra herbívoros generalistas y especialistas utilizando defensas químicas y/o morfológicas. En este trabajo se examinó la respuesta de la palatabilidad ante meso-herbívoros generalistas de dos algas pardas (Lessonia nigrescens, Glossophora kunthii y dos algas rojas (Grateloupia doryphora, Chondracanthus chamissoi de la costa Norte de Chile. Se realizaron dos experimentos de laboratorio para investigar si: (i las algas pueden responder al pastoreo realizado por meso-herbivoros generalistas (anfípodos, isópodos y erizos juveniles y (ii si la respuesta de estas algas es inducible. Para examinar la palatabilidad y de esta forma la efectividad

  5. Coalescence of liquid drops: Different models versus experiment

    KAUST Repository

    Sprittles, J. E.; Shikhmurzaev, Y. D.

    2012-01-01

    help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different "scaling laws" advanced as approximate solutions to the problem formulated using the conventional model

  6. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    the models and monitoring the improvements in gravity field recovery are required. This study assesses ... group from the Inter- national Gravity Field Service (IGFS) and the ..... the method, the process may therefore be iter- ated until the ...

  7. Hydraulic experiment on formation mechanism of tsunami deposit and verification of sediment transport model for tsunamis

    Science.gov (United States)

    Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but

  8. Modeling antibiotic treatment in hospitals: A systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies.

    Science.gov (United States)

    Tepekule, Burcu; Uecker, Hildegard; Derungs, Isabel; Frenoy, Antoine; Bonhoeffer, Sebastian

    2017-09-01

    Multiple treatment strategies are available for empiric antibiotic therapy in hospitals, but neither clinical studies nor theoretical investigations have yielded a clear picture when which strategy is optimal and why. Extending earlier work of others and us, we present a mathematical model capturing treatment strategies using two drugs, i.e the multi-drug therapies referred to as cycling, mixing, and combination therapy, as well as monotherapy with either drug. We randomly sample a large parameter space to determine the conditions determining success or failure of these strategies. We find that combination therapy tends to outperform the other treatment strategies. By using linear discriminant analysis and particle swarm optimization, we find that the most important parameters determining success or failure of combination therapy relative to the other treatment strategies are the de novo rate of emergence of double resistance in patients infected with sensitive bacteria and the fitness costs associated with double resistance. The rate at which double resistance is imported into the hospital via patients admitted from the outside community has little influence, as all treatment strategies are affected equally. The parameter sets for which combination therapy fails tend to fall into areas with low biological plausibility as they are characterised by very high rates of de novo emergence of resistance to both drugs compared to a single drug, and the cost of double resistance is considerably smaller than the sum of the costs of single resistance.

  9. Program impact pathway analysis of a social franchise model shows potential to improve infant and young child feeding practices in Vietnam.

    Science.gov (United States)

    Nguyen, Phuong H; Menon, Purnima; Keithly, Sarah C; Kim, Sunny S; Hajeebhoy, Nemat; Tran, Lan M; Ruel, Marie T; Rawat, Rahul

    2014-10-01

    By mapping the mechanisms through which interventions are expected to achieve impact, program impact pathway (PIP) analysis lays out the theoretical causal links between program activities, outcomes, and impacts. This study examines the pathways through which the Alive & Thrive (A&T) social franchise model is intended to improve infant and young child feeding (IYCF) practices in Vietnam. Mixed methods were used, including qualitative interviews with franchise management board members (n = 12), surveys with health providers (n = 120), counseling observations (n = 160), and household surveys (n = 2045). Six PIP components were assessed: 1) franchise management, 2) training and IYCF knowledge of health providers, 3) service delivery, 4) program exposure and utilization, 5) maternal behavioral determinants (knowledge, beliefs, and intentions) toward optimal IYCF practices, and 6) IYCF practices. Data were collected from A&T-intensive areas (A&T-I; mass media + social franchise) and A&T-nonintensive areas (A&T-NI; mass media only) by using a cluster-randomized controlled trial design. Data from 2013 were compared with baseline where similar measures were available. Results indicate that mechanisms are in place for effective management of the franchise system, despite challenges to routine monitoring. A&T training was associated with increased capacity of providers, resulting in higher-quality IYCF counseling (greater technical knowledge and communication skills during counseling) in A&T-I areas. Franchise utilization increased from 10% in 2012 to 45% in 2013 but fell below the expected frequency of 9-15 contacts per mother-child dyad. Improvements in breastfeeding knowledge, beliefs, intentions, and practices were greater among mothers in A&T-I areas than among those in A&T-NI areas. In conclusion, there are many positive changes along the impact pathway of the franchise services, but challenges in utilization and demand creation should be addressed to achieve the full

  10. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities.

    Science.gov (United States)

    Teotia, Pooja; Van Hook, Matthew J; Wichman, Christopher S; Allingham, R Rand; Hauser, Michael A; Ahmad, Iqbal

    2017-11-01

    Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252. © 2017 AlphaMed Press.

  11. Event-based computer simulation model of aspect-type experiments strictly satisfying Einstein's locality conditions

    NARCIS (Netherlands)

    De Raedt, Hans; De Raedt, Koen; Michielsen, Kristel; Keimpema, Koenraad; Miyashita, Seiji

    2007-01-01

    Inspired by Einstein-Podolsky-Rosen-Bohtn experiments with photons, we construct an event-based simulation model in which every essential element in the ideal experiment has a counterpart. The model satisfies Einstein's criterion of local causality and does not rely on concepts of quantum and

  12. A business process modeling experience in a complex information system re-engineering.

    Science.gov (United States)

    Bernonville, Stéphanie; Vantourout, Corinne; Fendeler, Geneviève; Beuscart, Régis

    2013-01-01

    This article aims to share a business process modeling experience in a re-engineering project of a medical records department in a 2,965-bed hospital. It presents the modeling strategy, an extract of the results and the feedback experience.

  13. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects.

    Science.gov (United States)

    Suggs, Jennifer A; Melkani, Girish C; Glasheen, Bernadette M; Detor, Mia M; Melkani, Anju; Marsan, Nathan P; Swank, Douglas M; Bernstein, Sanford I

    2017-06-01

    Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro

  14. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects

    Directory of Open Access Journals (Sweden)

    Jennifer A. Suggs

    2017-06-01

    Full Text Available Individuals with inclusion body myopathy type 3 (IBM3 display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in

  15. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  16. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  17. Supercritical extraction of carqueja essential oil: experiments and modeling

    Directory of Open Access Journals (Sweden)

    R. M. F. Vargas

    2006-09-01

    Full Text Available Baccharis trimera is a native Brazilian plant which has medicinal properties. In this work a method of supercritical extraction was studied to obtain the popularly essential oil from Baccharis trimera, known as carqueja. The aim was to obtain experimental data and to compare two mathematical models used in the simulation of carqueja (Baccharis trimera oil extraction by supercritical CO2. The two mathematical models are based on mass transfer. One of the models, proposed by Reverchon, is solved numerically and requires two adjustable parameters from the experimental data. The other model chosen is the one proposed by Sovová. This model is solved analytically and requires four adjustable parameters. Numerical results are presented and discussed for the adjusted parameters. The experimental results are obtained in a temperature range of 313.15 K to 343.15 K at 90 bar. The extraction yield of carqueja essential oil using supercritical carbon dioxide ranged between 1.72 % (w/w at 323.15 K and 2.34 % (w/w at 343.15 K, 90 bar with a CO2 flow rate of 3.34.10-8 m³/s for a 0.0015 kg sample of Baccharis trimera.

  18. Discrimination of Semi-Quantitative Models by Experiment Selection: Method Application in Population Biology

    NARCIS (Netherlands)

    Vatcheva, Ivayla; Bernard, Olivier; de Jong, Hidde; Gouze, Jean-Luc; Mars, Nicolaas; Nebel, B.

    2001-01-01

    Modeling an experimental system often results in a number of alternative models that are justified equally well by the experimental data. In order to disc