WorldWideScience

Sample records for modeling ethanol present

  1. Presentation to the Manitoba ethanol advisory panel

    International Nuclear Information System (INIS)

    2002-01-01

    The Manitoba Chambers of Commerce, representing the entire spectrum of businesses from all regions of Manitoba, has long advocated for alternative fuels based on agricultural products. Some of the major questions that must be answered in this debate on the ethanol industry in Manitoba are: (1) What are the benefits of a vibrant ethanol industry? (2) What are the facts about ethanol, and are those facts getting out to the public? (3) and How do we foster a vibrant ethanol industry in Manitoba? This document places the emphasis on the third issue raised. The Manitoba Chambers of Commerce endorses the idea of a mandated blend of ethanol. It also believes that Manitoba should maintain its gasoline tax-gasohol preference. The Manitoba Chambers of Commerce recommends against the government controlling the size and number of ethanol facilities in the province. It also recommends that funding not be afforded to the creation of new programs designed for the specific purpose of providing financial assistance to the ethanol industry. Government awareness campaigns should be limited to issues within the public interest, dealing with environmental and consumer issues and benefits. The government should commit to the enhancement of the vitality of new generation cooperatives (NGCs) in Manitoba. Emphasis by the government should be placed on ensuring that the required infrastructure and partnerships are in place to foster the development and commercialization of innovations in this field. The Manitoba Chambers of Commerce recommended that the provincial government facilitate partnerships through the sponsoring of provincial conferences, while pursuing its partnership efforts with the federal and other provincial governments

  2. Autoshaping of ethanol drinking: an animal model of binge drinking.

    Science.gov (United States)

    Tomie, Arthur; di Poce, Jason; Derenzo, Christopher C; Pohorecky, Larissa A

    2002-01-01

    To examine the hypothesis that Pavlovian autoshaping provides an animal learning model of drug abuse, two studies evaluated the induction of ethanol drinking by autoshaping procedures. In Experiment 1, the sipper tube conditioned stimulus (CS) contained saccharin/ethanol solution and was repeatedly paired with food as an unconditioned stimulus (US). The CS-US paired group consumed more of the 0.1% saccharin-6% ethanol solution than did the CS-US random group, revealing that autoshaping conditioned responses (CR) induce ethanol drinking not attributable to pseudo-conditioning. Experiment 2 employed saccharin-fading procedures and showed that the paired vs random group differences in ethanol drinking were maintained, even as the saccharin was eliminated from the solution. The results show that Pavlovian autoshaping procedures induce high volumes of ethanol drinking when the presentation of a sipper tube containing an ethanol solution precedes the response-independent delivery of food. The high volume of ethanol consumed in a brief period of time suggests that Pavlovian autoshaping may be a model of binge drinking.

  3. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  4. Study of growth kinetic and modeling of ethanol production by ...

    African Journals Online (AJOL)

    ... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.

  5. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model

    International Nuclear Information System (INIS)

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S.; Micale, Rosanna T.; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Highlights: • Cigarette smoke and ethanol are known to synergize in the upper aerodigestive tract. • Their interactions in the lower respiratory tract have poorly been explored. • Prenatal and postnatal treatments of mice with ethanol caused pulmonary alterations. • However, ethanol attenuated smoke-induced preneoplastic and neoplastic lesions in lung. • The interaction between smoke and alcohol depends on life stage and target tissue. - Abstract: Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol

  6. Maytenus erythroxylon Reissek (Celastraceae) ethanol extract presents antidiarrheal activity via antimotility and antisecretory mechanisms

    Science.gov (United States)

    Formiga, Rodrigo de Oliveira; Quirino, Zelma Glebya Maciel; Diniz, Margareth de Fátima Formiga Melo; Marinho, Alexsandro Fernandes; Tavares, Josean Fechine; Batista, Leônia Maria

    2017-01-01

    AIM To investigate the acute toxicity, phytochemical profile, antidiarrheal activity and mechanisms of action of Maytenus erythroxylon (M. erythroxylon) ethanol extract. METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to evaluate a possible antimotility effect. KATP channels, nitric oxide, presynaptic α2-adrenergic and tissue adrenergic receptors were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. RESULTS All tested doses of the extract (62.5, 125, 250 and 500 mg/kg) possessed antidiarrheal activity, with a significant decrease of the evacuation index. This activity is possibly related to a reduced gastric emptying (125, 250 and 500 mg/kg) and to a decreased percentage of intestinal transit for all tested doses. That last effect seems to be modulated by nitric oxide, KATP channels and tissue adrenergic receptors. Besides, the extract also presented antisecretory effect due to a decrease of intestinal fluid accumulation. CONCLUSION The antidiarrheal effect of M. erythroxylon found in this study involves antimotility and antisecretory mechanisms that may be attributed to the chemical compounds found in this species: saponins, flavonoids, tannins, triterpenes and steroids. PMID:28706420

  7. Maytenus erythroxylon Reissek (Celastraceae) ethanol extract presents antidiarrheal activity via antimotility and antisecretory mechanisms.

    Science.gov (United States)

    Formiga, Rodrigo de Oliveira; Quirino, Zelma Glebya Maciel; Diniz, Margareth de Fátima Formiga Melo; Marinho, Alexsandro Fernandes; Tavares, Josean Fechine; Batista, Leônia Maria

    2017-06-28

    To investigate the acute toxicity, phytochemical profile, antidiarrheal activity and mechanisms of action of Maytenus erythroxylon ( M. erythroxylon ) ethanol extract. A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to evaluate a possible antimotility effect. K ATP channels, nitric oxide, presynaptic α2-adrenergic and tissue adrenergic receptors were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. All tested doses of the extract (62.5, 125, 250 and 500 mg/kg) possessed antidiarrheal activity, with a significant decrease of the evacuation index. This activity is possibly related to a reduced gastric emptying (125, 250 and 500 mg/kg) and to a decreased percentage of intestinal transit for all tested doses. That last effect seems to be modulated by nitric oxide, K ATP channels and tissue adrenergic receptors. Besides, the extract also presented antisecretory effect due to a decrease of intestinal fluid accumulation. The antidiarrheal effect of M. erythroxylon found in this study involves antimotility and antisecretory mechanisms that may be attributed to the chemical compounds found in this species: saponins, flavonoids, tannins, triterpenes and steroids.

  8. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  9. Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol-water binary vapor system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.; Yuan, X.G.; Tian, H.; Zeng, A.W. [State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-04-15

    The adsorption capacity of water and ethanol on cornmeal in an ethanol-water binary vapor system was investigated in a fixed-bed apparatus for ethanol dehydration. Experiments were performed at temperatures of 82-100 C for different relative humidities of ethanol-water vapor. Adsorption equilibrium models, including those based on the adsorption potential theory of Polanyi and Sircar's model, have been used to fit the experimental data for water adsorption on cornmeal, and all gave good fits. For ethanol adsorption, pseudo-equilibrium was defined as the mass adsorbed on the cornmeal within the time needed for the equilibrium for water on the same adsorbent. Based on this limiting condition, adsorption behaviors and mechanisms were analyzed. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm.

    Science.gov (United States)

    Allan, Andrea M; Chynoweth, Julie; Tyler, Lani A; Caldwell, Kevin K

    2003-12-01

    The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse

  11. The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model.

    Science.gov (United States)

    Abramson, Charles I; Craig, David Philip Arthur; Varnon, Christopher A; Wells, Harrington

    2015-05-01

    We investigated the effects of ethanol on reversal learning in honey bees (Apis mellifera anatolica). The rationale behind the present experiment was to determine the species generality of the effect of ethanol on response inhibition. Subjects were originally trained to associate either a cinnamon or lavender odor with a sucrose feeding before a reversal of the conditioned stimuli. We administered 15 μL of ethanol at varying doses (0%, 2.5%, 5%, 10%, or 20%) according to group assignment. Ethanol was either administered 5 min before original discrimination training or 5 min before the stimuli reversal. We analyzed the effects of these three manipulations via a recently developed individual analysis that eschews aggregate assessments in favor of a model that conceptualizes learning as occurring in individual organisms. We measured responding in the presence of conditioned stimuli associated with a sucrose feeding, responding in the presence of conditioned stimuli associated with distilled water, and responding in the presence of the unconditioned stimulus (sucrose). Our analyses revealed the ethanol dose manipulation lowered responding for all three measures at increasingly higher doses, which suggests ethanol served as a general behavioral suppressor. Consistent with previous ethanol reversal literature, we found administering ethanol before the original discrimination phase or before the reversal produced inconsistent patterns of responding at varying ethanol doses. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame

    NARCIS (Netherlands)

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2015-01-01

    This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A

  13. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations.

    Science.gov (United States)

    da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2011-03-01

    The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  15. A mathematical model for ethanol fermentation from oil palm trunk sap using Saccharomyces cerevisiae

    Science.gov (United States)

    Sultana, S.; Jamil, Norazaliza Mohd; Saleh, E. A. M.; Yousuf, A.; Faizal, Che Ku M.

    2017-09-01

    This paper presents a mathematical model and solution strategy of ethanol fermentation for oil palm trunk (OPT) sap by considering the effect of substrate limitation, substrate inhibition product inhibition and cell death. To investigate the effect of cell death rate on the fermentation process we extended and improved the current mathematical model. The kinetic parameters of the model were determined by nonlinear regression using maximum likelihood function. The temporal profiles of sugar, cell and ethanol concentrations were modelled by a set of ordinary differential equations, which were solved numerically by the 4th order Runge-Kutta method. The model was validated by the experimental data and the agreement between the model and experimental results demonstrates that the model is reasonable for prediction of the dynamic behaviour of the fermentation process.

  16. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  17. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  18. System-level modeling of acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Newly developed reduced ethanol mechanism (47 species and 272 reactions) used. • Engine maps over wide range are developed for performance and emissions parameters. • HCCI operating range increases with compression ratio & decreases with engine speed. • Maximum combustion efficiency up to 99% and thermal efficiency up to 50% is achieved. • Maximum N_2O emission found up to 2.7 ppm and lower load have higher N_2O emission. - Abstract: Ethanol fuelled homogenous charge compression ignition engine offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions using renewable fuel. Present study computationally investigates the HCCI operating range of ethanol at different compression ratios by varying inlet air temperature and engine speed using stochastic reactor model. A newly developed reduced ethanol oxidation mechanism with NO_x having 47 species and 272 reactions is used for simulation. HCCI operating range for compression ratios 17, 19 and 21 are investigated and found to be increasing with compression ratio. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365–465 K). Parametric study of combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms). In HCCI operating range, higher efficiency is found at higher engine loads and lower engine speeds. Emission characteristics of species (NO_x, N_2O, CO, CH_4, C_2H_4, C_2H_6, CH_3CHO, and HCHO) found in significant amount is also analysed for ethanol fulled HCCI engine. Emission maps for different species are presented and discussed for wide range of speed and load conditions. Some of unregulated species such as aldehydes are emitted in significantly higher quantities from ethanol fuelled HCCI engine at higher load

  20. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    Science.gov (United States)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  1. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  2. Dynamic modeling and controllability analysis of an ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M.; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain); Planta Piloto de Ingenieria Quimica (CONICET-UNS), Camino de la Carrindanga km7, 8000 Bahia Blanca (Argentina); Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2010-09-15

    This work presents a controllability analysis of a low temperature ethanol reformer based on a cobalt catalyst for fuel cell application. The study is based on a non-linear dynamic model of a reformer which operates in three separate stages: ethanol dehydrogenation to acetaldehyde and hydrogen, acetaldehyde steam reforming, and water-gas-shift reaction. The controllability analysis is focused on the rapid dynamics due to mass balances and is based on a linearization of the complex non-linear model of the reformer. RGA, CN and MRI analysis tools are applied to the linear model suggesting that a good performance can be obtained with decentralized control for frequencies up to 0.1 rad s{sup -1}. (author)

  3. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    International Nuclear Information System (INIS)

    Meyer, Marco; Melke, Julia; Gerteisen, Dietmar

    2011-01-01

    Highlights: → A DEFC model considering the mixed potential formation at cathode and anode. → The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. → Under load, only the parasitic oxidation of ethanol is significant. → Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH 3 CO, CO, CH 3 and OH) and to the final products acetaldehyde, acetic acid and CO 2 . A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  4. Production of ethanol and biomass starting to present lactose in the milk whey

    International Nuclear Information System (INIS)

    Angeles-Ramirez, K.; Arana-cuenca, A.; Tellez-Jurado, A.

    2009-01-01

    Milk whey is a by-product of the milk industry, a highly polluting waste due to the quantity of COD and BOD that it contains. The contamination caused by milk whey is mostly due to its lactose content. The fermentation of milk whey to ethanol is a possible road to reduce the polluting effect. (Author)

  5. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  6. Batch extraction modeling of jatropha oil using ethanol and n-hexane

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Alessandro Araujo; Martins, Marcio Aredes [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: aredes@ufv.br; Santos, Karine Tennis dos [Universidade Federal de Vicosa (DEQ/UFV), MG (Brazil). Dept. de Quimica; Carneiro, Angelica Cassia de Oliveira [Universidade Federal de Vicosa (DFT/UFV), MG (Brazil). Dept. de Fitotecnia; Perez, Ronaldo [Universidade Federal de Vicosa (DTA/UFV), MG (Brazil). Dept. de Tecnologia de Alimentos

    2008-07-01

    Jatropha curcas (Linnaeus.) has been considered as a promising alternative for rainfall regimes from 200 to over 1500 mm per annum. The seed and the oil have many applications, such as purgative, in the treatment of skin infections and rheumatism, in the control of insects, mollusks and fungi, for diesel engines lubricants, in soap and paint production, and mainly for biodiesel production. New technologies should be developed to accomplish the oil production in large scale, since the Brazilian Biodiesel Program stimulates the oilseeds productions. In large scale oil production, the oil is obtained using solvent extraction. The solvent widely used for oil extraction is the n-hexane mainly because of its low vaporization temperature and selectivity to the lipidic fraction. However, the use of n-hexane in small capacity plants makes the process expensive because of high operating losses. Alcohols were exhaustively studied at pilot and industrial scales extraction plants. Ethanol is an efficient and advantageous extraction solvent for oilseeds, being an attractive alternative to extraction grade n-hexane. Therefore, the objective of the present work is to model and to compare the extraction kinetics of jatropha oil by using ethanol and n-hexane. Extractions experiments were performed in a batch extractor at 45 deg C using a liquid-to-solvent ratio of 15:1 (mL solvent/g sample). Samples were taken every 15 min, and extraction time was to 2 h. The kinetics of oil extraction data were fitted to the models reported in literature. For n-hexane and ethanol extractions, the fractional residual oil at 120 minutes was 0.314 and 0.0538, respectively. The models reported in literature were suitable to describe the n-hexane extraction, especially the Duggal model. However, those models were not adequate the model the ethanol extraction (author)

  7. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  8. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    Science.gov (United States)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  9. Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame

    OpenAIRE

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2015-01-01

    This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A “Lagrangian-Lagrangian” approach is adopted where both the joint velocity-scalar Probability Density Function (PDF) for the continuous phase and the joint PDF of droplet properties are modeled and solv...

  10. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  11. An Economic Model of Brazil’s Ethanol-Sugar Markets and Impacts of Fuel Policies

    NARCIS (Netherlands)

    Drabik, D.; Gorter, de H.; Just, D.R.; Timilsina, G.R.

    2014-01-01

    We develop an economic model of flex plants, export demands and two domestic fuel demand curves: E25, a 25 percent blend of ethanol with gasoline consumed by conventional cars, and E100, ethanol consumed only by flex cars. This allows us to analyze the market impacts of specific policies, namely the

  12. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model.

    Science.gov (United States)

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E

    2009-06-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.

  13. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  14. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: Role of the TNF signaling axis

    International Nuclear Information System (INIS)

    Wahl, Elizabeth C.; Aronson, James; Liu, Lichu; Liu, Zhendong; Perrien, Daniel S.; Skinner, Robert A.; Badger, Thomas M.; Ronis, Martin J.J.; Lumpkin, Charles K.

    2007-01-01

    Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-α signaling. The effects in mice are unreported. Therefore, we hypothesized that in mice (1) administration of a soluble TNF receptor 1 derivative (sTNF-R1) would protect direct bone formation during chronic ethanol exposure, and (2) administration of recombinant mouse TNF-α (rmTNF-α) to ethanol naive mice would inhibit direct bone formation. We utilized a unique model of limb lengthening (distraction osteogenesis, DO) combined with liquid diets to measure chronic ethanol's effects on direct bone formation. Chronic ethanol exposure resulted in increased marrow TNF, IL-1, and CYP 2E1 RNA levels in ethanol-treated vs. control mice, while no significant weight differences were noted. Systemic administration of sTNF-R1 during DO (8.0 mg/kg/2 days) to chronic ethanol-exposed mice resulted in enhanced direct bone formation as measured radiologically and histologically. Systemic rmTNF-α (10 μg/kg/day) administration decreased direct bone formation measures, while no significant weight differences were noted. We conclude that chronic ethanol-associated inhibition of direct bone formation is mediated to a significant extent by the TNF signaling axis in a mouse model

  15. Modelling the ethanol-induced sleeping time in mice through a zero inflated model

    OpenAIRE

    FOGAP, Njinju Tongwa

    2007-01-01

    In the analysis of data in statistics, it is imperative to select most suitable models. Wrong choice of model selection leads to bias parameter estimates and standard errors. In the ethanol anesthesia data set used in this thesis, we observe more than expected zero counts, usually termed zero-inflation. Traditional application of Poisson and negative binomial distributions for model fitting may not be adequate due to the presence of excess zeros. This zero-inflation comes from two sources;...

  16. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    Science.gov (United States)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  17. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    Science.gov (United States)

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  18. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    Directory of Open Access Journals (Sweden)

    Céline Huynh-Delerme

    2012-01-01

    Full Text Available An occupational physician reported to the French Health Products Safety Agency (Afssaps a case of adverse effect of acute pancreatitis (AP in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L in nondrinker humans (Al-Awadhi et al., 2004. The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  19. Modelling and simulation of a pervaporation process using tubular module for production of anhydrous ethanol

    Science.gov (United States)

    Hieu, Nguyen Huu

    2017-09-01

    Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.

  20. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  1. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    Science.gov (United States)

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  2. Modeling a one-stage continuous ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, H; Wieczorek, A

    1974-01-01

    Kinetics of the fermentation process carried out with Saccharomyces cerevisiae hybrid G-67 on synthetic media at different initial concentrations of sugar and mixing speed have been determined. No significant effect of mixing (Reynolds No. 1915-7760) and initial sugar concentrations within 50 to 150 g/l was found on the biomass and final ethanol concentration or on the amount of sugar consumed. The optimum dilution rate was 0.10 to 0.20 h/sup -1/. Kinetic equations for sugar and ethanol concentration changes in the process are given.

  3. A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Hobley, Timothy John; Calabrò, V.

    2011-01-01

    Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22gL−1 were found from whey containing ca. 44gL−1 lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h......, lactose, biomass and glycerol during batch fermentation could be described within a ca. 6% deviation, as could the yield coefficients for biomass and ethanol produced on lactose. The model structure confirmed that the thermodynamics considerations on the stoichiometry of the system constrain the metabolic...... coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes....

  4. Modeling and numerical simulation of greenhouse gas emissions from a stationary Diesel engine operating with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bergel, Andre; Viana, Sarah de Resende; Martins, Cristiane Aparecida [Instituto Tecnologica da Aeronautica - ITA, Sao Jose dos Campos, SP (Brazil)], e-mail: cmartins@ita.br; Souza, Francisco Jose de [Universidade Federal de Uberlandia (UFU), MG (Brazil)], e-mail: fjsouza@mecanica.ufu.br

    2010-07-01

    The present work aims at modeling and simulating a stationary, compression ignition motor, operating with ethanol at different levels of EGR. The objective is to quantify the influence of these parameters in the atmospheric pollutant emissions (CO, NO{sub X} and Particulate Matter). Specifications of a diesel engine were used, with compression ratio 19:1, operating with ethanol with a percentile of EGR of 0, 10, 20 and 30%. In the simulation, the combustion model, ECFM-3Z, and the turbulence model k-{zeta}-f were used, besides conditions for the temperatures of the combustion chamber, piston, cylinder head and glow plug. The spray characterization was done through the calculation of the injected fuel mass and parameters like spray angle, droplet size, number of holes, position of the injector and others. For the reduction of the simulation time, the crank angle range of is only 130[CAD], beginning at 30 deg BTDC and concluding at 100 deg ATDC. The assessment of the influence of the different EGR concentrations felt for the analysis of pollutant contained in the end of simulation. A very small delay in the ignition of the fuel injected and the emission of a minor amount of nitrogen oxides were observed in all cases as the EGR level used was increased. (author)

  5. Experimental characterization and modeling of an ethanol steam reformer

    DEFF Research Database (Denmark)

    Mandø, Matthias; Bovo, Mirko; Nielsen, Mads Pagh

    2006-01-01

    This work describes the characterization of an ethanol reforming system for a high temperature PEM fuel cell system. High temperature PEM fuel cells are well suited for operation on reformate gas due to the superior CO tolerance compared with low temperature PEM. Steam reforming of liquid biofuels...

  6. Modeling and simulation of a direct ethanol fuel cell: An overview

    Science.gov (United States)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2014-09-01

    The commercialization of Direct Ethanol Fuel Cells (DEFCs) is still hindered because of economic and technical reasons. Fundamental scientific research is required to more completely understanding the complex electrochemical behavior and engineering technology of DEFCs. To use the DEFC system in real-world applications, fast, reliable, and cost-effective methods are needed to explore this complex phenomenon and to predict the performance of different system designs. Thus, modeling and simulation play an important role in examining the DEFC system as well as in designing an optimized DEFC system. The current DEFC literature shows that modeling studies on DEFCs are still in their early stages and are not able to describe the DEFC system as a whole. Potential DEFC applications and their current status are also presented.

  7. Evaluation of Sustainability of Brazilian Ethanol Production: A model in System Dynamics

    Directory of Open Access Journals (Sweden)

    Arnoldo Jose de Hoyos Guevara

    2017-01-01

    Full Text Available System dynamics is an approach to analyze the behavior of complex systems, such as the productive chains, strictly considering the inherent characteristics. This approach is based on mathematical concepts of nonlinear processes developed in mathematics and physics and consolidated in engineering. The concepts inherent in this approach assists in creating a mathematical model that represents a production chain by using computer simulation. Thus, the main objective of this paper is to present the formalization of the dynamic model of assessing the sustainability of Brazilian ethanol production. We analyzed the external environment and the scenarios needed for a deeper understanding of relation of cause and effect, causal loops and diagrams of flows and stocks because of the awareness stage, with regard to understanding the problems involved, according to methodology known as design science.

  8. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  9. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  10. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  11. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    Science.gov (United States)

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  12. Use of continuous lactose fermentation for ethanol production by Kluveromyces marxianus for verification and extension of a biochemically structured model

    DEFF Research Database (Denmark)

    Sansonetti, S.; Hobley, Timothy John; Curcio, S.

    2013-01-01

    A biochemically structured model has been developed to describe the continuous fermentation of lactose to ethanol by Kluveromyces marxianus and allowed metabolic coefficients to be determined. Anaerobic lactose-limited chemostat fermentations at different dilution rates (0.02 – 0.35 h-1) were...... performed. Species specific rates of consumption/formation, as well as yield coefficients were determined. Ethanol yield (0.655 C-mol ethanol*C-mol lactose-1) was as high as 98 % of theoretical. The modeling procedure allowed calculation of maintenance coefficients for lactose consumption and ethanol...

  13. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanesa M; Serra, Maria [Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona (Spain); Lopez, Eduardo; Llorca, Jordi [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, ed. ETSEIB, 08028 Barcelona (Spain)

    2009-07-01

    A low-temperature ethanol reformer based on a cobalt catalyst for the production of hydrogen has been designed aiming the feed of a fuel cell for an autonomous low-scale power production unit. The reformer comprises three stages: ethanol dehydrogenation to acetaldehyde and hydrogen over SnO{sub 2} followed by acetaldehyde steam reforming over Co(Fe)/ZnO catalyst and water gas shift reaction. Kinetic data have been obtained under different experimental conditions and a dynamic model has been developed for a tubular reformer loaded with catalytic monoliths for the production of the hydrogen required to feed a 1 kW PEMFC. (author)

  14. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  15. A study Antiurolithiatic Activity of ethanolic extract of Asparagus racemosus in animal models

    Directory of Open Access Journals (Sweden)

    Jagannath N

    2015-12-01

    Full Text Available Objective: To investigate the Antiurolithiatic Activity of ethanolic extract of Asparagus racemosus in animal models.Materials and Methods: The study includes performing on healthy albino rats of either sex weighing 220 – 270gms and urolithiasis was induced by oral administration of ethylene glycol and ammonium chloride water. The parameters studied are serum analysis for Urea, Creatinine, Calcium and Phosphorus, Body Weight of animals included in the study group and Histopathological Study of kidney for the presences crystals.  Results In our study the Ethanolic extract of Asparagus Racemosus with doses of 800mg/kg and 1600mg/kg per orally to rats showed significant reduction in serum urea, creatinine, calcium and phosphorus levels in urolithiatic rats when compared to the positive control rats (Group II. These results were found to be statistically significant (p<0.05.Conclusion: Ethanol Extract of Asparagus racemosus has a significant antiurolithiatic activity.

  16. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan M.

    2012-02-07

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  17. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan  M.; Contreras, Maria F.; Faller, Roland; Longo, Marjorie  L.

    2012-01-01

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  18. Modeling ethanol spray jet flame in hot-diluted coflow with transported PDF

    NARCIS (Netherlands)

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2014-01-01

    MILD Combustion, also known as flameless combustion, is attracting wide scientific interest due to its potential of high efficiency and low NOx emission. This paper focuses on the numerical modeling of one of the ethanol spray flame cases from the Delft Spray-in-Hot-Coflow (DSHC) burner, which has

  19. From Realistic to Simple Models of Associating Fluids. II. Primitive Models of Ammonia, Ethanol and Models of Water Revisited

    Czech Academy of Sciences Publication Activity Database

    Vlček, Lukáš; Nezbeda, Ivo

    2004-01-01

    Roč. 102, č. 5 (2004), s. 485-497 ISSN 0026-8976 R&D Projects: GA ČR GA203/02/0764; GA AV ČR IAA4072303; GA AV ČR IAA4072309 Institutional research plan: CEZ:AV0Z4072921 Keywords : primitive model * association fluids * ethanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.406, year: 2004

  20. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  1. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.

    Science.gov (United States)

    McRae, Jacqui M; Ziora, Zyta M; Kassara, Stella; Cooper, Matthew A; Smith, Paul A

    2015-05-06

    Changes in ethanol concentration influence red wine astringency, and yet the effect of ethanol on wine tannin-salivary protein interactions is not well understood. Isothermal titration calorimetry (ITC) was used to measure the binding strength between the model salivary protein, poly(L-proline) (PLP) and a range of wine tannins (tannin fractions from a 3- and a 7-year old Cabernet Sauvignon wine) across different ethanol concentrations (5, 10, 15, and 40% v/v). Tannin-PLP interactions were stronger at 5% ethanol than at 40% ethanol. The mechanism of interaction changed for most tannin samples across the wine-like ethanol range (10-15%) from a combination of hydrophobic and hydrogen binding at 10% ethanol to only hydrogen binding at 15% ethanol. These results indicate that ethanol concentration can influence the mechanisms of wine tannin-protein interactions and that the previously reported decrease in wine astringency with increasing alcohol may, in part, relate to a decrease tannin-protein interaction strength.

  2. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Ovidio, Paula Payão; Deminice, Rafael; Jordão, Alceu Afonso

    2016-10-01

    The aim of this study was to evaluate possible beneficial effects of treatment with thiamine or benfotiamine in an animal model of acute ethanol intoxication. Thirty male Wistar rats were separated at random into three groups of 10 animals each: Ethanol (E), Ethanol treated with thiamine (T) and Ethanol treated with benfotiamine (BE). Rats were gavaged with single dose of ethanol (5g/kg, 40% v:v). After 30min of ethanol gavage the animals were treated with thiamine or benfotiamine. Six hours after first gavage, the animals were euthanized and blood and liver samples were collected for ethanol and oxidative stress biomarkers quantification. Serum ethanol levels were higher in animals treated with thiamine or benfotiamine while hepatic alcohol levels were higher in animals of the group treated with benfotiamine comparing to controls or thiamine treated groups. The lipid peroxidation biomarkers were diminished for the groups treated with thiamine or benfotiamine comparing to E animals. Concerning protein oxidative damage parameters, they were enhanced for animals treated with benfotiamine in relation to other groups. In conclusion, the treatment with thiamine or benfotiamine even 30min after the massive dose of ethanol has proven to be beneficial against liver damage. Improved results were obtained with benfotiamine in relation to oxidative damage from aqueous compartments. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Horizontal bioreactor for ethanol production by immobilized cells. Pt. 3. Reactor modeling and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Woehrer, W

    1989-04-05

    A mathematical model which describes ethanol formation in a horizontal tank reactor containing Saccharomyces cerevisiae immobilized in small beads of calcium alignate has been developed. The design equations combine flow dynamics of the reactor as well as product formation kinetics. The model was verified for 11 continuous experiments, where dilution rate, feed glucose concentration and bead volume fraction were varied. The model predicts effluent ethanol concentration and CO/sub 2/ production rate within the experimental error. A simplification of the model is possible, when the feed glucose concentration does not exceed 150 kg/m/sup 3/. The simplification results in an analytical solution of the design equation and hence can easily be applied for design purposes as well as for optimization studies.

  4. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  5. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept.

    Science.gov (United States)

    Vučurović, Damjan G; Dodić, Siniša N; Popov, Stevan D; Dodić, Jelena M; Grahovac, Jovana A

    2012-01-01

    The batch fermentation process of sugar beet processing intermediates by free yeast cells is the most widely used method in the Autonomous Province of Vojvodina for producing ethanol as fuel. In this study a process and cost model was developed for producing ethanol from raw juice. The model can be used to calculate capital investment costs, unit production costs and operating costs for a plant producing 44 million l of 99.6% pure ethanol annually. In the sensitivity analysis the influence of sugar beet and yeast price, as well as the influence of recycled biomass on process economics, ethanol production costs and project feasibility was examined. The results of this study clearly demonstrate that the raw material costs have a significant influence on the expenses for producing ethanol. Also, the optimal percentage of recycled biomass turned out to be in the range from 50% to 70%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Modeling Separation Dynamics in a Multi-Tray Bio-Ethanol Distillation Column

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu

    2015-01-01

    the product quality and energy consumption in a typical bio-ethanol distillation column is proposed in this paper. The proposed model is derived based on mass and energy balance principles, with an empirical model of the evaporation dynamics of liquids on column trays. The model parameters are identified......The high energy consumption of popularly used distillation columns has motivated development of energytracking dynamic models with the ultimate objective for potential better energy and quality control of these separation facilities. A dynamic model being able to explicitly describe both...

  7. Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations.

    Science.gov (United States)

    Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P

    2011-08-01

    To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. Using reaction-technical models for characterisation and optimisation of continuous ethanol production with biomass recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Yayanata, Y

    1983-11-28

    Ethanol production from S. cerevisiae was studied experimentally in one- and two-stage plants, with and without biomass recirculation. The hydrogen sources were glucose and molasses. The experimental findings were used as a basis for mathematical models whose kinetic parameters were established by comparison with the experiments. In the fermentation processes with glucose as carbon and energy source, an activation kinetics of yeast extract was considered in addition to the limitations resulting from the substrate and the inhibition by the produced ethanol. The problem of biomass recirculation received particular attention. Lamellar separators in the form of a cated tube cluster are described as an alternative to conventional conical separator tanks. Biomass concentrations in the fermenter may amount to about 80 gTS/l. Satisfactory simulation of the plant behaviour is possible by combining the kinetic approaches for the fermenter with the mathematical models for the separator.

  9. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  10. Modelling of Ethanol Production from Red Beet Juice by Saccharomyces cerevisiae under Thermal and Acid Stress Conditions

    Directory of Open Access Journals (Sweden)

    Donaji Jiménez-Islas

    2014-01-01

    Full Text Available In this work the effects of pH and temperature on ethanol production from red beet juice by the strains Saccharomyces cerevisiae ITD00196 and S. cerevisiae ATCC 9763 are studied. Logistic, Pirt, and Luedeking-Piret equations were used to describe quantitatively the microbial growth, substrate consumption, and ethanol production, respectively. The two S. cerevisiae strains used in this study were able to produce ethanol with high yield and volumetric productivity under acid and thermal stress conditions. The equations used to model the fermentation kinetics fit very well with the experimental data, thus establishing that ethanol production was growth associated under the evaluated conditions. The yeast S. cerevisiae ITD00196 had the best fermentative capacity and could be considered as an interesting option to develop bioprocesses for ethanol production.

  11. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  12. Development and validation of A quasi-dimensional model for (M)Ethanol-Fuelled SI engines

    OpenAIRE

    Vancoillie, Jeroen; Verhelst, Sebastian; Sileghem, Louis; Demuynck, Joachim; Galle, Jonas

    2012-01-01

    RESEARCH OBJECTIVE - The use of methanol and ethanol in spark-ignition engines forms an interesting approach to decarbonizing transport and securing domestic energy supply. Experimental work has produced promising results, however, the full potential of light alcohols in modern engine technology remains to be explored. Today, this can be addressed at low cost using system simulations of the whole engine, provided that the employed models account for the effect of the fuel on engine operation....

  13. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    Science.gov (United States)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  14. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.

  15. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    Science.gov (United States)

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  16. A constraint-based model of Scheffersomyces stipitis for improved ethanol production

    Directory of Open Access Journals (Sweden)

    Liu Ting

    2012-09-01

    Full Text Available Abstract Background As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. Results A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. Conclusions Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.

  17. A mouse model for chronic pain-induced increase in ethanol consumption.

    Science.gov (United States)

    Butler, Ryan K; Knapp, Darin J; Ulici, Veronica; Longobardi, Lara; Loeser, Richard F; Breese, George R

    2017-03-01

    Chronic pain conditions are often comorbid with alcohol abuse. "Self-medication" with alcohol introduces a host of problems associated with the abuse of alcohol which over time has the potential of exacerbating the painful condition. Despite the prevalence of chronic pain being associated with alcohol abuse, rodent models which mimic the comorbid conditions are lacking. In this study, we model osteoarthritis (OA) in C57BL/6J mice by surgically destabilizing the medial meniscus (DMM). Sham-operated mice served as controls. Thirteen weeks after surgery, DMM but not sham-operated mice exhibited pronounced incapacitance of the surgically manipulated hind limb compared with the nonsurgically manipulated hind limb. At this time, the mice were exposed to the 2-bottle ethanol choice, beginning with 2.5% with a gradual increasing to 20%. Compared with sham controls, DMM mice consumed more EtOH and preferred EtOH over water at the 20% EtOH concentration. Histological analysis verified that the DMM mice exhibited significant damage to the articular cartilage and osteophyte growth compared with sham controls and these measures of the severity of OA correlated with the amount of ethanol intake. Thus, the combination of the DMM model of OA with the enhanced two-bottle ethanol choice is a potential preclinical approach in mice by which the basis of the comorbid association of alcohol abuse and chronic pain conditions can be explored.

  18. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  19. Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies.

    Science.gov (United States)

    Wu, Felicia; Munkvold, Gary P

    2008-06-11

    The rapidly expanding U.S. ethanol industry is generating a growing supply of co-products, mostly in the form of dried distillers' grain and solubles (DDGS) or wet distillers' grains (WDG). In the United States, 90% of the co-products of maize-based ethanol are fed to livestock. An unintended consequence is that animals are likely to be fed higher levels of mycotoxins, which are concentrated up to three times in DDGS compared to grain. The model developed in this study estimates current losses to the swine industry from weight gain reduction due to fumonisins in added DDGS at $9 million ($2-18 million) annually. If there is complete market penetration of DDGS in swine feed with 20% DDGS inclusion in swine feed and fumonisins are not controlled, losses may increase to $147 million ($29-293 million) annually. These values represent only those losses attributable to one mycotoxin on one adverse outcome on one species. The total loss due to mycotoxins in DDGS could be significantly higher due to additive or multiplicative effects of multiple mycotoxins on animal health. If mycotoxin surveillance is implemented by ethanol producers, losses are shifted among multiple stakeholders. Solutions to this problem include methods to reduce mycotoxin contamination in both pre- and postharvest maize.

  20. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    Science.gov (United States)

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  1. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  2. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    Science.gov (United States)

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  3. Turmeric Extract Rescues Ethanol-Induced Developmental Defect in the Zebrafish Model for Fetal Alcohol Spectrum Disorder (FASD).

    Science.gov (United States)

    Muralidharan, Pooja; Connors, Craig T; Mohammed, Arooj S; Sarmah, Swapnalee; Marrs, Kathleen; Marrs, James A; Chism, Grady W

    2017-09-01

    Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined. © 2017 Institute of Food Technologists®.

  4. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia

    2015-09-01

    We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.

  6. Predator-scent stress, ethanol consumption and the opioid system in an animal model of PTSD.

    Science.gov (United States)

    Manjoch, Hadar; Vainer, Ella; Matar, Michael; Ifergane, Gal; Zohar, Joseph; Kaplan, Zeev; Cohen, Hagit

    2016-06-01

    Emerging literature points to stress exposure as a potential contributor to the development of alcohol abuse, but animal models have yielded inconsistent results. Converging experimental data indicate that the endogenous opioid system modulates alcohol consumption and stress regulation. The aim of the present study is to examine the interplay between stress exposure, behavioral stress responses, ethanol (EtOH) consumption and the endogenous opioid system in an animal model of posttraumatic stress disorder. Rats were exposed to stress and then tested in a two-bottle free choice (TBC) assay or in a conditioned place preference paradigm. In some experiments, the endogenous opioid system was pharmacologically manipulated prior to stress exposure. The behavioral outcomes of stress exposure were assessed in an elevated plus-maze, with the acoustic startle response, and by monitoring the freezing response to trauma reminder. Immunoreactivity of phosphorylated opioid receptors in hippocampal subregions was also measured. Stress significantly increased the consumption of EtOH in the TBC assay. The severity of the behavioral response to stress was associated with EtOH consumption, cue-triggered freezing response to a trauma reminder, and endogenous levels of phosphorylated opioid receptors in the hippocampus. Pharmacologically manipulating the endogenous opioid system prior to stress exposure attenuated trauma cue-triggered freezing responses and blocked predator scent stress-induced potentiation of EtOH consumption. These data demonstrate a stress-induced potentiation of EtOH self-administration and reveal a clear association between individual patterns of the behavioral response to stress and alcohol preference, while indicating a role for the endogenous opioid system in the neurobiological response to stress. Copyright © 2016. Published by Elsevier B.V.

  7. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Hydrological catchment modelling: past, present and future

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper discusses basic issues in hydrological modelling and flood forecasting, ranging from the roles of physically-based and data-driven rainfall runoff models, to the concepts of predictive uncertainty and equifinality and their implications. The evolution of a wide range of hydrological catchment models employing the physically meaningful and data-driven approaches introduces the need for objective test beds or benchmarks to assess the merits of the different models in reconciling the alternative approaches. In addition, the paper analyses uncertainty in models and predictions by clarifying the meaning of uncertainty, by distinguishing between parameter and predictive uncertainty and by demonstrating how the concept of equifinality must be addressed by appropriate and robust inference approaches. Finally, the importance of predictive uncertainty in the decision making process is highlighted together with possible approaches aimed at overcoming the diffidence of end-users.

  9. Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration.

    Science.gov (United States)

    Grant, Kathleen A; Leng, Xiaoyan; Green, Heather L; Szeliga, Kendall T; Rogers, Laura S M; Gonzales, Steven W

    2008-10-01

    We have developed an animal model of alcohol self-administration that initially employs schedule-induced polydipsia (SIP) to establish reliable ethanol consumption under open access (22 h/d) conditions with food and water concurrently available. SIP is an adjunctive behavior that is generated by constraining access to an important commodity (e.g., flavored food). The induction schedule and ethanol polydipsia generated under these conditions affords the opportunity to investigate the development of drinking typologies that lead to chronic, excessive alcohol consumption. Adult male cynomolgus monkeys (Macaca fascicularis) were induced to drink water and 4% (w/v in water) ethanol by a Fixed-Time 300 seconds (FT-300 seconds) schedule of banana-flavored pellet delivery. The FT-300 seconds schedule was in effect for 120 consecutive sessions, with daily induction doses increasing from 0.0 to 0.5 g/kg to 1.0 g/kg to 1.5 g/kg every 30 days. Following induction, the monkeys were allowed concurrent access to 4% (w/v) ethanol and water for 22 h/day for 12 months. Drinking typographies during the induction of drinking 1.5 g/kg ethanol emerged that were highly predictive of the daily ethanol intake over the next 12 months. Specifically, the frequency in which monkeys ingested 1.5 g/kg ethanol without a 5-minute lapse in drinking (defined as a bout of drinking) during induction strongly predicted (correlation 0.91) subsequent ethanol intake over the next 12 months of open access to ethanol. Blood ethanol during induction were highly correlated with intake and with drinking typography and ranged from 100 to 160 mg% when the monkeys drank their 1.5 g/kg dose in a single bout. Forty percent of the population became heavy drinkers (mean daily intakes >3.0 g/kg for 12 months) characterized by frequent "spree" drinking (intakes >4.0 g/kg/d). This model of ethanol self-administration identifies early alcohol drinking typographies (gulping the equivalent of 6 drinks) that evolve into

  10. Modeling the mechanism of glycosylation reactions between ethanol, 1,2-ethanediol and methoxymethanol.

    Science.gov (United States)

    Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José

    2013-09-07

    The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.

  11. Process development and modeling of fluidized-bed reactor with coimmobilized biocatalyst for fuel ethanol production

    Science.gov (United States)

    Sun, May Yongmei

    This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity

  12. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    Science.gov (United States)

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Modeling ethanol spray jet flame in hot-diluted coflow with transported PDF

    OpenAIRE

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2014-01-01

    MILD Combustion, also known as flameless combustion, is attracting wide scientific interest due to its potential of high efficiency and low NOx emission. This paper focuses on the numerical modeling of one of the ethanol spray flame cases from the Delft Spray-in-Hot-Coflow (DSHC) burner, which has been used to study MILD oxidation of liquid fuels. The study has been carried out following the approach of dilute spray simulation. To properly account the turbulent two-phase flow system, a joint ...

  14. Use of net present value analysis to evaluate a publicly funded biomass-to-ethanol research, development, and demonstration program and valuate expected private sector participation.

    Science.gov (United States)

    Hinman, N D; Yancey, M A

    1998-01-01

    One of the functions of government is to invest tax dollars in programs, projects, and properties that will result in greater public benefit than would have resulted from leaving the tax dollars in the private sector or using them to pay off the public debt. This paper describes the use of Net Present Value (NPV) as an approach to analyze and select investment opportunities for government money in public research, development, and demonstration (RD&D) programs and to evaluate potential private sector participation in the programs. This approach is then applied to a specific biomass-to-ethanol opportunity in California.

  15. MECHANISTIC KINETIC MODELS FOR STEAM REFORMING OF CONCENTRATED CRUDE ETHANOL ON NI/AL2O3 CATALYST

    Directory of Open Access Journals (Sweden)

    O. A. OLAFADEHAN

    2015-05-01

    Full Text Available Mechanistic kinetic models were postulated for the catalytic steam reforming of concentrated crude ethanol on a Ni-based commercial catalyst at atmosphere pressure in the temperature range of 673-863 K, and at different catalyst weight to the crude ethanol molar flow rate ratio (in the range 0.9645-9.6451 kg catalyst h/kg mole crude ethanol in a stainless steel packed bed tubular microreactor. The models were based on Langmuir-Hinshelwood-Hougen-Watson (LHHW and Eley-Rideal (ER mechanisms. The optimization routine of Nelder-Mead simplex algorithm was used to estimate the inherent kinetic parameters in the proposed models. The selection of the best kinetic model amongst the rival kinetic models was based on physicochemical, statistical and thermodynamic scrutinies. The rate determining step for the steam reforming of concentrated crude ethanol on Ni/Al2O3 catalyst was found to be surface reaction between chemisorbed CH3O and O when hydrogen and oxygen were adsorbed as monomolecular species on the catalyst surface. Excellent agreement was obtained between the experimental rate of reaction and conversion of crude ethanol, and the simulated results, with ADD% being ±0.46.

  16. Modeling the effect of ethanol vapor on the germination time of Penicillium chrysogenum

    NARCIS (Netherlands)

    Dantigny, P.; Tchobanov, I.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The influence of ethanol vapor on germination of Penicillium chrysogenum was determined on yeast nitrogen base plus glucose agar medium at 25°C. Ethanol vapors were generated by 0 to 6% (wt/wt) ethanol solutions at the bottom of hermetically closed petri dishes. The logistic equation was used to

  17. Molecular modeling study of lithium isotopic separation by crown-ethers in ethanol

    International Nuclear Information System (INIS)

    Dehez, F.

    2002-01-01

    The isotopic separation of lithium ion isotopes is studied at the CEA in Pierrelatte using a liquid chromatography technique. Exchange systems are composed by crown-ethers grafted on silica (12C4, 15C5, B15C5, DB15C5, 18C6, B18C6). Lithium is introduced as a salt melted in ethanol. This work concerns the theoretical study of lithium isotopic exchange reactions with those systems. After a brief presentation of isotope separation techniques and isotopic effects (Chap.I), we describe the methods of theoretical chemistry used in this work (Chap. II). In chapter III, we test AM1 and PM3 semi-empirical methods for the treatment of Li + /crown-ether species. Then, we calculate isotopic separation factors via ab initio and semi-empirical calculations for the exchange reactions in vacuum. The different crown-ethers are considered with and without graftings arms. Studies of exchange reactions in ethanol are presented in chapter IV. First, each species of the reaction are solvated by a few ethanol molecules. Isotopic separation factors calculated show a large effect of the solvent on the exchange reaction. The effect of the grafting arm has been investigated using hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics for species with the 12C4. Trajectories have been generated successively with 7 Li and 6 Li. Atomic velocity autocorrelation functions have allowed the access to vibrational frequencies necessary to calculate isotopic separation factors. The last chapter is devoted to methodological developments made during this Ph.D. We propose an approach to treat long range electrostatic interactions in hybrid QM/MM method, relying on a lattice summation technique. (author) [fr

  18. Ethanol dehydration

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; J L Aguilar; Gerardo Rodríguez Niño; Luis Alfonso Caicedo

    2004-01-01

    This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the op...

  19. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2004-09-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  20. Mechanism-based pharmacodynamic modeling of the interaction of midazolam, bretazenil, and zolpidem with ethanol.

    Science.gov (United States)

    Tuk, Bert; van Gool, Toon; Danhof, Meindert

    2002-06-01

    The pharmacokinetic and pharmacodynamic interactions of ethanol with the full benzodiazepine agonist midazolam, the partial agonist bretazenil and the benzodiazepine BZ1 receptor subtype selective agonist zolpidem have been determined in the rat in vivo, using an integrated pharmacokinetic-pharmacodynamic approach. Ethanol was administered as a constant rate infusion resulting in constant plasma concentrations of 0.5 g/l. The pharmacokinetics and pharmacodynamics of midazolam, bretazenil, and zolpidem were determined following an intravenous infusion of 5.0, 2.5, and 18 mg/kg respectively. The amplitude in the 11.5-30 Hz frequency band of the EEG was used as measure of the pharmacological effect. For each of the benzodiazepines the concentration-EEG effect relationship could be described by the sigmoid Emax pharmacodynamic model. Significant differences in both EC50 and Emax were observed. The values of the EC50 were 76 +/- 11, 12 +/- 3, and 512 +/- 116 ng/ml for midazolam, bretazenil, and zolpidem respectively. The values of the Emax were 113 +/- 9, 44 +/- 3, and 175 +/- 10 microV/s. In the presence of ethanol the values of the EC50 of midazolam and zolpidem were reduced to approximately 50% of the original value. The values for Emax and Hill-factor were unchanged Due to a large interindividual variability no significant change in EC50 was observed for bretazenil. Analysis of the data on basis of a mechanism-based model showed only a decrease in the apparent affinity constant KPD for all three drugs, indicating that changes in EC50 can be explained entirely by a change in the apparent affinity constant KPD without concomitant changes in the efficacy parameter ePD and the stimulus-effect relationship. The findings of this study show that the pharmacodynamic interactions with a low dose of ethanol in vivo are qualitatively and quantitatively similar for benzodiazepine receptor full agonists, partial agonists, and benzodiazepine BZ1 receptor subtype selective

  1. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  2. Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production.

    Science.gov (United States)

    Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook

    2007-01-01

    Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.

  3. Pharmacological studies of ethanolic extracts of Maytenus rigida Mart (Celastraceae in animal models

    Directory of Open Access Journals (Sweden)

    Vanda Lucia dos Santos

    Full Text Available The crude ethanol extract (EEOH of the bark of Maytenus rigida Mart (Celastraceae a plant used in Brazil herbal traditional medicine, was tested for anti-inflammatory, antiulcer and antidiarrhoeal activities in animal models. No acute toxicological sign was observed in animals treated with the highest dose (5000 mg/kg, p.o. or 2000 mg/kg i.p. of EEOH. The extract doses of 250, 500 or 750 mg/kg revealed a significant inhibitory effect (P < 0,01 in carrageenin-induced rat paw oedema and exhibited ulcer-protective properties against ethanol-induced ulceration in rats. An anti-diarrhoeal activity (P < 0.01 was also observed in castor-oil-induced diarrhoeal in mice. The intestinal transit was significantly (P < 0.01 reduced, however the pretreatment did not reduce the weight of intestinal contents. These results support the popular applications of Maytenus rigida for the treatment of inflammation, ulcer and diarrhoea in Brazil herbal traditional medicine.

  4. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  5. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    reactor. The model was based on the coupling of mass, momentum and energy balance equations as well as our new kinetic model developed for this process.The simulation results for crude ethanol conversion were found to be in accordance with the experimental data obtained at various operating conditions. In addition, the predicted variations of the concentration and temperature profiles for our process. In the radial direction indicate that the assumption of plug flow and isothermal behaviour is justified within certain kinetics operating conditions. However, even within these operating conditions, our results have proven that the axial dispersion terms in the balance equations (mass, momentum and energy) cannot be neglected, especially in the hypothetical industrial case presented in this work for the reforming of crude ethanol. In addition, in the experimental study of the application of a porous membrane reactor for the crude ethanol reforming process conducted to compare with that for the packed bed tubular reactor, it was found that the membrane reactor outperformed the packed bed tubular reactor in terms of crude ethanol conversion and hydrogen production. This is due to the function of the membrane reactor to shift the thermodynamic equilibrium in favour of the conversion of crude ethanol to hydrogen according to Le Catelier-Braun's law.(Author)

  6. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  7. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    Science.gov (United States)

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  8. Comparison, artificial neural network modeling and genetic algorithm optimization of the resinoid and potassium yields from white lady’s bedstraw (Galium mollugo L. by conventional, reflux and ultrasound-assisted aqueous-ethanolic extraction

    Directory of Open Access Journals (Sweden)

    Milić Petar S.

    2013-01-01

    Full Text Available In this work, the yields of resinoid and potassium obtained from aerial parts of white lady’s bedstraw (Galium mollugo L. by maceration, reflux extraction and ultrasound-assisted extraction using aqueous ethanol solutions as solvents. The main goal was to define the influence of the extraction technique and the ethanol concentration on the resinoid and potassium yields. The resinoid and potassium yields were determined by the solvent evaporation from the liquid extracts to constant weight and the AAS emission method, respectively. The dependence of resinoid and potassium yields on the ethanol concentration was described by linear and quadratic polynomial models, respectively. The best potassium extraction selectivity of 0.077 g K/g of dry extract was achieved by maceration at the ethanol concentrations of 10 g/100 g. The artificial neural network (ANN was successfully applied to estimate the resinoid and potassium yields based on the ethanol concentration in the extracting solvent and the time duration for all three extraction techniques employed. The response surface methodology was also used to present the dependence of ANN results on the operating factors. The extraction process was optimized using the ANN model coupled with genetic algorithm. The maximum predicted resinoid and potassium yields of 30.4 and 1.67 g/100 g of dry plant were obtained by the ultrasonic extraction (80 min using the 10 g/100 g aqueous ethanol solution.

  9. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Science.gov (United States)

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  10. Model studies for evaluating the acute neurobehavioral effects of complex hydrocarbon solvents. I. Validation of methods with ethanol

    NARCIS (Netherlands)

    McKee, R.H.; Lammers, J.H.C.M.; Hoogendijk, E.M.G.; Emmen, H.H.; Muijser, H.; Barsotti, D.A.; Owen, D.E.; Kulig, B.M.

    2006-01-01

    As a preliminary step to evaluating the acute neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, joint neurobehavioral/toxicokinetic studies were conducted which involved administering ethanol to rats and volunteers. The

  11. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  12. Characterization of chemically induced ovarian carcinomas in an ethanol-preferring rat model: influence of long-term melatonin treatment.

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo A Chuffa

    Full Text Available Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH, they were surgically injected with 100 µg of 7,12-dimethyl-benz[a]anthracene (DMBA plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 µg mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC; Group C+EtOH, rats voluntarily consuming 10% (v/v EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of

  13. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  14. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  15. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration

    Directory of Open Access Journals (Sweden)

    Shubha Ghosh Dastidar

    2018-01-01

    Full Text Available Both chronic and acute (binge alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD. There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH feeding (Lieber–DeCarli liquid diet model, chronic intragastric EtOH administration (Tsukamoto–French model, and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA model. This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.

  16. “Jello® Shots” and Cocktails as Ethanol Vehicles: Parametric Studies with High- and Low-Saccharin-Consuming Rats

    Directory of Open Access Journals (Sweden)

    Nancy K. Dess

    2013-11-01

    Full Text Available Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose; ethanol concentration (4% or 10%; and feeding status (chow deprived or ad lib. during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS or low (LoS saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed.

  17. Successful aspiration and ethanol sclerosis of a large, symptomatic, simple liver cyst: Case presentation and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Wojciech C Blonski; Mical S Campbell; Thomas Faust; David C Metz

    2006-01-01

    Simple liver cysts are congenital with a prevalence of 2.5%-4.25%. Imaging, whether by US, CT or MRI,is accurate in distinguishing simple cysts from other etiologies, including parasitic, neoplastic, duct-related,and traumatic cysts. Symptomatic simple liver cysts are rare, and the true frequency of symptoms is not known.Symptomatic simple liver cysts are predominantly large (> 4 cm), right-sided, and more common in women and older patients. The vast majority of simple hepatic cysts require no treatment or follow-up, though large cysts (> 4 cm) may be followed initially with serial imaging to ensure stability. Attribution of symptoms to a large simple cyst should be undertaken with caution, after alternative diagnoses have been excluded. Aspiration may be performed to test whether symptoms are due to the cyst; however, cyst recurrence should be expected.Limited experience with both laparoscopic deroofing and aspiration, followed by instillation of a sclerosing agent has demonstrated promising results for the treatment of symptomatic cysts. Here, we describe a patient with a large, symptomatic, simple liver cyst who experienced complete resolution of symptoms following cyst drainage and alcohol ablation, and we present a comprehensive review of the literature.

  18. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente

    2013-06-01

    effectivities more than a number of fixed essential characteristics. Luiz Artur Ferrareto (UFRGS, undertaking a theoretical proposal for categorizing radio content in four different levels of planning (segment, form, programming and content itself tries to “compare and contrast the practices of Brazilian commercial broadcasting companies to those used on the radio in the United States, a reference market for our national entrepreneurs”. Madalena Oliveira (University of Minho focuses on the current stage of communication researches in Portugal reflecting on the challenges for studying a culture based on listening in times of looking. Marko Ala-Fossi, (University of Tampere beginning with the statement that “radio evolution greatly depends not only on the cultural context of a country but also on the whole social, political, economic development of societies” gives us a projection on radio development around the world for the next decades. Closing the dossier, Rafael Duarte Oliveira Venancio (UFU assuming radio as language by definition and not as a device understands it as a section and an operating model in such language as it intersects the world. Another six articles, not enrolled in the dossier, round the edition off. Fernando de Tacca debates the category of “photocine” recurring to three recent Spanish productions. Gustavo Souza investigates the possibility of identifying a point of view in documentary movies while establishing a debate that joins the materialities of image and sound with the subjectivity resulting from interpretation. Vinicius Bandeira develops on the special duplicity present in the movies between what is and what is not subsumed by the camera. Neide Jallageas proposes the study of visual communication design from the first modelings, attempting especially to the radical propositions from the early XXth century avant-garde movement. Gilson Schwartz debates on the impact from the distribution of videogames as hegemonic cultural practice in

  19. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  20. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research

  1. Sugarcane bio ethanol and bioelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches the Brazilian sugar cane production and processing model, sugarcane processing, sugarcane reception, sugarcane preparation and juice extraction, juice treatment, fermentation, distillation, sector efficiencies and future improvement - 2007, 2015 and 2025, present situation (considering the 2007/2008 harvesting season), prospective values for 2015 and for 2025, bioelectricity generation, straw recovery, bagasse availability, energy balance, present situation, perspective for improvements in the GHG mitigation potential, bio ethanol production chain - from field to tank, and surplus electricity generation.

  2. Ethanol and Isopropanol in Concentrations Present in Hand Sanitizers Sharply Reduce Excystation of Giardia and Entamoeba and Eliminate Oral Infectivity of Giardia Cysts in Gerbils

    Science.gov (United States)

    Chatterjee, Aparajita; Bandini, Giulia; Motari, Edwin

    2015-01-01

    Enteric protozoan parasites, which are spread by the fecal-oral route, are important causes of diarrhea (Giardia duodenalis) and amebic dysentery (Entamoeba histolytica). Cyst walls of Giardia and Entamoeba have a single layer composed of fibrils of β-1,3-linked GalNAc and β-1,4-linked GlcNAc (chitin), respectively. The goal here was to determine whether hand sanitizers that contain ethanol or isopropanol as the active microbicide might reduce transmission of these parasites. We found that treatment with these alcohols with or without drying in a rotary evaporator (to model rapid evaporation of sanitizers on hands) kills 85 to 100% of cysts of G. duodenalis and 90 to 100% of cysts of Entamoeba invadens (a nonpathogenic model for E. histolytica), as shown by nuclear labeling with propidium iodide and failure to excyst in vitro. Alcohols with or without drying collapsed the cyst walls of Giardia but did not collapse the cyst walls of Entamoeba. To validate the in vitro results, we showed that treatment with alcohols eliminated oral infection of gerbils by 1,000 G. duodenalis cysts, while a commercial hand sanitizer (Purell) killed E. invadens cysts that were directly applied to the hands. These results suggest that expanded use of alcohol-based hand sanitizers might reduce the transmission of Giardia and Entamoeba. PMID:26282413

  3. Phase behaviour and thermodynamic modelling for the system (grape seed oil + carbon dioxide + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Dalmolin, Irede; Rigo, Aline A.; Corazza, Marcos L.; Ndiaye, Papa M.; Meireles, M. Angela A.; Batista, Eduardo A.C.; Oliveira, J. Vladimir

    2014-01-01

    This short communication reports phase equilibrium data (cloud points), employing the synthetic static method, for the system {grape seed oil (GSO) + carbon dioxide (CO 2 ) + ethanol} up to T = 343.15 K and 22.53 MPa. Experimental results were modelled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2). It is shown that the thermodynamic model is able to represent satisfactorily the phase behaviour of the system investigated

  4. Effect of heat/pressure on cyanidin-3-glucoside ethanol model solutions

    International Nuclear Information System (INIS)

    Corrales, M; Lindauer, R; Butz, P; Tauscher, B

    2008-01-01

    The stability of cyanidin-3-glucoside (Cy3gl) in 50% ethanol model solutions under heat/pressure treatments was investigated. Cy3gl was rapidly degraded when solutions were subjected to a heat/pressure treatment. The higher the pressure and the temperature used, the higher the degradation. Moreover, the degradation was increased according to increasing holding times. Parallel to the degradation of Cy3gl several hydrolytic products were formed and identified by LC-DAD/ESI-MS. The degradation of Cy3gl was well fitted to a first order reaction (R=0.99). This study pointed out the rate of susceptibility of Cy3gl in model solutions to degrade when exposed to a heat/pressure treatment and the trigger effect of high hydrostatic pressure to hydrolyse Cy3gl. By contrast, the degradation of anthocyanins in a food matrix (red grape extract solutions) was negligible after a heat/pressure process at 600MPa, 70 deg. C during 1h (P >0.05)

  5. Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-12-01

    Full Text Available A recombinant strain of Escherichia coli FBWHR was used for ethanol fermentation from hot-water sugar maple wood extract hydrolyzate in batch experiments. Kinetic studies of cell growth, sugar utilization and ethanol production were investigated at different initial total sugar concentrations of wood extract hydrolyzate. The highest ethanol concentration of 24.05 g/L was obtained using an initial total sugar concentration of 70.30 g/L. Unstructured models were developed to describe cell growth, sugar utilization and ethanol production and validated by comparing the predictions of model and experimental data. The results from this study could be expected to provide insights into the process performance, optimize the process and aid in the design of processes for large-scale production of ethanol fermentation from woody biomass.

  6. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.

    2008-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) diesel engine is applied for the interesting case of its operation with ethanol-diesel fuel blends, the ethanol (bio-fuel) being considered recently as a promising extender to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using bio-fuels. This is a two dimensional, multi-zone model with the issuing fuel jets divided into several discrete volumes, called 'zones', formed along and across the direction of the fuel injection. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to provide local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of eleven species considered, together with chemical rate equations for calculation of nitric oxide (NO) and a model for net soot formation. The results from the computer program, implementing the analysis, for the in cylinder pressure, exhaust NO concentration and soot density compare well with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI diesel engine located at the authors' laboratory, which is operated with ethanol-diesel fuel blends containing 5%, 10% and 15% (by vol.) ethanol. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the cylinder at various instants of time, when using these ethanol-diesel fuel blends against the diesel fuel (baseline fuel), shed light on the mechanisms

  7. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  8. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  9. Pulp and paper from oil palm fronds: Wavelet neural networks modeling of soda-ethanol pulping

    OpenAIRE

    Zarita Zainuddin; Wan Rosli Wan Daud; Pauline Ong; Amran Shafie

    2012-01-01

    Wavelet neural networks (WNNs) were used to investigate the influence of operational variables in the soda-ethanol pulping of oil palm fronds (viz. NaOH concentration (10-30%), ethanol concentration (15-75%), cooking temperature (150-190 ºC), and time (60-180 min)) on the resulting pulp and paper properties (viz. screened yield, kappa number, tensile index, and tear index). Performance assessments demonstrated the predictive capability of WNNs, in that the experimental results of the dependen...

  10. Updates to the Corn Ethanol Pathway and Development of an Integrated Corn and Corn Stover Ethanol Pathway in the GREET™ Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael Q. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanol plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.

  11. Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: Genetic algorithm.

    Science.gov (United States)

    Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam

    2016-07-01

    In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antidepressant, anxiolytic and anti-nociceptive activities of ethanol extract of Steudnera colocasiifolia K. Koch leaves in mice model

    Directory of Open Access Journals (Sweden)

    Mohammad Shah Hafez Kabir

    2015-11-01

    Full Text Available Objective: To estimate the antidepressant, anxiolytic and antinociceptive activities of ethanol extract of Steudnera colocasiifolia K. Koch (S. colocasiifolia leaves. Methods: Swiss albino mice treated with 1% Tween solution, standard drugs and ethanol extract of S. colocasiifolia, respectively, were subjected to the neurological and antinociceptive investigations. The tail suspension test and forced swimming test were used for testing antidepressant activity, where the parameter is the measurement of immobility time. Anxiolytic activity was evaluated by hole board model. Anti-nociceptive potential of the extract was also screened for centrally acting analgesic activity by using formalin induced licking response model and acetic acid induced writhing test was used for testing peripheral analgesic action. Results: Ethanol extract of S. colocasiifolia significantly decreased the period of immobility in both tested models (tail suspension and forced swimming models of antidepressant activity. In the hole board model, there was a dose dependant (at 100 and 200 mg/kg and a significant increase in the number of head dipping by comparing with control (1% Tween solution (P < 0.05 and P < 0.001. In formalin induced licking model, a significant inhibition of pain compared to standard diclofenac sodium was observed (P < 0.05 and P < 0.001. In acetic acid induced test, there was a significant reduction of writhing response and pain in mice treated with leaves extract of S. colocasiifolia at 200 mg/kg body weight (P < 0.05 and P < 0.001. Conclusions: The results proofed the prospective antidepressant, anxiolytic and antinociceptive activities of ethanol extract of S. colocasiifolia leaves.

  13. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    Science.gov (United States)

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  14. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented

  15. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2017-01-01

    Full Text Available Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis.

  16. Antipsychotic activity of aqueous ethanolic extract of Tinospora Cordifolia in amphetamine challenged mice model

    Directory of Open Access Journals (Sweden)

    Bindu nee Giri Jain

    2010-01-01

    Full Text Available Tinospora cordifolia is reported to have CNS active principle and is used for the treatment of various neurological disorders. Hence, the effect of aqueous ethanolic extract of Tinospora cordifolia was investigated for its putative antipsychotic activity using amphetamine challenged mice model. Haloperidol (1 mg/kg i.p. was administered acutely to mice as standard drug. Control animals received vehicle (10% DMSO. The in vivo receptor binding studies were carried out to correlate the antipsychotic activity of the extract with its capacity to bind to the DAD2 receptor. The results in SLA showed that the hydro alcoholic extract of the stems of Tinospora cordifolia at a dose level of 250 mg/kg and 500 mg/kg showed no significant antipsychotic activity in amphetamine induced hyperactivity in mice when compared to standard. Extract alone treated group at a dos level of 250 mg/kg and 500 mg/kg showed a decreased in locomotor activity when compared to the control. The plant extract increased the DAD2 receptor binding in a dose dependent manner in treated mice compared to the control group.

  17. Bayesian Estimation and Selection of Nonlinear Vector Error Correction Models: The Case of the Sugar-Ethanol-Oil Nexus in Brazil

    OpenAIRE

    Kelvin Balcombe; George Rapsomanikis

    2008-01-01

    Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest ...

  18. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models.

    Science.gov (United States)

    Rao, Ch V; Rawat, A K S; Singh, Anil P; Singh, Arpita; Verma, Neeraj

    2012-04-01

    To evaluate the hepatoprotective potential of ethanolic (50%) extract of Ziziphus oenoplia (L.) Mill (Z. oenoplia) root against isoniazid (INH) and rifampicin (RIF) induced liver damage in animal models. Five groups of six rats each were selected for the study. Ethanolic extract at a dose of 150 and 300 mg/kg as well as silymarin (100 mg/kg) were administered orally once daily for 21 d in INH + RIF treated groups. The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), and bilirubin were estimated along with activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione peroxidase, and hepatic melondialdehyde formation. Histopathological analysis was carried out to assess injury to the liver. The considerably elevated serum enzymatic activities of glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin due to INH + RIF treatment were restored towards normal in a dose dependent manner after the treatment with ethanolic extract of Z. oenoplia roots. Meanwhile, the decreased activities of superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were also restored towards normal dose dependently. In addition, ethanolic extract also significantly prevented the elevation of hepatic melondialdehyde formation in the liver of INH + RIF intoxicated rats in a dose dependent manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethanolic extract of Z. oenoplia has a potent hepatoprotective action against INH + RIF induced hepatic damage in rats. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David

    2014-03-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  20. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David; Kozarac, Darko; Mehl, Marco; Saxena, Samveg; Pitz, William J.; Dibble, Robert W.; Chen, Jyhyuan; Sarathy, Mani

    2014-01-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  1. NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer's, and Ethanol Intoxication.

    Science.gov (United States)

    Olszewski, Rafal T; Janczura, Karolina J; Bzdega, Tomasz; Der, Elise K; Venzor, Faustino; O'Rourke, Brennen; Hark, Timothy J; Craddock, Kirsten E; Balasubramanian, Shankar; Moussa, Charbel; Neale, Joseph H

    2017-09-01

    Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications.

  2. Heat Pump Water Heater Modeling in EnergyPlus (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.; Christensen, C.

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  3. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  4. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model.

    Science.gov (United States)

    Bisig, Christoph; Roth, Michèle; Müller, Loretta; Comte, Pierre; Heeb, Norbert; Mayer, Andreas; Czerwinski, Jan; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-11-01

    Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NO x , and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×10 2 #/cm 3 (E0), 1×10 5 #/cm 3 (E10), 3×10 3 #/cm 3 (E85), and 2.8×10 6 #/cm 3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1

  5. Use of a crossed high alcohol preferring (cHAP) mouse model with the NIAAA-model of chronic-binge ethanol intake to study liver injury.

    Science.gov (United States)

    Thompson, Kyle J; Nazari, Shayan S; Jacobs, W Carl; Grahame, Nicholas J; McKillop, Iain H

    2017-11-01

    This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  6. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    International Nuclear Information System (INIS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-01-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  7. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents

    Directory of Open Access Journals (Sweden)

    Hélio B Fernandes

    2010-01-01

    Full Text Available Parkia platycephala Benth. (Leguminosae - Mimosoideae, popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH, as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52 %, respectively, but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder.

  8. Building models for marketing decisions : Past, present and future

    NARCIS (Netherlands)

    Leeflang, PSH; Wittink, DR

    We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models

  9. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  10. Modeling of the substrate and product transfer coefficients for ethanol fermentation

    International Nuclear Information System (INIS)

    Zerajic, S.; Grbavcic, Z.; Savkovic-Stevanovic, J.

    2008-01-01

    The transfer phenomena of the substrate and product for ethanol fermentation with immobilized biocatalyst were investigated. Fermentation was carried out with a biocatalyst consisting of Ca-alginate gel in the form of two-layer spherical beads in anaerobic conditions. The determination of kinetic parameters was achieved by fitting bioreaction progress curves to the experimental data. The calculation of the diffusion coefficients was performed by numerical methods for experimental conditions. Finally, the glucose and ethanol transfer coefficients are defined and determined, using the effective diffusion coefficients. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Effects of oxygen and ethanol on recombinant yeast fermentation for hepatitis B virus surface antigen production: modeling and simulation studies.

    Science.gov (United States)

    Shi, Y; Ryu, D D; Yuan, W K

    1993-01-05

    A model was formulated to examine the competitive growth of two phenotypes (Leu(+) and Leu(-)) and the product formation with recombinant Saccharomyces cerevisiae strain DBY-745, which contains the shuttle vector pYGH3-16-s with the foreign gene HBsAg (hepatitis B virus surface antigen) as well as experimental fedbatch fermentation data. The important state variables and the process parameters evaluated include (1) the ratio of the plasmid-free cell concentration to the plasmid-containing cell concentration (rho = X(-)X(+)), (2) the expression of human hepatitis B surface antigen g (CH), (3) the glucose consumption (S), (4) the ethanol production (/), (5) the change of working volume (V) in the fermentor, (6) the different specific growth rates of two phenotype cells, and (7) the plasmid loss frequency coefficient (alpha ). These variables and other parameters were carefully defined, their correlations were studied, and a mathematical model using a set of nonlinear ordinary differential equations (ODEs) for fed-batch fermentation was then obtained based on the theoretical considerations and the experimental results. The extended Kalman filter (EKF) methods was applied for the best estimate of these variables based on the experimentally observable variables: rhoV, and g (CH). Each of these variable was affected by random measuring errors under the different operating conditions. Simulation results presented for verification of the model agreed with our observations and provided useful information relevant to the operation and the control of the fedbatch recombinant yeast fermentation. The method of predicting an optimal profile of the cell growth was also demonstrated under the different dissolved oxygen concentrations.

  12. Probabilistic model for the spoilage wine yeast Dekkera bruxellensis as a function of pH, ethanol and free SO2 using time as a dummy variable.

    Science.gov (United States)

    Sturm, M E; Arroyo-López, F N; Garrido-Fernández, A; Querol, A; Mercado, L A; Ramirez, M L; Combina, M

    2014-01-17

    The present study uses a probabilistic model to determine the growth/no growth interfaces of the spoilage wine yeast Dekkera bruxellensis CH29 as a function of ethanol (10-15%, v/v), pH (3.4-4.0) and free SO2 (0-50 mg/l) using time (7, 14, 21 and 30 days) as a dummy variable. The model, built with a total of 756 growth/no growth data obtained in a simile wine medium, could have application in the winery industry to determine the wine conditions needed to inhibit the growth of this species. Thereby, at 12.5% of ethanol and pH 3.7 for a growth probability of 0.01, it is necessary to add 30 mg/l of free SO2 to inhibit yeast growth for 7 days. However, the concentration of free SO2 should be raised to 48 mg/l to achieve a probability of no growth of 0.99 for 30 days under the same wine conditions. Other combinations of environmental variables can also be determined using the mathematical model depending on the needs of the industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  14. Greenhouse gases in the corn-to-fuel ethanol pathway

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  15. A framework for model-based optimization of bioprocesses under uncertainty: Lignocellulosic ethanol production case

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2012-01-01

    of up to 0.13 USD/gal-ethanol. Further stochastic optimization demonstrated the options for further reduction of the production costs with different processing configurations, reaching a reduction of up to 28% in the production cost in the SHCF configuration compared to the base case operation. Further...

  16. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  17. Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions.

    Science.gov (United States)

    Skowyra, Monika; Falguera, Víctor; Gallego, Gabriela; Peiró, Sara; Almajano, María Pilar

    2014-03-30

    The successful replacement of some synthetic food antioxidants by safe natural antioxidants has fostered intensive search for new vegetable sources of antioxidants. In our study the phenol and flavonoid content of extracts of tara pods was determined. The antioxidant activity was also studied by three different analytical assays: the measurement of scavenging capacity against a radical ABTS⁺ , the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). All analyzed samples showed a good antioxidant capacity, but the use of a solution of ethanol 75% in a 1 h ultrasonic process allowed achieving the greatest quantity of phenolics (0.464 mg gallic acid equivalent (GAE) g⁻¹ dry weight (DW) ) and the highest antioxidant activity measured by the ABTS⁺ and ORAC methods (10.17 and 4.29 mmol L⁻¹ Trolox equivalents (TE) g⁻¹ DW, respectively). The best method for efficient extraction of flavonoids (3.08 mg catechin equivalent (CE) g⁻¹ DW) was a 24 h maceration in cold water. Two extracts obtained with ethanol 75% and water were added to a model food system (oil-in-water emulsion) and the oxidative stability was studied during storage at 38 °C. Oxidation was monitored by determination of the peroxide value. The addition of 48 µg mL⁻¹ ethanol extract to the emulsion delayed oxidation to the same extent as 17.8 µg mL⁻¹ of Trolox, while water extract was only effective in the early stages of the oxidation process. The results of this study indicate that ethanolic tara extracts may be suitable for use in food, cosmetic and nutraceutical applications. © 2013 Society of Chemical Industry.

  18. A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C G [Michigan Univ., Ann Arbor, MI (United States). Dept. of Chemical Engineering; Kim, C H; Rhee, S K [Korea Inst. of Science and Technology, Taejon (Korea, Republic of). Genetic Engineering Research Inst.

    1992-07-01

    A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglycosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with {alpha}-amylase, a series of Michaelis-Menten equations was obtained. After determining kinetic parameters from the results of simple experiments and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results. (orig.).

  19. Phase equilibrium measurements and thermodynamic modelling for the system (CO2 + ethyl palmitate + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Gaschi, Priscilla S.; Mafra, Marcos R.; Ndiaye, Papa M.; Corazza, Marcos L.

    2013-01-01

    Graphical abstract: Ethyl palmitate and biodiesel comparison in a pressure–composition diagram for the systems (CO 2 + ethyl palmitate + biodiesel), at different temperatures. Highlights: ► We measured VLE, LLE, and VLLE for the system (CO 2 + ethyl palmitate + ethanol). ► The saturation pressures were obtained using a variable-volume view cell. ► Phase envelope of (CO 2 + ethyl palmitate) is different that (CO 2 + soybean oil biodiesel). ► The experimental data were modeled using PR-vdW2 and PR–WS equations of state. - Abstract: This work reports phase equilibrium measurements for the binary {CO 2 (1) + ethyl palmitate(2)} and ternary {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} systems at high pressures. There is currently great interest in biodiesel production processes involving supercritical and/or pressurized solvents, such as non-catalytic supercritical biodiesel production and enzyme-catalysed biodiesel production. Also, supercritical CO 2 can offer an interesting alternative for glycerol separation in the biodiesel purification step in a water-free process. In this context, the main goal of this work was to investigate the phase behaviour of binary and ternary systems involving CO 2 , a pure constituent of biodiesel ethyl palmitate and ethanol. Experiments were carried out in a high-pressure variable-volume view cell with operating temperatures ranging from (303.15 to 353.15) K and pressures up to 21 MPa. The CO 2 mole fraction ranged from 0.5033 to 0.9913 for the binary {CO 2 (1) + ethyl palmitate(2)} system and from 0.4436 to 0.9712 for ternary system {CO 2 (1) + ethyl palmitate(2) + ethanol(3)} system with ethyl ester to ethanol molar ratios of (1:6), (1:3), and (1:1). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL) phase transitions were observed. The experimental data sets were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals

  20. Thermodynamic analysis of ethanol reforming for hydrogen production

    International Nuclear Information System (INIS)

    Sun, Shaohui; Yan, Wei; Sun, Peiqin; Chen, Junwu

    2012-01-01

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  1. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    Science.gov (United States)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  2. Fermentation Process Modeling with Levenberg-Marquardt Algorithm and Runge-Kutta Method on Ethanol Production by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dengfeng Liu

    2014-01-01

    Full Text Available The core of the Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF process. In order to control and optimize the SSF process of Chinese rice wine brewing, it is necessary to construct kinetic model and study the influence of temperature on the Chinese rice wine brewing process. An unstructured kinetic model containing 12 kinetics parameters was developed and used to describe the changing of kinetic parameters in Chinese rice wine fermentation at 22, 26, and 30°C. The effects of substrate and product inhibitions were included in the model, and four variable, including biomass, ethanol, sugar and substrate were considered. The R-square values for the model are all above 0.95 revealing that the model prediction values could match experimental data very well. Our model conceivably contributes significantly to the improvement of the industrial process for the production of Chinese rice wine.

  3. Brazilian third world ethanol pilot

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P

    1981-01-01

    A financial cost model has been developed in Brazil, under contract from th United Nations Industrial Development Organization, for fermentation ethanol production based on sugar cane molasses, sugar cane juice and cassava. The model is designed to help in analysing the feasibility and implementation of ethanol programs in developing countries.

  4. Social opportunity and ethanol drinking in rats.

    Science.gov (United States)

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  5. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    OpenAIRE

    Paritta Prayoonyong

    2014-01-01

    The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...

  6. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    Science.gov (United States)

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  7. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Presenting an Evaluation Model for the Cancer Registry Software.

    Science.gov (United States)

    Moghaddasi, Hamid; Asadi, Farkhondeh; Rabiei, Reza; Rahimi, Farough; Shahbodaghi, Reihaneh

    2017-12-01

    As cancer is increasingly growing, cancer registry is of great importance as the main core of cancer control programs, and many different software has been designed for this purpose. Therefore, establishing a comprehensive evaluation model is essential to evaluate and compare a wide range of such software. In this study, the criteria of the cancer registry software have been determined by studying the documents and two functional software of this field. The evaluation tool was a checklist and in order to validate the model, this checklist was presented to experts in the form of a questionnaire. To analyze the results of validation, an agreed coefficient of %75 was determined in order to apply changes. Finally, when the model was approved, the final version of the evaluation model for the cancer registry software was presented. The evaluation model of this study contains tool and method of evaluation. The evaluation tool is a checklist including the general and specific criteria of the cancer registry software along with their sub-criteria. The evaluation method of this study was chosen as a criteria-based evaluation method based on the findings. The model of this study encompasses various dimensions of cancer registry software and a proper method for evaluating it. The strong point of this evaluation model is the separation between general criteria and the specific ones, while trying to fulfill the comprehensiveness of the criteria. Since this model has been validated, it can be used as a standard to evaluate the cancer registry software.

  9. Presenting a Model for Setting in Narrative Fiction Illustration

    Directory of Open Access Journals (Sweden)

    Hajar Salimi Namin

    2017-12-01

    Full Text Available The present research aims at presenting a model for evaluating and enhancing training the setting in illustration for narrative fictions for undergraduate students of graphic design who are weak in setting. The research utilized expert’s opinions through a survey. The designed model was submitted to eight experts, and their opinions were used to have the model adjusted and improved. Used as research instruments were notes, materials in text books, papers, and related websites, as well as questionnaires. Results indicated that, for evaluating and enhancing the level of training the setting in illustration for narrative fiction to students, one needs to extract sub-indexes of setting. Moreover, definition and recognition of the model of setting helps undergraduate students of graphic design enhance the level of setting in their works skill by recognizing details of setting. Accordingly, it is recommended to design training packages to enhance these sub-indexes and hence improve the setting for narrative fiction illustration.

  10. Possibilistic Fuzzy Net Present Value Model and Application

    Directory of Open Access Journals (Sweden)

    S. S. Appadoo

    2014-01-01

    Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.

  11. Presenting an evaluation model of the trauma registry software.

    Science.gov (United States)

    Asadi, Farkhondeh; Paydar, Somayeh

    2018-04-01

    Trauma is a major cause of 10% death in the worldwide and is considered as a global concern. This problem has made healthcare policy makers and managers to adopt a basic strategy in this context. Trauma registry has an important and basic role in decreasing the mortality and the disabilities due to injuries resulted from trauma. Today, different software are designed for trauma registry. Evaluation of this software improves management, increases efficiency and effectiveness of these systems. Therefore, the aim of this study is to present an evaluation model for trauma registry software. The present study is an applied research. In this study, general and specific criteria of trauma registry software were identified by reviewing literature including books, articles, scientific documents, valid websites and related software in this domain. According to general and specific criteria and related software, a model for evaluating trauma registry software was proposed. Based on the proposed model, a checklist designed and its validity and reliability evaluated. Mentioned model by using of the Delphi technique presented to 12 experts and specialists. To analyze the results, an agreed coefficient of %75 was determined in order to apply changes. Finally, when the model was approved by the experts and professionals, the final version of the evaluation model for the trauma registry software was presented. For evaluating of criteria of trauma registry software, two groups were presented: 1- General criteria, 2- Specific criteria. General criteria of trauma registry software were classified into four main categories including: 1- usability, 2- security, 3- maintainability, and 4-interoperability. Specific criteria were divided into four main categories including: 1- data submission and entry, 2- reporting, 3- quality control, 4- decision and research support. The presented model in this research has introduced important general and specific criteria of trauma registry software

  12. Numerical modelling of present and future hydrology at Laxemar- Simpevarp

    International Nuclear Information System (INIS)

    Sassner, Mona; Sabel, Ulrika; Bosson, Emma; Berglund, Sten

    2011-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has performed site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow modelling of the Laxemar area. The modelling reported in this document is focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The main objective of the modelling was to provide input to the radionuclide transport and dose calculations that were carried out as a part of the comparison between the Laxemar and Forsmark sites

  13. Numerical modelling of present and future hydrology at Laxemar- Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Sassner, Mona; Sabel, Ulrika (DHI Sverige AB (Sweden)); Bosson, Emma; Berglund, Sten (Svensk Kaernbraenslehantering AB (Sweden))

    2011-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has performed site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow modelling of the Laxemar area. The modelling reported in this document is focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The main objective of the modelling was to provide input to the radionuclide transport and dose calculations that were carried out as a part of the comparison between the Laxemar and Forsmark sites

  14. Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature.

    Science.gov (United States)

    Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B

    2017-08-01

    In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1  h -1 , respectively.

  15. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    International Nuclear Information System (INIS)

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-01-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  16. Development of Presentation Model with Cloud Based Infrastructure

    Directory of Open Access Journals (Sweden)

    Magdalena Widiantari Maria

    2018-01-01

    Full Text Available Computer mediated communication are the communication activities using technology which have rapidly in progress. Communication interactive activities nowadays has no longer only involving person to person but mediated by technology, and have been done in many fields including in education and teaching activity. In this study, presentation media based on cloud's infrastructure designed to replace face to face or in class lectures. In addition, the presentation will allow media data storage indefinitely, and accessible wherever and anytime. This is in line with the concept of student center learning where students were encouraged to more active in the lecture activities. The purpose of this research is making or designing a presentation model based on cloud‘s infrastructure. This research is using research and development method which is consists of four stages, where the first phase is composing the concept of media presentation design. The second phase are choosing the subject that will be designed as the subject of presentation. The third stage is designing presentation model. And the fourth phase is collecting materials of the subject that will be presented by each lecturer.

  17. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  18. Analgesic and anti-inflammatory effects of ethanol extracted leaves of selected medicinal plants in animal model

    Directory of Open Access Journals (Sweden)

    Mohammad M. Hassan

    2013-04-01

    Full Text Available Aim: The research was carried out to investigate the analgesic and anti-inflammatory effects of ethanol extract of Desmodium pauciflorum, Mangifera indica and Andrographis paniculata leaves. Materials and Methods: In order to assess the analgesic and anti-inflammatory effects acetic acid induced writhing response model and carrageenan induced paw edema model were used in Swiss albino mice and Wistar albino rats, respectively. In both cases, leaves extract were administered (2gm/kg body weight and the obtained effects were compared with commercially available analgesic and anti-inflammatory drug Dclofenac sodium (40mg/kg body weight. Distilled water (2ml/kg body weight was used as a control for the study. Results: In analgesic bioassay, oral administration of the ethanol extract of leaves were significantly (p<0.01 reduced the writhing response. The efficacy of leaves extract were almost 35% in Desmodium pauciflorum, 56% in Mangifera indica and 34% in Andrographis paniculata which is found comparable to the effect of standard analgesic drug diclofenac sodium (76%. Leaves extract reduced paw edema in variable percentages but they did not show any significant difference among the leaves. Conclusion: We recommend further research on these plant leaves for possible isolation and characterization of the various active chemical substances which has the toxic and medicinal values. [Vet World 2013; 6(2.000: 68-71

  19. Predictive Models of Li-ion Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  20. Modelling and simulation-based acquisition decision support: present & future

    CSIR Research Space (South Africa)

    Naidoo, S

    2009-10-01

    Full Text Available stream_source_info Naidoo1_2009.pdf.txt stream_content_type text/plain stream_size 24551 Content-Encoding UTF-8 stream_name Naidoo1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 Modelling & Simulation...-Based Acquisition Decision Support: Present & Future Shahen Naidoo Abstract The Ground Based Air Defence System (GBADS) Programme, of the South African Army has been applying modelling and simulation (M&S) to provide acquisition decision and doctrine...

  1. Statistical Model of the 2001 Czech Census for Interactive Presentation

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Hora, Jan; Boček, Pavel; Somol, Petr; Pudil, Pavel

    Vol. 26, č. 4 (2010), s. 1-23 ISSN 0282-423X R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Interactive statistical model * census data presentation * distribution mixtures * data modeling * EM algorithm * incomplete data * data reproduction accuracy * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.492, year: 2010 http://library.utia.cas.cz/separaty/2010/RO/grim-0350513.pdf

  2. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration

    Directory of Open Access Journals (Sweden)

    Sara Peiró

    2014-10-01

    Full Text Available The optimization of the extraction of natural antioxidants from white tea has fostered intensive research. This study has investigated the effects of ethanol-water mixtures, temperature and time on the extraction of polyphenols and antioxidant components from white tea. The response surface methodology was applied to identify the best extraction conditions. The best conditions to maximize the extraction of total polyphenols were: ethanol, 50%, for 47.5 min. Although the yield of polyphenols was optimal at 65 °C, the maximum antioxidant capacity was achieved with an extraction temperature of 90 °C. This study has identified the optimal conditions for the extraction of tea liquor with the best antioxidant properties. Epigallocatechin gallate, epicatechin gallate, epigallocatechin and epicatechin were extracted from white tea at concentrations up to 29.6 ± 10.6, 5.40 ± 2.09, 5.04 ± 0.20 and 2.48 ± 1.10 mg/100 g.

  3. Nuclear model developments in FLUKA for present and future applications

    Science.gov (United States)

    Cerutti, Francesco; Empl, Anton; Fedynitch, Anatoli; Ferrari, Alfredo; Ruben, GarciaAlia; Sala, Paola R.; Smirnov, George; Vlachoudis, Vasilis

    2017-09-01

    The FLUKAS code [1-3] is used in research laboratories all around the world for challenging applications spanning a very wide range of energies, projectiles and targets. FLUKAS is also extensively used for in hadrontherapy research studies and clinical planning systems. In this paper some of the recent developments in the FLUKAS nuclear physics models of relevance for very different application fields including medical physics are presented. A few examples are shown demonstrating the effectiveness of the upgraded code.

  4. High-resolution techno-ecological modelling of a bioenergy landscape to identify climate mitigation opportunities in cellulosic ethanol production

    Science.gov (United States)

    Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith

    2018-03-01

    Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.

  5. Analgesic effects of an ethanol extract of the fruits of Xylopia aethiopica (Dunal A. Rich (Annonaceae and the major constituent, xylopic acid in murine models

    Directory of Open Access Journals (Sweden)

    Eric Woode

    2012-01-01

    Full Text Available Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE and xylopic acid (XA, in murine models. Materials and Methods: XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests, thermal (Tail-flick and Hargreaves thermal hyperalgesia tests, and mechanical (Randall-Selitto paw pressure test pain models. Results: XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg -1 , p.o. and XA (10-100 mg kg -1 , p.o. inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory, thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg -1 , i.p. and diclofenac (1-10 mg kg -1 , i.p., used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. Conclusions: These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid.

  6. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  7. Modeling population exposures to silver nanoparticles present in consumer products

    Science.gov (United States)

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-11-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.

  8. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  9. An in vivo and in vitro investigation of the effect of Aloe vera gel ethanolic extract using animal model with diabetic foot ulcer

    Directory of Open Access Journals (Sweden)

    Mohan Daburkar

    2014-01-01

    Full Text Available Aim: To examine the preventive effect of Aloe vera gel ethanolic extract using diabetic foot ulcer (DFUs protocol in Wistar rats. Materials and Methods: Male Wistar rats were divided into untreated control (Group I, untreated DFUs (Group II, DFUs treated with A. vera gel ethanolic extract (Group III, DFUs treated with topical A. vera gel (Group IV, DFUs treated with A. vera gel ethanolic extract and topical A. vera gel (Group V. The rats in the treatment groups were daily administered the A. vera gel and ethanolic extract for 9 days. Fasting blood glucose levels and percentage of wound ulcer contraction were measured on day 3, 6, and 9. Statistical Analysis used: The results are expressed as a mean ± Standard Error Mean (SEM. Data were analyzed using one-way analysis of variance (ANOVA after Newman-Keuls test. P < 0.05 were considered statistically significant in all cases. Results: Oral administration of A. vera gel ethanolic extract at a dose of 300 mg/kg body weight per day to diabetic rats for a period of 9 days resulted in a significant reduction in fasting blood glucose and a significant improvement in plasma insulin. Topical application of A. vera gel at a dose 30 mg/kg body weight per day to streptozotocin (STZ-induced diabetic rats for a period of 9 days resulted in no change in blood glucose and plasma insulin. Oral administration as well as topical application of A. vera gel ethanolic extract and gel significantly reduced the blood glucose, improved the plasma insulin, and significantly increased DNA and glycosaminoglycans (GAGs to improve the wound ulcer healing as well as the breaking strength on day 9. Conclusions: Present findings provide a scientific rationale for the use of A. vera gel ethanolic extract, and showed that the gel attenuated the diabetic foot wound in rats.

  10. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    Science.gov (United States)

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  11. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  12. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  13. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  14. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wu Weimin [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Mehlhorn, Tonia [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kelly, Shelly D.; Kemner, Kenneth M. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Zhang, Gengxin [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Schadt, Christopher; Brooks, Scott C. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Criddle, Craig S. [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2010-11-15

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  15. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Zhang Fan; Wu Weimin; Parker, Jack C.; Mehlhorn, Tonia; Kelly, Shelly D.; Kemner, Kenneth M.; Zhang, Gengxin; Schadt, Christopher; Brooks, Scott C.; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.

    2010-01-01

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  16. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    Directory of Open Access Journals (Sweden)

    Shivendra D. Shukla

    2015-11-01

    Full Text Available Chronic alcoholics who also binge drink (i.e., acute on chronic are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4% for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart. Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9, dually modified phosphoacetylated histone H3 (H3AcK9/PS10, and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10 and H3 ser 28 (H3S28 increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  17. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  18. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis.

    Science.gov (United States)

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Kang, Eun Seon; Kang, Suna; Park, Sunmin

    2017-08-17

    Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. TCN

  19. Effects of Thymus vulgaris ethanolic extract on chronic toxoplasmosis in a mouse model.

    Science.gov (United States)

    Eraky, Maysa Ahmad; El-Fakahany, Amany Farouk; El-Sayed, Nagwa Mostafa; Abou-Ouf, Eman Abdel-Rahman; Yaseen, Doaa Ibrahim

    2016-07-01

    The current work was undertaken to investigate the potential effectiveness of Thymus vulgaris ethanolic extract (TVE) against Toxoplasma gondii infection in chronic experimental toxoplasmosis. To evaluate prophylactic effects, mice received 500 mg/kg TVE for 5 days before they were infected by an avirulent Me49 T. gondii strain. To investigate the therapeutic effects of the extract postinfection, daily treatment with TVE was initiated at 6 weeks postinfection and continued for 10 days. The following groups of animals were used as controls: uninfected/non-treated, infected/non-treated, and infected/treated with a combination of pyrimethamine and sulfadiazine. Brain cyst count and histopathological changes using H&E and Feulgen stains were used to evaluate the efficacy of TVE. The mean number of brain cysts was significantly decreased by 24 % in mice treated prophylactically with TVE. TVE also significantly reduced the mean number of brain cysts when administered to animals already chronically infected with T. gondii. The effect of TVE was comparable to that of treatment with a mixture of sulfadiazine and pyrimethamine (46 and 51 % reduction, respectively). Moreover, considerable amelioration of the pathological lesions in the brain and retina was observed. The results demonstrate the potential efficacy of T. vulgaris as a new natural therapeutic and prophylactic agent for use in the treatment of chronic toxoplasmosis.

  20. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  1. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.

    Science.gov (United States)

    Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R

    2009-12-01

    A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.

  2. Methodology for geometric modelling. Presentation and administration of site descriptive models; Metodik foer geometrisk modellering. Presentation och administration av platsbeskrivande modeller

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan [Golder Associates (Sweden)

    2001-03-01

    This report presents a methodology to construct, visualise and present geoscientific descriptive models based on data from the site investigations, which the SKB currently performs, to build an underground nuclear waste disposal facility in Sweden. It is designed for interaction with SICADA (SKB:s site characterisation database) and RVS (SKB:s Rock Visualisation System). However, the concepts of the methodology are general and can be used with other tools capable of handling 3D geometries and parameters. The descriptive model is intended to be an instrument where site investigation data from all disciplines are put together to form a comprehensive visual interpretation of the studied rock mass. The methodology has four main components: 1. Construction of a geometrical model of the interpreted main structures at the site. 2. Description of the geoscientific characteristics of the structures. 3. Description and geometrical implementation of the geometric uncertainties in the interpreted model structures. 4. Quality system for the handling of the geometrical model, its associated database and some aspects of the technical auditing. The geometrical model forms a basis for understanding the main elements and structures of the investigated site. Once the interpreted geometries are in place in the model, the system allows for adding descriptive and quantitative data to each modelled object through a system of intuitive menus. The associated database allows each geometrical object a complete quantitative description of all geoscientific disciplines, variabilities, uncertainties in interpretation and full version history. The complete geometrical model and its associated database of object descriptions are to be recorded in a central quality system. Official, new and old versions of the model are administered centrally in order to have complete quality assurance of each step in the interpretation process. The descriptive model is a cornerstone in the understanding of the

  3. PRESENT STATUS OF RESEARCH IN DEBRIS FLOW MODELING.

    Science.gov (United States)

    Chen, Cheng-lung

    1985-01-01

    A viable rheological model should consist of both a time-independent part and a time-dependent part. A generalized viscoplastic fluid model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criteria) is shown to be sufficiently accurate, yet practical, for general use in debris flow modeling. Other rheological models, such as the Bingham plastic fluid model and the so-called Coulomb-viscous model, are compared in terms of the generalized viscoplastic fluid model.

  4. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  5. OpenDolphin: presentation models for compelling user interfaces

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Shared applications run on the server. They still need a display, though, be it on the web or on the desktop. OpenDolphin introduces a shared presentation model to clearly differentiate between "what" to display and "how" to display. The "what" is managed on the server and is independent of the UI technology whereas the "how" can fully exploit the UI capabilities like the ubiquity of the web or the power of the desktop in terms of interactivity, animations, effects, 3D worlds, and local devices. If you run a server-centric architecture and still seek to provide the best possible user experience, then this talk is for you. About the speaker Dierk König (JavaOne Rock Star) works as a fellow for Canoo Engineering AG, Basel, Switzerland. He is a committer to many open-source projects including OpenDolphin, Groovy, Grails, GPars and GroovyFX. He is lead author of the "Groovy in Action" book, which is among ...

  6. Modeling of present and Eemian stable water isotopes in precipitation

    DEFF Research Database (Denmark)

    Sjolte, Jesper

    The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period ...... the modeled isotopes do not agree with ice core data. The discrepancy between the model output and the ice core data is attributed to the boundary conditions, where changes in ice sheets and vegetation have not been accounted for.......The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period...... 1959 to 2001 using meteorological data and a domain including Greenland and the surrounding North Atlantic. The model was found to reproduce the observed seasonal variability of temperature and precipitation well. In comparison with ice core data from Greenland and observations from coastal stations...

  7. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177.

    Science.gov (United States)

    Chang, Dongdong; Yu, Zhisheng; Islam, Zia Ul; Zhang, Hongxun

    2015-05-01

    Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h(-1), respectively. The cell growth rate (r x ) was consistent with a logistic equation [Formula: see text], which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations [Formula: see text] and [Formula: see text], respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.

  8. Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models.

    Science.gov (United States)

    Süntar, Ipek; Akkol, Esra Küpeli; Senol, Fatma Sezer; Keles, Hikmet; Orhan, Ilkay Erdogan

    2011-04-26

    Salvia L. species are widely used against wounds and skin infections in Turkish folk medicine. The aim of the present study is to evaluate wound healing activity of the ethanol (EtOH) extracts of Salvia cryptantha and Salvia cyanescens. For the assessment of wound healing activity linear incision and circular excision wound models were employed on rats and mice. The wound healing effect was comparatively evaluated with the standard skin ointment Madecassol(®). Inhibition of tyrosinase, a key enzyme in skin aging, was achieved using ELISA microplate reader. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenger effect, ferrous ion-chelating ability, and ferric-reducing antioxidant power (FRAP) tests. The EtOH extract of Salvia cryptantha treated groups of animals showed 56.5% contraction, whereas the reference drug Madecassol(®) showed 100% contraction. On the other hand, the same extract on linear incision wound model demonstrated a significant increase (33.2%) in wound tensile strength as compared to other groups. The results of histopathological examination maintained the upshot of linear incision and circular excision wound models as well. These findings specify that Salvia cryptantha for wound healing activity can be appealed further phytochemical estimation for spotting its active components. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Renewable corn-ethanol and energy security

    International Nuclear Information System (INIS)

    Eaves, James

    2007-01-01

    Though corn-ethanol is promoted as renewable, models of the production process assume fossil fuel inputs. Moreover, ethanol is promoted as a means of increasing energy security, but there is little discussion of the dependability of its supply. This study investigates the sensibility of promoting corn-ethanol as an automobile fuel, assuming a fully renewable production process. We then use historical data to estimate the supply risk of ethanol relative to imported petroleum. We find that devoting 100% of US corn to ethanol would displace 3.5% of gasoline consumption and the annual supply of the ethanol would be inherently more risky than that of imported oil. Finally, because large temperature increases can simultaneously increase fuel demand and the cost of growing corn, the supply responses of ethanol producers to temperature-induced demand shocks would likely be weaker than those of gasoline producers. (author)

  10. Present status of the VMI and related models

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1980-05-01

    This article traces the evolution of the Variable Moment of Inertia model in its relation to the shell model, the Bohr-Mottelson model and the Interacting Boson Model. The discovery of a new type of spectrum, that of pseudomagic nuclei (isobars of doubly magic nuclei) is reported, and an explanation for their dynamics is suggested. The type of rotational motion underlying the ground state band of an e-e nucleus is shown to depend on whether the minimum number of valence nucleon pairs of one kind (neutrons or protons) is less than or equal to 2 or > 2. In the former case the alpha-dumbbell model holds; in the latter the two-fluid model

  11. Making sense to modelers: Presenting UML class model differences in prose

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Understanding the difference between two models, such as different versions of a design, can be difficult. It is a commonly held belief in the model differencing community that the best way of presenting a model difference is by using graph or tree-based visualizations. We disagree and present an...... by a controlled experiment that tests three alternatives to presenting model differences. Our findings support our claim that the approach presented here is superior to EMF Compare.......Understanding the difference between two models, such as different versions of a design, can be difficult. It is a commonly held belief in the model differencing community that the best way of presenting a model difference is by using graph or tree-based visualizations. We disagree and present...... an alternative approach where sets of low-level model differences are abstracted into high-level model differences that lend themselves to being presented textually. This format is informed by an explorative survey to elicit the change descriptions modelers use themselves. Our approach is validated...

  12. Forced swim stress increases ethanol consumption in C57BL/6J mice with a history of chronic intermittent ethanol exposure.

    Science.gov (United States)

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-06-01

    Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated alcohol use to the development of alcohol dependence. Additionally, stress is a common trigger for relapse and subsequent loss of control of drinking in alcohol-dependent individuals. The present study was designed to characterize effects of repeated forced swim stress (FSS) on ethanol consumption in three rodent drinking models that engender high levels of ethanol consumption. Adult male C57BL/6J mice were exposed to 10-min FSS 4 h prior to each drinking session in three different models of high ethanol consumption: chronic intermittent ethanol (CIE) drinking (a model of dependence-like drinking), drinking-in-the-dark (DID; a model of binge-like drinking), and intermittent vs. continuous access (a model of escalated drinking). In the CIE drinking paradigm, daily FSS facilitated the escalation of ethanol intake that is typically seen in CIE-exposed mice without altering ethanol consumption in control mice exposed to FSS. FSS prior to drinking sessions did not alter ethanol consumption in the DID or intermittent access paradigms, whereas stressed mice in the continuous access procedure consumed less ethanol than their nonstressed counterparts. The CIE drinking paradigm may provide a helpful preclinical model of stress-induced transition to ethanol dependence that can be used to (1) identify underlying neural mechanisms that facilitate this transition and (2) evaluate the therapeutic potential of various pharmacological agents hypothesized to alleviate stress-induced drinking.

  13. Past and present of sediment and carbon biogeochemical cycling models

    Directory of Open Access Journals (Sweden)

    F. T. Mackenzie

    2004-01-01

    Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification

  14. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  15. Computational Study of Ethanol Conversion on Al 8 O 12 as a Model for γ-Al 2 O 3

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Wang, Yong; Dixon, David A.

    2015-10-15

    Correlated molecular orbital theory at the coupled cluster CCSD(T) level with density functional theory geometries is used to study ethanol dehydration, dehydrogenation, and condensation reactions on an the Al8O12 cluster which is a model for γ-Al2O3. The Al in the active site on the cluster is a strong Lewis acid. The reactions begin with formation of a very stable Lewis acid–base ethanol–cluster adduct. Dehydration proceeds by β-H transfer to a bicoordinate oxygen leading to the direct formation of ethylene and two OH groups following an E2 mechanism. Dehydrogenation proceeds directly by α-H transfer to the active metal center and a proton transfer to a bicoordinate bridge O to form acetaldehyde plus a metal hydride and a hydroxyl, again an E2 mechanism. After addition of a second ethanol, diethyl ether is generated by an α-C transfer from the first to the second ethanol, an acid-driven SN2 mechanism. Condensation and dehydration with two alcohols have comparable energy barriers. The addition of a second ethanol or a water molecule raises the energy barriers. Condensation and dehydration are predicted to be more likely than dehydrogenation. The computational results for the mechanism and the energetics agree well with the available experimental data.

  16. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Key words: Fuel-ethanol, cassava, Tanzania, process modelling. INTRODUCTION ..... mathematical calculations such as Matlab, Octave and Polymath were also ... models. To start the different simulation procedures in ethanol production, a.

  17. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  18. Beer Is Less Harmful for the Liver than Plain Ethanol: Studies in Male Mice Using a Binge-Drinking Model.

    Science.gov (United States)

    Landmann, Marianne; Wagnerberger, Sabine; Kanuri, Giridhar; Ziegenhardt, Doreen; Bergheim, Ina

    2015-09-01

    Mechanisms involved in the less damaging effects of beer in comparison to hard spirits have not yet been fully understood. The aim of the study was to determine if the effect of beer intake on the liver differs from that of plain ethanol and if so to determine mechanisms involved. Male C57BL/6J mice received either ethanol, beer (ethanol content: 6 g/kg body weight) or iso-caloric maltodextrin solution. Markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade and lipid export in liver and tight junction proteins in duodenum were measured 6 and 12 h after acute ethanol or beer intake. Alcohol ingestion resulted in a significant increase of hepatic triglyceride accumulation 6 and 12 h after ingestion, respectively, being markedly lower in mice fed beer. Expression of sterol regulatory element-binding protein-1c mRNA was significantly lower 12 h after alcohol or beer exposure, while fatty acid synthase mRNA expression was induced in livers of ethanol-fed mice and to a lesser extent in mice fed beer 6 h after acute alcohol ingestion. Protein levels of tight junction proteins in the small intestine were similar between groups while expression of myeloid differentiation primary response gene 88 in livers was significantly induced in ethanol- but not in beer-fed mice. Concentrations of 4-hydroxynonenal protein adducts and inducible nitric oxide synthase protein were also only induced in livers of mice fed ethanol. Protein levels of apolipoprotein B were induced in livers of beer-fed mice only. Our data suggest that beer is less harmful on the development of acute alcohol-induced liver damage than plain ethanol in male mice. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  19. Bonissone CIDU Presentation: Design of Local Fuzzy Models

    Data.gov (United States)

    National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...

  20. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.

    Science.gov (United States)

    Wang, Ruifei; Unrean, Pornkamol; Franzén, Carl Johan

    2016-01-01

    High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. For high-solid SSCF process of SO2-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40-45 g L(-1). In lab scale, the optimized multi-feed SSCF produced 57 g L(-1) ethanol in 72 h. The process was reproducible and resulted in 52 g L(-1) ethanol in 10 m(3) scale at the SP Biorefinery Demo Plant. SSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process

  1. From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Directory of Open Access Journals (Sweden)

    Alessandra T. Peana

    2016-01-01

    Full Text Available In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects.

  2. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Science.gov (United States)

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  3. Inhibition mechanism of compound ethanol extracts from wuweizi (fructus schisandrae chinensis) on renal interstitial fibrosis in diabetic nephropathy model mice.

    Science.gov (United States)

    Zhang, Yanqiu; Zhang, Daning; Zhang, Mianzhi

    2012-12-01

    To evaluate inhibition effect and mechanism of compound ethanol extracts from Wuweizi (Fructus Schisandrae Chinensis), Chuanxiong (Rhizoma Chuanxiong) and Muli (Cocha Ostreae) (FRC) on glomerular and tubular interstitial fibrosis in streptozocin (STZ)-induced diabetic nephropathy (ND) model mice. Twenty-seven male C57BL/6 mice were divided randomly into 3 groups: nondibetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic that were treated with 5 g x kg(-1) x day(-1) of FRC by oral gavage (D(FRC)), with 9 in each group. The protein expressions of E-cadherin, alpha-smooth muscle actin (alpha-SMA), Plasminogen Activator Inhibitor-1 (PAL-1) in renal tissues were investigated by Western blotting. The expressions of fibronectin (FN) and alpha-SMA were detected by immunohistochemical method. The morphological changes of renal tissues were observed under a microscope. Renal tissues in the D(FRC) group showed a lessened degree of fibrosis. Meanwhile, the expressions of FN, alpha-SMA and PAI-1 were significantly lower in the D(FRC) group than those in the D group (all P < 0.05). FRC can ameliorate the DN in the C57BL/6 mice, and its mechanism may relate to inhibition on the epithelial to mesenchymal transdifferentiation, endothelial-myofibroblast transition and PAL-1 expression.

  4. Effects of ethanolic extract of leaves of Lafoensia pacari A. St.-Hil., Lythraceae (pacari, in pain and inflammation models

    Directory of Open Access Journals (Sweden)

    Heloisa Alves Guimarães

    Full Text Available Lafoensia pacari A. St.-Hil., Lythraceae, popularly known as pacari, is a Cerrado's native specimen; the stem bark extract is used in folk for pain and inflammation, also showing sedating activity. This study aimed to evaluate the analgesic and anti inflammatory activities of ethanol extract from pacari leaves (EEPL. These activities were verified in mice. The previous treatment with EEPL 1.0 g/kg showed antinociceptive activity both in the acetic acid-induced writing test and in the formalin-induced model of pain, and in neurogenic and inflammatory phases as well. In the croton oil-induced ear edema, the pre-treatments with EEPL reduced the edema in a dose-dependent manner. Also in the carrageenan-induced peritonitis, the two major doses tested (2.0 and 1.5 g/kg p.o. were able to reduce the leukocyte migration in a dose-dependent manner. The Central Nervous System tests showed that the extract does not elicit uncoordinated motricity, hypnosis or sedating effects. The results showed that EEPL maintains the analgesic and anti-inflammatory effects of the stem bark of pacari, being the collect of leaves more favorable to the preservation of this Cerrado's native specimen.

  5. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    Directory of Open Access Journals (Sweden)

    Chien-Ya Hung

    2013-01-01

    Full Text Available The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE’s oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE’s significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent.

  6. Establishing an ethanol production business

    International Nuclear Information System (INIS)

    1993-01-01

    Many Saskatchewan communities are interested in the potential benefits of establishing an ethanol production facility. A guide is presented to outline areas that communities should consider when contemplating the development of an ethanol production facility. Political issues affecting the ethanol industry are discussed including environmental impacts, United States legislation, Canadian legislation, and government incentives. Key success factors in starting a business, project management, marketing, financing, production, physical requirements, and licensing and regulation are considered. Factors which must be taken into consideration by the project manager and team include markets for ethanol and co-products, competent business management staff, equity partners for financing, production and co-product utilization technologies, integration with another facility such as a feedlot or gluten plant, use of outside consultants, and feedstock, water, energy, labour, environmental and site size requirements. 2 figs., 2 tabs

  7. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  8. Estimating net present value variability for deterministic models

    NARCIS (Netherlands)

    van Groenendaal, W.J.H.

    1995-01-01

    For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large,

  9. Dynamical reduction models: present status and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, Angelo [Dipartimento di Fisica Teorica, Universita degli Studi di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Mathematisches Institut der Ludwig-Maximilians Universitaet, Theresienstr. 39, 80333 Munich (Germany)

    2007-05-15

    We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.

  10. Minimal Z' models: present bounds and early LHC reach

    International Nuclear Information System (INIS)

    Salvioni, Ennio; Zwirner, Fabio; Villadoro, Giovanni

    2009-01-01

    We consider 'minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb -1 , taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10 TeV, the LHC will start probing a wider range of Z' masses and couplings, although several hundred pb -1 will be needed to explore the regions of couplings favored by grand unification and to overcome the Tevatron bounds in the mass region around 250 GeV.

  11. Surviving the present: Modeling tools for organizational change

    International Nuclear Information System (INIS)

    Pangaro, P.

    1992-01-01

    The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them

  12. A history of alternative reinforcement reduces stimulus generalization of ethanol-seeking in a rat recovery model

    Science.gov (United States)

    Ginsburg, Brett C.; Lamb, R. J.

    2012-01-01

    BACKGROUND Longer periods of recovery reduce the likelihood of relapse, which may be due to a reduced ability of various stimuli to occasion alcohol or drug seeking. However, this hypothesis remains largely uninvestigated. METHODS Here we assessed the ability of intermediate stimuli to occasion responding for ethanol in rats trained to discriminate an 8kHz tone signaling a food fixed-ratio (FR) of 5 and an ethanol FR5, from a 16kHz tone signaling a food FR150 and ethanol FR5. In the presence of the 8kHz tone responding for food predominates, and in the presence of the 16 kHz tone, responding for ethanol predominates. RESULTS In the context of alternation between these conditions, varying the tone from 8 to 16kHz produces a graded increase in ethanol (versus food) responding, consistent with a stimulus generalization function. A recent history of responding under food-predominant choice conditions, either during the test session or in the four sessions that precede it shifts the generalization function downwards. Extending this history to nine sessions shifts the curve further downwards. The stimulus generalization function was similar in a separate group, trained with different relative ratios for food and ethanol, but with similar behavioral allocation under each discriminative stimulus. Finally, withholding access to food and ethanol for 4 or 16 sessions did not affect the stimulus generalization gradient. CONCLUSION These results suggest that longer histories of reinforced alternative behavior might reduce the likelihood of relapse by decreasing the control exerted over alcohol- or drug-seeking by stimuli similar to those that previously occasioned alcohol- or drug-seeking. PMID:23122598

  13. Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology

    International Nuclear Information System (INIS)

    Chollacoop, Nuwong; Saisirirat, Peerawat; Sukkasi, Sittha; Tongroon, Manida; Fukuda, Tuenjai; Fukuda, Atsushi; Nivitchanyong, Siriluck

    2013-01-01

    Highlights: ► Energy demand modeling in Thai road transportation sector was developed. ► Such model was used to assess environment impact by ethanol bus technology (ED95). ► Ethanol bus technology (ED95) shows beneficial impacts to Thailand. ► Increase in ethanol demand and decrease in GHG emission in Thailand by ethanol bus. ► Ethanol bus (ED95) has been successfully demonstrated in Thailand. -- Abstract: Over decades, Thailand energy consumption has been concentrated in three main sectors, namely manufacturing, power and transportation. Energy consumption in transportation sector has also been dominated by road transport due to limited coverage by rail and water transportation. Hence, road transport has been a major contributor for greenhouse gas emission in Thailand over recent years. Along with global warming concern throughout the world, Thailand has taken various adaptation and mitigation measures, especially the strong policy push to use carbon–neutral biofuel in transportation sector due to Thailand competitive advantage in agriculture sector. National Renewable Energy Plan (2008–2022) has set challenging targets of 9 and 4.5 million liters/day of ethanol and biodiesel consumption by 2022, respectively. Various blends of ethanol in gasoline (10%, 20% and 85%) and biodiesel in diesel (up to 5%) have been commercially available. However, since current consumption of diesel is twice as much of gasoline, ethanol blend in gasoline would widen the imbalance consumption of gasoline and diesel. The present study however offers an insight into a possibility to use ethanol as diesel substitute. A case study of ethanol bus technology was investigated by recourse to energy demand modeling. Necessary data, such as a number of vehicles (NVs) for various vehicle types, vehicle kilometer of travel (VKT) and fuel economy (FE) were collected, with reasonable assumptions made for those unavailable data, to construct predicative energy demand model. Scenario

  14. Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.

    Science.gov (United States)

    Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2003-11-01

    In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.

  15. The ELOCA fuel modelling code: past, present and future

    International Nuclear Information System (INIS)

    Williams, A.F.

    2005-01-01

    ELOCA is the Industry Standard Toolset (IST) computer code for modelling CANDU fuel under the transient coolant conditions typical of an accident scenario. Since its original inception in the early 1970's, the code has undergone continual development and improvement. The code now embodies much of the knowledge and experience of fuel behaviour gained by the Canadian nuclear industry over this period. ELOCA has proven to be a valuable tool for the safety analyst, and continues to be used extensively to support the licensing cases of CANDU reactors. This paper provides a brief and much simplified view of this development history, its current status, and plans for future development. (author)

  16. Decomposition of lignin model compounds by Lewis acid catalysts in water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2015-01-01

    The conversion of benzyl phenyl ether, diphenyl ether, diphenyl methane and biphenyl as representative model compounds for alpha-O-4, 5-O-4, alpha(1) (methylene bridges) and 5-5' lignin linkages was investigated. We compared the use of metal chlorides and acetates. The reactions were studied in sub-

  17. Agricultural sector impacts of making ethanol from grain

    Energy Technology Data Exchange (ETDEWEB)

    Hertzmark, D.; Ray, D.; Parvin, G.

    1980-03-01

    This report presents the results of a model of the effects on the agricultural sector of producing ethanol from corn in the United States between 1979 and 1983. The model is aggregated at the national level, and results are given for all of the major food and feed crops, ethanol joint products, farm income, government payment, and agricultural exports. A stochastic simulation was performed to ascertain the impacts of yield and demand variations on aggregate performance figures. Results indicate minimal impacts on the agricultural sector for production levels of less than 1 billion gallons of ethanol per year. For higher production levels, corn prices will rise sharply, the agricultural sector will be more vulnerable to variations in yields and demands, and joint-product values will fall. Possibilities for ameliorating such effects are discussed, and such concepts as net energy and the biomass refinery are explored.

  18. Life-cycle assessment of straw use in bio-ethanol production: A case study based on biophysical modelling

    International Nuclear Information System (INIS)

    Gabrielle, Benoit; Gagnaire, Nathalie

    2008-01-01

    Cereal straw, a by-product in the production of agricultural crops, is considered as a potentially large source of energy supply with an estimated value of 47 x 10 18 J worldwide. However, there is some debate regarding the actual amounts of straw which could be removed from arable soils without jeopardizing their quality, as well as the potential trade-offs in the overall straw-to-energy chain compared to the use of fossil energy sources. Here, we used a deterministic model of C and N dynamics in soil-crop systems to simulate the effect of straw removal under various sets of soil, climate and crop management conditions in northeastern France. Model results in terms of nitrate leaching, soil C variations, nitrous oxide and ammonia emissions were subsequently inputted into the life-cycle assessment (LCA) of a particular bio-energy chain in which straw was used to generate heat and power in a plant producing bio-ethanol from wheat grains. Straw removal had little influence on simulated environmental emissions in the field, and straw incorporation in soil resulted in a sequestration of only 5-10% of its C in the long term (30 years). The LCA concluded to significant benefits of straw use for energy in terms of global warming and use of non-renewable energy. Only the eutrophication and atmospheric acidification impact categories were slightly unfavourable to straw use in some cases, with a difference of 8% at most relative to straw incorporation. These results based on a novel methodology thereby confirm the environmental benefits of substituting fossil energy with straw. (author)

  19. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

    Science.gov (United States)

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-01-01

    Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010

  20. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors.

    Science.gov (United States)

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  1. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  2. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  3. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    International Nuclear Information System (INIS)

    Li, Weifeng; Huang, Huimin; Niu, Xiaofeng; Fan, Ting; Mu, Qingli; Li, Huani

    2013-01-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue

  4. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Huang, Huimin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Fan, Ting; Mu, Qingli; Li, Huani

    2013-10-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.

  5. Presenting of Indifference Management Model of Education System in Ardabil Province Using Structural Equation Modeling

    Science.gov (United States)

    Abolfazli, Elham; Saidabadi, Reza Yousefi; Fallah, Vahid

    2016-01-01

    The purpose of the present study is to investigate indifference management structural model in education system of Ardabil Province. The research method was integration study using Alli modeling. Statistical society of research was 420 assistant professors of educational science, managers, and deputies of Ardabil's second period of high schools…

  6. Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents

    Directory of Open Access Journals (Sweden)

    Opeyemi J. Olatunji

    2015-12-01

    Full Text Available The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH, superoxide dismutase (SOD, malondialdehyde (MDA, myeloperoxidase (MPO activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-α, IL-6, and IL-1β in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-κB in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers.

  7. Study of analgesic activity of ethanol extract of Phlogacanthus thyrsiflorus on experimental animal models

    Directory of Open Access Journals (Sweden)

    Apurba Mukherjee

    2009-06-01

    Full Text Available The aim of the study was to evaluate the central and peripheral analgesic action of Phlogacanthus thyrsiflorus in experimental animal models. The extract was prepared by percolation method and acute oral toxicity testing was performed as per OECD guidelines. Analgesic activity was assessed by tail flick method (for central action and glacial acetic acid-induced writhing test (for peripheral action. Leaves extract (500 mg/kg, p.o. and aspirin (100 mg/kg showed significant peripheral analgesic activity (p<0.05. Leaves extract (500 mg/kg, p.o. and pethidine (50 mg/kg, i.p. also showed significant central analgesic activity (p<0.05. Naloxone (1 mg/kg, s.c. was used to find the mechanism of central analgesic action. Some partial agonistic activity for the opioid receptors seems to be probable mechanism of action.

  8. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Baode; Li, Chenxing [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Sun, Junyi [Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Department of Periodontology, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Wang, Xinghui; Liu, Xinling [Basic Medical Experiment Teaching Center, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Yang, Chun [Department of Cardiology, The First Affiliated Hospital, Xi' an Jiaotong University, Xi' an (China); Chen, Lina; Zhou, Jun [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China); Hu, Hao, E-mail: huhao@mail.xjtu.edu.cn [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China)

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{sub Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  9. System identification to characterize human use of ethanol based on generative point-process models of video games with ethanol rewards.

    Science.gov (United States)

    Ozil, Ipek; Plawecki, Martin H; Doerschuk, Peter C; O'Connor, Sean J

    2011-01-01

    The influence of family history and genetics on the risk for the development of abuse or dependence is a major theme in alcoholism research. Recent research have used endophenotypes and behavioral paradigms to help detect further genetic contributions to this disease. Electronic tasks, essentially video games, which provide alcohol as a reward in controlled environments and with specified exposures have been developed to explore some of the behavioral and subjective characteristics of individuals with or at risk for alcohol substance use disorders. A generative model (containing parameters with unknown values) of a simple game involving a progressive work paradigm is described along with the associated point process signal processing that allows system identification of the model. The system is demonstrated on human subject data. The same human subject completing the task under different circumstances, e.g., with larger and smaller alcohol reward values, is assigned different parameter values. Potential meanings of the different parameter values are described.

  10. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes

    International Nuclear Information System (INIS)

    Wang, Michael Q.; Han, Jeongwoo; Haq, Zia; Tyner, Wallace E.; Wu, May; Elgowainy, Amgad

    2011-01-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam 3 in 1980 to over 40.1 hm 3 in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  11. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    policies--to curtail these barriers. These curtailment strategies are grouped into scenarios that are then modeled to investigate their feasibility and explore the dynamics involved in HOF deployment. This report does not advocate for or against incentives or policies, but presents simulations of their effects.

  12. Wine ethanol C-14 as a tracer for fossil fuel CO2 emissions in Europe : Measurements and model comparison

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-01-01

    C-14 (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the C-14 measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff

  13. Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration.

    Science.gov (United States)

    Krank, Marvin D

    2003-10-01

    Conditioned incentive theories of addictive behavior propose that cues signaling a drug's reinforcing effects activate a central motivational state. Incentive motivation enhances drug-taking and drug-seeking behavior. We investigated the behavioral response to cues associated with ethanol and their interaction with operant self-administration of ethanol. In two experiments, rats received operant training to press a lever for a sweetened ethanol solution. After operant training, the animals were given Pavlovian pairings of a brief and localized cue light with the sweetened ethanol solution (no lever present). Lever pressing for ethanol was then re-established, and the behavioral effects of the cue light were tested during an ethanol self-administration session. The conditioned responses resulting from pairing cue lights with the opportunity to ingest ethanol had three main effects: (1) induction of operant behavior reinforced by ethanol, (2) stimulation of ethanol-seeking behavior (magazine entries), and (3) signal-directed behavior (i.e., autoshaping, or sign-tracking). Signal-directed behavior interacted with the other two effects in a manner predicted by the location of the cue light. These conditioned responses interact with operant responding for ethanol reinforcement. These findings demonstrate the importance of Pavlovian conditioning effects on ethanol self-administration and are consistent with conditioned incentive theories of addictive behavior.

  14. Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty

    International Nuclear Information System (INIS)

    Dal-Mas, Matteo; Giarola, Sara; Zamboni, Andrea; Bezzo, Fabrizio

    2011-01-01

    Fossil fuel depletion and the increase of greenhouse gases emissions has been pushing the search for alternative fuels for automotive transport. The European Union has identified biofuel technology as one option for reducing its dependence on imported energy. Ethanol is a promising biofuel, but great uncertainty on the business profitability has recently determined a slowdown in the industry expansion. In particular, geographical plant location, biomass price fluctuation and fuel demand variability severely constrain the economic viability of new ethanol facilities. In this work a dynamic, spatially explicit and multi-echelon Mixed Integer Linear Program (MILP) modeling framework is presented to help decision-makers and potential investors assessing economic performances and risk on investment of the entire biomass-based ethanol supply chain. A case study concerning the corn-to-ethanol production supply chain in Northern Italy is used to demonstrate the effectiveness of the proposed modeling approach. The mathematical pattern addresses the issue of optimizing the ethanol supply network over a ten years' time period under uncertainty on biomass production cost and product selling price. The model allows optimizing economic performances and minimize financial risk on investment by identifying the best network topology in terms of biomass cultivation site locations, ethanol production plant capacities, location and transport logistics. -- Highlights: →A dynamic spatially explicit Mixed Integer Linear Program (MILP) of the entire corn-based ethanol supply chain is proposed. →Uncertainty on corn price and ethanol selling price is taken into account. →The model allows assessing and optimizing the supply chain economic performance and risk on investment. →A case study concerning the corn-to-ethanol production in Northern Italy demonstrates the effectiveness of the approach.

  15. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  16. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  17. Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF.

    Science.gov (United States)

    Wang, Jun-Ming; Pei, Li-Xin; Zhang, Yue-Yue; Cheng, Yong-Xian; Niu, Chun-Ling; Cui, Ying; Feng, Wei-Sheng; Wang, Gui-Fang

    2018-06-01

    The dried roots of Rehmannia glutinosa Libosch. (Scrophulariaceae) are of both medicinal and nutritional importance. Our previous study has found that the 80% ethanol extract of R. glutinosa (RGEE) produced antidepressant-like activities in mouse behavioral despair depression models. However, its mechanisms are still unclear. The present study aimed to observe the antidepressant-like mechanisms of RGEE on a rat chronic unpredictable mild stress (CUMS) model by involving monoaminergic neurotransmitters and brain-derived neurotrophic factor (BDNF). CUMS-stressed rats were orally given RGEE daily (150, 300, and 600 mg/kg) or fluoxetine hydrochloride (FH) for 3 weeks after starting the CUMS procedure. Sucrose preference test was carried out to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. Results demonstrated that CUMS induced depression-like behavior, whereas RGEE and FH administration inhibited this symptom. Furthermore, CUMS caused excessively elevated levels of serum corticosterone (CORT), an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, in a manner attenuated by RGEE and FH administration. RGEE administration also further elevated monoamine neurotransmitters and BDNF levels, up-regulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB) in hippocampus of rats suffering CUMS. Together, our findings suggest that RGEE can improve CUMS-evoked depression-like behavior, and indicate its mechanisms may partially be associated with restoring HPA axis dysfunctions, enhancing monoamineergic nervous systems, and up-regulating BDNF and TrkB expression.

  18. Ethanol demand in Brazil: Regional approach

    International Nuclear Information System (INIS)

    Freitas, Luciano Charlita de; Kaneko, Shinji

    2011-01-01

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: → Article consists of a first insight on regional demand for ethanol in Brazil. → It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. → Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. → Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  19. Ethanol demand in Brazil: Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-05-15

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: {yields} Article consists of a first insight on regional demand for ethanol in Brazil. {yields} It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. {yields} Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. {yields} Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  20. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis

    International Nuclear Information System (INIS)

    3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" >Rios Quiroga, Luis Carlos; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Balestieri, José 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Antonio Perrella; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Ávila, Ivonete

    2017-01-01

    Highlights: • Kinetic parameters of thermal decomposition events were obtained. • Thermal analysis was used as a tool for understanding combustion processes. • Blends would be classified using thermogravimetric analysis technics. • Synergistic effect of ethanol mixed with gasoline was studied and defined. • Relative error and activation energy values were used to analyze the synergy. - Abstract: The use of ethanol as a fuel or as an additive blended with gasoline is very important for most countries, which aim to reduce the heavy dependence on fossil fuels and mitigate greenhouse gases emission. An increased use of ethanol-gasoline blends has placed great relevance on acquiring knowledge about their physical and chemical properties. Thus, knowledge of such properties favors a better understanding of the effect of the percentage of ethanol/gasoline blends on engine performance. Thence, the present study has established a correlation between activation energy and synergetic effects, obtained by a thermal analysis, and ethanol content in gasoline for different blends in order to use this technique as a tool to classify these blends in the process in order to obtain useful energy in spark ignition engines. For such a purpose, a kinetic study has been conducted through a simultaneous thermal analysis system – TGA (thermogravimetry analysis) and DTA (differential thermal analysis) by following the methodology of non-isothermal tests. Thermogravimetric tests were performed and fuel activation energies for gasoline, ethanol, and percentages of 5, 10, 15, 20, 25, 30, 50, and 75% (%v) ethanol mixed with gasoline, which was achieved by the model free kinetics. The analysis results suggest that the theoretical curves characteristics of the thermal decomposition of ethanol-gasoline blends are rather different due to their ethanol content. Furthermore, it was observed significant interactions and synergistic effects, especially regarding those with low ethanol

  1. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.

    2016-04-12

    Ethanol is widely used as an octane booster in commercial gasoline fuels. Its oxygenated nature aids in reducing harmful emissions such as nitric oxides (NOx), soot and unburned hydrocarbons (HC). However, the non-linear octane response of ethanol blending with gasoline fuels is not completely understood because of the unknown intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase (synergistic) or decrease (antagonistic), and the non-linearity depends on the composition of the base gasoline. The complexity of commercial gasoline, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule to predict the octane numbers (ON) of ethanol/primary reference fuel (PRF; mixtures of iso-octane and n-heptane) and ethanol/toluene primary reference fuel (TPRF; mixtures of toluene, iso-octane and n-heptane) mixtures using the data available in literature and new data. The ON of ethanol blends with PRF-40, -50, and -60 were measured and compared with those from literature. Additional experimental data were collected to validate the developed model for ethanol blends of three different TPRFs having the same RON but different MON (i.e., different toluene contents). The three tested TPRF mixtures have octane ratings of RON 60.0/MON 58.0 (toluene 10.2 vol%), RON 60.0/MON 56.3 (toluene 19.8 vol%), and RON 60.0/MON 53.2 (toluene 40.2 vol%). The octane prediction model consists of linear and non-linear by mole regions. The transition point between the linear and non-linear regions is a function of the RON and MON of the base PRF and TPRF mixture. The non-linear by

  2. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  3. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    15% ethanol tolerance. High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential application in ethanologenic fermentations. Data presented in this study revealed that Orc 6 yeast isolate tolerated osmotic stress above 12% (w/v) sorbitol and 15% (w/v) sucrose equivalent of osmotic pressure ...

  4. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    Science.gov (United States)

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  5. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Pascual, María; Montesinos, Jorge; Montagud-Romero, Sandra; Forteza, Jerónimo; Rodríguez-Arias, Marta; Miñarro, José; Guerri, Consuelo

    2017-07-24

    Inflammation during brain development participates in the pathogenesis of early brain injury and cognitive dysfunctions. Prenatal ethanol exposure affects the developing brain and causes neural impairment, cognitive and behavioral effects, collectively known as fetal alcohol spectrum disorders (FASD). Our previous studies demonstrate that ethanol activates the innate immune response and TLR4 receptor and causes neuroinflammation, brain damage, and cognitive defects in the developmental brain stage of adolescents. We hypothesize that by activating the TLR4 response, maternal alcohol consumption during pregnancy triggers the release of cytokines and chemokines in both the maternal sera and brains of fetuses/offspring, which impairs brain ontogeny and causes cognitive dysfunction. WT and TLR4-KO female mice treated with or without 10% ethanol in the drinking water during gestation and lactation were used. Cytokine/chemokine levels were determined by ELISA in the amniotic fluid, maternal serum, and cerebral cortex, as well as in the offspring cerebral cortex. Microglial and neuronal markers (evaluated by western blotting), myelin proteins (immunohistochemical and western blotting) and synaptic parameters (western blotting and electron microscopy) were assessed in the cortices of the WT and TLR4-KO pups on PND 0, 20, and 66. Behavioral tests (elevated plus maze and passive avoidance) were performed in the WT and TLR4-KO mice on PND 66 exposed or not to ethanol. We show that alcohol intake during gestation and lactation increases the levels of several cytokines/chemokines (IL-1β, IL-17, MIP-1α, and fractalkine) in the maternal sera, amniotic fluid, and brains of fetuses and offspring. The upregulation of cytokines/chemokines is associated with an increase in activated microglia markers (CD11b and MHC-II), and with a reduction in some synaptic (synaptotagmin, synapsin IIa) and myelin (MBP, PLP) proteins in the brains of offspring on days 0, 20, and 66 (long-term effects

  6. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  7. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  8. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  9. Adsorption of Water and Ethanol in MFI-Type Zeolites

    KAUST Repository

    Zhang, Ke

    2012-06-12

    Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH -) and fluoride (F -) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F -) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH -), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircar\\'s model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions. © 2012

  10. Ethanolic Extract of Traditional Chinese Medicine (TCM) Gamboge Inhibits Colon Cancer via the Wnt/Beta-Catenin Signaling Pathway in an Orthotopic Mouse Model.

    Science.gov (United States)

    Wang, Wei; Li, Youran; Chen, Yiqi; Chen, Hongjin; Zhu, Ping; Xu, Minmin; Wang, Hao; Wu, Minna; Yang, Zhijian; Hoffman, Robert M; Gu, Yunfei

    2018-04-01

    The aim of the present study was to investigate the efficacy of an ethanolic extract of gamboge (EEG), a traditional Chinese medicine (TCM), both in vitro on colon cancer cells and in vivo in an orthotopic mouse model of human colon cancer. The in vitro cytotoxicity of EEG on colon cancer cells was determined with the CCK8 proliferation assay and the Annexin V-PE/7-AAD apoptosis assay. Efficacy of EEG in vivo was evaluated in an orthotopic mouse model of human colon cancer implated with the green fluorescent protein-expressing human colon cancer cell line SW480-GFP. The tumor-bearing mice were treated with vehicle (0.2 ml/dose normal saline, po, daily), irinotecan (50 mg/kg/dose, ip, twice a week), 5-FU (15 mg/kg/dose, ip, every other day) as positive controls or EEG at doses of 12.5, 25 and 50 mg/kg/dose, po, daily. Real-time fluorescence imaging was performed to determine tumor inhibition in each treated group compared to the untreated controls. The protein expression of β-catenin, MMP-7, cyclin D1 and E-cadherin in the tumors was analyzed by immunohistochemistry. EEG significantly induced proliferation inhibition and apoptosis of SW480 colon cancer cells in vitro in a dose-dependent manner. Tumor growth in the colon-cancer orthotopic model was significantly inhibited by irinotecan, 5-FU and all three doses of EEG. The efficacy of EEG was comparable to irinotecan and 5-FU. Irinotecan, 5-FU and 50 mg/kg EEG significantly decreased the protein expression of β-catenin and MMP-7. Cyclin D1 expression was decreased and E-cadherin expression was increased by irinotecan, 5-FU and all three doses of EEG. The present study demonstrates anti-tumor efficacy of EEG on colon cancer both in vitro and in vivo through inducing proliferation inhibition and apoptosis of SW480 colon cancer cells and inhibiting tumor growth, respectively. EEG exerts anti-tumor activity at least partly via down-regulation of the Wnt/β-catenin signaling pathway. Copyright© 2018, International

  11. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  12. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  13. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach. The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4-21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg -1 ). In the GHG emissions analysis, nitrous oxide (N 2 O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha -1 year -1 and N 2 O emissions from soil are 0.5-2.8 kg N ha -1 year -1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260-922 g CO 2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41-61% km -1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions

  14. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  15. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  16. Derived thermodynamic properties for the (ethanol + decane) and (carbon dioxide + ethanol + decane) systems at high pressures

    International Nuclear Information System (INIS)

    Zamora-López, Héctor S.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio; Hernández-Rosales, Irma P.; Méndez-Lango, Edgar

    2012-01-01

    Highlights: ► Experimental density data are reported for (ethanol + decane) and (ethanol + decane + CO 2 ) mixtures. ► Compressed liquid densities were measured in a vibrating tube densimeter from (313 to 363) K. ► Excess molar volumes for (ethanol + decane) mixtures are positive. ► The presence of carbon dioxide in the (ethanol + decane) mixture causes negative excess molar volumes. - Abstract: Volumetric properties for the binary (ethanol + decane) and ternary (ethanol + decane + carbon dioxide) systems are reported from (313 to 363) K and pressures up to 20 MPa. Compressed liquid densities of both systems were measured in a vibrating tube densimeter at different compositions. Binary mixtures {x 1 ethanol + (1-x 1 ) decane} were prepared at x 1 = 0.0937, 0.1011, 0.2507, 0.4963, 0.7526, 0.9014. Compositions for the ternary system were prepared by varying the ethanol/decane relation and trying to keep constant the presence of carbon dioxide at about 0.2 mole fraction. These were {x 1 ethanol + x 2 decane + (1-x 1 -x 2 ) carbon dioxide} x 1 = 0.0657, 0.1986, 0.4087, 0.6042, 0.7109. Density results were correlated using an empirical model with five parameters. Deviations between experimental and calculated values agree and are within the experimental uncertainty. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated for both binary and ternary systems using the empirical model.

  17. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  18. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  19. Modeling formalin fixation and histological processing with ribonuclease A: effects of ethanol dehydration on reversal of formaldehyde cross-links.

    Science.gov (United States)

    Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T

    2008-07-01

    Understanding the chemistry of protein modification by formaldehyde fixation and subsequent tissue processing is central to developing improved methods for antigen retrieval in immunohistochemistry and for recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissues for proteomic analysis. Our initial studies of single proteins, such as bovine pancreatic ribonuclease A (RNase A), in 10% buffered formalin solution revealed that upon removal of excess formaldehyde, monomeric RNase A exhibiting normal immunoreactivity could be recovered by heating at 60 degrees C for 30 min at pH 4. We next studied tissue surrogates, which are gelatin-like plugs of fixed proteins that have sufficient physical integrity to be processed using normal tissue histology. Following histological processing, proteins could be extracted from the tissue surrogates by combining heat, detergent, and a protein denaturant. However, gel electrophoresis revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins. This suggested that during the subsequent steps of tissue processing protein-formaldehyde adducts undergo further modifications that are not observed in aqueous proteins. As a first step toward understanding these additional modifications we have performed a comparative evaluation of RNase A following fixation in buffered formaldehyde alone and after subsequent dehydration in 100% ethanol by combining gel electrophoresis, chemical modification, and circular dichroism spectroscopic studies. Our results reveal that ethanol-induced rearrangement of the conformation of fixed RNase A leads to protein aggregation through the formation of large geometrically compatible hydrophobic beta-sheets that are likely stabilized by formaldehyde cross-links, hydrogen bonds, and van der Waals interactions. It requires substantial energy to reverse the formaldehyde cross-links within these sheets and regenerate protein monomers free of formaldehyde modifications

  20. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone

    Directory of Open Access Journals (Sweden)

    D.T. Ito

    2007-03-01

    Full Text Available Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

  1. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency.

    Science.gov (United States)

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Fujimoto, Yuki; Furuie, Sumie; Yamamura, Ken-Ichi; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Moriyama, Mitsuaki; Sinasac, David S; Yamamoto, Takashi; Furukawa, Tatsuhiko; Kobayashi, Keiko

    2017-04-01

    Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  3. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  4. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  5. Viability and application of ethanol production coupled with solar cooling

    International Nuclear Information System (INIS)

    Americano da Costa, Marcus V.; Pasamontes, Manuel; Normey-Rico, Julio E.; Guzmán, José L.; Berenguel, Manuel

    2013-01-01

    Highlights: ► Two types of clean energy were analized together: bioethanol and solar. ► The ethanol fermentation process was modeled. ► An advanced control was implemented in the unit model. ► A real plant of solar energy was operated. ► The experiments were performed using the Hardware in the Loop technique. -- Abstract: This work presents a combined optimization system to use solar energy as support for the ethanol industry. Solar radiation is used to produce energy in order to assist the cooling systems in the fermentation process. The experiments have been performed following a hardware in the loop technique by mixing the solar cooling plant in the Centro de Investigación de Energía Solar (CIESOL) located at the University of Almería (Spain), and a simulator of ethanol fermentation processes in Brazilian factories. The results are analyzed in detail to show the main advantages (important increment in ethanol production and use of clean energies) compared to the mode of operation of the current factories in Brazil.

  6. Ethanol Transportation Backgrounder

    OpenAIRE

    Denicoff, Marina R.

    2007-01-01

    For the first 6 months of 2007, U.S. ethanol production totaled nearly 3 billion gallons—32 percent higher than the same period last year. As of August 29, there were 128 ethanol plants with annual production capacity totaling 6.78 billion gallons, and an additional 85 plants were under construction. U.S. ethanol production capacity is expanding rapidly and is currently expected to exceed 13 billion gallons per year by early 2009, if not sooner. Ethanol demand has increased corn prices and le...

  7. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  8. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  9. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  10. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  11. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  12. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Directory of Open Access Journals (Sweden)

    Haule Emmanuel E

    2012-10-01

    . Both the individual plant extracts and the mixed extracts of 5 plants exhibited weak to moderate antibacterial activity against four G-ve bacteria. Despite Ozoroa insignis being toxic to mice at doses above 1000 mg/kg body wt, the other plant extracts and the combined extract of the 5 plants were tolerated by mice up to 5000 mg/kg body wt. The brine shrimp test results showed the same pattern of toxicity with Ozoroa insignis being the most toxic (LC50 = 10.63 μg/ml. Phytochemical tests showed that the combined extract of the five plants contained tannins, saponins, steroids, cardiac glycosides, flavonoids and terpenoids. Flavonoids, tannins and terpenoids are known to have antioxidant activity. Conclusion The combined extract of the five plants exhibited a dose-dependent protective activity in the rat ethanol-HCl gastric ulcer model. The extracts also exhibited weak antibacterial activity against four Gram negative bacteria and low acute toxicity in mice and brine shrimps. Although the results support claims by traditional healers who use a decoction of the five plants for treatment of peptic ulcers, more models of gastric ulceration and proper animal toxicity studies are needed to validate possible clinical use of the polyherbal extract. It is also evident that the doses of the crude extracts showing protection of the gastric mucosa are too large for realistic translation to direct clinical application, but further studies using bioassay guided fractionation are important to either identify more practical fractions or active compound/s.

  13. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Science.gov (United States)

    2012-01-01

    plant extracts and the mixed extracts of 5 plants exhibited weak to moderate antibacterial activity against four G-ve bacteria. Despite Ozoroa insignis being toxic to mice at doses above 1000 mg/kg body wt, the other plant extracts and the combined extract of the 5 plants were tolerated by mice up to 5000 mg/kg body wt. The brine shrimp test results showed the same pattern of toxicity with Ozoroa insignis being the most toxic (LC50 = 10.63 μg/ml). Phytochemical tests showed that the combined extract of the five plants contained tannins, saponins, steroids, cardiac glycosides, flavonoids and terpenoids. Flavonoids, tannins and terpenoids are known to have antioxidant activity. Conclusion The combined extract of the five plants exhibited a dose-dependent protective activity in the rat ethanol-HCl gastric ulcer model. The extracts also exhibited weak antibacterial activity against four Gram negative bacteria and low acute toxicity in mice and brine shrimps. Although the results support claims by traditional healers who use a decoction of the five plants for treatment of peptic ulcers, more models of gastric ulceration and proper animal toxicity studies are needed to validate possible clinical use of the polyherbal extract. It is also evident that the doses of the crude extracts showing protection of the gastric mucosa are too large for realistic translation to direct clinical application, but further studies using bioassay guided fractionation are important to either identify more practical fractions or active compound/s. PMID:23031266

  14. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  15. Potentiometric titration of metal ions in ethanol.

    Science.gov (United States)

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  16. Sweet future? Brazil's ethanol fuel programme

    International Nuclear Information System (INIS)

    Calle, F.R.

    1999-01-01

    This article traces the history of Brazil's ethanol fuel programme from 1975 to the present, and considers Brazil's energy policy, and the implications of price liberalisation and privatisation aimed at reducing prices to control inflation. The achievements of ProAlcool which was established in 1975 with the aim of replacing petrol with ethanol, costs and investment in ProAlcool, environmental implications, and policy initiatives to boost ProAlcool are examined. Details of typical emissions from a 6-year old car in Brazil are tabulated illustrating the reduced emissions due to ethanol fuels

  17. Canadian ethanol retailers' directory

    International Nuclear Information System (INIS)

    1998-06-01

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  18. Canada's ethanol retail directory

    International Nuclear Information System (INIS)

    1996-11-01

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  19. Ethanol Production by Soy Fiber Treatment and Simultaneous Saccharification and Co-Fermentation in an Integrated Corn-Soy Biorefinery

    Directory of Open Access Journals (Sweden)

    Jasreen K. Sekhon

    2018-05-01

    Full Text Available Insoluble fiber (IF recovered from the enzyme-assisted aqueous extraction process (EAEP of soybeans is a fraction rich in carbohydrates and proteins. It can be used to enhance ethanol production in an integrated corn-soy biorefinery, which combines EAEP with traditional corn-based ethanol processing. The present study evaluated IF as a substrate for ethanol production. The effects of treatment of IF (soaking in aqueous ammonia (SAA, liquid hot water (LHW, and enzymatic hydrolysis, primarily simultaneous saccharification and co-fermentation (SSCF, as well as scaling up (250 mL to 60 L on ethanol production from IF alone or a corn and IF slurry were investigated. Enzymatic hydrolysis (pectinase, cellulase, and xylanase, each added at 5% soy solids during simultaneous saccharification and fermentation/SSCF was the best treatment to maximize ethanol production from IF. Ethanol yield almost doubled when SSCF of IF was performed with Saccharomyces cerevisiae and Escherichia coli KO11. Addition of IF in dry-grind corn fermentation increased the ethanol production rate (~31%, but low ethanol tolerance of E. coli KO11 was a limiting factor for employing SSCF in combination corn and IF fermentation. Nonlinear Monod modeling accurately predicted the effect of ethanol concentration on E. coli KO11 growth kinetics by Hanes-Woolf linearization. Collectively, the results from this study suggest a potential of IF as a substrate, alone or in dry-grind corn fermentation, where it enhances the ethanol production rate. IF can be incorporated in the current bioethanol industry with no added capital investment, except enzymes.

  20. The role of ethanol in heroin deaths.

    Science.gov (United States)

    Levine, B; Green, D; Smialek, J E

    1995-09-01

    The purpose of this study was to evaluate the role of ethanol in deaths due to heroin intoxication. Over a 12 month period, all cases investigated by the Office of the Chief Medical Examiner, State of Maryland where a blood screen by Roche Abuscreen radioimmunoassay (RIA) was positive at a cutoff of 100 ng/mL were included in the study. Free morphine was quantitated using the Coat-A-Count RIA and ethanol was quantitated by head space gas chromatography. All presumptive morphine positive cases were confirmed by gas chromatography/mass spectrometry. Seventy of the 119 cases where death was attributed to narcotic or alcohol and narcotic intoxication had blood ethanol concentrations (BAC) greater than or equal to 0.02 g/dL; 48 had BAC > or = 0.10 g/dL. Only 3 of 45 cases where morphine was identified but was unrelated to death had BAC > or = 0.02 g/dL. At all ranges of free morphine concentrations, there was a greater percentage of narcotic deaths when ethanol was present. From the data, we conclude that 1) the use of even small amounts of ethanol with heroin is clearly a risk factor in deaths due to heroin, 2) there are some heroin deaths where no free morphine is identified in the blood. In these deaths, ethanol is unlikely to be present, 3) at blood ethanol concentrations between 0.20 and 0.29 g/dL, the morphine concentrations in heroin deaths increased significantly, 4) at blood ethanol concentrations greater than 0.30 g/dL, morphine became less of a factor than the ethanol in causing death.

  1. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    Science.gov (United States)

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  2. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  3. Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias.

    Science.gov (United States)

    Chirumbolo, Salvatore; Bjørklund, Geir

    2017-07-01

    Marzotto et al. showed that homeopathic preparations of Arnica montana L. acted directly on gene expression of Tamm-Horsfall protein-1 (THP-1) monocyte/macrophage cell lines activated with phorbol12-myristate13-acetate and interleukin-4 (IL-4). A. montana homeopathic dilutions are used in complementary and alternative medicine to treat inflammation disorders and post-traumatic events as well as for wound repair. The French Pharmacopoeia of these remedies uses 0.3% ethanol in each centesimal dilution. In this paper, we discuss how ethanol-containing A. montana homeopathic centesimal dilutions can change gene expression in IL-4-treated monocyte/macrophage THP-1. We assessed the role of ethanol in the Arnica homeopathic dilutions containing this alcohol by investigating its action on gene expression of THP-1 cell. Evidence would strongly suggest that the presence of ethanol in these remedies might play a fundamental role in the dilutions ability to affect gene expression, particularly for doses from 5c to 15c. Where, rather than playing a major role in the mesoscopic structure of water, the ethanol might have a chemical-physical role in the induction of THP-1 gene expression, apoptosis, and deoxyribonucleic acid function. This evidence generates a debate about the suggestion that the use of a binary-mixed solvent in homeopathic chemistry, used by Hahnemann since 1810, may be fundamental to explain the activity of homeopathy on cell models.

  4. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  5. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  6. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad; AlRamadan, Abdullah S.; Sarathy, Mani

    2017-01-01

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  7. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  8. Hydro-ethanolic leaf extract of Ziziphus abyssinica Hochst Ex A. Rich (Rhamnaceae) exhibits anti-nociceptive effects in murine models.

    Science.gov (United States)

    Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric

    2017-04-26

    Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.

  9. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    Directory of Open Access Journals (Sweden)

    Paola V Castro

    Full Text Available The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%; higher concentrations to 68 mM (0.4% did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  10. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong

    2014-12-01

    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  11. The effects of continuous and intermittent ethanol exposure in adolesence on the aversive properties of ethanol during adulthood.

    Science.gov (United States)

    Diaz-Granados, Jaime L; Graham, Danielle L

    2007-12-01

    Alcohol abuse among adolescents is prevalent. Epidemiological studies suggest that alcohol abuse during the adolescent developmental period may result in long-term changes such as an increased susceptibility to alcohol-related problems in adulthood. Laboratory findings suggest that alcohol exposure during the adolescent developmental period, as compared with adulthood, may differentially impact subsequent neurobehavioral responses to alcohol. The present study was designed to examine whether ethanol exposure, continuous versus intermittent, during the adolescent developmental period would alter the aversive properties of ethanol in adult C3H mice. Periadolescent (PD28) male C3H mice were exposed to 64 hours of continuous or intermittent ethanol vapor. As a comparison, adult (PD70) C3H mice were also exposed to 64 hours of continuous or intermittent ethanol vapor. Six weeks after ethanol exposure, taste aversion conditioning was carried out on both ethanol pre-exposed and ethanol-naive animals using a 1-trial, 1-flavor taste-conditioning procedure. Ethanol exposure during the periadolescent period significantly attenuated a subsequent ethanol-induced conditioned taste aversion, as compared with control animals. Adult animals exposed to chronic ethanol vapor during adolescence showed less of an aversion to an ethanol-paired flavor than ethanol-naive adults. Intermittent exposure to ethanol vapor during periadolescence produced a greater attenuation. It is suggested that ethanol exposure during the periadolescent period results in long-term neurobehavioral changes, which lessen a conditioned aversion to ethanol in adulthood. It is suggested that this age-related effect may underlie the increased susceptibility to alcohol-related problems which is negatively correlated with the age of onset for alcohol abuse.

  12. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  13. A binomial random sum of present value models in investment analysis

    OpenAIRE

    Βουδούρη, Αγγελική; Ντζιαχρήστος, Ευάγγελος

    1997-01-01

    Stochastic present value models have been widely adopted in financial theory and practice and play a very important role in capital budgeting and profit planning. The purpose of this paper is to introduce a binomial random sum of stochastic present value models and offer an application in investment analysis.

  14. Robust Synchronization Models for Presentation System Using SMIL-Driven Approach

    Science.gov (United States)

    Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang

    2013-01-01

    Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…

  15. ANTIBACTERIAL AND BIOCHEMICAL EFFECTS OF ETHANOL LEAF EXTRACT OF SENNA HIRSUTA MILL USING ANIMAL MODEL-MICE

    Directory of Open Access Journals (Sweden)

    Fred Coolborn Akharaiyi

    2015-02-01

    Full Text Available This study was carried out to investigate the in-vitro and in-vivo antibacterial and biochemical activities of 50, 100 and 200mg.mL-1 concentrations of ethanol leaf extract of Senna hirsuta (hairy senna against seven human pathogenic bacteria species namely: Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecium, Bacillus cereus and Salmonella typhi. The in-vitro bioassay revealed the leaf extracts of valuable antibacterial activity where zones of inhibition ranging from 12.1mm to 39.1mm were observed on the test bacteria species. Among the test bacteria, K. pneumoniae was the most inhibited and S. typhi the least inhibited. On mice infection with the bacteria species for three days, decrease in weight of mice was observed. The in-vivo therapeutic use of the extracts in mice infected with the bacteria pathogens resulted to weight gain of the mice and other physiological changes that indicated health improvement of the mice and was also of hepatoprotective potential. The in-vivo antioxidant assay exhibited satisfactory therapeutic effects where improvement in aspartate aminotransferase (AST, alanine aminotransferase (ALT, and alkaline phosphatase (ALP status of mice was observed on comparing results of the positive and negative controls.

  16. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  17. Changes in the female arcuate nucleus morphology and neurochemistry after chronic ethanol consumption and long-term withdrawal.

    Science.gov (United States)

    Rebouças, Elce C C; Leal, Sandra; Silva, Susana M; Sá, Susana I

    2016-11-01

    Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  19. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity. In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks. In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost. In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass. This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly

  20. Remetabolism of transpired ethanol by Populus deltoides

    International Nuclear Information System (INIS)

    MacDonald, R.C.; Kimmerer, T.W.

    1990-01-01

    Ethanol is present in the transpiration stream of flooded and unflooded trees in concentrations up to 0.5mM. Transpired ethanol does not evaporate but is remetabolized by foliage and upper stems in Populus deltoides. 14 C-ethanol was supplied in the transpiration stream to excised leaves and shoots; more than 98% was incorporated. Less than 1% was respired as CO 2 . Organic and amino acids were labelled initially, with eventual accumulations in water- and chloroform-soluble fractions and into protein. Much of the label was incorporated into stem tissue, with little reaching the lamina. These experiments suggest that ethanol is not lost transpirationally through the leaves, but is efficiently recycled in a manner resembling lactate recycling in mammals

  1. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    Science.gov (United States)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  2. Comparative experimental and modeling studies of the viscosity behavior of ethanol+C7 hydrocarbon mixtures versus pressure and temperature

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Watson, G.; Baylaucq, A.

    2006-01-01

    viscosity models with a physical and theoretical background. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. In addition to these models, the simple compositional models by Grunberg-Nissan...

  3. Speichim cuts ethanol energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-08

    France's Speichim has reported low-pressure steam consumption of only 0.7kg/l in the production of industrial-grade ethanol. Mechanical compression of distillation vapours can reduce this energy demand even more.

  4. Presentation of the CPR ISMIR (Insulators: IRradiation Modelling); Presentation du CPR ISMIR (ISolants: modelisation de l'IRradiation)

    Energy Technology Data Exchange (ETDEWEB)

    Lozes, G. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DSOE), 91 - Gif sur Yvette (France)

    2007-07-01

    The CPR ISMIR is a CEA-CNRS program on the behaviour of materials submitted to irradiation; it has been begun to support the applied current research programs on the aging of nuclear fuels, the storage and incineration matrices and the future reactors. Its aim is to contribute to scientifically set up the methods for anticipating the behaviour of ceramic materials under irradiation in using the important development of calculation means. Thus have been developed the basic knowledge and the interactions physics and calculation models at pertinent scales have been elaborated. (O.M.)

  5. Predictors of ethanol consumption in adult Sprague-Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake.

    Science.gov (United States)

    Karatayev, Olga; Barson, Jessica R; Carr, Ambrose J; Baylan, Jessica; Chen, Yu-Wei; Leibowitz, Sarah F

    2010-06-01

    To investigate mechanisms in outbred animals that increase the propensity to consume ethanol, it is important to identify and characterize these animals before or at early stages in their exposure to ethanol. In the present study, different measures were examined in adult Sprague-Dawley rats to determine whether they can predict long-term propensity to overconsume ethanol. Before consuming 9% ethanol with a two-bottle choice paradigm, rats were examined with the commonly used behavioral measures of novelty-induced locomotor activity and anxiety, as assessed during 15 min in an open-field activity chamber. Two additional measures, intake of a low 2% ethanol concentration or circulating triglyceride (TG) levels after a meal, were also examined with respect to their ability to predict chronic 9% ethanol consumption. The results revealed significant positive correlations across individual rats between the amount of 9% ethanol ultimately consumed and three of these different measures, with high scores for activity, 2% ethanol intake, and TGs identifying rats that consume 150% more ethanol than rats with low scores. Measurements of hypothalamic peptides that stimulate ethanol intake suggest that they contribute early to the greater ethanol consumption predicted by these high scores. Rats with high 2% ethanol intake or high TGs, two measures found to be closely related, had significantly elevated expression of enkephalin (ENK) and galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) but no change in neuropeptide Y (NPY) in the arcuate nucleus (ARC). This is in contrast to rats with high activity scores, which in addition to elevated PVN ENK expression showed enhanced NPY in the ARC but no change in GAL. Elevated ENK is a common characteristic related to all three predictors of chronic ethanol intake, whereas the other peptides differentiate these predictors, with GAL enhanced with high 2% ethanol intake and TG measures but NPY related to activity. 2010 Elsevier

  6. Pairings of ethanol sipper with food induces Pavlovian autoshaping of ethanol drinking in rats: evidence of long-term retention and effects of sipper duration.

    Science.gov (United States)

    Tomie, Arthur; Sparta, Dennis R; Silberman, Yuval; Interlandi, Jeneen; Mynko, Alise; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2002-01-01

    This study asks if repeated Pavlovian pairings of a sipper tube (conditioned stimulus, CS) with food (unconditioned stimulus, US) will induce Pavlovian autoshaping conditioned responses (CRs), consisting of drinking of either 6% ethanol or water from the sipper CS. This study also tests predictions derived from the autoshaping model by asking if sipper CS-directed drinking will be retained, despite the absence of training for several weeks, and, in addition, if drinking rate is a negative function of sipper CS duration. Autoshaping procedures, conducted in two daily sessions, consisted of the brief insertion of the sipper tube CS followed by the response-independent presentation of food US. For the Ethanol group (n = 8), the sipper CS contained 6% ethanol, whereas for the Water group (n = 8), the sipper CS contained tap water. Saccharin fading procedures were employed, whereas for both groups, during days 1-19, the sipper CS contained 0.1% saccharin, and thereafter across training days the concentration of saccharin was gradually reduced (0.07, 0.035, 0.0%). Following elimination of saccharin, both groups were maintained in their home cages during a 27-day retention interval, and then re-evaluated for autoshaping of drinking of unsweetened ethanol and water. Thereafter, across days, the duration of access to the sipper CS (5.0, 7.5, 10.0, 15.0 s) during each autoshaping trial was increased. Both groups increased drinking across the first 19 days of training with sipper CS-food US pairings, and, at 0.0% saccharin, the Ethanol group consumed 14.76 ml of 6% ethanol per day, resulting in a daily ethanol consumption of 2.77 g/kg. For both groups, daily levels of drinking before and after the 27-day retention interval were comparable, attesting to the durability of the acquired drinking effects. At each CS duration, the Ethanol group consumed more millilitres of fluid per day than did the Water group, and for the Ethanol group, peak drinking of 24.0 ml of 6% ethanol per

  7. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  8. Environmental benefits of ethanol

    International Nuclear Information System (INIS)

    1998-11-01

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  9. Mappings from models presenting topological mass mechanisms to purely topological models

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Costa, J.V.; Bouffon, L.O.; Lemes, V.E.R.

    2004-01-01

    We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an interactive procedure as well as with an exact mapping procedure. Related equivalencies in 5D and 3D are discussed. (author)

  10. Mappings From Models Presenting Topological Mass Mechanisms to Purely Topological Models

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Costa, J.V.; Ventura, O.S.; Bouffon, L.O.; Lemes, V.E.R.

    2004-01-01

    We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an iterative procedure as well as with an exact mapping procedure. Related equivalences in 5D and 3D are discussed

  11. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evidence for phase separation of ethanol-water mixtures at the hydrogen terminated nanocrystalline diamond surface.

    Science.gov (United States)

    Janssens, Stoffel D; Drijkoningen, Sien; Saitner, Marc; Boyen, Hans-Gerd; Wagner, Patrick; Larsson, Karin; Haenen, Ken

    2012-07-28

    Interactions between ethanol-water mixtures and a hydrophobic hydrogen terminated nanocrystalline diamond surface, are investigated by sessile drop contact angle measurements. The surface free energy of the hydrophobic surface, obtained with pure liquids, differs strongly from values obtained by ethanol-water mixtures. Here, a model which explains this difference is presented. The model suggests that, due to a higher affinity of ethanol for the hydrophobic surface, when compared to water, a phase separation occurs when a mixture of both liquids is in contact with the H-terminated diamond surface. These results are supported by a computational study giving insight in the affinity and related interaction at the liquid-solid interface.

  13. Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G-.H.; Smith, K.; Pesaran, A.

    2009-06-01

    This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.

  14. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  15. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  16. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced

    Science.gov (United States)

    Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5–alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than an increased motivation. PMID:25595114

  17. Ethanol-Induced Changes in PKCε: From Cell to Behavior.

    Science.gov (United States)

    Pakri Mohamed, Rashidi M; Mokhtar, Mohd H; Yap, Ernie; Hanim, Athirah; Abdul Wahab, Norhazlina; Jaffar, Farah H F; Kumar, Jaya

    2018-01-01

    The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs). PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs), cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  18. Ethanol-Induced Changes in PKCε: From Cell to Behavior

    Directory of Open Access Journals (Sweden)

    Rashidi M. Pakri Mohamed

    2018-04-01

    Full Text Available The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs. PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs, cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  19. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  20. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  1. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  2. High-pressure pyrolysis and oxidation of ethanol

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2018-01-01

    against the present data as well as ignition delay times and flame speed measurements from literature. The model predicted the onset of fuel conversion and the composition of products from the flow reactor experiments fairly well. It also predicted well ignition delays above 900 K whereas it overpredicted...... reported flame speeds slightly. The results of sensitivity analyses revealed the importance of the reaction between ethanol and the hydroperoxyl radical for ignition at high pressure and intermediate temperatures. An accurate determination of the rate coefficients for this reaction is important to improve......The pyrolysis and oxidation of ethanol has been investigated at temperatures of 600–900 K, a pressure of 50 bar and residence times of 4.3–6.8 s in a laminar flow reactor. The experiments, conducted with mixtures highly diluted in nitrogen, covered fuel-air equivalence ratios (Φ) of 0.1, 1.0, 43...

  3. Ethanol production from Dekkera bruxellensis in synthetic media with pentose

    Directory of Open Access Journals (Sweden)

    Carolina B. Codato

    Full Text Available Abstract Ethanol is obtained in Brazil from the fermentation of sugarcane, molasses or a mixture of these. Alternatively, it can also be obtained from products composed of cellulose and hemicellulose, called “second generation ethanol - 2G”. The yeast Saccharomyces cerevisiae, commonly applied in industrial ethanol production, is not efficient in the conversion of pentoses, which is present in high amounts in lignocellulosic materials. This study aimed to evaluate the ability of a yeast strain of Dekkera bruxellensis in producing ethanol from synthetic media, containing xylose or arabinose, xylose and glucose as the sole carbon sources. The results indicated that D. bruxellensis was capable of producing ethanol from xylose and arabinose, with ethanol concentration similar for both carbon sources, 1.9 g L-1. For the fermentations performed with xylose and glucose, there was an increase in the concentration of ethanol to 5.9 g L-1, lower than the standard yeast Pichia stipitis (9.3 g L-1, but with similar maximum yield in ethanol (0.9 g g TOC-1. This proves that the yeast D. bruxellensis produced lower amounts of ethanol when compared with P. stipitis, but showed that is capable of fermenting xylose and can be a promising alternative for ethanol conversion from hydrolysates containing glucose and xylose as carbon source.

  4. Catalase increases ethanol oxidation through the purine catabolism in rat liver.

    Science.gov (United States)

    Villalobos-García, Daniel; Hernández-Muñoz, Rolando

    2017-08-01

    Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H 2 O 2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An overview of exposure to ethanol-containing substances and ethanol intoxication in children based on three illustrated cases

    Directory of Open Access Journals (Sweden)

    Kam Lun Hon

    2018-01-01

    Full Text Available Alcohol addiction and intoxication are major health problems worldwide. Acute alcohol intoxication is well reported in adults and adolescents but less frequently reported in children of younger ages. We report three anonymized cases of pediatric ethanol exposure and illustrate the different mechanisms of intoxication. In all cases, a focused history is the key to prompt diagnosis and timely management. Physicians should be aware of this potential poison in children presented with acute confusional or encephalopathic state. In contrast, neonates with ethanol intoxication may present with nonspecific gastrointestinal symptomatology. Urgent exclusion of sepsis, electrolyte imbalance, drug intoxication, and surgical abdominal condition is critical. Using these illustrated cases, we performed a narrative literature review on issues of exposure to ethanol-containing substances and ethanol intoxication in children. In conclusion, a high level of suspicion and interrogation on ethanol or substance use are essential particularly in the lactating mother for an accurate and timely diagnosis of ethanol intoxication to be made.

  6. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  7. Spatial and temporal aspects of grain accumulation costs for ethanol production: An Australian case study

    International Nuclear Information System (INIS)

    Anderton, Nikki; Kingwell, Ross

    2008-01-01

    Ethanol production is increasingly commonplace in many grain-producing regions. This paper uses the grain-producing region of south-western Australia to illustrate spatial and temporal aspects of grain accumulation costs for ethanol production. Specifically, this study examines how price variability of various wheat grades, combined with spatial and temporal variability in production of those grades, affects the costs of grain accumulation. These costs are the main components of an ethanol plant's operating costs so lessening these costs can offer a comparative advantage for a plant owner. Logistics models based on mathematical programming are constructed for a range of plant sizes and locations for ethanol production. Modelling results identify low-cost sites that generate cost savings, in present value terms, of between 5 and 7.5 per cent, depending on plant size, over the 9-year study period. At all locations, small to medium-sized plants offer advantages of lower and less variable costs of grain accumulation. Yet, all locations and all plant sizes are characterised by marked volatility in the cost of grain accumulation. The profitability of ethanol production based on wheat in this region of Australia is particularly exposed to any prolonged period of high grain prices relative to petroleum prices, given current biofuel-policy settings in Australia. (author)

  8. On a unified presentation of the non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    If the various existing one-dimensional two-phase flow models are consistent, they must appear as particular cases of more general models. It is shown that such is the case if, and only if, the mathematical form of the laws of the transfers between the phases is sufficiently general. These transfer laws control the non-equilibrium phenomena. A convenient general model is a particular form of the two-fluid model. This particular form involves three equations and three dependent variables characterizing the mixture, and three equations and three dependent variables characterizing the differences between the phases (slip, thermal non-equilibriums). The mathematical expressions of the transfert terms present in the above equations involve first-order partial derivatives of the dependent variables. The other existing models may be deduced from the general model by making assumptions on the fluid evolution. Several examples are given. The resulting unified presentation of the existing model enables a comparison of the implicit assumptions made in these models on the transfer laws. It is therefore, a useful tool for the appraisal of the existing models and for the development of new models [fr

  9. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    Directory of Open Access Journals (Sweden)

    Andrew K Haack

    Full Text Available The lateral habenula (LHb plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  10. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    Science.gov (United States)

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley

  11. Present status of theories and data analyses of mathematical models for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawaguchi, Isao

    2007-01-01

    Reviewed are the basic mathematical models (hazard functions), present trend of the model studies and that for radiation carcinogenesis. Hazard functions of carcinogenesis are described for multi-stage model and 2-event model related with cell dynamics. At present, the age distribution of cancer mortality is analyzed, relationship between mutation and carcinogenesis is discussed, and models for colorectal carcinogenesis are presented. As for radiation carcinogenesis, models of Armitage-Doll and of generalized MVK (Moolgavkar, Venson, Knudson, 1971-1990) by 2-stage clonal expansion have been applied to analysis of carcinogenesis in A-bomb survivors, workers in uranium mine (Rn exposure) and smoking doctors in UK and other cases, of which characteristics are discussed. In analyses of A-bomb survivors, models above are applied to solid tumors and leukemia to see the effect, if any, of stage, age of exposure, time progression etc. In miners and smokers, stages of the initiation, promotion and progression in carcinogenesis are discussed on the analyses. Others contain the analyses of workers in Canadian atomic power plant, and of patients who underwent the radiation therapy. Model analysis can help to understand the carcinogenic process in a quantitative aspect rather than to describe the process. (R.T.)

  12. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  13. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    Science.gov (United States)

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL): EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    OpenAIRE

    Dias, T. P. V. B.; Mielke Neto, P.; Ansolin, M.; Follegatti-Romero, L. A.; Batista, E. A. C.; Meirelles, A. J. A.

    2015-01-01

    Abstract Phase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol) and the product (fatty acid ethyl esters) up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements...

  15. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL): EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    OpenAIRE

    T. P. V. B. Dias; P. Mielke Neto; L. A. Follegatti-Romero; E. A. C. Batista; A. J. A. Meirelles

    2015-01-01

    AbstractPhase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol) and the product (fatty acid ethyl esters) up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements ...

  16. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  17. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.; Sarathy, Mani; Khurshid, Muneeb; Badra, Jihad

    2016-01-01

    -gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule

  18. The oral case presentation: toward a performance-based rhetorical model for teaching and learning

    Directory of Open Access Journals (Sweden)

    Mei Yuit Chan

    2015-07-01

    Full Text Available The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners’ and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre.

  19. The oral case presentation: toward a performance-based rhetorical model for teaching and learning

    Science.gov (United States)

    Chan, Mei Yuit

    2015-01-01

    The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners’ and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre. PMID:26194482

  20. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    Energy Technology Data Exchange (ETDEWEB)

    Walls, W.D., E-mail: wdwalls@ucalgary.ca [Department of Economics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Rusco, Frank; Kendix, Michael [US GAO (United States)

    2011-07-15

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research Highlights: > Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. > This has important implications for motor fuels markets and vehicular emissions. > Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city

  1. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    International Nuclear Information System (INIS)

    Walls, W.D.; Rusco, Frank; Kendix, Michael

    2011-01-01

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research highlights: → Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. → This has important implications for motor fuels markets and vehicular emissions. → Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal.

  2. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  3. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  4. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Anti-inflammatory Activity of Ethanol Extract of Beluntas Leaves (Pluchea indica L. on Complete Freund's Adjuvant-induced Inflammatory Model

    Directory of Open Access Journals (Sweden)

    Reza Setiawan Sudirman

    2017-12-01

    Full Text Available A research about anti-inflammatory effect of Beluntas leaves extract on CFA (Complete Freund’s Adjuvant induced inflammatory model has been conducted. The objective of this research was to determine the effect of Beluntas leaves extract in alleviating CFA-induced paw edema in mice (Mus musculus. The number of mice used was 15 and was divided into 5 groups. Group I was treated with NaCMC. Group II, III, and IV were given suspension of Beluntas leaves extract 100 mg/Kg, 300 mg/Kg, and 500 mg/Kg BW, respectively. Group V was a positive control treated with suspension of diclofenac sodium 0.1 ml/10 g orally. The determination of anti-inflammatory potency was based on the average time needed to ameliorate the edema volume. The shortest  time period of edema reduction was produced by diclofenac sodium (within 9.33 days, then followed by Beluntas leaves extract with the concentration of 300 mg/Kg (within 12 days, 500 mg/Kg (within 14.33 days, and 100 mg/Kg (within 17.67 days, consecutively. These results are significantly different compared to negative control group which did not reduce the edema volume during 18 days of observation. In conclusion, ethanol extract of Beluntas leaves has an effective anti-inflamatory effect.

  6. Ethanolic extract of Astragali radix and Salviae radix prohibits oxidative brain injury by psycho-emotional stress in whisker removal rat model.

    Directory of Open Access Journals (Sweden)

    Hyeong-Geug Kim

    Full Text Available Myelophil, an ethanolic extract of Astragali Radix and Salviae Radix, has been clinically used to treat chronic fatigue and stress related disorders in South Korea. In this study, we investigated the protective effects of Myelophil on a whisker removal-induced psycho-emotional stress model. SD rats were subjected to whisker removal after oral administration of Myelophil or ascorbic acid for consecutive 4 days. Whisker removal considerably increased total reactive oxygen species in serum levels as well as cerebral cortex and hippocampal regions in brain tissues. Lipidperoxidation levels were also increased in the cerebral cortex, hippocampus regions, and brain tissue injuries as shown in histopathology and immunohistochemistry. However, Myelophil significantly ameliorated these alterations, and depletion of glutathione contents in both cerebral cortex and hippocampus regions respectively. Serum levels of corticosterone and adrenaline were notably altered after whisker removal stress, whereas these abnormalities were significantly normalized by pre-treatment with Myelophil. The NF-κB was notably activated in both cerebral cortex and hippocampus after whisker removal stress, while it was efficiently blocked by pre-treatment with Myelophil. Myelophil also significantly normalizes alterations of tumor necrosis factor-α, interleukin (IL-1β, IL-6 and interferon-γ in both gene expressions and protein levels. These results suggest that Myelophil has protective effects on brain damages in psycho-emotional stress, and the underlying mechanisms involve regulation of inflammatory proteins, especially NF-κB modulation.

  7. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Bosson, Emma; Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran

    2010-10-01

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  8. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  9. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  10. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  11. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    International Nuclear Information System (INIS)

    Hekayati, Javad; Roosta, Aliakbar; Javanmardi, Jafar

    2016-01-01

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na_2SO_4 + H_2O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  12. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hekayati, Javad; Roosta, Aliakbar, E-mail: aa.roosta@sutech.ac.ir; Javanmardi, Jafar

    2016-02-10

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na{sub 2}SO{sub 4} + H{sub 2}O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  13. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) Users' Workshop Presentations

    Science.gov (United States)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.

  14. [DESCRIPTION AND PRESENTATION OF THE RESULTS OF ELECTROENCEPHALOGRAM PROCESSING USING AN INFORMATION MODEL].

    Science.gov (United States)

    Myznikov, I L; Nabokov, N L; Rogovanov, D Yu; Khankevich, Yu R

    2016-01-01

    The paper proposes to apply the informational modeling of correlation matrix developed by I.L. Myznikov in early 1990s in neurophysiological investigations, such as electroencephalogram recording and analysis, coherence description of signals from electrodes on the head surface. The authors demonstrate information models built using the data from studies of inert gas inhalation by healthy human subjects. In the opinion of the authors, information models provide an opportunity to describe physiological processes with a high level of generalization. The procedure of presenting the EEG results holds great promise for the broad application.

  15. Proceedings of standard model at the energy of present and future accelerators

    International Nuclear Information System (INIS)

    Csikor, F.; Pocsik, G.; Toth, E.

    1992-01-01

    This book contains the proceedings of the Workshop on The Standard Model at the Energy of the Present and Future Accelerators, 27 June - 1 July 1989, Budapest. The Standard Model of strong and electro-weak interactions providing essential insights into the fundamental structure of matter and being the basic building block of further generalizations has a rich content. The Workshop was devoted to discussing topical problems of testing the Standard Model in high energy reactions such as jet physics and fragmentation, new applications and tests of perturbative QCD, CP-violation, B-meson physics and developments in weak decays, some of the future experimental plans and related topics

  16. Genesis and evolution of the Skyrme model from 1954 to the present

    International Nuclear Information System (INIS)

    Sanyuk, V.I.

    1994-01-01

    Not widely known facts on the genesis of the Skyrme model are presented in a historical survey, based on Skyrme's earliest papers and on his own published remembrance. We consider the evolution of Skyrme's model description of nuclear matter from the ''Mesonic Fluid'' model up to its final version, known as the baryon model. We pay special tribute to some well-known ideas in contemporary particle physics which one can find in Skyrme's earlier papers, such as: Nuclear Democracy, the Solitonic Mechanism, the Nonlinear Realization of Chiral Symmetry, Topological Charges, Fermi-Bose Transmutation, etc. It is curious to note in the final version of the Skyrme model gleams of Kelvin's ''Vortex Atoms'' theory. In conclusion we make a brief analysis of the validity of Skyrme's conjectures in view of recent results and pinpoint some questions which still remain. (author). 93 refs, 4 figs

  17. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  18. Cue-induced reinstatement of ethanol seeking in Sardinian alcohol-preferring rats.

    Science.gov (United States)

    Maccioni, Paola; Orrú, Alessandro; Korkosz, Agnieszka; Gessa, Gian Luigi; Carai, Mauro A M; Colombo, Giancarlo; Bienkowski, Przemyslaw

    2007-02-01

    The purpose of the present study was to characterize cue-induced reinstatement of ethanol seeking in selectively bred Sardinian alcohol-preferring (sP) rats trained to lever press for ethanol in 30-min self-administration sessions. Four responses on an "active" lever led to presentation of 0.1 ml of 15% (vol/vol) ethanol by a liquid dipper and concurrent activation of a set of discrete light and auditory cues. In a 70-min extinction/reinstatement session, responding was first extinguished for 60 min. Subsequently, different stimuli were delivered in a noncontingent manner and reinstatement of nonreinforced responding was assessed. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup containing 5 or 15% ethanol, potently reinstated responding on the previously active lever. The magnitude of reinstatement increased with the number of stimulus presentations and concentration of ethanol presented by the dipper cup. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup filled with water (0% ethanol), did not produce any reinstatement. These results indicate that (1) noncontingent presentations of the ethanol-predictive stimulus complex may reinstate ethanol seeking in sP rats and (2) the orosensory properties of ethanol may play an important role in reinstatement of ethanol seeking in sP rats. The latter finding concurs with clinical observations that odor and taste of alcoholic beverages elicit immediate craving responses in abstinent alcoholics.

  19. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  20. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    Science.gov (United States)

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  1. Sugar palm ethanol. Analysis of economic feasibility and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Van den Bos, A.; Hamelinck, C. [Ecofys Netherlands, Utrecht (Netherlands); Martini, E.; Roshetko, J.; Walden, D. [Winrock, Little Rock, AR (United States)

    2011-08-15

    This study evaluates whether sugar palm is a suitable crop for biofuels and how production of ethanol from sugar palm in a large-scale setting is sustainable and economically feasible. Key questions are: Are the assumed high yields realistic in practice for sustained periods in largescale plantations?; Can sugar palm indeed compete economically with other crops for biofuels?; What are the effects of large-scale cultivation and processing of sugar palm for the natural environment and the local community? To answer these questions, Ecofys and Winrock have assessed the feasibility of largescale sugar palm cultivation for the production of ethanol using empirical data from existing sugar palm plantings. We analysed two production models to investigate the range of outcomes when varying important parameters: (1) a conservative system, whereby sugar palms are mixed with other crops and (2) an intensive system to explore the theoretical maximum yield when solely focusing on sugar palm. As background, Chapter 2 first describes the process of sugar palm cultivation, the 'tapping' and conversion into ethanol. Chapter 3 describes the data collection by Winrock. It presents an overview of the collected field data and explains the main empirical findings. Chapter 4 elaborates the two production systems and presents the results of the economic analyses (summarized in cash flow diagrams showing the timing of costs and benefits). Chapter 5 analyses the possible sustainability risks and benefits of sugar palm ethanol and investigates the integration possibilities of sugar palm in agro-forestry systems with other crops. Finally, Chapter 6 concludes by evaluating the potential of sugar palm as a source of biofuel and providing recommendations.

  2. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  3. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  4. Recovery of ethanol from municipal solid waste

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-01-01

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  5. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence

    Directory of Open Access Journals (Sweden)

    Francisca Carvajal

    2017-09-01

    Full Text Available The melanocortin (MC system regulates feeding and ethanol consumption. Recent evidence shows that melanocortin 4 receptor (MC4-R stimulation within the nucleus accumbens (NAc elicits anorectic responses and reduces ethanol consumption and ethanol palatability in adult rats. Ethanol exposure during adolescence causes long-lasting changes in neural pathways critically involved in neurobehavioral responses to ethanol. In this regard, binge-like ethanol exposure during adolescence reduces basal alpha-melanocyte-stimulating hormone (α-MSH and alters the levels of agouti-related peptide (AgRP in hypothalamic and limbic areas. Given the protective role of MC against excessive ethanol consumption, disturbances in the MC system induced by binge-like ethanol exposure during adolescence might contribute to excessive ethanol consumption during adulthood. In the present study, we evaluated whether binge-like ethanol exposure during adolescence leads to elevated ethanol intake and/or eating disturbance during adulthood. Toward that aim, Sprague-Dawley rats were treated with ethanol (3 g/kg i.p.; BEP group or saline (SP group for 14 days (PND 25 to PND 38. On PND73, all the groups were given access to 20% ethanol on an intermittent schedule. Our results showed that adult rats given intermittent access (IAE to 20% ethanol achieved high spontaneous ethanol intake that was not significantly enhanced by binge-like ethanol pretreatment during adolescence. However, BEP group exhibited an increase in food intake without a parallel increase in body weight (BW relative to SP group suggesting caloric efficiency disturbance. Additionally, we evaluated whether binge-like ethanol exposure during adolescence alters the expected reduction in feeding and ethanol consumption following NAc shell administration of a selective MC4-R agonist in adult rats showing high rates of ethanol consumption. For that, animals in each pretreatment condition (SP and BEP were divided into

  6. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  7. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  9. Protective effect of the leaves of Vitex negundo against ethanol ...

    African Journals Online (AJOL)

    The present study investigated the effect of the various fractions of hydromethanolic extract of the leaves of Vitex negundo (Verbenaceae) against ethanol-induced cerebral oxidative stress in rats. Cerebral oxidative stress was induced by the administration of 20% ethanol (5 ml/100g bw) for a period of 28 days.

  10. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  11. Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol.

    Science.gov (United States)

    Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan

    2014-11-01

    Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  13. Mass gathering medicine: a predictive model for patient presentation and transport rates.

    Science.gov (United States)

    Arbon, P; Bridgewater, F H; Smith, C

    2001-01-01

    This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several

  14. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  15. Ethanol Forensic Toxicology.

    Science.gov (United States)

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  16. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  17. Gynostemma pentaphyllum Ethanolic Extract Protects Against Memory Deficits in an MPTP-Lesioned Mouse Model of Parkinson's Disease Treated with L-DOPA.

    Science.gov (United States)

    Kim, Kyung Sook; Zhao, Ting Ting; Shin, Keon Sung; Park, Hyun Jin; Cho, Yoon Jeong; Lee, Kyung Eun; Kim, Seung Hwan; Lee, Myung Koo

    2017-01-01

    This study investigated the effects of ethanol extract from Gynostemma pentaphyllum (GP-EX) on memory deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD) (MPTP-lesioned mice). MPTP (30 mg/kg/day, 5 days)-lesioned mice showed deficits of habit learning memory and spatial memory, which were further aggravated by treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) (25 mg/kg, 21 days). However, treatment with GP-EX (50 mg/kg, 21 days) ameliorated memory deficits in MPTP-lesioned mice treated with L-DOPA (25 mg/kg): GP-EX prevented the decreases in retention latency time in the passive avoidance test and tyrosine hydroxylase-immunopositive cells and dopamine levels in the nigrostriatum. GP-EX also reduced increases in retention transfer latency time of the elevated plus-maze test and expression of N-methyl-D-aspartate (NMDA) receptor and improved decreases in phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB) in the hippocampus in the same models. By contrast, L-DOPA treatment (10 mg/kg, 21 days) ameliorated memory deficits in MPTP-lesioned mice, which were further improved by GP-EX treatment. These results suggest that GP-EX ameliorates habit learning memory deficits by activating dopaminergic neurons and spatial memory deficits by modulating NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mice treated with L-DOPA. GP-EX may serve as an adjuvant phytonutrient for memory deficits in PD.

  18. Environemtnal benefits of the Brazilian Ethanol Programme

    International Nuclear Information System (INIS)

    La Rovere, E.L.; Audinet, P.

    1993-01-01

    After nearly twenty years since it was first launched, the Brazilian Ethanol Programme to data remains the largest commercial application of biomass for energy production and use in the world. It succeeded in demonstrating the technical feasibility of large scale ethanol production from sugar cane and its use to fuel car engines. On social and economic grounds, however, its evaluation is less positive. The purpose of this study is to provide an updated overview of the perspectives for the Ethanol Programme under the light of increasingly important local and global environmental concerns. Major results show that after oil prices supported upon the basis of its contribution to curb the increase of air pollution in Brazilian cities and of the greenhouse effect. It is concluded that the very survival of the Ethanol Programme, depends upon adequate economic compensation considering its global environmental benefits. These are appraised with two scenarios based on the use of a Markal-like model to define the range and costs of curbing greenhouse gases with a policy aiming at extending the Ethanol Programme

  19. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  20. Opioid system of the brain and ethanol.

    Science.gov (United States)

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  1. An energy analysis of ethanol from cellulosic feedstock. Corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden (Netherlands)

    2009-10-15

    The shift from fossil resources to renewables for energy and materials production has been the driving force for research on energy analysis and environmental impact assessment of bio-based production. This study presents a detailed energy analysis of corn stover based ethanol production using advanced cellulosic technologies. The method used differs from that in LCA and from major studies on the subject as published in Science in two respects. First, it accounts for all the co-products together and so mainly avoids the allocation problems which plague all LCA studies explicitly and other studies implicitly. Second, the system boundaries only involve the content of the energy products used in the system but not the production processes of these energy products, like refining and electricity production. We normalized the six Science studies to this unified method. The resulting values of the total energy product use in both agricultural production and biomass conversion to ethanol are lower than these literature values. LCA-type of values including energy conversion would systematically be higher, in our case study around 45%. The net energy value of cellulosic ethanol production is substantially higher than the ones of the corn-based technologies, and it is similar to incineration and gasification for electricity production. The detailed analysis of energy inputs indicates opportunities to optimize the system. This form of energy analysis helps establishing models for the analysis of more complex systems such as biorefineries. (author)

  2. Modelo de armadilha etanólica de interceptação de voo para captura de escolitíneos (Curculionidae: Scolytinae Ethanolic model of flight interception trap to capture scolytine (Curculionidae: Scolytinae

    Directory of Open Access Journals (Sweden)

    Augusto Bolson Murari

    2012-03-01

    Full Text Available

    Este estudo teve por objetivo desenvolver um modelo alternativo de armadilha etanólica de interceptação de insetos voadores, visando à redução dos custos relacionados aos levantamentos de insetos da subfamília Scolytinae (Curculionidae, realizados em ecossistemas florestais. O modelo de armadilha, denominado de PET-SM, foi confeccionado com materiais recicláveis: prato plástico, garrafa de polietileno (PET de dois litros, garrafa PET de 600 mL, e mangueira com álcool 96° GL empregado como atrativo. Em comparação a outros modelos utilizados para monitoramento de Scolytinae, o modelo PET-SM mostrou-se eficiente na captura, apresentando um maior número de espécies coletadas e oferecendo um menor custo de confecção.

     

    doi: 10.4336/2012.pfb.32.69.115

    This study aimed to develop an alternative model of trap for interception with ethanol for flying insects, in order to reduce the costs related to surveys of insects of the subfamily Scolytinae (Curculionidae, conducted in forest ecosystems. The model of trap, called PET-SM, was manufactured with recyclable materials: plastic plate, polyethylene (PET bottle of two liters, PET bottle of 600 mL, and a hose with alcohol 96 GL used as attractive. Compared to other models used to monitor Scolytinae, the PET-SM model proved to be effective for capture, presenting a greater number of species and offering a lower cost of manufacture.

     

    doi: 10.4336/2012.pfb.32.69.115

  3. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  4. The Economics of Brazil's Ethanol-Sugar Markets, Mandates, and Tax Exemptions

    NARCIS (Netherlands)

    Drabik, D.; Gorter, de H.; Just, D.R.; Timilsina, G.R.

    2015-01-01

    Sugarcane in Brazil is processed into sugar and/or ethanol, often in flex plants that can switch between the two products. We develop an economic model of flex plants, export demands, and two domestic fuel demand curves for a blend of ethanol with gasoline consumed by conventional cars, and ethanol

  5. Ethanol embolization of auricular arteriovenous malformations

    International Nuclear Information System (INIS)

    Fan Xindong; Zheng Lianzhou; Yi Hongying; Su Lixin; Zheng Jiawei

    2009-01-01

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  6. Ethanol embolization of auricular arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Xindong, Fan; Lianzhou, Zheng [Department of Interventional Radiology, the Ninth People' s Hospital, School of Medicine, Shanghai Jiaotong Univ., Shanghai (China); Hongying, Yi; Lixin, Su; Jiawei, Zheng

    2009-11-15

    Objective: To present the authors' initial experience of treating auricular arteriovenous malformations(AVMs) with ethanol embolization and to assess the clinical effectiveness of this therapeutic method. Methods: Twenty-two patients with AVMs were enrolled in this study. Through local puncturing or super-selective catheterization the absolute ethanol,or diluted alcohol (based on the pattern of the AVMs), was manually injected into the abnormal vascular plexus of the auricular lesion. The clinical results were estimated with physical examination or angiography at intervals of 3-4 month, and telephone questionnaire was made at monthly intervals for all patients. Results: Thirty-eight ethanol embolization procedures were performed, the amount of ethanol used during the procedure ranged from 4 ml to 65 ml. After the treatment the clinical symptoms were improved, which were manifested as healing of the ulceration, stop of bleeding, disappearing or alleviation of tinnitus. Angiographic examination showed that the abnormal vascular lesion was completely vanished in 9 cases, decreased by 50%-75% in 8 cases and decreased less than 50% in remaining 5 cases. The common complications included irreversible local necrosis and vesiculation. Conclusion: For the treatment of auricular AVMs ethanol embolization is an effective and safe method,which might become the therapy of first choice. (authors)

  7. Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations

    DEFF Research Database (Denmark)

    Ferrin, P.; Simonetti, D.; Kandoi, S.

    2009-01-01

    calculations necessary to describe trends in activity and selectivity across metal and alloy surfaces, thus extending the reach of DFT to more complex systems. In-this work, the well-known family of Bronsted-Evans-Polanyi (BEP) correlations, connecting minima with maxima in the potential energy surface...... on a subset of these surfaces are calculated. Experiments on supported catalysts verify that this simple model is reasonably accurate in describing reactivity trends across metals, suggesting that the combination of BEP and scaling relations may substantially reduce the cost of DFT calculations required...

  8. KioskAR: An Augmented Reality Game as a New Business Model to Present Artworks

    Directory of Open Access Journals (Sweden)

    Yoones A. Sekhavat

    2016-01-01

    Full Text Available This paper presents the architecture of KioskAR, which is a pervasive game implemented using augmented reality (AR. This game introduces a new business model that makes it possible for players to present their artworks in virtual kiosks using augmented reality, while they are having fun playing the game. In addition to competition between the players in the game, this game requires social interaction between players to earn more points. A user study is conducted to evaluate the sense of presence and the usability of the application. The results of experiments show that KioskAR can achieve a high level of usability as well as sense of presence.

  9. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  10. 3D instantaneous dynamics modeling of present-day Aegean subduction

    Science.gov (United States)

    Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper

    2017-04-01

    To study the sensitivity of surface observables to subduction and mantle flow, i.e. the coupling of crustal tectonics and the underlying mantle dynamics, we have developed 3D numerical models of the instantaneous crust-mantle dynamics of the eastern Mediterranean. These models comprise both a realistic crust-lithosphere system and the underlying mantle. The focus for this presentation lies on the regional crustal flow response to the present-day Aegean subduction system. Our curved model domain measures 40°x40°x2900km with the Aegean subduction system taken as the geographic center. Model set-ups are based on geological and geophysical data of the eastern Mediterranean. We first create a 3D synthetic geometry of the crust-lithosphere system in a stand-alone program, including the present-day configuration of the plates in the region and crust and lithosphere thickness variations abstracted from Moho and LAB maps (Faccenna et al., 2014, Carafa et al., 2015). In addition we construct the geometry of the Aegean slab from a seismic tomography model (UU-P07; Amaru, 2007) and earthquake hypocenters (NCEDC, 2014). Geometries are then imported into the finite element code ASPECT (Kronbichler et al., 2012) using specially designed plugins. The mantle initial temperature conditions can include deviations from an adiabatic profile obtained from conversion of the UU-P07 seismic velocity anomalies to temperature anomalies using a depth-dependent scaling (Karato, 2008). We model compressible mantle flow for which material properties are obtained from thermodynamics P-T lookup-tables (Perple_X, Connolly, 2009) in combination with nonlinear viscoplastic rheology laws. Sublithospheric flow through the lateral model boundaries is left free via open boundary conditions (Chertova et al., 2012), while plate motion is prescribed at the model sides in terms of relative as well as absolute plate motion velocities (e.g. Doubrovine et al., 2012). So far, we used a free-slip surface, but

  11. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    Science.gov (United States)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to

  12. Acceptance of Addiction Prevention Exiting Methods and Presentation of Appropriate Model

    Directory of Open Access Journals (Sweden)

    Ali Asghar Savad-Kouhi

    2006-10-01

    Full Text Available Objective: The aim of this study is assessment of acceptance of addiction prevention existing methods and design and present of appropriate model. Materials & Methods: This research has done by survey and desariptive method by using questionnaire we assessed knowledge and belief of people about suggesting and existing methods of addiction prevention and their acceptence and finally design new and appropriate model of addiction prevention. For designing questionnaire, first exports and professors were openly interviewed and according their views final questionnaire was planned. We used questionnaire with 2 open ended and 61 close-ended tests for gathering data. The subjects of research were 2500 persons 13-35 years old that were selected by randomized sampling from 15 provinces. Results: The findings showed that according to people who were studied, they have positive beliefs about prevention methods and their effectiveness. According to findings a good model is inclusive model that able to do in four level: knowledge, change believe and attitude, control and change behavior. Conclusion: The people of study belive that acceptance of suggesting and existing methods of addiction prevention are effective direct and indirect to others, and appropriate model is inclusive model.

  13. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  14. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  15. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Haroon, M.; Benjamin, S.E.

    2011-01-01

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  16. Model and Simulation of a Tunable Birefringent Fiber Using Capillaries Filled with Liquid Ethanol for Magnetic Quasiphase Matching In-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Clint Zeringue

    2010-01-01

    Full Text Available A technique to tune a magnetic quasi-phase matching in-fiber isolator through the application of stress induced by two mutually orthogonal capillary tubes filled with liquid ethanol is investigated numerically. The results show that it is possible to “tune” the birefringence in these fibers over a limited range depending on the temperature at which the ethanol is loaded into the capillaries. Over this tuning range, the thermal sensitivity of the birefringence is an order-of-magnitude lower than conventional fibers, making this technique well suited for magnetic quasi-phase matching.

  17. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  18. The Metastability and Nucleation Thresholds of Ibuprofen in Ethanol and Water-Ethanol Mixtures

    Directory of Open Access Journals (Sweden)

    Abdur Rashid

    2015-01-01

    Full Text Available To investigate the crystallization of ibuprofen [((RS-2-(4-(2-methylpropyl phenyl propanoic acid] from ethanol and water-ethanol mixtures it is necessary to know the nucleation limits of its solutions. In the absence of crystals, nucleation will seldom occur below the PNT (primary nucleation threshold. If crystals are present, nucleation will seldom occur until below the lower SNT (secondary nucleation threshold. Below the SNT, crystals will still grow with negligible nucleation. PNT and SNT values (expressed as relative supersaturation σ have been measured at 10, 25, and 40°C for ibuprofen in ethanol and in a range of mixtures of different ethanol (E/water (W ratios. The induction times were determined from observing the times to nucleate for a range of different supersaturated solutions at a given temperature and E/W ratio. As expected, lowering the supersaturation leads to longer induction times. In ethanol, the SNT values are small and thus the secondary metastable zone width (MSZW is relatively narrow with a 1 h SNT relative supersaturation typically about σ ~ 0.05. The 1 h PNT values are much larger with values for σ around 0.3. In aqueous ethanolic mixtures at 25°C, both the PNT and SNT decrease as the water content increases.

  19. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  20. The radiation performance standard. A presentation model for ionizing radiation in the living environment

    International Nuclear Information System (INIS)

    Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.

    1998-01-01

    By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs

  1. Modeling nonstationary extreme wave heights in present and future climates of Greek Seas

    Directory of Open Access Journals (Sweden)

    Panagiota Galiatsatou

    2016-01-01

    Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

  2. Oral and transdermal DL-methylphenidate-ethanol interactions in C57BL/6J mice: potentiation of locomotor activity with oral delivery.

    Science.gov (United States)

    Bell, Guinevere H; Griffin, William C; Patrick, Kennerly S

    2011-12-01

    Many abusers of dl-methylphenidate co-abuse ethanol. The present animal study examined behavioral effects of oral or transdermal DL-methylphenidate in combination with a high, depressive dose of ethanol to model co-abuse. Locomotor activity of C57BL/6J mice was recorded for 3 h following dosing with either oral DL-methylphenidate (7.5 mg/kg) or transdermal DL-methylphenidate (Daytrana®;1/4 of a 12.5 cm(2) patch; mean dose 7.5 mg/kg), with or without oral ethanol (3 g/kg). Brains were enantiospecifically analyzed for the isomers of methylphenidate and the transesterification metabolite ethylphenidate. An otherwise depressive dose of ethanol significantly potentiated oral DL-methylphenidate induced increases in total distance traveled for the first 100 min (pbrain D-methylphenidate concentrations were significantly elevated by ethanol in both the oral (65% increase) and transdermal (88% increase) groups. The corresponding L-ethylphenidate concentrations were 10 ng/g and 130 ng/g. Stimulant induced motor activity in rodents may correlate with abuse liability. Potentiation of DL-methylphenidate motor effects by concomitant ethanol carries implications regarding increased abuse potential of DL-methylphenidate when combined with ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Daianova, Lilia; Yan, Jinyue; Thorin, Eva; Dotzauer, Erik

    2012-01-01

    Highlights: ► We model a system with ethanol, power and district heating production. ► Different ethanol yields are investigated from an overall system perspective. ► Yields of ethanol production have less importance for the profitability of the plant. -- Abstract: The development towards high energy efficiency and low environmental impact from human interactions has led to changes at many levels of society. As a result of the introduction of penalties on carbon dioxide emissions and other economic instruments, the energy industry is striving to improve energy efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined heat and power (CHP) plants connected to district heating networks have a need to find uses for the excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector makes a substantial contribution to the increasing CO 2 emissions, which have to be reduced. One promising alternative to address these challenging issues is the integration of vehicle fuel production with biomass-based CHP plants. This paper presents the configuration and operating profits in terms of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity production can be increased when CHP production is integrated with cellulosic ethanol production. The findings also show that the economic benefits of the energy system can be realized with near-term commercially available technology, and that the benefits do not rely solely on ethanol yields.

  4. Simulation of the present-day climate with the climate model INMCM5

    Science.gov (United States)

    Volodin, E. M.; Mortikov, E. V.; Kostrykin, S. V.; Galin, V. Ya.; Lykossov, V. N.; Gritsun, A. S.; Diansky, N. A.; Gusev, A. V.; Iakovlev, N. G.

    2017-12-01

    In this paper we present the fifth generation of the INMCM climate model that is being developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INMCM5). The most important changes with respect to the previous version (INMCM4) were made in the atmospheric component of the model. Its vertical resolution was increased to resolve the upper stratosphere and the lower mesosphere. A more sophisticated parameterization of condensation and cloudiness formation was introduced as well. An aerosol module was incorporated into the model. The upgraded oceanic component has a modified dynamical core optimized for better implementation on parallel computers and has two times higher resolution in both horizontal directions. Analysis of the present-day climatology of the INMCM5 (based on the data of historical run for 1979-2005) shows moderate improvements in reproduction of basic circulation characteristics with respect to the previous version. Biases in the near-surface temperature and precipitation are slightly reduced compared with INMCM4 as well as biases in oceanic temperature, salinity and sea surface height. The most notable improvement over INMCM4 is the capability of the new model to reproduce the equatorial stratospheric quasi-biannual oscillation and statistics of sudden stratospheric warmings.

  5. A review of the evidence linking adult attachment theory and chronic pain: presenting a conceptual model.

    Science.gov (United States)

    Meredith, Pamela; Ownsworth, Tamara; Strong, Jenny

    2008-03-01

    It is now well established that pain is a multidimensional phenomenon, affected by a gamut of psychosocial and biological variables. According to diathesis-stress models of chronic pain, some individuals are more vulnerable to developing disability following acute pain because they possess particular psychosocial vulnerabilities which interact with physical pathology to impact negatively upon outcome. Attachment theory, a theory of social and personality development, has been proposed as a comprehensive developmental model of pain, implicating individual adult attachment pattern in the ontogenesis and maintenance of chronic pain. The present paper reviews and critically appraises studies which link adult attachment theory with chronic pain. Together, these papers offer support for the role of insecure attachment as a diathesis (or vulnerability) for problematic adjustment to pain. The Attachment-Diathesis Model of Chronic Pain developed from this body of literature, combines adult attachment theory with the diathesis-stress approach to chronic pain. The evidence presented in this review, and the associated model, advances our understanding of the developmental origins of chronic pain conditions, with potential application in guiding early pain intervention and prevention efforts, as well as tailoring interventions to suit specific patient needs.

  6. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Directory of Open Access Journals (Sweden)

    Zhiguo Nie

    2009-01-01

    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  7. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D A [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1993-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  8. Alligator Rivers Analogue project. Geochemical modelling of present-day groundwaters. Final Report - Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)

    1992-12-31

    The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.

  9. Behavioral Neurophysiology of Ethanol

    National Research Council Canada - National Science Library

    Janak, Patricia

    2002-01-01

    .... Alcohol consumption by humans can be modeled in the rat using operant behavioral procedures in which an arbitrary response, such as a lever press, is reinforced by the presentation of small amounts...

  10. The NILE Project - Advances in the Conversion of Lignocellulosic Materials into Ethanol

    International Nuclear Information System (INIS)

    Monot, F.; Margeot, A.; Hahn-Haegerdal, B.; Lindstedt, J.; Slade, R.

    2013-01-01

    NILE ('New Improvements for Lignocellulosic Ethanol') was an integrated European project (2005-2010) devoted to the conversion of lignocellulosic raw materials to ethanol. The main objectives were to design novel enzymes suitable for the hydrolysis of cellulose to glucose and new yeast strains able to efficiently converting all the sugars present in lignocellulose into ethanol. The project also included testing these new developments in an integrated pilot plant and evaluating the environmental and socio-economic impacts of implementing lignocellulosic ethanol on a large scale. Two model raw materials - spruce and wheat straw - both preconditioned with similar pretreatments, were used. Several approaches were explored to improve the saccharification of these pretreated raw materials such as searching for new efficient enzymes and enzyme engineering. Various genetic engineering methods were applied to obtain stable xylose- and arabinose-fermenting Saccharomyces cerevisiae strains that tolerate the toxic compounds present in lignocellulosic hydrolysates. The pilot plant was able to treat 2 tons of dry matter per day, and hydrolysis and fermentation could be run successively or simultaneously. A global model integrating the supply chain was used to assess the performance of lignocellulosic ethanol from an economical and environmental perspective. It was found that directed evolution of a specific enzyme of the cellulolytic cocktail produced by the industrial fungus, Trichoderma reesei, and modification of the composition of this cocktail led to improvements of the enzymatic hydrolysis of pretreated raw material. These results, however, were difficult to reproduce at a large scale. A substantial increase in the ethanol conversion yield and in specific ethanol productivity was obtained through a combination of metabolic engineering of yeast strains and fermentation process development. Pilot trials confirmed the good behaviour of the yeast strains in industrial

  11. Reduction in energy usage during dry grind ethanol production by enhanced enzymatic dewatering of whole stillage: plant trial, process model and economic analysis

    Science.gov (United States)

    A plant trial was conducted at a 54 MGPY dry grind fuel ethanol facility to evaluate the use of enhanced water removal from whole stillage by enzyme addition during fermentation. Laboratory data had previously shown significant improvements in water removal that could potentially result in significa...

  12. Response surface model for the reduction of Salmonella biofilm on stainless steel with lactic acid, ethanol and chlorine as controlling factors

    Science.gov (United States)

    Bacterial colonization and biofilm formation on food contact surfaces can be sources of contamination of processed foods and poses a serious threat to health. Since chlorine- or ethanol-based disinfection is commonly used in the food industry and kitchens, a disinfectant containing chlorine (Cl), et...

  13. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth

    Science.gov (United States)

    Furfural (furan-2-carboxaldehyde), formed during dilute acid hydrolysis of biomass, is an inhibitor of growth and ethanol production by Zymomonas mobilis. The present study used a biological pre-treatment to reduce that amount of furfural in a model biofuel fermentation broth. The pre-treatment in...

  14. Past, Present, and Future Anthropogenic Emissions over Asia: a Regional Air Quality Modeling Perspective

    Science.gov (United States)

    Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook

    2010-05-01

    Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.

  15. Production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-10

    Ethanol is produced by fermentation with a photohardening resin-immobilized yeast preparation. The ethanol producing yeast may be selected from Saccharomyces, Zygosaccharomyces, or Schizosaccharomyces. The photohardening resin for yeast immobilization is a hydrophilic unsaturated compound, especially polyurethane acrylate, with an average molecular weight of 300-80,000 and containing at least 2 photopolymerizable ethylene groups. The immobilized yeast preparation is prepared by irradiating an aqueous suspension of yeast and a photohardening resin with UV light; the average size of the immobilized yeast is 0.1-3.0 mm and with various shapes. Thus, an aqueous suspension containing Saccharomyces formosensis cells (5 parts), a poly(ethylene glycol)isopharone diisocyanate-2-hydroxyethyl methacrylate copolymer (50 parts), and benzoin ethyl ether (0.5 parts) was homogenized, spread on a polypropylene tray (1.0 mm depth), and irradiated with a 3600 A Hg lamp for 5-10 minutes to form a yeast-containing polyurethane acrylate sheet (1.0 mm thickness), which was then sliced into bits of approximately 1.0 mm. When a molasses substrate solution (pH 4.5-5.0) was passed through a column (200 x 20 mm) packed with the polyurethane acrylate-immobilized yeast preparation, eluates containing 7% (weight/volume) ethanol were produced for >3000 hours.

  16. Innovative inexpensive ethanol

    International Nuclear Information System (INIS)

    Mackek, S.

    1991-01-01

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  17. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  18. The Relationship between Spiritual Health and other Dimensions of Health: Presentation of a Model

    Directory of Open Access Journals (Sweden)

    Akram Heidari

    2016-06-01

    Full Text Available Attitudes to humankind will have different effects on health service delivery. Health might used to be intended to provide physical health in the past; today, however, many researchers and clinicians consider the concept health to be beyond physical health. In support of this claim, it is enough to indicate that the bio-psycho-social model has for years been held by scientific communities to be a fully admitted model. However, the missing ring in this model, as suggested by many, is the spiritual health. In recent years, the relationship between spirituality and clinical interventions with a comprehensive focus on health has been under increasing scrutiny. Although different models have been presented for investigation of the relationship between spiritual health and other dimensions, the fundamental challenge in this regard is the actual place of spiritual health compared with other dimensions. In this article, attempts are made to address the position and weight of spiritual health from the Islam’s point of view.

  19. Effects of ethanol on red blood cell rheological behavior.

    Science.gov (United States)

    Rabai, M; Detterich, J A; Wenby, R B; Toth, K; Meiselman, H J

    2014-01-01

    Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol's effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3-30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25%-2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25%-6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p health benefits of moderate wine consumption require further investigation.

  20. Optimization of fuel ethanol recovery systems using molecular sieves

    International Nuclear Information System (INIS)

    Scheller, W.A.

    1989-01-01

    The use of molecular sieves for the dehydration of rectified fuel ethanol requires only about 58% of the energy required by azeotropic distillation, the usual commercial process. Recently molecular sieve prices have become low enough that their use can be economically competitive with azeotropic distillation. This paper contains results of mass and energy balances to determine the water content of the rectified ethanol (6.15 weight percent) that will result in the minimum energy requirement for producing anhydrous ethanol with the molecular sieve process and byproduct distillers soluble syrup from fermented corn mash containing 7.23 weight percent ethanol. In this paper results of economic evaluations to determine the water content of the rectified ethanol (7.58 weight percent) which results in a minimum investment and operating cost are presented

  1. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  2. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  3. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  4. Reduction of salt content of fish sauce by ethanol treatment.

    Science.gov (United States)

    Liu, Yu; Xu, Ying; He, Xiaoxia; Wang, Dongfeng; Hu, Shiwei; Li, Shijie; Jiang, Wei

    2017-08-01

    Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.

  5. Beyond the standard Higgs at the LHC. Present constraints on little Higgs models and future prospects

    International Nuclear Information System (INIS)

    Tonini, Marco

    2014-11-01

    This thesis discusses the consistency of different Little Higgs models with the collected collider data as of the summer of 2013. Moreover, future prospects for possible discoveries and mass measurement methods of new physics signals at the foreseen LHC run II with increased center-of-mass energy are presented. Little Higgs models belong to a class of extensions of the Standard Higgs model, predicting a strong interaction regime at a compositeness scale Λ=4πf approximate global symmetry spontaneously broken at the scale f. A natural hierarchy between the compositeness and the electroweak scale is introduced by the Collective Symmetry Breaking mechanism: one-loop diagrams generating the Higgs mass term are forced to be at most logarithmically sensitive to Λ. A naturally light Higgs boson can thus be accommodated, consistently with a perturbative theory until a scale of order 10 TeV. We have probed the parameter space of three prominent examples of Little Higgs models, namely the Simplest Little Higgs model, the Littlest Higgs model, and the Littlest Higgs model with T-parity, against electroweak precision observables and the collected LHC data concerning both Higgs properties and direct searches for new particles, with √(s)=7,8 TeV and up to 25 fb -1 of integrated luminosity. Lower bounds on the scale f are set, within a certain degree of confidence level, which allow to draw conclusions on the ''naturalness'' of the different models. Optimisations of the existing direct searches setups, assuming a Little Higgs signal, as well as dedicated mass measurement methods designed for the foreseen LHC runs with √(s)=13,14 TeV are thoroughly discussed and proposed in this thesis. Special attention will be dedicated to final states including either a large or negligible fraction of missing transverse momentum. In particular, we will propose a dedicated collider search tailored for the discovery and mass measurement of a top partner, exploiting jet

  6. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  7. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  8. Presenting the students’ academic achievement causal model based on goal orientation

    Directory of Open Access Journals (Sweden)

    EBRAHIM NASIRI

    2017-10-01

    Full Text Available Introduction: Several factors play a role in academic achievement, individual’s excellence and capability to do actions and tasks that the learner is in charge of in learning areas. The main goal of this study was to present academic achievement causal model based on the dimensions of goal orientation and learning approaches among the students of Medical Science and Dentistry courses in Guilan University of Medical Sciences in 2013. Methods: This study is based on a cross-sectional model. The participants included 175 first and second year students of the Medical and Dentistry schools in Guilan University of Medical Sciences selected by random cluster sampling [121 persons (69% Medical Basic Science students and 54 (30.9% Dentistry students]. The measurement tool included the Goal Orientation Scale of Bouffard and Study Process Questionnaire of Biggs and the students’ Grade Point Average. The study data were analyzed using Pearson correlation coefficient and structural equations modeling. SPSS 14 and Amos were used to analyze the data. Results: The results indicated a significant relationship between goal orientation and learning strategies (P<0.05. In addition, the results revealed that a significant relationship exists between learning strategies [Deep Learning (r=0.37, P<0.05, Surface Learning (r=-0.21, P<0.05], and academic achievement. The suggested model of research is fitted to the data of the research. Conclusion: Results showed that the students’ academic achievement model fits with experimental data, so it can be used in learning principles which lead to students’ achievement in learning.

  9. Presenting a conceptual model of data collection to manage the groundwater quality

    Directory of Open Access Journals (Sweden)

    Nourbakhsh Zahra

    2017-12-01

    Full Text Available A conceptual model was proposed in the present study, which highlighted important independent and dependent variables in order to managing the groundwater quality. Furthermore, the methods of selection of variable and collection of related data were explained. The study was carried out in the Tajan Plain, north of Iran; 50 drinking wells were considered as sampling points. In this model the Analytical Hierarchy Process (AHP was proposed to select the indicator water quality parameters. According to expert opinions and characteristics of the study area ten factors were chosen as variables influencing the quality of groundwater (land use types, lithology units, geology units, distance of wells to the outlet, distance to the residential areas, direction toward the residential areas, depth of the groundwater table, the type of aquifer, transmissivity and population. Geographic Information System (AecGIS 9.3 was used to manage the spatial-based variables and the data of non-spatial-based variables were obtained from relevant references. A database, which contains all collected data related to groundwater quality management in the studied area, was created as the output of the model. The output of this conceptual model can be used as an input for quantitative and mathematical models. Results show that 6 parameters (sulphate, iron, nitrate, electrical conductivity, calcium, and total dissolved solids (TDS were the best indicators for groundwater quality analysis in the area. More than 50% of the wells were drilled in the depth of groundwater table about 5 meters, in this low depth pollutants can load into the wells and also 78% of the wells are located within 5 km from the urban area; it can be concluded from this result that the intensive urban activities could affect groundwater quality.

  10. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  11. Effect of different stressors on voluntary ethanol intake in ethanol-dependent and nondependent C57BL/6J mice.

    Science.gov (United States)

    Lopez, Marcelo F; Anderson, Rachel I; Becker, Howard C

    2016-03-01

    Several animal models have evaluated the effect of stress on voluntary ethanol intake with mixed results. The experiments reported here examined the effects of different stressors on voluntary ethanol consumption in dependent and nondependent adult male C57BL/6J mice. In Experiment 1, restraint, forced swim, and social defeat stress procedures all tended to reduce ethanol intake in nondependent mice regardless of whether the stress experience occurred 1 h or 4 h prior to ethanol access. The reduction in ethanol consumption was most robust following restraint stress. Experiment 2 examined the effects of forced swim stress and social defeat stress on drinking in a dependence model that involved repeated cycles of chronic intermittent ethanol (CIE) exposure. Repeated exposure to forced swim stress prior to intervening test drinking periods that followed repeated cycles of CIE exposure further increased ethanol consumption in CIE-exposed mice while not altering intake in nondependent mice. In contrast, repeated exposure to the social defeat stressor in a similar manner reduced ethanol consumption in CIE-exposed mice while not altering drinking in nondependent mice. Results from Experiment 3 confirmed this selective effect of forced swim stress increasing ethanol consumption in mice with a history of CIE exposure, and also demonstrated that enhanced drinking is only observed when the forced swim stressor is administered during each test drinking week, but not if it is applied only during the final test week. Collectively, these studies point to a unique interaction between repeated stress experience and CIE exposure, and also suggest that such an effect depends on the nature of the stressor. Future studies will need to further explore the generalizability of these results, as well as mechanisms underlying the ability of forced swim stress to selectively further enhance ethanol consumption in dependent (CIE-exposed) mice but not alter intake in nondependent animals

  12. Geographical Information System Model for Potential Mines Data Management Presentation in Kabupaten Gorontalo

    Science.gov (United States)

    Roviana, D.; Tajuddin, A.; Edi, S.

    2017-03-01

    Mining potential in Indonesian is very abundant, ranging from Sabang to Marauke. Kabupaten Gorontalo is one of many places in Indonesia that have different types of minerals and natural resources that can be found in every district. The abundant of mining potential must be balanced with good management and ease of getting information by investors. The current issue is, (1) ways of presenting data/information about potential mines area is still manually (the maps that already capture from satellite image, then printed and attached to information board in the office) it caused the difficulties of getting information; (2) the high cost of maps printing; (3) the difficulties of regency leader (bupati) to obtain information for strategic decision making about mining potential. The goal of this research is to build a model of Geographical Information System that could provide data management of potential mines, so that the investors could easily get information according to their needs. To achieve that goal Research and Development method is used. The result of this research, is a model of Geographical Information System that implemented in an application to presenting data management of mines.

  13. Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats.

    Science.gov (United States)

    Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Rosenwasser, Alan M

    2007-10-01

    Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while

  14. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

    Directory of Open Access Journals (Sweden)

    E. Litchman

    2006-01-01

    Full Text Available Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes, nutrients (nitrate, ammonium, phosphate, silicate and iron, light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE and subarctic North Pacific (ocean station Papa, OSP. The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the

  15. Melatonin in concentrated ethanol and ethanol alone attenuate methamphetamine-induced dopamine depletions in C57BL/6J mice.

    Science.gov (United States)

    Yu, L; Cherng, C-F G; Chen, C

    2002-12-01

    The present study aimed to investigate the protective effects of melatonin, ethanol and temperature changes on methamphetamine-induced neurotoxicity in both sexes of mice. Mice exhibited a similar degree of striatal dopamine depletion when methamphetamine was administered during the light and dark cycles. Moreover, 10 mg/kg, but not 5 mg/kg, of methamphetamine, significantly increased body temperature even though dopamine depletions were observed following both doses. Melatonin (80 mg/kg) dissolved in 30% (v/v) ethanol and 30% ethanol alone exerted a moderate to full protection against methamphetamine-induced dopamine depletions in both sexes of mice, whereas the same dose of melatonin in 3% ethanol exerted no protective effect. Furthermore, ethanol attenuated methamphetamine-induced dopamine depletions in a dose-dependent manner with the exception of high efficacy of ethanol at low doses. Finally, the protective effects of ethanol were not blocked by bicuculline. Together, we conclude that ethanol may protect mice against methamphetamine-induced dopamine depletion probably via non-GABAA receptor activation.

  16. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    Science.gov (United States)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  17. Energy, carbon dioxide and water use implications of hydrous ethanol production

    International Nuclear Information System (INIS)

    Saffy, Howard A.; Northrop, William F.; Kittelson, David B.; Boies, Adam M.

    2015-01-01

    Highlights: • We use a chemical refinery model and exergy analysis to determine the impact of hydrous ethanol. • The process is 70% efficient with 86% of the losses from fermentation, steam generation and drying. • We found that producing 86 wt% ethanol is optimal for thermal energy consumption. • Hydrous ethanol production can reduce energy costs and emissions by ∼8%. • Hydrous ethanol reduces water use by decreasing evaporation in cooling towers. - Abstract: Sub-azeotropic hydrous ethanol has been demonstrated as an effective diesel fuel replacement when used in dual-fuel compression ignition engines. Previous studies have also suggested that hydrous ethanol may be more efficient to produce from corn than anhydrous ethanol. In this study, we investigate corn ethanol production from a dry-mill, natural gas-fired corn ethanol refinery, producing ethanol with a range of ethanol concentrations from 58 wt% to 100 wt% to determine the effect on energy use, water consumption and greenhouse gas (GHG) emissions in the refining stage of the corn ethanol lifecycle. A second law (exergy) analysis of anhydrous ethanol refining revealed the overall process to be 70% efficient, whereby 86% of the exergy losses could be accounted for by three processes: fermentation (34%), steam generation (29%) and distiller’s grains and solubles drying (23%). We found that producing 86 wt% ethanol is optimal as thermal energy consumption decreases by a maximum of 10% (from 7.7 MJ/L to 6.9 MJ/L). These savings have the potential to reduce energy costs by approximately 8% ($0.34/L) and reduce refinery emissions by 8% (2 g CO 2 e/MJ). Production of hydrous ethanol reduced refinery water use due to decreased evaporative losses in the cooling towers, leading to water savings of between 3% and 6% at 86 wt% ethanol.

  18. Anticonvulsant activity of the ethanolic extract of Punica granatum L. seed.

    Science.gov (United States)

    Mehrzadi, Saeed; Sadr, Samir; Hosseinzadeh, Azam; Gholamine, Babak; Shahbazi, Ali; FallahHuseini, Hasan; Ghaznavi, Habib

    2015-06-01

    Various morphological parts of pomegranate (Punica granatum L.) have extensively been used in the folk medicine to treat an array of human ailments. The aim of the present study is to demonstrate the anticonvulsant potential of the ethanolic extract of P. granatum L. seed in chemoconvulsant-induced seizures in mice. The anticonvulsant activity of the ethanolic extract was investigated in strychnine (STR)-induced and pentylenetetrazole (PTZ)-induced seizure models in mice. Diazepam was used as reference anticonvulsant drug. Ethanolic extract (150, 300, and 600 mg/kg per os, p.o.), diazepam (1 mg/kg intraperitoneally, i.p.), and distilled water (10 ml/kg, i.p.) were administered before induction of seizures by PTZ (60 mg/kg, i.p.) or STR (2.5 mg/kg, i.p.). The latent time before the onset of convulsions, the duration of convulsions, the percentage of seizure protection, and mortality rate were recorded. The seed ethanolic extract did not show any toxicity and did not protect the animals against seizures but demonstrated a significant increase in seizure latency at 300 and 600 mg/kg in both STR and PTZ seizure models (P < 0.001). It also showed a significant reduction in seizure duration at 300 mg/kg (P < 0.05) and 600 mg/kg (P < 0.001) in the STR seizure model and 600 mg/kg (P < 0.01) in the PTZ seizure model compared with the control group. Ethanol extract has dose-dependent anticonvulsant activity against STR- and PTZ-induced seizures. This activity might be due to its saponins, flavonoids, triterpenes, and alkaloids ingredients.

  19. Canada's directory of ethanol retailers

    International Nuclear Information System (INIS)

    1997-07-01

    This document is a directory listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer by province from west to east. Appendices providing a list of bulk purchase facilities of ethanol-blended fuels was also included, as well as a list of ethanol-blended gasoline retailers

  20. A model study of present-day Hall-effect circulators

    Energy Technology Data Exchange (ETDEWEB)

    Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)

    2017-12-15

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  1. A model study of present-day Hall-effect circulators

    International Nuclear Information System (INIS)

    Placke, B.; Bosco, S.; DiVincenzo, D.P.

    2017-01-01

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ_H = tan"-"1 σ_x_y/σ_x_x always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ_H = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  2. Modelling economic losses of historic and present-day high-impact winter storms in Switzerland

    Science.gov (United States)

    Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Brönnimann, Stefan

    2015-04-01

    simulate the wind field and related economic impact of both historic and present-day high-impact winter storms in Switzerland since end of the 19th century. Our technique involves the dynamical downscaling of the 20CR to 3 km horizontal resolution using the numerical Weather Research and Forecasting model and the subsequent loss simulation using an open-source impact model. This impact model estimates, for modern economic and social conditions, storm-related economic losses at municipality level, and thus allows a numerical simulation of the impact from both historic and present-day severe winter storms in Switzerland on a relatively fine spatial scale. In this study, we apply the modelling chain to a storm sample of almost 90 high-impact winter storms in Switzerland since 1871, and we are thus able to make a statement of the typical wind and loss patterns of hazardous windstorms in Switzerland. To evaluate our modelling chain, we compare simulated storm losses with insurance loss data for the present-day windstorms "Lothar" and "Joachim" in December 1999 and December 2011, respectively. Our study further includes a range of sensitivity experiments and a discussion of the main sources of uncertainty.

  3. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-09-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  4. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  5. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo; Sarathy, Mani

    2016-01-01

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission

  6. Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort.

    Science.gov (United States)

    Lopez, Marcelo F; Miles, Michael F; Williams, Robert W; Becker, Howard C

    2017-02-01

    The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n ∼ 4 per genotype; 1/