WorldWideScience

Sample records for modeling edge effects

  1. Edge effect modeling of small tool polishing in planetary movement

    Science.gov (United States)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  2. Edge effect modeling and experiments on active lap processing.

    Science.gov (United States)

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  3. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Science.gov (United States)

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  4. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Directory of Open Access Journals (Sweden)

    Nélida R Villaseñor

    Full Text Available With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula. We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1 habitat quality/preference, (2 species response with the proximity to the adjacent habitat, and (3 spillover extent/sensitivity to adjacent habitat boundaries. This

  5. Size effect model for the edge strength of glass with cut and ground edge finishing

    NARCIS (Netherlands)

    Vandebroek, M.; Louter, C.; Caspeele, R.; Ensslen, F.; Belis, J.L.I.F.

    2014-01-01

    The edge strength of glass is influenced by the size of the surface (near the edge) which is subjected to tensile stresses. To quantify this size effect, 8 series of single layer annealed glass beam specimens (as-received glass) were subjected to in-plane four-point bending with linearly increased

  6. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  7. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    OpenAIRE

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing den...

  8. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  9. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  10. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  11. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  12. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  13. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    International Nuclear Information System (INIS)

    Wolff, T; Seume, J R

    2016-01-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle. (paper)

  15. Modelling the cutting edge radius size effect for force prediction in micro milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...... edge radius ratio is used for the parameters involved in the force calculation. The model was verified by means of cutting force measurements in micro milling. The results show good agreement between predicted and measured forces. It is also demonstrated that the use of the Stabler's rule...... is a reasonable approximation and that micro end mill run out is effectively compensated by the deflections induced by the cutting forces....

  16. Challenges in edge modeling

    International Nuclear Information System (INIS)

    Schneider, R.

    2007-01-01

    Fluid models like B2, UEDGE or EDGE2D are the working horses for scrape-off layer physics, both for design and experimental support. The concept of a numerical tokamak, aiming at a predictive code for ITER, triggers the need to re-assess the available tools and their necessary extensions. These additional physics issues will be summarized from a personal point-of-view. Depending on the specific problem, several complexity levels of scrape-off layer models will be needed. Therefore, a hierarchy of tools is necessary, which will be discussed. Furthermore, the experience existing in other scientific fields with multi-scale problems and modeling should be used. Here, the coupling of different length and time scales are in particular of interest for fusion problems. (author)

  17. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large

  18. EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES

    Directory of Open Access Journals (Sweden)

    A. I. Podosinnikov

    2015-03-01

    Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.

  19. On the Cutting Edge Professional Development Program - An effective model built from years of experience

    Science.gov (United States)

    Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.

    2015-12-01

    The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene

  20. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  1. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    Science.gov (United States)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  2. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  3. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  4. Analytical model based on cohesive energy to indicate the edge and corner effects on melting temperature of metallic nanoparticles

    International Nuclear Information System (INIS)

    Shidpour, Reza; Hamid, Delavari H.; Vossoughi, M.

    2010-01-01

    Graphical abstract: The effect of edge and corner atoms of nanoparticle (solid line) cause melting temperature drops more compared to considering them as same as only surface atoms (dash line). This reduction is significant especially when the size of nanoparticle is below 10 nm. - Abstract: An analytical model based on cohesive energy has been conducted to study the effects of edge, corner, and inward surface relaxation as varying parameters on melting temperature of nanoparticles. It is shown that taking into account the edge and corner (EC) atoms of nanoparticle, causes to drop melting temperature more, when compared to consider them the same as only surface atoms. This reduction is significant especially when the size of nanoparticle is below 10 nm. The results are supported by available experimental results of tin, lead and gold melting temperature (T m ). Finally, it is shown that inward relaxation increases melting temperature slightly.

  5. A direct heating model to overcome the edge effect in microplates.

    Science.gov (United States)

    Lau, Chun Yat; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah

    2015-01-01

    Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of direct bottom heating of standard microplates, considerable heat transfer via conduction from the side walls was found to be responsible for lower temperatures in the liquid in wells close to the edge. Applying a two temperature heating mode, 304 K at the side compared to 310 K at the bottom, allowed for a more uniform temperature distribution. Transparency microplates were found to inherently possess immunity to the edge effect problem due to the presence of air between the liquid and solid wall. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  7. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  8. Modeling hydrology and reactive transport in roads: The effect of cracks, the edge, and contaminant properties

    International Nuclear Information System (INIS)

    Apul, Defne S.; Gardner, Kevin H.; Eighmy, T. Taylor

    2007-01-01

    The goal of this research was to provide a tool for regulators to evaluate the groundwater contamination from the use of virgin and secondary materials in road construction. A finite element model, HYDRUS2D, was used to evaluate generic scenarios for secondary material use in base layers. Use of generic model results for particular applications was demonstrated through a steel slag example. The hydrology and reactive transport of contaminants were modeled in a two-dimensional cross section of a road. Model simulations showed that in an intact pavement, lateral velocities from the edge towards the centerline may transport contaminants in the base layer. The dominant transport mechanisms are advection closer to the edge and diffusion closer to the centerline. A shoulder joint in the pavement allows 0.03 to 0.45 m 3 /day of infiltration per meter of joint length as a function of the base and subgrade hydrology and the rain intensity. Scenario simulations showed that salts in the base layer of pavements are depleted by 99% in the first 20 years, whereas the metals may not reach the groundwater in 20 years at any significant concentrations if the pavement is built on adsorbing soils

  9. A model for managing edge effects in harvest scheduling using spatial optimization

    Science.gov (United States)

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  10. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  11. Gust-Tunnel Investigation of the Effect of a Sharp-Edge Gust on the Flapwise Blade Bending Moments of a Model Helicopter Rotor

    National Research Council Canada - National Science Library

    Maglieri, Domenic

    1955-01-01

    Preliminary investigations have been made in the Langley gust tunnel to determine the effects of a sharp-edge vertical gust on the blade flapwise vibratory bending moments of small model rotors having...

  12. Edge modelling for W7-X

    International Nuclear Information System (INIS)

    Schneider, R.; Borchardt, M.; Riemann, J.; Bonnin, X.; Nuehrenberg, J.; Mutzke, A.

    2001-01-01

    The edge modelling activities for W7-X are summarized. The status of the new 3D SOL transport code BoRiS is presented, including an algorithm for calculation of magnetic coordinates and metric coefficients. In addition, the analysis of a toroidally averaged island topology with respect to the effect of drift and currents is discussed using the 2D B2-solps5.0 code. (author)

  13. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  14. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  15. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.; Easton, M.A.; Taylor, J.A.

    2005-01-01

    The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al 3 Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB 2 and AlB 2 , the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al 3 Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB 2 and AlB 2 . This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys

  16. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  17. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  18. Improved Trailing Edge Noise Model

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient increa...

  19. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    Science.gov (United States)

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  20. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  1. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  2. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  3. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    , lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa......The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  4. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  5. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  6. [Effect of medicines for activating blood and reinforcing Qi on angiogenesis in infarcted myocardium edge area of acute myocardial infarction model in rats].

    Science.gov (United States)

    Zang, Wen-Hua; Yin, Shen-Hua; Tang, De-Cai; Li, Bing-Bing

    2014-03-01

    To study the effect of medicines for activating blood and reinforcing Qi on the number of new micro-vessels and the protein expressions of VEGF and bFGF in the infarcted myocardium edge area of acute myocardial infarction (AMI) model in rats. The AMI model of rats was established. After the successful model establishment, rats were randomly divided into the sham-operated group, the model group, the Danshen-Huangqi (1 : 2) group, the Danshen-Huangqi (1 : 1) group, the Chuanxiong-Huangqi (1 : 2) group, the Danshen group, the Chuanxiong group, the Chishao group and the Shexiang Baoxin pill group, with five rats in each group. Rats in each medicated group were orally administered with drugs as per 13.5 g x kg(-1) x d(-1) once everyday for three weeks. The immunohistochemical SP method was adopted to detect the expression of vWF in myocardial tissues, and count the number of micro-vessels (MVC). The protein expression of VEGF and bFGF in myocardial tissues were determined by Western blot. The new micro-vessels stained by vWF factor could be found in the infarcted myocardium edge area of the sham-operated group, the model group and all of medicated groups. The sham-operated group show unobvious new micro-vessels in myocardial tissues. A small amount of new micro-vessels could be seen in the infarcted myocardium edge area of the model group. Whereas a larger number of micro-vessels could be seen in the infarcted myocardium edge area of all of medicated groups. The differences between the sham-operated group and the model group had statistical significance (P effect in promoting angiogenesis. Their mechanism for promoting angiogenesis may be related to the improvement of the protein expressions of VEGF and bFGF, so as to increase the contents of VEGF and bFGF and promote the angiogenesis of new vessels.

  7. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  8. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  9. X-point effect on edge stability

    International Nuclear Information System (INIS)

    Saarelma, S; Kirk, A; Kwon, O J

    2011-01-01

    We study the effects of the X-point configuration on edge localized mode (ELM) triggering peeling and ballooning modes using fixed boundary equilibria and modifying the plasma shape to approach the limit of a true X-point. The current driven pure peeling modes are asymptotically stabilized by the X-point while the stabilizing effect on ballooning modes depends on the poloidal location of the X-point. The coupled peeling-ballooning modes experience the elimination of the peeling component as the X-point is introduced. This can significantly affect the edge stability diagrams used to analyse the ELM triggering mechanisms.

  10. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  11. A Dynamic Stall Model for Airfoils with Deformable Trailing Edges

    International Nuclear Information System (INIS)

    Andersen, Peter Bjoern; Gaunaa, Mac; Bak, Christian; Hansen, Morten Hartvig

    2007-01-01

    The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa for the attached flow region and Hansen et al. The model will be compared to wind tunnel measurements from Velux described by Bak et al

  12. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  13. The effect of defocus on edge contrast sensitivity

    NARCIS (Netherlands)

    Jansonius, NM; Kooijman, AC

    The effect of optical blur (defocus) on edge contrast sensitivity was studied. Edge contrast sensitivity detoriates with fairly small amounts of blur (similar to 0.5 D) and is roughly reduced by half for each dioptre of blur. The effect of blur on edge contrast sensitivity equals the effect of blur

  14. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    Science.gov (United States)

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  15. A Cortical Edge-integration Model of Object-Based Lightness Computation that Explains Effects of Spatial Context and Individual Differences

    Directory of Open Access Journals (Sweden)

    Michael E Rudd

    2014-08-01

    Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  16. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    Science.gov (United States)

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  17. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  18. Research on reducing the edge effect in magnetorheological finishing.

    Science.gov (United States)

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  19. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  20. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  1. Habitat edges have weak effects on duck nest survival at local spatial scales

    Science.gov (United States)

    Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.

    2015-01-01

    Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.

  2. Edge states in quantum Hall effect in graphene

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Sharapov, S.G.; Shovkovy, I.A.

    2008-01-01

    We review recent results concerning the spectrum of edge states in the quantum Hall effect in graphene. In particular, special attention is paid to the derivation of the conditions under which gapless edge states exist in the spectrum of graphene with 'zigzag' and 'armchair' edges. It is found that in the case of a half-plane or a ribbon with zigzag edges, there are gapless edge states only when a spin gap dominates over a Dirac mass gap. In the case of a half-plane with an armchair edge, the existence of the gapless edge states depends on the specific type of Dirac mass gaps. The implications of these results for the dynamics in the quantum Hall effect in graphene are discussed

  3. Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Yaser M. Banadaki

    2016-03-01

    Full Text Available In this paper, we present a physics-based analytical model of GNR FET, which allows for the evaluation of GNR FET performance including the effects of line-edge roughness as its practical specific non-ideality. The line-edge roughness is modeled in edge-enhanced band-to-band-tunneling and localization regimes, and then verified for various roughness amplitudes. Corresponding to these two regimes, the off-current is initially increased, then decreased; while, on the other hand, the on-current is continuously decreased by increasing the roughness amplitude.

  4. Feasibility of compensating for EUV field edge effects through OPC

    Science.gov (United States)

    Maloney, Chris; Word, James; Fenger, Germain L.; Niroomand, Ardavan; Lorusso, Gian F.; Jonckheere, Rik; Hendrickx, Eric; Smith, Bruce W.

    2014-04-01

    implementation of these measurements allow for further mitigation, i.e., compensation by OPC. Mentor Graphics' Calibre software uses the scanner's point spread function and convolves it with the mask layout to generate a flare map. It also has the capability to add additional dose to the image border which can be optimized to fit the experimental data. This includes the transition region between the image field and border that results in a linear rolloff of dose due to partial shadowing of the REMA blades. By applying this flaremap that accounts for neighboring die to the already calibrated optical and resist models, OPC can now be enabled to compensate for field edge effects. This study has two goals. First, we will show that OPC can be used to compensate both for field edge effects with and without a etched ML border. The second is to investigate the limitations that exist for OPC in the areas altered by neighboring die. This will predict when a process to mitigate the field edge effect is needed to enable EUV HVM.

  5. Modeling the effects of the vertical temperature gradient in the furnace in an edge-defined film-fed growth technique

    International Nuclear Information System (INIS)

    Epure, S.; Braescu, L.; Balint, St.

    2006-01-01

    In this paper, the mathematical model for the growth of cylindrical bars described elsewhere is considered. Using MathCAD 11 Enterprise Edition and mathematical tools, the asymptotically stable steady-states (r*, h*) of the nonlinear system of differential equations which governs the evolution of the bar radius r=r(t) and the meniscus height h=h(t), for different values of the pulling rate v, the melt temperature T 0 at the meniscus basis and the vertical temperature gradient k in the furnace, respectively, are found. For a given k, the range of the stable growth regions in the (v, T 0 ) plane (i.e. those couples (v, T 0 ) for which (r*, h*) has physical sense) are determined. The effects of the changes of the vertical temperature gradient k are investigated and it is shown that if v and T 0 are constant, and k increases, then the bar radius r increases and the meniscus height h decreases. Numerical results are given for the silicon bar grown in an edge-defined film-fed growth (E.F.G.) system with a die radius r 0e =20(cmx10 -2 )

  6. Edge effect of strained bilayer nanofilms for tunable multistability and actuation.

    Science.gov (United States)

    Hu, N; Han, X; Huang, S; Grover, H M; Yu, X; Zhang, L N; Trase, I; Zhang, J X J; Zhang, L; Dong, L X; Chen, Z

    2017-03-02

    We employed both theoretical and computational models supported by experiments to study the multistable behavior of an edge-effect driven Si/Cr micro-claw. Our study showed that individual micro-claws demonstrate either monostability or bistability as the magnitude of the edge effect is varied.

  7. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  8. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  9. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  10. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  11. Dynamics of edge currents in a linearly quenched Haldane model

    Science.gov (United States)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  12. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin

    2016-01-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  13. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  14. Improvement of airfoil trailing edge bluntness noise model

    Directory of Open Access Journals (Sweden)

    Wei Jun Zhu

    2016-02-01

    Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.

  15. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  16. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  17. Improvement of airfoil trailing edge bluntness noise model

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2016-01-01

    In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks......, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...

  18. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  19. Core-edge coupling and the effect of the edge on overall plasma performance

    International Nuclear Information System (INIS)

    Fichtmueller, M.; Corrigan, G.; Lauro-Taroni, L.

    1999-01-01

    Several attempts to model the entire plasma cross section have been reported in the last few years. Two possibilities are to either couple a core code to a scrape-off layer (SOL) code at a specified interface or to extend the computational region of an SOL-code all the way to the plasma centre. The most advanced global code is the code COCONUT which is based on the former principle and comprises the Monte-Carlo code NIMBUS, the 2D scrape-off layer code EDGE2D, the core transport code JETTO and the core impurity transport code SANCO. A main feature of COCONUT is its modular structure which ensures a high degree of flexibility and the capability to cover a large range of time-scales. The influence of the SOL on the core is illustrated with a range of global simulations carried out with COCONUT. The simulations show that the primary effect of the SOL is the control of the particle sources and sinks with a secondary effect on plasma dilution, radiation and perhaps pedestal temperatures. (author)

  20. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  1. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  2. Effect of surface wettability on microfluidic EDGE emulsification

    NARCIS (Netherlands)

    Maan, A.A.; Sahin, S.; Mujawar, L.H.; Boom, R.M.; Schroen, C.G.P.H.

    2013-01-01

    The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90 and 160. The highest contact angle (160) produced monodispersed emulsions with droplet size 5.0 lm and coefficient of variation

  3. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  4. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  5. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  6. Effect of random edge failure on the average path length

    Energy Technology Data Exchange (ETDEWEB)

    Guo Dongchao; Liang Mangui; Li Dandan; Jiang Zhongyuan, E-mail: mgliang58@gmail.com, E-mail: 08112070@bjtu.edu.cn [Institute of Information Science, Beijing Jiaotong University, 100044, Beijing (China)

    2011-10-14

    We study the effect of random removal of edges on the average path length (APL) in a large class of uncorrelated random networks in which vertices are characterized by hidden variables controlling the attachment of edges between pairs of vertices. A formula for approximating the APL of networks suffering random edge removal is derived first. Then, the formula is confirmed by simulations for classical ER (Erdoes and Renyi) random graphs, BA (Barabasi and Albert) networks, networks with exponential degree distributions as well as random networks with asymptotic power-law degree distributions with exponent {alpha} > 2. (paper)

  7. Edge modelling of ICFR heated plasmas on PLT

    International Nuclear Information System (INIS)

    Lehrman, I.S.

    1990-01-01

    Theoretical models are presented to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of the Faraday shield is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, predicts an increase in particle transport to the Faraday shield. Kinetic modelling shows that the strong antenna near-fields act to increase the energy of deuterons that strike the shield, thereby increasing the sputtering of shield material. In addition, kinetic modelling shows that E parallel induced between adjacent shield elements acts to heat edge electron that transit close to the antenna. The predictions of the models are shown to be consistent with measurements of enhanced transport on PLT. (author). 27 refs, 17 figs

  8. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  9. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  10. ICRF [Ion Cyclotron Range of Frequencies] edge modeling studies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1989-01-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. 19 refs., 9 figs

  11. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  12. Magnon edge states in the hardcore- Bose-Hubbard model.

    Science.gov (United States)

    Owerre, S A

    2016-11-02

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

  13. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    Science.gov (United States)

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  14. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  15. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Culchac, F J; Capaz, Rodrigo B

    2016-01-01

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy. (paper)

  16. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh; Coropceanu, Veaceslav; Bré das, Jean-Luc

    2013-01-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case

  17. Practical aspects of a 2-D edge-plasma model

    International Nuclear Information System (INIS)

    Rensink, M.E.; Hill, D.N.; Porter, G.D.; Braams, B.J.; Princeton Univ., NJ

    1989-07-01

    The poloidal divertor configuration is considered the most promising solution to the particle and energy exhaust problem for a tokamak reactor. The scrape-off layer plasma surrounding the core and the high-recycling plasma near the divertor plates can be modelled by fluid equations for particle, momentum and energy transport. A numerical code (B2) based on a two-dimensional multi-fluid model has been developed for the study of edge plasmas in tokamaks. In this report we identify some key features of this model as applied to the DIII-D tokamak. 2 refs., 1 fig

  18. Graphical Gaussian models with edge and vertex symmetries

    DEFF Research Database (Denmark)

    Højsgaard, Søren; Lauritzen, Steffen L

    2008-01-01

    We introduce new types of graphical Gaussian models by placing symmetry restrictions on the concentration or correlation matrix. The models can be represented by coloured graphs, where parameters that are associated with edges or vertices of the same colour are restricted to being identical. We...... study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...

  19. Effect of Internal and Edge Transport Barriers in ITER Simulations

    International Nuclear Information System (INIS)

    Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.

    2009-07-01

    Full text: Predictive simulations of ITER with the presence of both an edge transport barrier (ETB) and an internal transport barrier (ITB) are carried out using the BALDUR integrated predictive modeling code. In these simulations, the boundary is taken at the top of the pedestal, where the pedestal values are described using the theory-based pedestal models. These pedestal temperature models are based on three different pedestal width scalings: magnetic and flow shear stabilization (δ α ρ ζ 2 ), flow shear stabilization (δ α Root ρ Rq), and normalized poloidal pressure (δ α R Root βθ, ped). The pedestal width scalings are combined with a pedestal pressure gradient scaling based on ballooning mode limit to predict the pedestal temperature. A version of the semi-empirical Mixed Bohm/gyro Bohm (Mixed B/gB) core transport model that includes ITB effects is used to compute the evolution of plasma profiles and plasma performance, which defined by Fusion Q factor. The results from the cases excluding and including ITB are compared. The preliminary results show the Q value resulted from ITB-excluded simulation is less than the one with ITB included

  20. Integrated modelling of the edge plasma and plasma facing components

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Mutzke, A.; Schneider, R.; Warrier, M.

    2007-01-01

    Modelling of the interaction between the edge plasma and plasma facing components (PFCs) has tended to place more emphasis on either the plasma or the PFCs. Either the PFCs do not change with time and the plasma evolution is studied, or the plasma is assumed to remain static and the detailed interaction of the plasma and the PFCs are examined, with no back-reaction on the plasma taken into consideration. Recent changes to the edge simulation code, SOLPS, now allow for changes in both the plasma and the PFCs to be considered. This has been done by augmenting the code to track the time-development of the properties of plasma facing components (PFCs). Results of standard mixed-materials scenarios (base and redeposited C; Be) are presented

  1. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  2. Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE

    Energy Technology Data Exchange (ETDEWEB)

    Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)

    2016-08-15

    Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  4. Influence of Selective Edge Removal and Refractory Period in a Self-Organized Critical Neuron Model

    International Nuclear Information System (INIS)

    Lin Min; Gang, Zhao; Chen Tianlun

    2009-01-01

    A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system. (condensed matter: structural, mechanical, and thermal properties)

  5. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  6. Edge Effects and Ecological Traps: Effects on Shrubland Birds in Missouri

    Science.gov (United States)

    April A. Woodward; Alix D. Fink; Frank R. Thompson III

    2001-01-01

    The effect of habitat edge on avian nesting success has been the focus of considerable debate. We studied relationships between habitat edges, locations of nests, and predation. We tested the ecological trap hypothesis for 5 shrubland bird species in the Missouri Ozarks. We compared habitat selection and daily nest predation rates among 3 distance-to-edge categories....

  7. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    Ahmed, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  8. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    International Nuclear Information System (INIS)

    Gasparro, Joel; Hult, Mikael; Johnston, Peter N.; Tagziria, Hamid

    2008-01-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV

  9. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, Joel [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Hult, Mikael [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Johnston, Peter N. [Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001 (Australia); Tagziria, Hamid [EC-JRC-IPSC, Institute for the Protection and the Security of the Citizen, Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy)

    2008-09-01

    Gamma-ray detection efficiencies and cascade summing effects in germanium detectors are often calculated using Monte Carlo codes based on a computer model of the detection system. Such a model can never fully replicate reality and it is important to understand how various parameters affect the results. This work concentrates on quantifying two issues, namely (i) the effect of having a Ge-crystal that is tilted inside the cryostat and (ii) the effect of having a model of a Ge-crystal with rounded edges (bulletization). The effect of the tilting is very small (in the order of per mille) when the tilting angles are within a realistic range. The effect of the rounded edges is, however, relatively large (5-10% or higher) particularly for gamma-ray energies below 100 keV.

  10. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  11. Cliff-edge model of obstetric selection in humans.

    Science.gov (United States)

    Mitteroecker, Philipp; Huttegger, Simon M; Fischer, Barbara; Pavlicev, Mihaela

    2016-12-20

    The strikingly high incidence of obstructed labor due to the disproportion of fetal size and the mother's pelvic dimensions has puzzled evolutionary scientists for decades. Here we propose that these high rates are a direct consequence of the distinct characteristics of human obstetric selection. Neonatal size relative to the birth-relevant maternal dimensions is highly variable and positively associated with reproductive success until it reaches a critical value, beyond which natural delivery becomes impossible. As a consequence, the symmetric phenotype distribution cannot match the highly asymmetric, cliff-edged fitness distribution well: The optimal phenotype distribution that maximizes population mean fitness entails a fraction of individuals falling beyond the "fitness edge" (i.e., those with fetopelvic disproportion). Using a simple mathematical model, we show that weak directional selection for a large neonate, a narrow pelvic canal, or both is sufficient to account for the considerable incidence of fetopelvic disproportion. Based on this model, we predict that the regular use of Caesarean sections throughout the last decades has led to an evolutionary increase of fetopelvic disproportion rates by 10 to 20%.

  12. Modeling of ITER edge plasma in the presence of resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhansky, V.; Kaveeva, E.; Veselova, I.; Voskoboynikov, S. [Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Coster, D. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, Garching (Germany)

    2016-08-15

    The modeling of the ITER edge is performed with the use of the code B2SOLPS5.2 in the presence of the electron conductivity caused by RMPs as well as for the reference case with the same input parameters but without RMPs. The radial electric field close to the neoclassical one is obtained without RMPs. Even the modest level of RMPs changes the direction of the electric field and causes the toroidal spin-up of the edge plasma. At the same time the pump-out effect is small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  14. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  15. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  16. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  17. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study.

    Science.gov (United States)

    Van Meter, Emily M; Lawson, Andrew B; Colabianchi, Natalie; Nichols, Michele; Hibbert, James; Porter, Dwayne E; Liese, Angela D

    2010-07-27

    This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station) or restaurant (limited service or full service restaurants). We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed) and also for short range accessibility It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  18. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study

    Directory of Open Access Journals (Sweden)

    Porter Dwayne E

    2010-07-01

    Full Text Available Abstract Background This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station or restaurant (limited service or full service restaurants. We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. Results The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed and also for short range accessibility Conclusions It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  19. Variation in Local-Scale Edge Effects: Mechanisms and landscape Context

    Science.gov (United States)

    Therese M. Donovan; Peter W. Jones; Elizabeth M. Annand; Frank R. Thompson III

    1997-01-01

    Ecological processes near habitat edges often differ from processes away from edges. Yet, the generality of "edge effects" has been hotly debated because results vary tremendously. To understand the factors responsible for this variation, we described nest predation and cowbird distribution patterns in forest edge and forest core habitats on 36 randomly...

  20. Residual stress behaviors induced by laser peening along the edge of curved models

    International Nuclear Information System (INIS)

    Im, Jong Bin; Grandhi, Ramana V.; Ro, Young Hee

    2012-01-01

    Laser peening (LP) induces high magnitude compressive residual stresses in a small region of a component. The compressive residual stresses cause plastic deformation that is resistant to fatigue fracture. Fatigue cracks are generally nucleated at critical areas, and LP is applied for those regions so as to delay the crack initiation. Many critical regions are located on the edge of the curved portion of structures because of stress concentration effects. Several investigations that are available for straight components may not give meaningful guidelines for peening curved components. Therefore, in this paper, we investigate residual stress behaviors induced by LP along the edge of curved models. Three curved models that have different curvatures are investigated for peening performance. Two types of peening configurations, which are simultaneous corner shot and sequential corner shots, are considered in order to obtain compressive residual stresses along an edge. LP simulations of multiple shots are performed to identify overlapping effects on the edge portion of a curved model. In addition, the uncertainty calculation of residual stress induced by LP considering laser pulse duration is performed

  1. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    Science.gov (United States)

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  2. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  3. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  4. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  5. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  6. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  7. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  8. Effect of neutral atoms on tokamak edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Catto, Peter J.; Helander, P.

    2001-01-01

    Neutral atoms can significantly influence the physics of tokamak edge plasmas, e.g., by affecting the radial electric field and plasma flow there, which may, in turn, be important for plasma confinement. Earlier work [Fueloep et al., Phys. Plasmas 5, 3969 (1998)], assuming short mean-free path neutrals and Pfirsch-Schlueter ions, has shown that the ion-neutral coupling through charge-exchange affects the neoclassical flow velocity significantly. However, the mean-free path of the neutrals is not always small in comparison with the radial scale length of densities and temperatures in the edge pedestal. It is therefore desirable to determine what happens in the limit when the neutral mean-free path is comparable with the scale length. In the present work a self-similar solution for the neutral distribution function allowing for strong temperature and density variation is used, following the analysis of Helander and Krasheninnikov [Phys. Plasmas 3, 226 (1995)]. The self-similar solution is possible if the ratio of the mean-free path to the temperature and density scale length is constant throughout the edge plasma. The resulting neutral distribution function is used to investigate the neutral effects on the ion flow and electrostatic potential as this ratio varies from much less than one to order unity

  9. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  10. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    International Nuclear Information System (INIS)

    Madsen, Jens

    2010-09-01

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  11. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  12. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  13. Realistic edge field model code REFC for designing and study of isochronous cyclotron

    International Nuclear Information System (INIS)

    Ismail, M.

    1989-01-01

    The focussing properties and the requirements for isochronism in cyclotron magnet configuration are well-known in hard edge field model. The fact that they quite often change considerably in realistic field can be attributed mainly to the influence of the edge field. A solution to this problem requires a field model which allows a simple construction of equilibrium orbit and yield simple formulae. This can be achieved by using a fitted realistic edge field (Hudson et al 1975) in the region of the pole edge and such a field model is therefore called a realistic edge field model. A code REFC based on realistic edge field model has been developed to design the cyclotron sectors and the code FIELDER has been used to study the beam properties. In this report REFC code has been described along with some relevant explaination of the FIELDER code. (author). 11 refs., 6 figs

  14. Modelling the possible interaction between edge-driven convection and the Canary Islands mantle plume

    Science.gov (United States)

    Negredo, A. M.; Rodríguez-González, J.; Fullea, J.; Van Hunen, J.

    2017-12-01

    The close location between many hotspots and the edges of cratonic lithosphere has led to the hypothesis that these hotspots could be explained by small-scale mantle convection at the edge of cratons (Edge Driven Convection, EDC). The Canary Volcanic Province hotspot represents a paradigmatic example of this situation due to its close location to the NW edge of the African Craton. Geochemical evidence, prominent low seismic velocity anomalies in the upper and lower mantle, and the rough NE-SW age-progression of volcanic centers consistently point out to a deep-seated mantle plume as the origin of the Canary Volcanic Province. It has been hypothesized that the plume material could be affected by upper mantle convection caused by the thermal contrast between thin oceanic lithosphere and thick (cold) African craton. Deflection of upwelling blobs due to convection currents would be responsible for the broader and more irregular pattern of volcanism in the Canary Province compared to the Madeira Province. In this study we design a model setup inspired on this scenario to investigate the consequences of possible interaction between ascending mantle plumes and EDC. The Finite Element code ASPECT is used to solve convection in a 2D box. The compositional field and melt fraction distribution are also computed. Free slip along all boundaries and constant temperature at top and bottom boundaries are assumed. The initial temperature distribution assumes a small long-wavelength perturbation. The viscosity structure is based on a thick cratonic lithosphere progressively varying to a thin, or initially inexistent, oceanic lithosphere. The effects of assuming different rheologies, as well as steep or gradual changes in lithospheric thickness are tested. Modelling results show that a very thin oceanic lithosphere (models assuming temperature-dependent viscosity and large viscosity variations evolve to large-scale (upper mantle) convection cells, with upwelling of hot material being

  15. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    Science.gov (United States)

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  16. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  17. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  18. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Directory of Open Access Journals (Sweden)

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  19. 2D edge plasma modeling extended up to the main chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-08-01

    Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.

  20. Graphene nanoribbons on gold: understanding superlubricity and edge effects

    Science.gov (United States)

    Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.

    2017-12-01

    We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.

  1. Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons

    International Nuclear Information System (INIS)

    Lu, Yan; Wei, Sheng; Jin, Jing; Wang, Li; Lu, Wengang

    2016-01-01

    We explore the electronic properties and exciton effects in short graphene nanoribbons (SGNRs), which have two armchair edges and two zigzag edges. Our results show that both of these two types of edges have profound effects on the electronic properties and exciton effects. Both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states are alternatively changed between the bulk and the edge states as the lengths of the zigzag edges increase, due to the competition between the states of the two types of edges. The energy gaps, as a function of the lengths of the armchair edges, will then induce two kinds of trends. Furthermore, two kinds of exciton energies and exciton binding energies are found, which can be understood through the two kinds of HOMO and LUMO states in SGNRs. In addition, we find that the three triplet exciton states are not totally energy degenerate in SGNRs due to the spin-polarized states on the zigzag edges. (paper)

  2. Modelling of Edge Insulation Depending on Boundary Conditions for the Ground Level

    Science.gov (United States)

    Stolarska, Agata; Strzałkowski, Jarosław

    2017-10-01

    The article presents results of CFD software aided simulations of a thermal bridge, existing at the wall-slab on ground connection. Calculations were made for different variants of the edge insulation location. Schemes without any edge insulation, with some vertical insulation, horizontal, diagonal, and diagonal combined with insulation used as formwork under the slab on ground were analysed. Each variant was differentiated with boundary conditions for the ground. Vertical borders of the model in the ground, as well as the lower border were described in the first solution as adiabatic, while in the second case, a variable temperature value, depending on the ground depth, was set. For comparison, additional calculations were conducted for non-stationary conditions, in which the initial temperature of the ground was set to the average annual temperature of air. The calculations were based on the location of Szczecin, for which the outside air temperature was set to -16.0°C. Results obtained from the simulation were then used to determine the thermal bridge parameters, in particular, thermal coupling coefficient and linear thermal transmittance. The effect of the set of boundary conditions is clearly seen. In general, for all the five variants, lower values of heat fluxes and linear thermal transmittances were obtained, when variable temperature in the ground was assumed. From the point of view of energy balance, it is more favourable to use the values of ψg obtained when the ground temperature is taken into account. The data breakdown shows that application of the actual temperature distribution in the ground to a model has a strong effect on distribution of the 0.0°C isotherm. The adiabatic model indicates that the ground under the slab freezes, while the model, which takes into account the temperature of the ground, shows that the ground under the floor has positive temperatures and the 0.0°C isotherm reaches only the edge of the outer wall. Moreover, the

  3. Large spin Seebeck effects in zigzag-edge silicene nanoribbons

    International Nuclear Information System (INIS)

    Yang, Xi-Feng; Liu, Yu-Shen; Feng, Jin-Fu; Wang, Xue-Feng

    2014-01-01

    Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite

  4. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Devkota, J.; Shrestha, S.P.

    2007-12-01

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  5. Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas

    A 3D methodology to quantify the effect of forests on the mean wind flow field is presented. The methodology is based on the treatment of forest raw data of light detection and ranging (LiDAR) scans, and a computational fluid dynamics (CFD) method based on a Reynolds-averaged Navier-Stokes (Ra......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...

  6. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry

    International Nuclear Information System (INIS)

    Hua Jiang; Shivpuri, Rajiv; Cheng Xiaomin; Bedekar, Vikram; Matsumoto, Yoichi; Hashimoto, Fukuo; Watkins, Thomas R.

    2005-01-01

    Residual stress on the machined surface and the subsurface is known to influence the service quality of a component, such as fatigue life, tribological properties, and distortion. Therefore, it is essential to predict and control it for enhanced performance. In this paper, a newly proposed hardness based flow stress model is incorporated into an elastic-viscoplastic finite element model of hard turning to analyze process variables that affect the residual stress profile of the machined surface. The effects of cutting edge geometry and workpiece hardness as well as cutting conditions, such as feed rate and cutting speed, are investigated. Numerical analysis shows that hone edge plus chamfer cutting edge and aggressive feed rate help to increase both compressive residual stress and penetration depth. These predictions are validated by face turning experiments which were conducted using a chamfer with hone cutting edge for different material hardness and cutting parameters. The residual stresses under the machined surface are measured by X-ray diffraction/electropolishing method. A maximum circumferential residual stress of about 1700 MPa at a depth of 40 μm is reached for hardness of 62 HRc and feed rate of 0.56 mm/rev. This represents a significant increase from previously reported results in literatures. It is found from this analysis that using medium hone radius (0.02-0.05 mm) plus chamfer is good for keeping tool temperature and cutting force low, while obtaining desired residual stress profile

  7. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    Science.gov (United States)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  8. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

    Directory of Open Access Journals (Sweden)

    S. Wiesen

    2017-08-01

    Full Text Available Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs. For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures, SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation

  9. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    Objects in the plane with no obvious landmarks can be described by either vertex transformation vectors or edge transformation vectors. In this paper we provide the relation between the two transformation vectors. Grenander & Miller (1994) use a multivariate normal distribution with a block...... circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  10. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  11. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad

    2013-01-01

    flapwise blade root moment and trailing edge flap deflection. Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flaps deflection, and to target at loads with given frequencies only. The controller is first tested in servo-aeroelastic simulations, before being......This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...

  12. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    Science.gov (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  13. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...

  14. Combined effect of matrix cracking and stress-free edge on delamination

    Science.gov (United States)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  15. Modeling Edge Effects of Tillage Erosion

    Science.gov (United States)

    Tillage erosion has been recognized as an important factor in redistribution of soil over time and in the development of morphological changes within agricultural fields. Field borders, fences, and vegetated strips that interrupt soil fluxes lead to the creation topographic discontinuities or lynche...

  16. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  17. Integrated Predictive Models for ICRF-Edge Plasma Interactions

    International Nuclear Information System (INIS)

    Daniel A. D'Ippolito

    2005-01-01

    The coupling of radiofrequency waves to the edge plasma of a fusion device produces strong nonlinear interactions with the plasma and surrounding material walls which must be controlled in order to protect the antenna and to obtain efficient heating of the core plasma. The goal of the STTR project was to develop the first quantitative numerical simulation of this problem. This report describes the results of the Phase I work by Lodestar and ORNL on this project

  18. Numerical analysis of edge effects in side illuminated strip detectors for digital radiology

    CERN Document Server

    Krizaj, D

    2000-01-01

    The influence of edge defects on side illuminated X-ray strip detectors for digital radiology is investigated by numerical device modeling. By assuming positive fixed oxide charges on side and top surfaces simulations have shown strong curvature of the equipotential lines in the edge region. A fraction of the edge generated current surpasses the edge guard-ring junction and is collected by the readout strips. As a consequence, strips cannot be placed close to the edge of the structure and collection efficiency is reduced. An n-on-n instead of a p-on-n strip detector is proposed enabling collection of edge generated carriers by a very narrow guard-ring junction and placement of the readout strip close to the edge without increase of the strip leakage current.

  19. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  20. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.

    Science.gov (United States)

    Ahmad, R; Ding, Y; Simonetti, O P

    2015-05-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.

  1. Potential environmental effects of the leading edge hydrokinetic energy technology.

    Science.gov (United States)

    2017-05-01

    The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...

  2. Longitudinal Proximity Effect Superconducting Transition-Edge Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting Transition-Edge Sensors (TESs) hold the highest energy resolving power of any nondispersive spectrometer.   They are used for imaging spectroscopy...

  3. Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2004-01-01

    Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings

  4. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  5. Roughness Effects on the Formation of a Leading Edge Vortex

    Science.gov (United States)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface. This patterning is an important natural flow control mechanism that is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. The increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test this theory, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Particle Image Velocimetry (PIV) captured images of the LEV generated by the plate when towed upwards through the particle-seeded flow. Codes written in MatLab were used to automatically track and determine the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding provided by NSF REU site Grant EEC 1358991 and CBET 1628600.

  6. Study of the round edge disk hole's effects on the frequency and wakefield in disc structure

    International Nuclear Information System (INIS)

    Wang Lanfa; Hou Mi; Zhang Chuang

    2001-01-01

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequencies and wake fields of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but strong effect on the wakefield. The study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole as of round edge. The shape assumption brings loss factor 15% err for the most dangerous EH 16 mode

  7. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  8. UCLA program in theory and modeling of edge physics and plasma material interaction

    International Nuclear Information System (INIS)

    Conn, R.W.; Najmabadi, F.; Grossman, A.; Merriman, B.; Day, M.

    1992-01-01

    Our research activity in edge plasma modeling is directed towards understanding edge plasma behavior and towards innovative solutions for controlling the edge plasma as well as the design and operation of impurity control, particle exhaust. and plasma facing components. During the last nine months, substantial progress was made in many areas. The highlights are: (A) Development of a second-generation edge-plasma simulation code (Section II); (B) Development of models for gas-target divertors, including a 1 1/2-D fluid model for plasma and Monte Carlo neutral-transport simulations (Section III); and (C) Utilization of the RF ponderomotive force and electrostatic biasing to distribute the heat load on a larger area of the divertor plate, and the development of analytical and numerical transport models that include both ponderomotive and electrostatic potentials

  9. Roughness Effects on the Formation of a Leading Edge Vortex

    Science.gov (United States)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2017-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface that acts as a natural energy capture mechanism. This patterning is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. Increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test how this roughness effects LEV formation, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Images were captured of the LEV generated when the plate was towed upwards through the particle-seeded flow. These images were used to determine the XY velocity of the particles using a technique called Digital Particle Image Velocimetry (DPIV). Codes written in MATLAB were used to track and measure the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding for this research project was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (REU Supplement CBET 1628600 under CBET 1335848).

  10. CFD analysis of cascade effects in marine propellers with trailing edge modification

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2015-01-01

    investigated intensively by viscous flow solvers, although RANS CFD is prevalent in marine industry nowadays. In the current work, the cascade effect of a marine propeller is analyzed by CFD simulations on a threedimensional propeller model with varying the number of blades. The influence of trailing......-edge configurations on the cascade effect is also investigated by simulating CFD with varying trailingedge thickness and slope. The reason why the trailingedge is handled rather than other parts of bladegeometry is that it can be modified without altering overall blade thrust significantly, because the loading...

  11. Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Yang

    2018-06-01

    While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.

  12. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  13. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    International Nuclear Information System (INIS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.

    2016-01-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  14. Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section

    Science.gov (United States)

    Boichuk, V. Yu.

    2001-05-01

    This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented

  15. EDGE EFFECT INFLUENCE TO REFLECTED IMPEDANCE OF EDDY-CURRENT PROBE

    Directory of Open Access Journals (Sweden)

    О. Закревський

    2012-04-01

    Full Text Available This work is dedicated to solve analytically the edge effect Eddy-Current Probe (ECP problem which helpto carry out mathematical research the edge effect influence to ECP precision and sensitivity ultrasonictransducer mechanical amplitude oscillation measurement mathematical research, pointed to cylindricalconductive objects radius control possibility with superimposed ECP.

  16. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    Science.gov (United States)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  17. Edge effect in charged-particle analyzing magnets

    NARCIS (Netherlands)

    Braams, C.M.

    The manner in which local saturation of pole pieces with sharp edges affects the fall-off of the magnetic induction in the fringing-field region is discussed and measured. Local saturation appears to set in at a field strength well below that at which over-all saturation of the pole pieces becomes

  18. Turbulent transport modeling in the edge plasma of tokamaks: verification, validation, simulation and synthetic diagnostics

    International Nuclear Information System (INIS)

    Colin-Bellot, Clothilde

    2015-01-01

    The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr

  19. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia

    Directory of Open Access Journals (Sweden)

    Hylander Kristoffer

    2013-12-01

    Full Text Available Most studies on edge effects in tropical forests have been conducted in landscapes with low human population density and in situations where the edges have been left unused after logging of the adjacent area. Here we studied forest margins heavily used by local farmers in a forest/agriculture mosaic landscape in Ethiopia. We compared forest structure and plant species composition across 41 forest-agriculture ecotones from 200 m out into the agricultural area to 200 m into the forest. There are strong edge effects from the edge and into the forest on canopy cover and number of stumps and apparently these forest-agricultural edges are intensively used by humans. They are penetrated by paths, beehives are found in the trees, timber of various dimensions is harvested and there is sometimes substantial cover of perennial wild (or semi-wild crops such as coffee and spices. The number of understory epiphytic fern species as well as number of epiphyllous (i.e., growing on leaves bryophyte species was lower at 20 m than at 75 m from the edge. The number of fern species was higher in newly created edges and thereafter they declined, which indicates an extinction debt. This pattern was not seen for the epiphyllous bryophytes. It is likely that different human management activities are responsible for many of the found edge effects besides wind and sun effects from the edge. Tropical forest margins provide important resources for people in many landscapes. It is important to understand how such use affects the biota of the forests. This study shows that there are substantial edge effects, but that the edge effects do not seem to become worse over time for epiphyllous bryophytes and only slightly so for ferns.

  20. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  1. Awareness of Central Luminance Edge is Crucial for the Craik-O'Brien-Cornsweet Effect.

    Science.gov (United States)

    Masuda, Ayako; Watanabe, Junji; Terao, Masahiko; Watanabe, Masataka; Yagi, Akihiro; Maruya, Kazushi

    2011-01-01

    The Craik-O'Brien-Cornsweet (COC) effect demonstrates that perceived lightness depends not only on the retinal input at corresponding visual areas but also on distal retinal inputs. In the COC effect, the central edge of an opposing pair of luminance gradients (COC edge) makes adjoining regions with identical luminance appear to be different. To investigate the underlying mechanisms of the effect, we examined whether the subjective awareness of the COC edge is necessary for the generation of the effect. We manipulated the visibility of the COC edge using visual backward masking and continuous flash suppression while monitoring subjective reports regarding online percepts and aftereffects of adaptation. Psychophysical results showed that the online percept of the COC effect nearly vanishes in conditions where the COC edge is rendered invisible. On the other hand, the results of adaptation experiments showed that the COC edge is still processed at the early stage even under the perceptual suppression. These results suggest that processing of the COC edge at the early stage is not sufficient for generating the COC effect, and that subjective awareness of the COC edge is necessary.

  2. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  3. Edge effects in phase-shifting masks for 0.25-µm lithography

    Science.gov (United States)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  4. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...

  5. Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture

    Directory of Open Access Journals (Sweden)

    Elly C. Knight

    2014-06-01

    Full Text Available Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

  6. Edge modes in the fractional quantum Hall effect without extra edge fermions

    Science.gov (United States)

    Lima, G. L. S.; Dias, S. A.

    2011-05-01

    We show that the Chern-Simons-Landau-Ginsburg theory that describes the quantum Hall effect on a bounded sample is anomaly free and thus does not require the addition of extra chiral fermions on the boundary to restore local gauge invariance.

  7. Effects of edge reconstruction on the common groups terminated zigzag phosphorene nanoribbon

    International Nuclear Information System (INIS)

    Xiao, Huaping; Guo, Sumei; Zhang, Chunxiao; He, Chaoyu; Zhong, Jianxin

    2017-01-01

    Edge configuration plays an important role in the electronic properties of nano-structures. In this work, we perform first-principles calculations to study the effects of the cooperation between neighbor groups on the edge configuration and the electronic properties of zigzag-PNRs (ZPNRs) terminated by common groups H, F, O, S and OH. We find that the cooperation has little effect on the H(F)-terminated ZPNRs, but gives rise to an edge reconstruction for the O(S)-terminated ZPNRs. The edge reconstruction derives from the repulsion between neighbor O atoms and the distortion of the P skeleton induced by the p state coupling among the edge, second edge and third edge P atoms. In comparison to the H-terminated ZPNRs, O-terminated ZPNRs are also a semiconductor and enlarge the band gap, but bring about an extra transport channel for the charge transport at the edge and decreases the effective mass of the electron and hole. OH-terminated ZPNRs also undergo a doubling of the unit cell (UC) along the periodic direction because of the different directions of the neighbor O–H bonds. In comparison with the H-terminated ZPNRs, OH-terminated ZPNRs show a similar band gap and electronic effective mass, but increase the effective mass of the hole. (paper)

  8. Model predictive control of trailing edge flaps on a wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Castaignet, D.B.

    2011-11-15

    Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped with three trailing edge flaps on one blade, located on DTU's Risoe Campus in Roskilde, Denmark. This thesis is divided into three parts: the controller design, results from simulations, and results from the experiments. The trailing edge flaps controller designed for this project is based on a frequency-weighted model predictive control, tuned in order to target only the flapwise blade root loads at the frequencies contributing the most to blade root fatigue damage (the 1P, 2P and 3P frequencies), and to avoid unnecessary wear and tear of the actuators at high frequencies. A disturbance model consisting in periodic disturbances at the rotor speed harmonic frequencies and a quasi-steady input disturbance is aggregated to an analytical model of a spinning blade with trailing edge flaps. Simulations on a multi-megawatt wind turbine show the potential of the trailing edge flaps to reduce the flapwise blade root fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risoe Campus of the Technical University of Denmark, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the

  9. Universality in invariant random-matrix models: Existence near the soft edge

    International Nuclear Information System (INIS)

    Kanzieper, E.; Freilikher, V.

    1997-01-01

    We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-matrix models should display universal eigenvalue correlations in the soft-edge scaling limit. copyright 1997 The American Physical Society

  10. On the conductance sum rule for the hierarchical edge states of the fractional quantum hall effect

    International Nuclear Information System (INIS)

    Ma Zhongshui; Chen Yixin; Su Zhaobin.

    1993-09-01

    The conductance sum rule for the hierarchical edge channel currents of a Fractional Quantum Hall Effect state is derived analytically within the Haldane-Halperin hierarchy scheme. We provide also an intuitive interpretation for the hierarchical drift velocities of the edge excitations. (author). 12 refs

  11. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  12. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    Science.gov (United States)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  13. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  14. Velocity statistics for interacting edge dislocations in one dimension from Dyson's Coulomb gas model.

    Science.gov (United States)

    Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel

    2013-10-01

    The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.

  15. Improvement of TNO type trailing edge noise models

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge

    2016-01-01

    . It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...

  16. Improvement of TNO type trailing edge noise models

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge

    2017-01-01

    . It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...

  17. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia.

    Science.gov (United States)

    Fujinuma, Junichi; Harrison, Rhett D

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.

  18. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Science.gov (United States)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  19. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Directory of Open Access Journals (Sweden)

    Vladislav Yakubov

    2017-08-01

    Full Text Available Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  20. Effect of the Curved Fin Top Edge on the Electrical Characteristics of FinFETs.

    Science.gov (United States)

    Ahn, Joonsung; Kim, Tae Whan

    2018-03-01

    The effect of the curved fin top edge on the electrical characteristics of FinFETs was investigated. The curvature radius of the fin top edge for the FinFETs was changed from 0 to 5 nm in order to determine the optimum condition of the electrical characteristics for the devices. The on-current level of the FinFETs with a curvature radius of 5 nm of fin top edge was 24.45% larger than that of the FinFETs with a cuboid fin. The electron current density and the electron mobility of the fin top edge for the FinFETs were larger than those for the FinFETs with a cuboid fin. The electrical characteristics of the FinFETs with a curvature radius of 5 nm for the fin top edge showed the best performance due to the largest expansion of the effective channel region.

  1. Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

    Directory of Open Access Journals (Sweden)

    Kawalec-Latała Ewa

    2014-03-01

    Full Text Available Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

  2. Improvement of vision measurement accuracy using Zernike moment based edge location error compensation model

    International Nuclear Information System (INIS)

    Cui, J W; Tan, J B; Zhou, Y; Zhang, H

    2007-01-01

    This paper presents the Zernike moment based model developed to compensate edge location errors for further improvement of the vision measurement accuracy by compensating the slight changes resulting from sampling and establishing mathematic expressions for subpixel location of theoretical and actual edges which are either vertical to or at an angle with X-axis. Experimental results show that the proposed model can be used to achieve a vision measurement accuracy of up to 0.08 pixel while the measurement uncertainty is less than 0.36μm. It is therefore concluded that as a model which can be used to achieve a significant improvement of vision measurement accuracy, the proposed model is especially suitable for edge location of images with low contrast

  3. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  4. EFFECTS OF EDGE COVERING ON TENSILE STRENGTH OF MDF

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available Dowels, 6, 8 and 10 mm ? diameters were bonded with PVAc adhesive on Medium Density Fiberboard (MDF. Edges were covered with 5, 8 and 12 mm beech wood materials, drilled 25 mm depth. Tensile strength measurments were made on the samples. The highest tensile strength value was given as 6 mm ? dowel and MDF covered with 8 mm thickness beech wood material (2.294 N/mm2, the lowest value was obtained with 10 mm ? dowel and with unprocessed MDF (1.314 N/mm2.

  5. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  6. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  7. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  8. Stochastic models of edge turbulent transport in the thermonuclear reactors

    International Nuclear Information System (INIS)

    Volchenkov, Dima

    2005-01-01

    Two-dimensional stochastic model of turbulent transport in the scrape-off layer (SOL) of thermonuclear reactors is considered. Convective instability arisen in the system with respect to perturbations reveals itself in the strong outward bursts of particle density propagating ballistically across the SOL. The criterion of stability for the fluctuations of particle density is formulated. A possibility to stabilize the system depends upon the certain type of plasma waves interactions and the certain scenario of turbulence. A bias of limiter surface would provide a fairly good insulation of chamber walls excepting for the resonant cases. Pdf of the particle flux for the large magnitudes of flux events is modeled with a simple discrete time toy model of I-dimensional random walks concluding at the boundary. The spectra of wandering times feature the pdf of particle flux in the model and qualitatively reproduce the experimental statistics of transport events

  9. Diversity of galling insects in Styrax pohlii (Styracaceae): edge effect and use as bioindicators.

    Science.gov (United States)

    de Araújol, Walter Santos; Julião, Genimar Rebouças; Ribeiro, Bárbara Araújo; Silva, Isadora Portes Abraham; dos Santos, Benedito Baptista

    2011-12-01

    Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae) host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior) were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i) because of their host-specificity, (ii) they are sensitive to changes in plant quality, and (iii) present dissimilar and specific responses to local variation in habitat conditions.

  10. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    Science.gov (United States)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  11. Edge effects on N2O, NO and CH4 fluxes in two temperate forests.

    Science.gov (United States)

    Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal

    2017-01-01

    Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N 2 O), nitric oxide (NO) and methane (CH 4 ). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N 2 O, NO and CH 4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N 2 O emissions. The fluxes of NO and CH 4 differed between forest edge and interior, but not for N 2 O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH 4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH 4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Role of edge effect on small mammal populations in a forest fragment

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    In many cases, edge effect may determine the distribution and densities of small mammal populations. In 1995 and 1998, a mark and recapture study was conducted at the Savannah River Site (SRS), Aiken, SC, to evaluate the role of forest edge habitat. The area studied was an abandoned home site that had been recently isolated by a timber harvest. Harvest activities left a distinct edge of old field and planted pine contrasting with a relatively xeric, mixed hardwood stand. Trapping was conducted for 17 days in 1995 and 14 days in 1998. Three 30 m by 150 m grids were placed in the clear-cut, edge, and hardwood interior habitats. For both years the principal species captured were Peromyscus gossypinus, P. polionotus, and Neotoma floridana. The edge habitat accounted for approximately 55 percent of all captures and nearly four times as many recaptures as the interior and clear-cut habitats. In 1998, greater numbers of N. floridana were trapped than in 1995. The results indicate that the use of edge habitat can be pronounced even within simple communities. Stewards of managed or restored habitats need to carefully consider the role of edge in these systems. In managed areas such as waste sites, movement of material within the food chain could be reduced by minimizing edge habitat around the points of contamination

  13. Effect of readout direction in the edge profile on the modulation transfer function of computed radiographic systems by use of the edge method.

    Science.gov (United States)

    Tanaka, Nobukazu; Morishita, Junji; Tsuda, Norisato; Ohki, Masafumi

    2013-07-01

    We investigated the effect of the readout direction of the edge profile obtained by the edge method on the presampled modulation transfer function (MTF) in various computed radiographic (CR) systems. There were no differences in the MTFs derived from two edge profiles in the sub-scanning direction of four CR systems used in this study. On the other hand, the MTFs measured at a readout direction from the low (edge) to the high (direct exposure) exposure region were higher than those measured at a readout direction from the high to the low exposure region in the laser-beam scanning direction for three of the four CR systems. Although this phenomenon depends on the CR system, it is important to understand and indicate both MTFs at the two edge profiles in the laser-beam scanning direction for accurate assessment of the resolution property.

  14. Effects of higher-coordination shells in garnets detected by XAS at the Al K-edge

    International Nuclear Information System (INIS)

    Marcelli, A.; Wu, Z.; Mottana, A.; Giuli, G.; Paris, E.; Seifert, F.

    1996-03-01

    The aluminium 1 s x-ray-absorption spectra of a series of garnets, pyrope, almandine, spessartine and grossular, are compared to full multiple-scattering calculation using cluster models. An overall good agreement between experiment and calculation, extended also to the edge region,is obtained in the energy range in up to 60 e V above the threshold, provided cluster containing at least 40 atoms are used. The analysis of these garnet XAS spectra provides clear evidence on the effect of probe, XANES spectroscopy at the edge of low Z elements appears to be a perfect tool to investigate the role played by atoms located in higher-coordination shells

  15. Effects of higher-coordination shells in garnets detected by XAS at the Al K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Wu, Z. [CNRS UMR 110, Laboratoire de Chimie des Solides, Nantes Cedex (France). Institut de materiaux de Nantes; Mottana, A. [Roma III Univ., Rome (Italy). Dipartimento di Scienze Geologiche; Giuli, G.; Paris, E. [Camerino Univ., Camerino (Italy).Diparimento di Scienze della Terra; Seifert, F [Univ. Bayreuth, Bayreuth (Italy). Bayerisches Geoinstitut (Germany)

    1996-03-01

    The aluminium 1 s x-ray-absorption spectra of a series of garnets, pyrope, almandine, spessartine and grossular, are compared to full multiple-scattering calculation using cluster models. An overall good agreement between experiment and calculation, extended also to the edge region,is obtained in the energy range in up to 60 e V above the threshold, provided cluster containing at least 40 atoms are used. The analysis of these garnet XAS spectra provides clear evidence on the effect of probe, XANES spectroscopy at the edge of low Z elements appears to be a perfect tool to investigate the role played by atoms located in higher-coordination shells.

  16. Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3

    International Nuclear Information System (INIS)

    Subbiah, Sathyan; Melkote, Shreyes N.

    2008-01-01

    Evidence of ductile fracture leading to material separation has been reported recently in ductile metal cutting [S. Subbiah, S.N. Melkote, ASME J. Manuf. Sci. Eng. 28(3) (2006)]. This paper investigates the effect of finite edge radius on such ductile fracture. The basic question of whether such ductile fracture occurs in the presence of a finite edge radius is explored by performing a series of experiments with inserts of different edge radii at various uncut chip thickness values ranging from 15 to 105 μm. Chip-roots are obtained in these experiments using a quick-stop device and examined in a scanning electron microscope. Clear evidence of material separation is seen at the interface zone between the chip and machined surface even when the edge radius is large compared to the uncut chip thickness. Failure is seen to occur at the upper, middle, and/or the lower edges of the interface zone. Based on these observations, a hypothesis is presented for the events leading to the occurrence of this failure when cutting with an edge radius tool. Finite element simulations are performed to study the nature of stress state ahead of the tool edge with and without edge radius. Hydrostatic stress is seen to be tensile in front of the tool and hence favors the occurrence of ductile fracture leading to material separation. The stress components are, however lower than those seen with a sharp tool

  17. Aspects of modelling classical or synchronous modelling with Solid Edge ST 9

    Directory of Open Access Journals (Sweden)

    Goanta Adrian Mihai

    2017-01-01

    Full Text Available The current situation of the design activity is dependent on both the level of training of the human resources and the financial resources of companies required purchasing the design software packages and complex calculation equipment. Consequently, the situation is very diverse in the sense that there are design cases using only drawing software but also classical 3D or synchronous modelling situations, simple or integrated into software packages that meet the Product Lifecycle Management (PLM principles. The natural tendency in modelling and design is primarily to the high computing power integrated software or somewhat simplified versions that, however, allow at least FEA modelling, simulation and the related 2D documentation. The paper presents some aspects of modernity in synchronous modelling as compared to the classic one, made with 2016 version of Solid Edge software from SIEMENS. Basically there were studied and analysed aspects of modelling ease, speed of changes and also optimization of commands in the modelling process of the same piece in the two versions mentioned: classic and synchronous. It is also presented the alternative path from one method to another within the same process of piece modelling, depending on the advantages provided by each method. In other words, the work is based on a case study of modelling a piece under the two modelling versions of which some aspects were highlighted and conclusions were drawn.

  18. Neutral particle transport modeling with a reflective source in the plasma edge

    International Nuclear Information System (INIS)

    Valenti, M.E.

    1992-01-01

    A reflective source term is incorporated into the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence, the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined

  19. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR and Quantification of Red-Edge Band BRDF Effects

    Directory of Open Access Journals (Sweden)

    David P. Roy

    2017-12-01

    Full Text Available Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF. The Sentinel-2 multi-spectral instrument (MSI acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 million (January 2016 and 10.7 million (April 2016 pairs of forward and back scatter reflectance observations extracted over approximately 20° × 10° of southern Africa. Non-negligible MSI red-edge BRDF effects up to 0.08 (reflectance units across the 290 km wide MSI swath are documented. A recently published MODIS BRDF parameter c-factor approach to adjust MSI visible, near-infrared, and short wave infrared reflectance to nadir BRDF-adjusted reflectance (NBAR is adapted for application to the MSI red-edge bands. The red-edge band BRDF parameters needed to implement the algorithm are provided. The parameters are derived by a linear wavelength interpolation of fixed global MODIS red and NIR BRDF model parameters. The efficacy of the interpolation is investigated using POLDER red, red-edge, and NIR BRDF model parameters, and is shown to be appropriate for the c-factor NBAR generation approach. After adjustment to NBAR, red-edge MSI BRDF effects were reduced for the January data (acquired close to the solar principal where BRDF effects are maximal and the April data (acquired close to the orthogonal plane for all the MSI red-edge bands.

  20. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  1. On the edge of the foreshock: model-data comparisons

    Directory of Open Access Journals (Sweden)

    D. G. Sibeck

    2008-06-01

    Full Text Available We present the results of a global hybrid code simulation for the solar wind-interaction with the Earth's magnetosphere during an interval of steady radial IMF. The model predicts a foreshock marked by innumerable localized, correlated, and large amplitude, density and magnetic field strength variations, depressed velocities, and enhanced temperatures. The foreshock is bounded by a broad (~0.8 RE region of enhanced densities, temperatures, and magnetic field strengths that extends far (~8.6 RE upstream from the bow shock. Flow perturbations within the boundary are directed perpendicular to the boundary, towards the unperturbed solar wind and away from the foreshock. Cluster observations of the ion foreshock and pristine solar wind confirm the predictions of the model. The observations suggest that foreshock cavities, crater-like density and magnetic field strength structures whose cores are filled with suprathermal particles, can be interpreted in terms of transient encounters with the foreshock boundary.

  2. On the edge of the foreshock: model-data comparisons

    OpenAIRE

    D. G. Sibeck; N. Omidi; I. Dandouras; E. Lucek

    2008-01-01

    We present the results of a global hybrid code simulation for the solar wind-interaction with the Earth's magnetosphere during an interval of steady radial IMF. The model predicts a foreshock marked by innumerable localized, correlated, and large amplitude, density and magnetic field strength variations, depressed velocities, and enhanced temperatures. The foreshock is bounded by a broad (~0.8 RE) region of enhanced densities, temperatures, and m...

  3. An effective method for smoothing the staggered dose distribution of multi-leaf collimator field edge

    International Nuclear Information System (INIS)

    Hwang, I.-M.; Lin, S.-Y.; Lee, M.-S.; Wang, C.-J.; Chuang, K.-S.; Ding, H.-J.

    2002-01-01

    Purpose: To smooth the staggered dose distribution that occurs in stepped leaves defined by a multi-leaf collimator (MLC). Materials and methods: The MLC Shaper program controlled the stepped leaves, which were shifted in a traveling range, the pattern of shift was from the position of out-bound to in-bound with a one-segment (cross-bound), three-segment, and five-segment shifts. Film was placed at a depth of 1.5 cm and irradiated with the same irradiation dose used for the cerrobend block experiment. Four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge were performed, respectively, in this study. For the field edge defined by the multi-segment technique, the amplitude of the isodose lines for 50% isodose line and both the 80% and 20% isodose lines were measured. The effective penumbra widths with 90-10% and 80-20% distances for different irradiations were determined at four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge. Results: Use of the five-segment technique for multi-leaf collimation at the 60 deg. angle field edge smoothes each isodose line into an effectively straight line, similar to the pattern achieved using a cerrobend block. The separation of these lines is also important. The 80-20% effective penumbra width with five-segment techniques (8.23 mm) at 60 deg. angle relative to the jaw edge is little wider (1.9 times) than the penumbra of cerrobend block field edge (4.23 mm). We also found that the 90-10% effective penumbra width with five-segment techniques (12.68 mm) at 60 deg. angle relative to the jaw edge is little wider (1.28 times) than the penumbra of cerrobend block field edge (9.89 mm). Conclusion: The multi-segment technique is effective in smoothing the MLC staggered field edge. The effective penumbra width with more segment techniques at larger degree angles relative to the field edge is little wider than the penumbra for a

  4. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  5. Outsourcing CIS to achieve a cost-effective competitive edge

    International Nuclear Information System (INIS)

    Haines, A.

    2000-01-01

    The ability to survive in a competitive electricity market is a function of the ability of a service provider to deliver superior levels of customer service and develop new and innovative products and services. More and more, the foundation of these new services and products is the customer information system which has the capability to provide vast amounts of usage data and billing information; access to this data enables service providers to introduce new and innovative services and implement targeted marketing initiatives. Recent trend by progressive electricity providers appears to be to outsource specific information technology functions such as customer information systems (CIS) as a way to minimize capital investment, take advantage of leading edge technologies and leverage the expertise of niche service providers. Advantages of outsourcing, and factors important in the selection of an outsourcing partner are discussed

  6. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    Science.gov (United States)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  7. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    Science.gov (United States)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  8. Effect of gender on results of percutaneous edge-to-edge mitral valve repair with MitraClip system.

    Science.gov (United States)

    Estévez-Loureiro, Rodrigo; Settergren, Magnus; Winter, Reidar; Jacobsen, Per; Dall'Ara, Gianni; Sondergaard, Lars; Cheung, Gary; Pighi, Michele; Ghione, Matteo; Ihlemann, Nikolaj; Moat, Neil E; Price, Susanna; Streit Rosenberg, Tine; Di Mario, Carlo; Franzen, Olaf

    2015-07-15

    Knowledge regarding gender-specific results of percutaneous edge-to-edge mitral valve repair is scarce. The aim of this study was to investigate gender differences in outcomes in a cohort of patients treated with MitraClip implantation. A multicenter registry of 173 patients treated with MitraClip prostheses from 2009 to 2012 at 3 experienced centers was performed. One hundred nine patients (63%) were men. Men were younger (mean age 73 ± 10 vs 79 ± 9 years, p = 0.001) and had a higher prevalence of previous coronary bypass graft surgery (34% vs 13%, p = 0.002), previous myocardial infarction (46% vs 20%, p = 0.001), and diabetes mellitus (26% vs 11%, p = 0.020). There were no differences regarding New York Heart Association (NYHA) functional class before the intervention (NYHA class III or IV in 95% of men vs 97% of women, p = 0.472) or the cause of mitral regurgitation (MR) (functional in 58% of men vs 48% of women, p = 0.233). Men exhibited significantly larger ventricles (mean indexed left ventricular end-systolic diameter 2.4 ± 0.8 vs 2.0 ± 1.6 cm/m(2), p = 0.002, and mean indexed left ventricular end-diastolic volume 92.7 ± 46.1 vs 59.9 ± 24.6 ml/m(2), p effective treatment of MR in men and women. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Edge Effects on Community and Social Structure of Northern Temperate Deciduous Forest Ants

    Directory of Open Access Journals (Sweden)

    Valerie S. Banschbach

    2012-01-01

    Full Text Available Determining how ant communities are impacted by challenges from habitat fragmentation, such as edge effects, will help us understand how ants may be used as a bioindicator taxon. To assess the impacts of edge effects upon the ant community in a northern temperate deciduous forest, we studied edge and interior sites in Jericho, VT, USA. The edges we focused upon were created by recreational trails. We censused the ants at these sites for two consecutive growing seasons using pitfall traps and litter plot excavations. We also collected nests of the most common ant species at our study sites, Aphaenogaster rudis, for study of colony demography. Significantly greater total numbers of ants and ant nests were found in the edge sites compared to the interior sites but rarefaction analysis showed no significant difference in species richness. Aphaenogaster rudis was the numerically dominant ant in the habitats sampled but had a greater relative abundance in the interior sites than in the edge sites both in pitfall and litter plot data. Queen number of A. rudis significantly differed between the nests collected in the edge versus the interior sites. Habitat-dependent changes in social structure of ants represent another possible indicator of ecosystem health.

  10. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  11. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  12. On the edge of the foreshock: model-data comparisons

    Directory of Open Access Journals (Sweden)

    D. G. Sibeck

    2008-06-01

    Full Text Available We present the results of a global hybrid code simulation for the solar wind-interaction with the Earth's magnetosphere during an interval of steady radial IMF. The model predicts a foreshock marked by innumerable localized, correlated, and large amplitude, density and magnetic field strength variations, depressed velocities, and enhanced temperatures. The foreshock is bounded by a broad (~0.8 RE region of enhanced densities, temperatures, and magnetic field strengths that extends far (~8.6 RE upstream from the bow shock. Flow perturbations within the boundary are directed perpendicular to the boundary, towards the unperturbed solar wind and away from the foreshock. Cluster observations of the ion foreshock and pristine solar wind confirm the predictions of the model. The observations suggest that foreshock cavities, crater-like density and magnetic field strength structures whose cores are filled with suprathermal particles, can be interpreted in terms of transient encounters with the foreshock boundary.

  13. Plasma-surface interaction at sharp edges and corners during ion-assisted physical vapor deposition. Part I: Edge-related effects and their influence on coating morphology and composition

    International Nuclear Information System (INIS)

    Macak, E.B.; Muenz, W.-D.; Rodenburg, J.M.

    2003-01-01

    Ion-assisted physical vapor deposition (PVD) is a common industrial method for growing thin coatings of various interstitial nitride alloys. The interaction between the ions and three-dimensional nonflat samples during the deposition can, however, lead to unwanted local changes in the properties of the coating and thus its performance. We analyze the characteristics of the ion bombardment during ion-assisted PVD on sharp convex substrates and their effect on the growing coating. We show that the magnitude and the spatial extent of the edge-related changes are directly related to the characteristics of the plasma sheath around the biased edges. We examine the influence of the edge geometry and the deposition conditions. The edge-related effects are studied on the example of wedge-shaped samples coated with TiAlN/VN by closed-field unbalanced magnetron deposition process using high-flux low-energy Ar + -ion irradiation (J i /J me ∼4, E i =75-150 eV). The samples are analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Significant changes in the morphology, thickness, and composition of the coatings are found in the edge region. In order to account for the changes, we apply a self-consistent model of the plasma sheath around wedge-shaped samples proposed by Watterson [J. Phys. D 22, 1300 (1989)], to our conditions. For a 30 deg. wedge coated at -150 V, the resputtering rate in the edge region is found to be increased by up to ten times as compared to flat substrate areas. The effect is due to the combined action of an increased ion flux and increased sputtering yield as a result of the nonperpendicular angle of incidence of ions in the edge region. The situation at sharp corners, where even more severe effects are observed, is analyzed and modeled in the companion article E. B. Macak et al., J. Appl. Phys. (2003) (Part II)

  14. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  15. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  16. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  17. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  18. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Chan, V.S.; Chen, L.

    1998-12-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n ∼ 2--9 and a fast growth time γ -1 = 20--150 micros are often observed prior to the first giant type 1 ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n > 1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region

  19. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Ferron, J.R.; Miller, R.L.

    2001-01-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n∼2-9 and a fast growth time γ -1 =20-150μs are often observed prior to the first giant type I ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n>1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region. (author)

  20. The effects of habitat edges and trampling intensity on vegetation in urban forests

    OpenAIRE

    Hamberg, Leena

    2009-01-01

    Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on ...

  1. Investigation of non thermal effects from the Dα line wings in edge plasmas

    International Nuclear Information System (INIS)

    Marandet, Y.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2002-01-01

    The far wings of intense Dα lines measured at the edge of the Tore Supra Tokamak are found to exhibit a power-law behavior. The characteristic exponent is not far from two. Since the low density rules out thermal Stark broadening, we discuss non thermal effects which may arise from the edge plasma drift-wave turbulence. We suggest that both the Stark and the Doppler profile could be affected by the turbulence

  2. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  3. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  4. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  5. Edge states and conformal boundary conditions in super spin chains and super sigma models

    International Nuclear Information System (INIS)

    Bondesan, Roberto; Jacobsen, Jesper L.; Saleur, Hubert

    2011-01-01

    The sigma models on projective superspaces CP N+M-1|N with topological angle θ=πmod2π flow to non-unitary, logarithmic conformal field theories in the low-energy limit. In this paper, we determine the exact spectrum of these theories for all open boundary conditions preserving the full global symmetry of the model, generalizing recent work on the particular case M=0 [C. Candu et al., JHEP 1002 (2010) 015]. In the sigma model setting, these boundary conditions are associated with complex line bundles, and are labelled by an integer, related with the exact value of θ. Our approach relies on a spin chain regularization, where the boundary conditions now correspond to the introduction of additional edge states. The exact values of the exponents then follow from a lengthy algebraic analysis, a reformulation of the spin chain in terms of crossing and non-crossing loops (represented as a certain subalgebra of the Brauer algebra), and earlier results on the so-called one- and two-boundary Temperley-Lieb algebras (also known as blob algebras). A remarkable result is that the exponents, in general, turn out to be irrational. The case M=1 has direct applications to the spin quantum Hall effect, which will be discussed in a sequel.

  6. Edge states and conformal boundary conditions in super spin chains and super sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, Roberto, E-mail: roberto.bondesan@cea.f [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2011-08-11

    The sigma models on projective superspaces CP{sup N+M-1{vert_bar}N} with topological angle {theta}={pi}mod2{pi} flow to non-unitary, logarithmic conformal field theories in the low-energy limit. In this paper, we determine the exact spectrum of these theories for all open boundary conditions preserving the full global symmetry of the model, generalizing recent work on the particular case M=0 [C. Candu et al., JHEP 1002 (2010) 015]. In the sigma model setting, these boundary conditions are associated with complex line bundles, and are labelled by an integer, related with the exact value of {theta}. Our approach relies on a spin chain regularization, where the boundary conditions now correspond to the introduction of additional edge states. The exact values of the exponents then follow from a lengthy algebraic analysis, a reformulation of the spin chain in terms of crossing and non-crossing loops (represented as a certain subalgebra of the Brauer algebra), and earlier results on the so-called one- and two-boundary Temperley-Lieb algebras (also known as blob algebras). A remarkable result is that the exponents, in general, turn out to be irrational. The case M=1 has direct applications to the spin quantum Hall effect, which will be discussed in a sequel.

  7. Attempt to model the edge turbulence of a tokamak as a random superposition of eddies

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Theimer, G; Weinlich, M; Carlson, A; Giannone, L.; Niedermeyer, H; Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Turbulence is considered to be the most likely origin of the anomalous transport in tokamaks. Although the main interest is focussed on the bulk plasma, transport in the scrape-off layer is very important for reactor design. For this reason extensive experimental investigations of the edge turbulence were performed on the ASDEX divertor tokamak. Langmuir probe arrays were used in the floating potential mode and in the ion saturation mode to measure the poloidal distribution of density and plasma potential fluctuations neglecting temperature fluctuations. Density fluctuations integrated radially over the boundary layer were derived from H{sub {alpha}}-measurements. Data from up to 16 channels were sampled with a frequency of 1 MHz during time windows of 1 s. Often one parameter like the plasma density or the radial probe position were scanned during this interval. It is impossible to derive physical mechanisms directly from these statistical observations. We draw general conclusions about the physics involved from the entity of observations and propose a set of basic effects to include in a theoretical model. Being still unable to solve the complex nonlinear problem of the fully developed turbulence exactly we attempt to describe the turbulence with a simple non-self-consistent statistical model. This allows to derive plausible physical interpretations of several features of the statistical functions and may be used as a guide-line for the development of a manageable theoretical model. (author) 6 refs., 3 figs.

  8. Risk Reduction Effects Due to the Start Time Extension of EDGs in OPR-1000

    International Nuclear Information System (INIS)

    Lim, Ho-Gon; Yang, Joon-Eon; Hwang, Mee-Jeong

    2006-01-01

    Under the condition that the ECCS rule in Korea will be revised based on the new U.S. 10 CFR 50.46, the risk impact due to the EDG start time extension is analyzed in the present study. This paper is composed of 6 sections. In the section 2, the LOCA break size that cannot be mitigable under the condition of extended EDG start time is obtained from the thermal hydraulic analysis. The section 3 discusses the frequency of the immitigable LOCA and the probability of the LOOP given a LOCA. In the section 4, the effect of the EDG start time extension on its failure probability is discussed with a qualitative manner. Finally, the whole risk change due to the EDG start time extension is calculated in the section 5 with the conclusions given in the section 6

  9. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Science.gov (United States)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  10. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  11. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    Science.gov (United States)

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  12. Cerrado ground-dwelling ants (Hymenoptera: Formicidae as indicators of edge effects

    Directory of Open Access Journals (Sweden)

    Carlos Roberto F. Brandão

    2011-06-01

    Full Text Available Large-scale agricultural production in Brazil preferentially occupies plateaus reclaimed from areas originally covered by Cerrado (savanna. Depending on the region, a percentage of the pristine vegetation coverage must be preserved by law, resulting in the creation of fragmented legal Cerrado reserves. The geometry of these relatively small legal reserves creates new habitat edges and ecotones, whose effects on the invertebrate fauna are poorly understood. This study aimed to assess the effects of abrupt edges resulting from soy production on ground-dwelling ant assemblages in the Brazilian Cerrado. The study sites are located within the Amazon region, in the state of Maranhão, northern Brazil, but were covered by Cerrado on a relatively low plateau, irregularly inter-spaced with gallery forests along streams. We compared species richness and species composition of ground-dwelling ants along eight transects set 0, 50, 100, 150, 200, and 250 m into the sensu stricto Cerrado and 50 and 100 m into the soy field. The collecting periods covered the wet and dry seasons. Effects on ant species richness were non-significant, although composition of the assemblages was significantly affected by edge effects, which were, in part, found to be species specific. We hypothesize that edge effects are probably greater than estimated because of the shape and complexity of reserves. Consideration of edge effects in the Cerrado Biome should enable the design of appropriate reserve sizes and shapes to meet conservation goals.

  13. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    International Nuclear Information System (INIS)

    Yang, SJ; Baeder, J D

    2016-01-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study. (paper)

  14. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming [Physics Department, University of California, Santa Barbara, California 93106-5100 (United States); Raghavan, Santosh; Schumann, Timo; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  15. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  16. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper.Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0.It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain

  17. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  18. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  19. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  20. L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

    Energy Technology Data Exchange (ETDEWEB)

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bernert, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Fischer, R. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lehnen, M. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); McCormick, K.; Müller, H.W.; Sieglin, B. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Stamp, M.F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Bonnin, X. [LSPM, CNRS, Université Paris 13, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Reiter, D.; Brezinsek, S. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany)

    2013-07-15

    The presently favoured option for reactor power handling combines metallic plasma-facing components and impurity seeding to achieve highly radiative scrape-off layer and divertor plasmas. It is uncertain whether tolerable divertor power loads will be obtained in this scenario, necessitating the development of predictive modelling tools. L-mode experiments with N{sub 2} seeding have been conducted at both ASDEX Upgrade and JET for benchmarking the critically important impurity radiation models in edge fluid codes. In both machines, particle and power loads are observed to first reduce at the inner target, and only then at the outer target. The outer divertor cools down with increasing N seeding rate, evolving from low-recycling conditions to a regime with peak temperature of 8–10 eV in both devices. First SOLPS5.0 simulations of N{sub 2} seeding in ASDEX Upgrade geometry show a similar in–out asymmetry in the effect of impurity radiation when drifts are activated in the simulations.

  1. An axially averaged-radial transport model of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    A two-zone axially averaged-radial transport model for edge plasmas is described that incorporates parallel electron and ion conduction, localized recycling, parallel electron pressure gradient effects and sheath losses. Results for high recycling show that the radial electron temperature profile is determined by parallel electron conduction over short radial distances (proportional 3 cm). At larger radius where Tsub(e) has fallen appreciably, convective transport becomes equally important. The downstream density and ion temperature profiles are very flat over the region where electron conduction dominates. This is seen to result from a sharply decaying velocity profile that follows the radial electron temperature. A one-dimensional analytical recycling model shows that at high neutral pumping rates, the plasma density at the plate, nsub(ia), scales linearly with the unperturbed background density, nsub(io). When ionization dominates nsub(ia)/nsub(io) proportional exp(nsub(io)) while in the intermediate regime nsub(ia)/nsub(io) proportional exp(proportional nsub(io)). Such behavior is qualitatively in accord with experimental observations. (orig.)

  2. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado.

    Science.gov (United States)

    Ishino, M N; De Sibio, P R; Rossi, M N

    2012-08-01

    The edge of a forest fragment can be considered a zone of transition between the interior of the fragment and the surrounding habitat matrix. Plants along the edge are more exposed to disturbance and microclimate variation than interior plants, resulting in the so-called edge effect. In this study, we compared leaf area, fluctuating asymmetry and chemical (water, nitrogen and tannins) leaf traits between Erythroxylum tortuosum plants inhabiting the edge with those growing in the interior of a cerrado fragment in Brazil. We also describe the temporal variation in the vegetative and reproductive phenological events of E. tortuosum plants throughout the season. Nitrogen, leaf area and fluctuating asymmetry did not differ between the two plant groups. Young leaves of the edge plants had significantly higher levels of tannins and lower levels of water than those of interior plants. We suggest that differences in leaf chemical concentrations between edge and interior plants may occur due to factors such as light intensity, wind, temperature and leaf age rather than plant stress. With respect to plant phenology, most reproductive events occurred during the spring. Leaf buds and young leaves prevailed during the rainy season. In the dry season, however, the vegetative events decreased due to leaf senescence followed by leaf abscission.

  3. Code-code comparisons of DIVIMP's 'onion-skin model' and the EDGE2D fluid code

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Elder, J.D.; Horton, L.D.; Simonini, R.; Taroni, A.; Matthews, O.F.; Monk, R.D.

    1997-01-01

    In onion-skin modelling, O-SM, of the edge plasma, the cross-field power and particle flows are treated very simply e.g. as spatially uniform. The validity of O-S modelling requires demonstration that such approximations can still result in reasonable solutions for the edge plasma. This is demonstrated here by comparison of O-SM with full 2D fluid edge solutions generated by the EDGE2D code. The target boundary conditions for the O-SM are taken from the EDGE2D output and the complete O-SM solutions are then compared with the EDGE2D ones. Agreement is generally within 20% for n e , T e , T i and parallel particle flux density Γ for the medium and high recycling JET cases examined and somewhat less good for a strongly detached CMOD example. (orig.)

  4. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  5. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

    2005-01-01

    Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

  6. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  7. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi; Darma, Yudi, E-mail: yudi@fi.itb.ac.id [Department of Physics, InstitutTeknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  8. The effect of seated pelvic tilt on posterior edge-loading in total hip arthroplasty: A finite element investigation.

    Science.gov (United States)

    Pierrepont, Jim; Yang, Long; Arulampalam, Jevan; Stambouzou, Catherine; Miles, Brad; Li, Qing

    2018-03-01

    Edge-loading of a ceramic-on-ceramic total hip replacement can lead to reproducible squeaking and revision. A patient's functional acetabular cup orientation, driven by their pelvic tilt, has been shown to be a significant factor in squeaking during hip flexion. The aim of this study was to investigate the effect of seated pelvic tilt on the contact mechanics at the ceramic bearing surface. A finite element model of a ceramic-on-ceramic total hip replacement was created. The cup was orientated at 40° inclination and 15° anteversion relative to the anterior pelvic plane. The stem was flexed 90° to replicate sitting in a chair. The model was loaded using data from in vivo measurements taken during a sit-to-stand activity. The pelvis was modelled in seven different sagittal positions, ranging from -30° to 30° of pelvic tilt, where a positive value denotes anterior pelvic tilt. Three different head sizes were investigated: 32, 36 and 40 mm. The maximum contact pressure and contact patch to rim distance were determined for each of the 21 simulations. Edge-loading (contact patch to rim distance Edge-loading initiated at seated pelvic tilts of 7°, 9° and 5° for the 32, 36 and 40 mm heads, respectively. Patients with anterior pelvic tilts in the seated position are susceptible to posterior edge-loading. As the position of the pelvis when seated is patient specific, cup orientation should be adjusted on an individual basis to minimise edge-loading.

  9. The effective action for edge states in higher-dimensional quantum Hall systems

    International Nuclear Information System (INIS)

    Karabali, Dimitra; Nair, V.P.

    2004-01-01

    We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4

  10. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    Science.gov (United States)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-30

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  11. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...

  12. Three-dimensional parallel edge-based finite element modeling of electromagnetic data with field redatuming

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael

    2015-01-01

    This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...

  13. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  14. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NARCIS (Netherlands)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,

    2018-01-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,

  15. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    International Nuclear Information System (INIS)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-01-01

    Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies

  16. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    Science.gov (United States)

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  17. Does the edge effect impact on the measure of spatial accessibility to healthcare providers?

    Science.gov (United States)

    Gao, Fei; Kihal, Wahida; Le Meur, Nolwenn; Souris, Marc; Deguen, Séverine

    2017-12-11

    Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as 'IRIS' (Ilot Regroupé pour l'Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the "Index of Spatial Accessibility" (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran's spatial

  18. Atomic physics effects on tokamak edge drift-tearing modes

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1993-01-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold Δ Th , produced by ion sound wave coupling [Phys. Rev. Lett. 40, 1500 (1978)] is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semicollisional regime, both ionization and charge exchange act as drag on the ion parallel velocity [Phys. Fluids B 4, 2567 (1992)], and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation

  19. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  20. Generalized partition function zeros of 1D spin models and their critical behavior at edge singularities

    International Nuclear Information System (INIS)

    Dalmazi, D; Sa, F L

    2010-01-01

    Here we study the partition function zeros of the one-dimensional Blume-Emery-Griffiths model close to their edge singularities. The model contains four couplings (H, J, Δ, K) including the magnetic field H and the Ising coupling J. We assume that only one of the three couplings (J, Δ, K) is complex and the magnetic field is real. The generalized zeros z i tend to form continuous curves on the complex z-plane in the thermodynamic limit. The linear density at the edges z E diverges usually with ρ(z) ∼ |z - z E | σ and σ = -1/2. However, as in the case of complex magnetic fields (Yang-Lee edge singularity), if we have a triple degeneracy of the transfer matrix eigenvalues a new critical behavior with σ = -2/3 can appear as we prove here explicitly for the cases where either Δ or K is complex. Our proof applies for a general three-state spin model with short-range interactions. The Fisher zeros (complex J) are more involved; in practice, we have not been able to find an explicit example with σ = -2/3 as far as the other couplings (H, Δ, K) are kept as real numbers. Our results are supported by numerical computations of zeros. We show that it is absolutely necessary to have a non-vanishing magnetic field for a new critical behavior. The appearance of σ = -2/3 at the edge closest to the positive real axis indicates its possible relevance for tricritical phenomena in higher-dimensional spin models.

  1. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  2. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  3. A fluid model for the edge pressure pedestal height and width in tokamaks based on the transport constraint of particle, energy, and momentum balance

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M., E-mail: weston.stacey@nre.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-06-15

    A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a “transport” constraint together with a “Peeling-Ballooning (P-B)” instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.

  4. The agile edge managing projects effectively using agile scrum

    CERN Document Server

    Vanderjack, Brian

    2015-01-01

    This concise book is an effective source for understanding Agile Scrum development; why we use it and how it works. It will explain how work gets done in manageable iterations (sprints) and the team meetings that keep work on track (ceremonies). Also, since risk is a constant threat to any team-based project, managing risk in an Agile Scrum environment is specii cally discussed. This book is for: New Agile Scrum team members. Team leaders - this book describes the foundation of Agile Scrum, which can save time getting team members on the same page. Trainer/Educator of Agile Scrum - this book clearly defines Agile Scrum in a structured way so that students can learn how to effectively serve on an Agile team to improve their marketability. If you need to know Agile Scrum, this book will show you how to own it.

  5. The Double-Edged Effects of Social Media Terror Communication

    DEFF Research Database (Denmark)

    Nickel, Sandro

    2014-01-01

    This paper connects the effects of social media on terror/anti-terror communication with dynamics and consequences of surveillance. Citizens become via social media more independent from mass media and more interconnected. This is also valid when citizens engage in terror/anti-terror communication...... that social media contribute to extending surveillance: by being a temptation for intelligence services, by not resisting state authorities and via constructing threat perceptions among populations which in effect deliver security politicians ‘windows of opportunity’ in order to implement ever more....... However, via social media citizens also become targets of the ‘collect-it-all’ surveillance, which was revealed to the global public in 2013. I argue that due to such surveillance some citizens might start to censor themselves and that surveillance inflicts with a number of human rights. I further argue...

  6. A model for particle and heat losses by type I edge localized modes

    International Nuclear Information System (INIS)

    Tokar, M Z; Gupta, A; Kalupin, D; Singh, R

    2007-01-01

    A model to estimate the particle and energy losses caused in tokamaks by type I edge localized modes (ELMs) is proposed. This model is based on the assumption that the increase in transport by ELM is due to flows along magnetic field lines perturbed by ballooning-peeling MHD modes. The model reproduces well the experimentally found variation of losses with the plasma collisionality ν*, namely, the weak dependence of the particle loss and significant reduction of the energy loss with increasing ν*. It is argued that the electron parallel heat conductivity is dominating in the energy loss at not very large ν*

  7. Percolation model of excess electrical noise in transition-edge sensors

    International Nuclear Information System (INIS)

    Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Chervenak, J.; Gwynne Crowder, S.; Fallows, S.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.E.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R N ) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation

  8. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect

    Science.gov (United States)

    Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui

    2018-05-01

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  9. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  10. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    Science.gov (United States)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  11. Simulation study of CD variation caused by field edge effects and out-of-band radiation in EUVL

    Science.gov (United States)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2013-09-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1x nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask,also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on CD uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multi-layer (ML)at the image border region of the EUV mask. In this paper, we present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the imec's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation we can also determine the OoB effect rigorouslyusing the methodology of an "effective mask blank". The study in this paper demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  12. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons

    Science.gov (United States)

    Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.

    2017-08-01

    The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.

  13. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    Science.gov (United States)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  14. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    International Nuclear Information System (INIS)

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  15. Many-body effects in the mesoscopic x-ray edge problem

    International Nuclear Information System (INIS)

    Hentschel, Martina; Roeder, Georg; Ullmo, Denis

    2007-01-01

    Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)

  16. Effect of ICRH on the JET edge plasma with carbon and beryllium coated limiters

    International Nuclear Information System (INIS)

    Clement, S.; Erents, S.K.; Tagle, J.A.; Brinkschulte, H.; Bures, M.; De Kock, L.

    1990-01-01

    Investigation of the scrape-off Layer (SOL) at different poloidal positions has been carried out with Langmuir probes for limiter discharges with ion cyclotron resonance heating (ICRH) at JET. A comparison of the effects of ICRH on the edge is presented for operation with all carbon limiters, and for operation with a beryllium layer evaporated on the walls and limiters of JET. The behaviour of the SOL parameters is similar for both cases, although edge temperatures tend to be lower in the Be case. Measurements with probes between the belt limiters and close to the ICRH antennas show that the edge parameters in this region are strongly influenced by the vicinity of an active antenna. (orig.)

  17. INVESTIGATION OF THE EFFECTS OF DIFFERENT EDGE JOINT ELEMENTS ON DIAGONAL TENSILE STRENGTH IN FURNITURE EDGE JOINTS

    Directory of Open Access Journals (Sweden)

    Arif GÜRAY

    2002-01-01

    Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.

  18. Computational nanometrology of line-edge roughness: noise effects, cross-line correlations and the role of etch transfer

    Science.gov (United States)

    Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos

    2018-03-01

    The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and

  19. Development and application of a multiscale model for the magnetic fusion edge plasma region

    International Nuclear Information System (INIS)

    Hasenbeck, Felix Martin Michael

    2016-01-01

    Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport

  20. Development and application of a multiscale model for the magnetic fusion edge plasma region

    Energy Technology Data Exchange (ETDEWEB)

    Hasenbeck, Felix Martin Michael

    2016-07-01

    Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport

  1. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  2. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  3. The exponential edge-gradient effect in x-ray computed tomography

    International Nuclear Information System (INIS)

    Joseph, P.M.

    1981-01-01

    The exponential edge-gradient effect must arise in any X-ray transmission CT scanner whenever long sharp edges of high contrast are encountered. The effect is non-linear and is due to the interaction of the exponential law of X-ray attenuation and the finite width of the scanning beam in the x-y plane. The error induced in the projection values is proved to be always negative. While the most common effect is lucent streaks emerging from single straight edges, it is demonstrated that dense streaks from pairs of edges are possible. It is shown that an exact correction of the error is possible only under very special (and rather unrealistic) circumstances in which an infinite number of samples per beam width are available and all thin rays making up the beam can be considered parallel. As a practical matter, nevertheless, increased sample density is highly desirable in making good approximate corrections; this is demonstrated with simulated scans. Two classes of approximate correction algorithms are described and their effectiveness evaluated on simulated CT phantom scans. One such algorithm is also shown to work well with a real scan of a physical phantom on a machine that provides approximately four samples per beam width. (author)

  4. Road-edge effects on herpetofauna in a lowland Amazonian rainforest

    Science.gov (United States)

    Ross J. Maynard; Nathalie C. Aall; Daniel Saenz; Paul S. Hamilton; Matthew A. Kwiatkowski

    2016-01-01

    The impact of roads on the flora and fauna of Neotropical rainforest is perhaps the single biggest driver of habitat modification and population declines in these ecosystems. We investigated the road-edge effect of a low-use dirt road on amphibian and reptile abundance, diversity, and...

  5. 2.5D Simulation of basin-edge effects on the ground motion ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated ... Figure 1. 3-D and 2.5-D radial, transverse and vertical components of the radiation for .... sedimentary basin deserve a particular attention.

  6. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  7. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    Science.gov (United States)

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B 5 and B 6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η 1 coordination) and concave (η 2 coordination) sites. Our analysis shows that the CO π-metal d π hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η 2 adsorption mode, which destabilizes the η 2 transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  8. Effect of guide wall on jet impingement cooling in blade leading edge channel

    International Nuclear Information System (INIS)

    Zhao, Qing-Yang; Chung, Heeyoon; Choi, Seok Min; Cho, Hyung Hee

    2016-01-01

    The characteristics of fluid flow and heat transfer, which are affected by the guide wall in a jet impinged leading edge channel, have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis via the shear stress transport turbulence model and gamma theta transitional turbulence model. A constant wall heat flux condition has been applied to the leading edge surface. The jet-to-surface distance is constant, which is three times that of the jet diameter. The arrangement of the guide wall near the jet hole is set as a variable. Results presented in this study include the Nusselt number contour, velocity vector, streamline with velocity, and local Nusselt number distribution along the central line on the leading edge surface. The average Nusselt number and average pressure loss between jet nozzle and channel exit are calculated to assess the thermal performance. The application of the guide wall is aimed at improving heat transfer uniformity on the leading edge surface. Results indicated that the streamwise guide wall ensures the vertical jet impingement flow intensity and prevents the flow after impingement to reflux into jet flow. Thus, a combined rectangular guide wall benefits the average heat transfer, thermal performance and heat transfer distribution uniformity

  9. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    Science.gov (United States)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  10. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  11. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.

    Science.gov (United States)

    Mellon, S J; Kwon, Y-M; Glyn-Jones, S; Murray, D W; Gill, H S

    2011-12-01

    The occurrence of pseudotumours (soft tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been associated with high serum metal ion levels and consequently higher than normal bearing wear. We investigated the relationship between serum metal ion levels and contact stress on the acetabular component of MoMHRA patients for two functional activities; gait and stair descent. Four subjects with MoMHRA, who had their serum metal ion levels measured, underwent motion analysis followed by CT scanning. Their motion capture data was combined with published hip contact forces and finite element models representing 14% (peak force) and 60% (end of stance) of the gait cycle and 52% (peak force) of stair descent activity were created. The inclination angle of the acetabular component was increased by 10° in 1° intervals and the contact stresses were determined at each interval for each subject. When the inclination angle was altered in such a way as to cause the hip contact force to pass through the edge of the acetabular component edge-loading occurred. Edge-loading increased the contact stress by at least 50%; the maximum increase was 108%. Patients with low serum metal ion levels showed no increase in contact stress at peak force during gait or stair descent. Patients with high serum metal ion levels exhibited edge-loading with an increase to the inclination angle of their acetabular components. The increase in inclination angle that induced edge-loading for these subjects was less than the inter-subject variability in the angle of published hip contact forces. The results of this study suggest that high serum metal ion levels are the result of inclination angle influenced edge-loading but that edge-loading cannot be attributed to inclination angle alone and that an individual's activity patterns can reduce or even override the influence of a steep acetabular component and prevent edge-loading. Copyright © 2011 IPEM

  12. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh

    2013-05-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic parameters for the density of states, some discrepancies are found at the quantitative level. © 2013 American Physical Society.

  13. A statistical investigation of the effects of edge localized modes on the equilibrium reconstruction in JET

    International Nuclear Information System (INIS)

    Murari, A; Peluso, E; Gaudio, P; Gelfusa, M; Maviglia, F; Hawkes, N

    2012-01-01

    The configuration of magnetic fields is an essential ingredient of tokamak physics. In modern day devices, the magnetic topology is normally derived from equilibrium codes, which solve the Grad–Shafranov equation with constraints imposed by the available measurements. On JET, the main code used for this purpose is EFIT and the more commonly used diagnostics are external pick-up coils. Both the code and the measurements present worse performance during edge localized modes (ELMs). To quantify this aspect, various statistical indicators, based on the values of the residuals and their probability distribution, are defined and calculated. They all show that the quality of EFIT reconstructions is clearly better in the absence of ELMs. To investigate the possible causes of the detrimental effects of ELMs on the reconstruction, the pick-up coils are characterized individually and both the spatial distribution and time behaviour of their residuals are analysed in detail. The coils with a faster time response are the ones reproduced less well by EFIT. The constraints of current and pressure at the separatrix are also varied but the effects of such modifications do not result in decisive improvements in the quality of the reconstructions. The interpretation of this experimental evidence is not absolutely compelling but strongly indicative of deficiencies in the physics model on which the JET reconstruction code is based. (paper)

  14. Solute effects on edge dislocation pinning in complex alpha-Fe alloys

    Science.gov (United States)

    Pascuet, M. I.; Martínez, E.; Monnet, G.; Malerba, L.

    2017-10-01

    Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.

  15. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  16. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  17. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    Science.gov (United States)

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  18. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect

    International Nuclear Information System (INIS)

    Napolitano, Mary E.; Trueblood, Jon H.; Hertel, Nolan E.; David, George

    2002-01-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within ±1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  19. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Bassler, Niels; Nielsen, Steffen

    2017-01-01

    of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS: The MDD50 values......, where LETd,z =1 was 3.3 keV/μm. CONCLUSIONS: Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated....

  20. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  1. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    Science.gov (United States)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the

  2. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    International Nuclear Information System (INIS)

    Guillemaut, Christophe

    2013-01-01

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author) [fr

  3. Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization

    International Nuclear Information System (INIS)

    Biddle, J.; Das Sarma, S.

    2010-01-01

    Localization properties of noninteracting quantum particles in one-dimensional incommensurate lattices are investigated with an exponential short-range hopping that is beyond the minimal nearest-neighbor tight-binding model. Energy dependent mobility edges are analytically predicted in this model and verified with numerical calculations. The results are then mapped to the continuum Schroedinger equation, and an approximate analytical expression for the localization phase diagram and the energy dependent mobility edges in the ground band is obtained.

  4. Environmental induced renormalization effects in quantum Hall edge states due to 1/f noise and dissipation

    International Nuclear Information System (INIS)

    Braggio, A; Ferraro, D; Sassetti, M; Carrega, M; Magnoli, N

    2012-01-01

    We propose a general mechanism for the renormalization of the tunnelling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered for both the Laughlin sequence and the composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes, we demonstrate the robustness of the proposed mechanism in the so-called disorder-dominated phase. Prototypes of these states, such as ν = 2/3 and ν = 5/2, are discussed in detail, and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism could help justify the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunnelling excitations, leading to important implications, in particular for the ν = 5/2 case. (paper)

  5. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  6. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  7. Living on the edge: a toy model for holographic reconstruction of algebras with centers

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, William; Marolf, Donald; Michel, Ben; Wien, Jason [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2017-04-18

    We generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary boundary regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the ((δArea)/(4G{sub N})) term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this ((δArea)/(4G{sub N})) term can be reinterpreted as a part of the bulk entropy of gravitons under an appropriate extension of the physical bulk Hilbert space.

  8. Living on the edge: a toy model for holographic reconstruction of algebras with centers

    International Nuclear Information System (INIS)

    Donnelly, William; Marolf, Donald; Michel, Ben; Wien, Jason

    2017-01-01

    We generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary boundary regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the ((δArea)/(4G N )) term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this ((δArea)/(4G N )) term can be reinterpreted as a part of the bulk entropy of gravitons under an appropriate extension of the physical bulk Hilbert space.

  9. Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors.

    Science.gov (United States)

    Liu, Fei; Wang, Jian; Guo, Hong

    2016-10-27

    Black phosphorus (BP) tunneling field effect transistors (TFETs) using heterojunctions (Hes) are investigated by atomistic quantum transport simulations. It is observed that edge states have a great impact on the transport characteristics of BP He-TFETs, which results in the potential pinning effect and deterioration of gate control. However, the on-state current can be effectively enhanced by using hydrogen to saturate the edge dangling bonds in BP He-TFETs, by which means edge states are quenched. By extending layered BP with a smaller band gap to the channel region and modulating the BP thickness, the device performance of BP He-TFETs can be further optimized and can fulfil the requirements of the international technology road-map for semiconductors (ITRS) 2013 for low power applications. In 15 nm 3L-1L and 4L-1L BP He-TFETs along the armchair direction the on-state currents are over two times larger than the current required by ITRS 2013 and can reach above 10 3 μA μm -1 with the fixed off-state current of 10 pA μm -1 . It is also found that the ambipolar effect can be effectively suppressed in BP He-TFETs.

  10. Analyses of edge effects on residual stresses in film strip/substrate systems

    International Nuclear Information System (INIS)

    Hsueh, Chun-Hway

    2000-01-01

    The residual stress distribution in a thin-film strip overlaid on a substrate is influenced by the edges of the strip. An analytical model is developed to derive a closed-form solution for the stress distribution along the film width. Because the film is much thinner than the substrate, the stress variation through the film thickness is ignored; however, the stress variation through the substrate thickness is considered in the analysis. Compared to the existing analytical models, the present model is more rigorous and the analytical results agree better with both finite element results and experimental measurements. (c) 2000 American Institute of Physics

  11. A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system

    International Nuclear Information System (INIS)

    Wu, Qiang; Wang, Pengfei; Semenova, Yuliya; Farrell, Gerald

    2010-01-01

    The effect of the position of an edge filter within a ratiometric wavelength measurement system was investigated based on three cases: (1) the reflected fibre Bragg grating (FBG) signal passes through both the reference arm and the edge filter arm, (2) the reflected FBG signal is connected directly to the edge filter arm and does not pass through the reference arm, (3) the edge filter sits in line with the FBG and thus the source power is filtered prior to reaching the FBG. Both numerical simulations and experimental results show that cases 1 and 2 have similar system performance whilst case 3 is the best arrangement which offers the highest wavelength resolution

  12. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    Science.gov (United States)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  13. Investigation of the effect of tool edge geometry upon cutting variables, tool wear and burr formation using finite element simulation - A progress report

    International Nuclear Information System (INIS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen Yungchang; Altan, Taylan

    2004-01-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM.In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively

  14. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  15. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    Weissman, Y.

    1975-10-01

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  16. The influence of the edge effect on the skyrmion generation in a magnetic nanotrack

    Directory of Open Access Journals (Sweden)

    N. Ran

    2017-02-01

    Full Text Available Magnetic skyrmions might be used for building next-generation nanomagnetic and spintronic devices, as they have several perspective properties, such as topologically protected stability, nanoscale size, and ultra-low depinning current density. Here we study the influence of the edge effect on the current-induced generation of a magnetic skyrmion in a finite-length thin-film ferromagnetic nanotrack with interface-induced Dzyaloshinskii-Moriya interaction. It shows that a stable skyrmion or a bunch of skyrmions can be successfully generated as long as the distance between the current injection region and the nanotrack terminal is larger than a certain threshold. We investigate the failed skyrmion generation caused by the edge effect, which will lead to an error writing event. We also present the phase diagrams of the skyrmion generation obtained for different material and geometric parameters. Our results could be useful for designing skyrmion-based information storage devices.

  17. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Brennan, D.P.; Schnack, D.D.; Snyder, P.B.; Voitsekhovitch, I.; Kritz, A.H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2006-01-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD

  18. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data

    DEFF Research Database (Denmark)

    Kamruzzaman, M.; Lutz, Th.; Würz, W.

    2012-01-01

    This paper describes an extensive assessment and a step by step validation of different turbulent boundary-layer trailing-edge noise prediction schemes developed within the European Union funded wind energy project UpWind. To validate prediction models, measurements of turbulent boundary-layer pr...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd.......-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re  =  2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...

  19. Effect of flow obstacles with various leading and trailing edges on critical heat flux

    International Nuclear Information System (INIS)

    Pioro, I.L.; Groeneveld, D.C.; Groeneveld, D.C.; Cheng, S.C.; Antoshko, Y.V.

    2001-01-01

    A joint investigation has been performed by the University of Ottawa and Chalk River Laboratories that examined the effect of the shape of the leading and trailing edges of the turbulence enhancing devices ('flow obstacles') on critical heat flux (CHF). The objective of this study was to gain a better overall understanding of the limit of CHF improvement for various obstacle designs and the impact of flow conditions on the improvements. (author)

  20. Timing performances and edge effects of detectors worked from 6-in. silicon slices

    International Nuclear Information System (INIS)

    Aiello, S.; Anzalone, A.; Cardella, G.; Cavallaro, Sl.; De Filippo, E.; Di Pietro, A.; Femino, S.; Geraci, M.; Giustolisi, F.; Guazzoni, P.; Iacono Manno, M.; Lanzalone, G.; Lanzano, G.; Lo Nigro, S.; Musumarra, A.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.; Zetta, L.

    1997-01-01

    Prototypes of new passivated implanted planar silicon detectors, obtained for the first time from 6 in. silicon slices, have been tested. The time and energy resolutions have been studied as a function of the type and energy of the detected particles, in order to test the performances of these detectors for time of flight measurements in the Chimera project. Some problems arising from edge effects observed in double-pad detectors have been solved by using a guard ring. (orig.)

  1. Role of the pump limiter throat-ergodic divertor effect on edge plasma

    International Nuclear Information System (INIS)

    Grosman, A.; Samain, A.; Ghendrih, P.; Capes, H.; Morera, J.P.

    1988-01-01

    A large part of the Tore Supra programme is devoted to plasma edge studies. Two types of such density control apparatus have been implemented, a set of pumps limiters and the ergodic divertor. The goal of the present paper is to investigate the effect of the pump limiter throat on pumping efficiency. We present also the possibilities of the ergodic divertor device to facilitate plasma pumping and power exhaust

  2. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  3. Measurements and 2-D Modeling of Recycling and Edge Transport in Discharges with Lithium-coated PFCs in NSTX

    International Nuclear Information System (INIS)

    Canik, John; Maingi, R.; Soukhanovskii, V.A.; Bell, R.E.; Kugel, H.; LeBlanc, B.; Osborne, T.H.

    2011-01-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D-alpha emission. The calculations indicate that the reduction in divertor D-alpha emission with lithium coatings applied is consistent with a drop in recycling coefficient from R similar to 0.98 to R similar to 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/chi(e) similar to 0.2/1.0 m(2)/s), but a widening of the barrier with lithium.

  4. Measurements and 2-D modeling of recycling and edge transport in discharges with lithium-coated PFCs in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Canik, J.M., E-mail: canikjm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Osborne, T.H. [General Atomics, San Diego, CA (United States)

    2011-08-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D{sub {alpha}} emission. The calculations indicate that the reduction in divertor D{sub {alpha}} emission with lithium coatings applied is consistent with a drop in recycling coefficient from R {approx} 0.98 to R {approx} 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/{chi}{sub e} {approx} 0.2/1.0 m{sup 2}/s), but a widening of the barrier with lithium.

  5. Comparison of collisional radiative models for edge electron density reconstruction from Li I (2s-2p) emission profiles

    Energy Technology Data Exchange (ETDEWEB)

    Stoschus, H.; Hudson, B.; Munoz Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Thomas, D. M. [General Atomics, San Diego, California 92186-5608 (United States); Schweinzer, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany)

    2012-10-15

    Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.

  6. Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information

    Directory of Open Access Journals (Sweden)

    Hwan Heo

    2014-05-01

    Full Text Available We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user’s gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD, stereoscopic disparity (SD, frame cancellation effect (FCE, and edge component (EC of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.

  7. Effect of Percutaneous Edge-to-Edge Repair on Mitral Valve Area and Its Association With Pulmonary Hypertension and Outcomes.

    Science.gov (United States)

    Utsunomiya, Hiroto; Itabashi, Yuji; Kobayashi, Sayuki; Rader, Florian; Hussaini, Asma; Makar, Moody; Trento, Alfredo; Siegel, Robert J; Kar, Saibal; Shiota, Takahiro

    2017-08-15

    Percutaneous edge-to-edge repair using the MitraClip system causes reduction in mitral valve area (MVA). However, its clinical impact is not fully elucidated. This study assessed the impact of postprocedural MVA reduction on pulmonary hypertension and outcomes. A total of 92 patients with grades 3 to 4 + mitral regurgitation (MR) who underwent MitraClip therapy were retrospectively reviewed. Using intraprocedural, 3-dimensional transesophageal echocardiography, postprocedural MVA was obtained by 2 optimized planes through the medial and lateral orifices of the repaired valve. MVA was reduced by 60.1% immediately after MitraClip procedure (p <0.001). Postprocedural MVA correlated moderately with mean transmitral pressure gradient (TMPG) in the majority of patients (r = -0.56, p <0.001), but discordance of MVA and TMPG was observed in 40% of patients. In multivariable linear regression analysis, postprocedural MVA ≤1.94 cm 2 was independently associated with a blunted decrease in systolic pulmonary artery pressure at 1-month follow-up (β-estimate -4.63, 95% confidence interval -9.71 to -0.15, p = 0.042). Postprocedural MVA ≤1.94 cm 2 was an independent predictor of all-cause mortality and heart failure hospitalization after MitraClip (hazard ratio 4.28, 95% confidence interval 1.56 to 11.7, p = 0.005) even after adjustment for age, gender, atrial fibrillation, cause of MR, left ventricular systolic function, pre-existing pulmonary hypertension, and residual MR. After further adjustment for TMPG ≥5 mm Hg, postprocedural MVA ≤1.94 cm 2 remained predictive for adverse outcomes (p = 0.048). In conclusion, the intraprocedural assessment of MVA by 3-dimensional transesophageal echocardiography can predict hemodynamic response and postprocedural prognosis after MitraClip therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  9. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  10. Facebook and its effects on users' empathic social skills and life satisfaction: a double-edged sword effect.

    Science.gov (United States)

    Chan, Terri H

    2014-05-01

    This study examines how Facebook usage affects individual's empathic social skills and life satisfaction. Following the self-presentational theory, the study explores a key component of the Internet paradox-whether Facebook suppresses or enhances users' interpersonal competence (specifically empathic social skills), given their respective personality makeup. Going further, the study assesses these events' subsequent impacts on users' psychological well-being. Analogous to a double-edged sword, Facebook activities are hypothesized to suppress the positive effect of a user's extraversion orientation on empathic social skills but lessen the negative effect of neuroticism on these skills. The study examines a sample of college-aged Facebook users (n=515), who responded to a large-scale online survey. The findings from a structural equation modeling analysis indicate that while empathic social skills are positively associated with life satisfaction, Facebook activities mainly exert suppression effects. Only upon low usage can Facebook activities lessen the negative effect of neuroticism on empathic social skills, suggesting that Facebook may appear as a less threatening platform for social interactions among neurotics. Yet, results in general suggest that undesirable effects may occur at high levels of Facebook usage whereby both extroverted and neurotic users displace real world social ties to online ones. The findings point to the complex ways in which social media usage may impact the livelihood of users.

  11. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    Science.gov (United States)

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  12. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  13. Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region.

    Science.gov (United States)

    Robol, Valentina; Grassi, Massimo; Casco, Clara

    2013-08-09

    Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Evaluation of edge enhancement effect of phase contrast imaging using newly-developed photostimulable phosphor plate

    International Nuclear Information System (INIS)

    Matsuo, Satoru; Morishita, Junji; Katafuchi, Tetsuro; Fujita, Hiroshi

    2012-01-01

    We investigated whether the use of a newly developed columnar-crystal-type photostimulable-phosphor plate (CP1M200, referred to as system C) helps to provide improved edge-enhanced effect in phase contrast imaging. Physical characteristics of 2 conventional particulate-crystal-type photostimulable-phosphor plates (RP-5PM, referred to as system A and RP-6M, referred to as system B) and system C were measured. Then, an acrylic plate phantom and RMI152 phantom were imaged using 3 types of plates, and the edge-enhancement effects were evaluated based on the profile curve of the acrylic plate phantom. Visual evaluation of the RMI152 phantom images was conducted. The results showed that the modulation transfer function (MTF) of system C was superior to those of the other systems. The WS of system C was superior to those of the other systems in the low frequency band region, and inferior to those of the other systems in the high frequency band region. The presence of an edge-enhanced image was not detectable in the profile curve of the acrylic plate in system A, although that was shown in systems B and C due to their excellent sharpness. In the visual image evaluation of the RMI152 phantom, image quality of system C was superior to those of the other systems. Phase contrast imaging with a digital detector of a columnar-crystal-type photostimulable-phosphor plate is considered to provide improved edge-enhancement over that of conventional plates. (author)

  15. On anisotropy and internal pressure errors in numerical ocean models and processes near the shelf edge

    Energy Technology Data Exchange (ETDEWEB)

    Thiem, Oeyvind A.

    2004-12-01

    In this thesis the focus has been on anisotropy, internal pressure errors and shelf edge/slope processes. Anisotropy is a common problem in ocean models. Especially where a rectangular grid is used to discretize the horizontal. Selecting a horizontal grid, which reduces the anisotropy, will therefore probably be important when new ocean models are being developed. Hexagonal grid discretization in the horizontal has the desired property of reducing anisotropy, and therefore this grid should be considered as a reasonable choice for new ocean models. In sigma coordinate models internal pressure errors occur in areas with steep topography. In the second paper in this thesis, it is shown that the internal pressure errors depend on the grid orientation. It is further shown that the erroneous velocities in the sea mount test case of Beckmann and Haidvogel (1993) can be reduced significantly by first computing the internal pressure gradients in both the original and a coordinate system where the axis are rotated 45 degrees to the original. Then a normalized weighted linear combination of the two estimates is used as the internal pressure gradients in the simulation. A following up paper where this method is used on a real ocean should be performed to investigate how well this method performs in domains with irregular topography. In such an experiment the boundary should be closed and the initial velocities set to zero. The occurring currents should then be compared with a corresponding experiment, where the initial pressure gradients are computed in the original grid only. In the third and fourth paper the focus is on the use of BOM in along shelf barotropic flow. First the generation of eddies is investigated. This is done in the third paper and two simulations are performed. The first simulation is a barotropic simulation, and the second is a two layer simulation. The results from both simulations show development of eddies, but the strength of the eddies depend on the

  16. Reconstruction of binary geological images using analytical edge and object models

    Science.gov (United States)

    Abdollahifard, Mohammad J.; Ahmadi, Sadegh

    2016-04-01

    Reconstruction of fields using partial measurements is of vital importance in different applications in geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training images (TI) are widely employed as strong prior models for solving these problems. However, in the absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field behavior properly. In this paper a very simple and general model is introduced which is applicable to a fairly wide range of binary images without any modifications. The model is motivated by the fact that nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this model allows us to formulate the template matching problem as a convex optimization problem having efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative information provided by geologists. The image reconstruction problem is also formulated as an optimization problem and solved using an iterative greedy approach. The proposed method is capable of recovering the image unknown values with accuracies about 90% given samples representing as few as 2% of the original image.

  17. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  18. Investigation of the effects on Charpy impact characteristics by shape of pendulum striking edge

    International Nuclear Information System (INIS)

    Kawai, Toshihiko; Etoh, Mikio; Hanawa, Namio; Shibaike, Masayuki; Inoue, Kazuo.

    1983-01-01

    Charpy impact test is used versatilely and practically as the method of evaluating the toughness of metals. In Japan, usually the JIS type testing machines are used, but recently, the test with ASTM type testing machines has been often demanded for steel materials for export or for nuclear use. Accordingly, the testing machines of both types must be installed, the testing works become troublesome, and the costs of initial investment, maintenance, management and so on increase. When the standards in various countries were investigated, the stipulation on the various particulars of the testing machines was almost similar except the shape of striking edges, which are 8mm radius in ASTM and 2mm radius in other standards. Recently it was clarified that there was some difference between the impact values of high toughness steel using JIS and ASTM machines. In order to clarify the cause of this difference and to unify the shape of edges, the investigation was carried out by the working group. The investigation of the effect of the difference of edge shapes on impact values, the analysis of fracture phenomena in impact test and the consideration on the results are reported. ASTM type testing machines should not be used for mild steel when absorbed energy exceeds 10kgf-m. (Kako, I.)

  19. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    Science.gov (United States)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  20. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  1. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    Science.gov (United States)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  2. Diversity of galling insects in Styrax pohlii (Styracaceae: edge effect and use as bioindicators

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araújo

    2011-12-01

    Full Text Available Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i because of their host-specificity, (ii they are sensitive to changes in plant quality, and (iii present dissimilar and specific responses to local variation in habitat conditions. Rev. Biol. Trop. 59 (4: 1589-1597. Epub 2011 December 01.Los impactos de la fragmentación de los bosques y el efecto de borde sobre las interacciones planta-herbívoros son relativamente desconocidos, y las relaciones entre los insectos inductores de agallas y sus plantas hospederas son muy susceptibles a las variaciones ambientales. El objetivo de nuestro estudio fue probar la hipótesis de efecto de borde en los insectos inductores de agallas asociados con la planta hospedera

  3. Numerical Modeling of Edge-Localized-Mode Filaments on Divertor Plates Based on Thermoelectric Currents

    International Nuclear Information System (INIS)

    Wingen, A.; Spatschek, K. H.; Evans, T. E.; Lasnier, C. J.

    2010-01-01

    Edge localized modes (ELMs) are qualitatively and quantitatively modeled in tokamaks using current bursts which have been observed in the scrape-off-layer (SOL) during an ELM crash. During the initial phase of an ELM, a heat pulse causes thermoelectric currents. They first flow in short connection length flux tubes which are initially established by error fields or other nonaxisymmetric magnetic perturbations. The currents change the magnetic field topology in such a way that larger areas of short connection length flux tubes emerge. Then currents predominantly flow in short SOL-like flux tubes and scale with the area of the flux tube assuming a constant current density. Quantitative predictions of flux tube patterns for a given current are in excellent agreement with measurements of the heat load and current flow at the DIII-D target plates during an ELM cycle.

  4. Effect of smile index and incisal edge position on perception of attractiveness in different age groups.

    Science.gov (United States)

    Chou, J-C; Nelson, A; Katwal, D; Elathamna, E N; Durski, M T

    2016-11-01

    Changes in occlusal vertical dimension (OVD) and age have been found to affect Smile Index (SI, width/height of smile). Limited information is available regarding the aesthetic effects of these changes. The objective of this study was to evaluate the attractiveness of digitally manipulated smile images with differences in SI and incisal edge position (IEP) judged by respondents in different age groups. A total of 12 smile images were generated with varying SI (3·5, 5·3, 7·2, 9·0) and IEP (High, Medium, Low). Fifty respondents each in four age groups (15-24, 25-39, 40-54, 55+) evaluated the attractiveness of the 12 images using a 0-10 visual analog scale (VAS, 10 being most attractive). A repeated-measures three-factorial mixed model assessed differences. SI, IEP and age of respondents were found to significantly influence attractiveness score (P age groups combined, SI = 7·2/IEP = Medium was most attractive (VAS = 7·22), followed by SI = 9·0/IEP = Medium, and SI = 5·3/IEP = Medium (VAS = 6·53 and 6·48, respectively). SI = 3·5/IEP = High and SI = 3·5/IEP = Low were least attractive (VAS = 1·99 and VAS = 2·58, respectively). Age group significantly influenced aesthetic perception, with younger respondents more critical in differences in SI and IEP. SI and IEP significantly influenced attractiveness of the smile in all respondent age groups. Low SI (i.e. 3·5) combined with high or low IEP was unattractive. Medium SI to high SI (i.e. 5·3-9·0) combined with medium IEP were considered attractive. © 2016 John Wiley & Sons Ltd.

  5. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  6. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  7. The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics

    Science.gov (United States)

    Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo

    2018-06-01

    Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.

  8. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model...

  9. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model...

  10. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Brooke E Crowley

    Full Text Available Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation

  11. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  12. Temperature measurement of flat glass edge during grinding and effect of wheel and workpiece speeds

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2017-01-01

    Flat glass temperature at the vicinity of the grinding wheel during grinding can become very high and reach that of the glass transition (typically around 550–600 °C). In such cases, the mechanical strength of glass is greatly affected and the grinding process cannot be carried out properly. Hence, thermal phenomena must be managed by adjusting the machining parameters to avoid overheating. For this purpose, it is very important to be able to measure the glass temperature, especially at the grinding interface. However, measuring the interfacial glass temperature is difficult and none of the existing methods for metal grinding is adequate for glass grinding. This work shows a novel temperature method that uses constantan and copper strips on both sides of the glass plates; thermoelectric contact being provided by the metallic binder of diamond particles in the grinding wheel. This new technique allows the measurement of the glass edge temperature during the wheel displacement around the glass plate. The experimental results show an average glass edge temperature between 300 and 600 °C depending on the value of the machining parameters such as work speed, wheel speed, depth of cut and water coolant flow rate. As this new thermal instrumentation is rather intrusive, glass temperature biases were analysed using a 3D heat transfer model with a moving source. Model computations performed using finite elements show that the temperature biases are less than 70 °C, which is smaller than the standard deviation of the glass edge temperatures measured during grinding. (paper)

  13. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  14. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Miley, G.H.; Choi, C.K.

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered

  15. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang; Sen, Mrinal K.

    2010-01-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  16. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  17. Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets.

    Science.gov (United States)

    Song, Xiaoxue; Hui, Fei; Gilmore, Keith; Wang, Bingru; Jing, Guangyin; Fan, Zhongchao; Grustan-Gutierrez, Enric; Shi, Yuanyuan; Lombardi, Lucia; Hodge, Stephen A; Ferrari, Andrea C; Lanza, Mario

    2017-05-18

    The development of piezoelectric layered materials may be one of the key elements enabling expansion of nanotechnology, as they offer a solution for the construction of efficient transducers for a wide range of applications, including self-powered devices. Here, we investigate the piezoelectric effect in multilayer (ML) stepped MoS 2 flakes obtained by liquid-phase exfoliation, which is especially interesting because it may allow the scalable fabrication of electronic devices using large area deposition techniques (e.g. solution casting, spray coating, inkjet printing). By using a conductive atomic force microscope we map the piezoelectricity of the MoS 2 flakes at the nanoscale. Our experiments demonstrate the presence of electrical current densities above 100 A cm -2 when the flakes are strained in the absence of bias, and the current increases proportional to the bias. Simultaneously collected topographic and current maps demonstrate that the edges of stepped ML MoS 2 flakes promote the piezoelectric effect, where the largest currents are observed. Density functional theory calculations are consistent with the ring-like piezoelectric potential generated when the flakes are strained, as well as the enhanced piezoelectric effect at edges. Our results pave the way to the design of piezoelectric devices using layered materials.

  18. Effect of an edge at cup rim on contact stress during micro-separation in ceramic-on-ceramic hip joints.

    Science.gov (United States)

    Liu, Feng; Fisher, John

    2017-09-01

    Alumina ceramic total hip joint bearings have shown superior wear properties. The joint bearing may undergo adverse conditions such as micro-separation causing head contact on the cup rim. As a transition, an edge is formed between the cup bearing and the rim. The aim of this study was to predict the effect of the edge on contact stresses in order to better understand the mechanisms of wear. A finite element contact model was developed under the conditions of the head displacements 0.5-2 mm and vertical loads 0.5-3 kN. The edge contact produced the most severe stresses capable of causing elevated wear and damage to ceramic bearings. The study shows that the bearing design should be considered in association with clinical conditions to eliminate severe stress.

  19. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...... fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risø Campus of the Technical University of Denmark......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...

  20. Code improvements and applications of a two-dimensional edge plasma model for toroidal devices

    International Nuclear Information System (INIS)

    Baelmans, M.

    1994-03-01

    This thesis focuses mainly on plasma behaviour in boundary layers of magnetically confined plasmas. Increasing emphasis has been put on edge studies during the last decade, as it became evident that some aspects of Tokamak operations are largely controlled, or even dominated, by edge processes. Therefore, the motivation for this research is to improve understanding of plasma behaviour in general, and edge plasma behaviour in particular, firstly in present experiments, and also to predict edge plasma conditions in future nuclear fusion devices. In a first section some fundamental concepts and principles of controlled fusion are described. Two different types of plasma confinement concepts which have promising features with regard to the above mentioned goal are outlined in a next section, 1.2. In section 1.3 an introduction to plasma edge phenomena is given. In a last section, 1.4, the outline of the thesis is described. (orig.)

  1. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

    to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge...

  2. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae).

    Science.gov (United States)

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-06-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.

  3. Effect of gender on results of percutaneous edge-to-edge mitral valve repair with MitraClip system

    DEFF Research Database (Denmark)

    Estévez-Loureiro, Rodrigo; Settergren, Magnus; Winter, Reidar

    2015-01-01

    ≤II in 73.1% of men vs 74.2% of women, p = 0.912). After a mean follow-up period of 16.1 ± 11.1 months, no difference was found between groups in the incidence of death or admission for heart failure (log-rank p = 0.798). In conclusion, MitraClip implantation seems to be an equally safe and effective...

  4. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks

    Science.gov (United States)

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.

    1994-01-01

    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  5. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  6. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  7. Supersymmetric Hamiltonian approach to edge excitations in ν=5/2 fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Yu Ming; Zhang Xin

    2008-01-01

    A supersymmetric Hamiltonian is constructed for the edge excitations of the Moore-Read (Pfaffian) like state, which is a realization of the N=2 supersymmetric CS model. Fermionic generators and their conjugates are introduced to deal with the fermion pairing, whose condensation form a BCS like state. After Bogoliubov transformation, an N=2 supersymmetric and nonrelativistic Hamiltonian is found to take a known form, which is integrable. The main difference between the Moore-Read state and our BCS like state is that the number of fermion pairs in our formalism is not fixed. However, we have also found that the excited states in our model looks similar but not exactly the same as Moore and Read's

  8. Structure of edge-state inner products in the fractional quantum Hall effect

    Science.gov (United States)

    Fern, R.; Bondesan, R.; Simon, S. H.

    2018-04-01

    We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012), 10.1103/PhysRevB.86.245310]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.

  9. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    Science.gov (United States)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  10. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Xiong, Bin; Han, Muran

    2014-01-01

    This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of...... are in a good agreement with the solutions obtained by the integral equation method....

  11. Even–odd effect on the edge states for zigzag phosphorene nanoribbons under a perpendicular electric field

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Guanghui; Zhou, Benhu; Zhou, Xiaoying

    2017-01-01

    We study the variation of electronic property for zigzag-edge phosphorene nanoribbons (ZPNRs) under a perpendicular electric field (PEF). Using the tight-binding Hamiltonian combined with the surface lattice Green’s function (GF) approach, we show that the response of edge states to PEF for a N -ZPNR with even- or odd- N (number of zigzag chains) is qualitatively different. The field opens a gap between two edge bands near the Fermi energy for even- N ribbons, but for odd- N ones where the two edge bands are always nearly degenerated. This difference is originally from that the Stark-effect-induced energies at the upper and lower edges for even- and odd- N ZPNRs are different due to the peculiar lattice structure of phosphorene. In consequence, the electronic densities are more localized at the edges driven by the field for even- N ZPNRs but not for odd- N ones. This even–odd effect is also reflected in conductance, which indicates that the odd- N ZPNRs may be more suitable for the usage of field-effect transistor. (paper)

  12. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations.

    Science.gov (United States)

    Qian, Ken K; Grobelny, Pawel J; Tyagi, Madhusudan; Cicerone, Marcus T

    2015-04-06

    Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.

  13. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  14. Influence of edge effects on single event upset susceptibility of SOI SRAMs

    International Nuclear Information System (INIS)

    Gu, Song; Liu, Jie; Zhao, Fazhan; Zhang, Zhangang; Bi, Jinshun; Geng, Chao; Hou, Mingdong; Liu, Gang; Liu, Tianqi; Xi, Kai

    2015-01-01

    An experimental investigation of the single event upset (SEU) susceptibility for heavy ions at tilted incidence was performed. The differences of SEU cross-sections between tilted incidence and normal incidence at equivalent effective linear energy transfer were 21% and 57% for the silicon-on-insulator (SOI) static random access memories (SRAMs) of 0.5 μm and 0.18 μm feature size, respectively. The difference of SEU cross-section raised dramatically with increasing tilt angle for SOI SRAM of deep-submicron technology. The result of CRÈME-MC simulation for tilted irradiation of the sensitive volume indicates that the energy deposition spectrum has a substantial tail extending into the low energy region. The experimental results show that the influence of edge effects on SEU susceptibility cannot be ignored in particular with device scaling down

  15. Impurity and neutral effects on the dissipative drift wave in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1991-05-01

    Possible destabilizing mechanisms for the liner electrostatic dissipative drift waves (in tokamak edge plasmas) are investigated in slab geometry. The effects of processes such as ionization, charge exchange, radiation, and rippling are examined. In particular, the impurity condensation associated with radiation cooling is evaluated appropriately for the drift wave ordering, which is found to be an important driving mechanism in contrast to the results of earlier studies. It also shown that the role of ionization is quite complicated, and depends strongly on the manner in which the equilibrium is achieved. The linear eigenmode equation is studied both analytically and numerically. For the range of parameters relevant to TEXT tokamak, both the charge exchange of the rippling effect are found to be unimportant for instability. 25 refs., 6 figs

  16. Influence of MHD effects and edge conditions on ITER helium ash accumulation and sustained ignition

    International Nuclear Information System (INIS)

    Redi, M.H.; Cohen, S.A.

    1990-06-01

    Dilution of reacting species by build-up of helium ash and its effect on ignition in the ITER tokamak have been studies in a series of simulations with the one-dimensional BALDUR transport code. Thermal diffusivities, obtained from ITER scaling laws and with radial variations observed in JET, gave τ E ∼ 2--4 sec. Refueling of deuterium and tritium maintained constant electron density, while carbon recycling was 100% and the helium ash recycling was varied from 1.0 to 0.5. Including MHD effects, specifically sawteeth and beta limits, we find that ignition can be sustained for 200 seconds with R helium = 0.95. These simulations, the only non-zero-dimensional, time-dependent simulations thus far made for ITER plasmas, emphasize that edge plasma conditions, MHD behavior, and helium particle transport are critical synergistic issues for sustained ignition. 27 refs., 2 figs., 1 tab

  17. Conveying Cutting-Edge Discoveries to Nonscientists: Effective Communication with Media

    Science.gov (United States)

    Gupta, Nikhil; Hamilton, Kathleen; Chamot, Joshua

    2013-07-01

    The benefits of using information and news media for disseminating cutting-edge scientific discoveries to the public are well known. Taxpayers and lawmakers need to be informed about the implications of public investments, young students' interest can be molded toward science- and technology-based careers, and public awareness of important issues can be raised by effectively using media. However, communication with news media is different from the means commonly used by scientists—journal publications and conference presentations. This article is intended to provide information on three basic aspects of media interactions—why, what, and how to communicate. The increasing importance of this mode of dissemination in this information age cannot be ignored; rather, it can be effectively utilized for educating a wider population base.

  18. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges

    Science.gov (United States)

    Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel

    2018-04-01

    The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.

  19. HALOGAS: H I OBSERVATIONS AND MODELING OF THE NEARBY EDGE-ON SPIRAL GALAXY NGC 4565

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Rand, Richard J. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131-1156 (United States); Heald, George H.; Jozsa, Gyula [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Gentile, Gianfranco, E-mail: zschaech@unm.edu, E-mail: rjr@phys.unm.edu, E-mail: heald@astron.nl, E-mail: jozsa@astron.nl, E-mail: gianfranco.gentile@ugent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281 S9, B-9000 Ghent (Belgium)

    2012-11-20

    We present 21 cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS survey. These models provide insight concerning both the morphology and kinematics of H I above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended H I halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40{sup +5} {sub -20} km s{sup -1} kpc{sup -1} and -30{sup +5} {sub -30} km s{sup -1} kpc{sup -1} in the approaching and receding halves, respectively. This lag is only seen within the inner {approx}4.'75 (14.9 kpc) on the approaching half and {approx}4.'25 (13.4 kpc) on the receding half, making this a radially shallowing lag, which is now seen in the H I layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, H I is found in two companion galaxies, one of which is clearly interacting with NGC 4565.

  20. Blanking Clearance and Punch Velocity Effects on The Sheared Edge Characteristic in Micro-Blanking of Commercially Pure Copper Sheet

    Directory of Open Access Journals (Sweden)

    Didin Zakaria Lubis

    2017-11-01

    Full Text Available This study aims to identify the influences between clearance and punch velocity on the part edge quality of blanked parts. Experiments have been conducted using material copper, punch-die clearance and punch velocity variations. In order to determine the reachable punch-die clearance and punch velocity required for blanking. The quality of the part-edge characteristics shows that higher punch velocity and decreases clearance value can improve the part-edge quality, resulting in smaller burr height and rollover, and a larger shear zone. Furthermore, it could be observed that the part-edge quality improvement when blanking with high punch velocity is much more distinct for stele than for copper. According to blanking theory, this improvement was expected because copper have much higher heat conduction coefficients. Therefore, the heat dissipates faster and the desired stress relief effect does not take place to the same degree as for stele.

  1. APEX model simulation of edge-of-field water quality benefits from upland buffers

    Science.gov (United States)

    For maximum usefulness, simulation models must be able to estimate the effectiveness of management practices not represented in the dataset used for model calibration. This study focuses on the ability of the Agricultural Policy Environmental eXtender (APEX) to simulate upland buffer effectiveness f...

  2. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  3. A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.

    2005-01-01

    The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations

  4. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  5. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  6. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    Science.gov (United States)

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for

  7. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    Science.gov (United States)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  8. Use of Debye's series to determine the optimal edge-effect terms for computing the extinction efficiencies of spheroids.

    Science.gov (United States)

    Lin, Wushao; Bi, Lei; Liu, Dong; Zhang, Kejun

    2017-08-21

    The extinction efficiencies of atmospheric particles are essential to determining radiation attenuation and thus are fundamentally related to atmospheric radiative transfer. The extinction efficiencies can also be used to retrieve particle sizes or refractive indices through particle characterization techniques. This study first uses the Debye series to improve the accuracy of high-frequency extinction formulae for spheroids in the context of Complex angular momentum theory by determining an optimal number of edge-effect terms. We show that the optimal edge-effect terms can be accurately obtained by comparing the results from the approximate formula with their counterparts computed from the invariant imbedding Debye series and T-matrix methods. An invariant imbedding T-matrix method is employed for particles with strong absorption, in which case the extinction efficiency is equivalent to two plus the edge-effect efficiency. For weakly absorptive or non-absorptive particles, the T-matrix results contain the interference between the diffraction and higher-order transmitted rays. Therefore, the Debye series was used to compute the edge-effect efficiency by separating the interference from the transmission on the extinction efficiency. We found that the optimal number strongly depends on the refractive index and is relatively insensitive to the particle geometry and size parameter. By building a table of optimal numbers of edge-effect terms, we developed an efficient and accurate extinction simulator that has been fully tested for randomly oriented spheroids with various aspect ratios and a wide range of refractive indices.

  9. Simulation of an ITER-like dissipative divertor plasma with a combined edge plasma Navier-Stokes neutral model

    International Nuclear Information System (INIS)

    Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.

    1996-01-01

    A combined edge plasma/Navier-Stokes neutral transport model is used to simulate dissipative divertor plasmas in the collisional limit for neutrals on a simplified two-dimensional slab geometry with ITER-like plasma conditions and scale lengths. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion-neutral elastic collisions. The neutral transport coefficients are evaluated including both ion-neutral and neutral-neutral collisions. (orig.)

  10. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2016-04-01

    Full Text Available Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min-1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min-1 cutting with a sharper knife-edge angle (15° required less peak force and specific energy than that of high-speed cutting (40 mm min-1 with a wider knife-edge angle (25°. The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min-1 and edge angle 150 to 285.1 N (40 mm min-1 and 250, and cucumber, at 11.61 (20 mm min-1 and 150 to 21.41 N (40 mm min-1 and 250, respectively. High speed (40 mm min-1, with a large knife-edge angle (25°, required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min-1, with a small knife-edge angle (150, is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05. Linear or quadratic regressions gave a good fit of these variables. 

  11. Particle and parallel momentum balance equations with inclusion of drifts, for modelling strong- to weakly-collisional edge plasmas

    International Nuclear Information System (INIS)

    Chankin, A. V.; Stangeby, P. C.

    2006-01-01

    A system of plasma particle and parallel momentum balance equations is derived appropriate for understanding the role of drifts in the edge and for edge modelling, particularly in the scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices. The formulation allows for strong collisionality-but also covers the case of weak collisionality and strong drifts, a combination often encountered in the SOL. The most important terms are identified by assessing the magnitude of characteristic velocities and fluxes for the plasma edge region. Explanations of the physical nature of each term are provided. A number of terms that are sometimes not included in edge modelling has been included in the parallel momentum balance equation after detailed analysis of the parallel component of the gradient of the total pressure-stress tensor. This includes terms related to curvature and divergence of the field lines, as well as further contributions coming from viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be roughly of the same order of magnitude as convective momentum fluxes related to drifts and therefore should be included in the momentum balance equation

  12. Edge effects in four-point direct current potential drop measurements on metal plates

    International Nuclear Information System (INIS)

    Lu, Y; Bowler, N; Bowler, J R; Huang, Y

    2009-01-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  13. Edge effects in four-point direct current potential drop measurements on metal plates

    Science.gov (United States)

    Lu, Y.; Bowler, N.; Bowler, J. R.; Huang, Y.

    2009-07-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  14. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  15. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  16. Emergent properties of patch shapes affect edge permeability to animals.

    Directory of Open Access Journals (Sweden)

    Vilis O Nams

    Full Text Available Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1 find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2 generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight. When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  17. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions: Effect of ribs

    International Nuclear Information System (INIS)

    Mucignat, C.; Armellini, A.; Casarsa, L.

    2013-01-01

    Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled

  18. Effect of Hardwood Sawmill Edging and Trimming Practices on Furniture Part Production

    Science.gov (United States)

    D. Earl Kline; Carmen Regalado; Eugene M. Wengert; Fred M. Lamb; Philip A. Araman

    1993-01-01

    In a recent edging and trimming study at three hardwood sawmills, it was observed that the lumber volume produced was approximately 10 percent less than would be necessary to make the most valuable lumber. Furthermore, the excess portion of wood that was removed from the edging and trimming process contained a large percentage of clear wood. In light of rising costs...

  19. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Science.gov (United States)

    Richard M. DeGraaf; Mariko. Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  20. Edge effects at an induced forest-grassland boundary: forest birds in ...

    African Journals Online (AJOL)

    Bird species diversity and guild composition between the edge (5-10 m from the margin) of primary forest abutting grassland and the deep interior (> 500 m from the margin) in the Dngoye Forest Reserve were compared. Edge and interior sites were chosen that were homogeneous with respect to habitat physiognomy i.e. ...

  1. Modeling Rare Species Distribution at the Edge: The Case for the Vulnerable Endemic Pyrenean Desman in France

    Directory of Open Access Journals (Sweden)

    M. Williams-Tripp

    2012-01-01

    Full Text Available The endemic Pyrenean Desman (Galemys pyrenaicus is an elusive, rare, and vulnerable species declining over its entire and narrow range (Spain, Portugal, France, and Andorra. The principal set of conservation measures in France is a 5-years National Action Plan based on 25 conservation actions. Priority is given to update its present distribution and develop tools for predictive distribution models. We aim at building the first species distribution model and map for the northern edge of the range of the Desman and confronting the outputs of the model to target conservation efforts in the context of environmental change. Contrasting to former comparable studies, we derive a simpler model emphasizing the importance of factors linked to precipitation and not to the temperature. If temperature is one of the climate change key factors, depicted shrinkage in Desman distribution could be lower or null at the northern (French edge suggesting thus a major role for this northern population in terms of conservation of the species. Finally, we question the applied issue of temporal and spatial transferability for such environmental favourability models when it is made at the edge of the distribution range.

  2. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    Science.gov (United States)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  3. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  4. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    Science.gov (United States)

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  6. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  7. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, A.; van der Heide, Emile

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be

  8. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  9. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties.

    Science.gov (United States)

    Harris, William H

    2012-11-01

    Edge wear is an adverse factor that can negatively impact certain THAs. In some metal-on-metal THAs, it can lead to adverse tissue reactions including aseptic lymphocytic vasculitis-associated lesions and even to pseudotumor formation. In some ceramic-on-ceramic THAs, it can lead to squeaking and/or stripe wear. Edge wear in metal-on-metal and ceramic-on-ceramic THAs can also be associated with accelerated wear across the articulation of these joints. I asked: Does edge wear occur in metal-on-polyethylene (MOP) articulations? And if so, does it increase joint wear? I examined the evidence in the literature for edge wear occurring in MOP THA and then assessed the evidence in the literature for data supporting the concept that edge wear in MOP hips could accelerate wear across the articulation over time. Extensive data in the literature confirm edge wear is common in MOP THA. Surprisingly, the evidence does not support that it accelerates wear across the articulation. In fact, substantial data support the concept that it does not. These observations suggest, in terms of edge wear accelerating overall wear, MOP articulation may have a privileged position compared to hard-on-hard THA articulations.

  10. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    Science.gov (United States)

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  11. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Czech Academy of Sciences Publication Activity Database

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  12. A probabilistic model for the identification of confinement regimes and edge localized mode behavior, with implications to scaling laws

    International Nuclear Information System (INIS)

    Verdoolaege, Geert; Van Oost, Guido

    2012-01-01

    Pattern recognition is becoming an important tool in fusion data analysis. However, fusion diagnostic measurements are often affected by considerable statistical uncertainties, rendering the extraction of useful patterns a significant challenge. Therefore, we assume a probabilistic model for the data and perform pattern recognition in the space of probability distributions. We show the considerable advantage of our method for identifying confinement regimes and edge localized mode behavior, and we discuss the potential for scaling laws.

  13. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap

    International Nuclear Information System (INIS)

    Kyriakou, Marilena; Missirlis, Dimitrios; Yakinthos, Kyros

    2010-01-01

    The flow development over delta wings is highly complicated since the interaction of the angle of attack with the delta-wing geometry leads to the appearance of a pair of well-organized counter-rotating leading-edge vortical structures. For relatively moderate angles of attack, these vortices remain robust and contribute to the enhancement of the overall lift performance. However, at higher angles of attack the vortices develop instabilities leading to the well-known vortex breakdown phenomenon, resulting in a deterioration of the aerodynamic properties. Thus, delaying vortex breakdown at higher angles of attack, is important and for this reason various techniques have been developed to control the breakdown mechanism. Such a technique is the use of trailing-edge jet-flaps. In the present work, an attempt to model the vortex breakdown together with its control, above a delta wing at high angles of attack, for cases with and without a trailing-edge jet-flap, is presented. To model the turbulent stresses, the low-Reynolds-number stress-omega model was used. The computational results were in good agreement with the available experimental data regarding the prediction of the onset of vortex breakdown and showed that the use of jet-flaps can lead to a significant delay of the breakdown process.

  14. CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Azlan

    2017-01-01

    Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.

  15. Erosion/redeposition analysis : status of modeling and code validation for semi-detached tokamak edge plasmas

    International Nuclear Information System (INIS)

    Brooks, J. N.

    1999-01-01

    We are analyzing erosion and tritium codeposition for ITER, DIII-D, and other devices with a focus on carbon divertor and metallic wall sputtering, for detached and semi-detached edge plasmas. Carbon chemical-sputtering hydrocarbon-transport is computed in detail using upgraded models for sputtering yields, species, and atomic and molecular processes. For the DIII-D analysis this includes proton impact and dissociative recombination for the full methane and higher hydrocarbon chains. Several mixed material (Si-C doping and Be/C) effects on erosion are examined. A semi-detached reactor plasma regime yields peak net wall erosion rates of ∼1.0 (Be), ∼0.3 (Fe), and ∼0.01 (W) cm/burn-yr, and ∼50 cm/burn-yr for a carbon divertor. Net carbon erosion is dominated by chemical sputtering in the ∼1-3 eV detached plasma zone. Tritium codeposition in divertor-sputtered redeposited carbon is high (∼10-20 g-T/1000 s ). Silicon and beryllium mixing tends to reduce carbon erosion. Initial hydrocarbon transport calculations for the DIII-D DiMES-73 detached plasma experiment show a broad spectrum of redeposited molecules with ∼90% redeposition fraction

  16. Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation.

    Science.gov (United States)

    Sturla, Francesco; Redaelli, Alberto; Puppini, Giovanni; Onorati, Francesco; Faggian, Giuseppe; Votta, Emiliano

    2015-06-01

    Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip(®) device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip(®) implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip(®) implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that

  17. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo B Ferreira

    Full Text Available Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i 200 m inside the forest, ii 50 m inside the forest, iii at the forest edge, and iv 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types. By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog

  18. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Science.gov (United States)

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in

  19. Curvature Effects on the Vibration Characteristics of Doubly Curved Shallow Shells with General Elastic Edge Restraints

    Directory of Open Access Journals (Sweden)

    Hui Shi

    2015-01-01

    Full Text Available Effects of curvature upon the vibration characteristics of doubly curved shallow shells are assessed in this paper. Boundary conditions of the shell are generally specified in terms of distributed elastic restraints along the edges. The classical homogeneous boundary supports can be easily simulated by setting the stiffnesses of restraining springs to either zero or infinite. Vibration problems of the shell are solved by a modified Fourier series method that each of the displacements is invariably expressed as a simple trigonometric series which converges uniformly and acceleratedly over the solution domain. All the unknown expansion coefficients are treated equally as a set of independent generalized coordinates and solved using the Rayleigh-Ritz technique. The current method provides a unified solution to the vibration problems of curved shallow shells involving different geometric properties and boundary conditions with no need of modifying the formulations and solution procedures. Extensive tabular and graphical results are presented to show the curvature effects on the natural frequencies of the shell with various boundary conditions.

  20. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Roehampton University, London (United Kingdom). Whitelands College

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  1. International workshop of the Confinement Database and Modelling Expert Group in collaboration with the Edge and Pedestal Physics Expert Group

    International Nuclear Information System (INIS)

    Cordey, J.; Kardaun, O.

    2001-01-01

    A Workshop of the Confinement Database and Modelling Expert Group (EG) was held on 2-6 April at the Plasma Physics Research Center of Lausanne (CRPP), Switzerland. Presentations were held on the present status of the plasma pedestal (temperature and energy) scalings from an empirical and theoretical perspective. An integrated approach to modelling tokamaks incorporating core transport, edge pedestal and SOL, together with a model for ELMs was presented by JCT. New experimental data on on global H-mode confinement were discussed and presentations on L-H threshold power were made

  2. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China); Leconte, Jérémy; Forget, François [Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris (France); Wolf, Eric T. [Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, CO (United States); Goldblatt, Colin [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Feldl, Nicole [Division of Geological and Planetary Sciences, California Institute of Technology, CA (United States); Merlis, Timothy [Department of Atmospheric and Oceanic Sciences at McGill University, Montréal (Canada); Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S., E-mail: junyang@pku.edu.cn, E-mail: abbot@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL (United States)

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  3. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy; Forget, François; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S.

    2016-01-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m 2 ; differences in shortwave reach up to 60 W m 2 , especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m 2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  4. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    Science.gov (United States)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  5. Study of edge effects in the breakdown process of p sup + on n-bulk silicon diodes

    CERN Document Server

    Militaru, O; Bozzi, C; Rold, M D; Dell'Orso, R; Dutta, S; Messineo, A; Mihul, A; Tonelli, G; Verdini, P G; Wheadon, R; Xie, Z

    2000-01-01

    The paper describes the role of the n sup + edge implants in the breakdown process of p sup + on n-bulk silicon diodes. Laboratory measurements and simulation studies are presented on a series of test structures aimed at an optimization of the design in the edge region. The dependence of the breakdown voltage on the geometrical parameters of the devices is discussed in detail. Design rules are extracted for the use of n sup + -layers along the scribe line to avoid surface conduction of current generated by the exposed edges. The effect of neutron irradiation has been studied up to a fluence of 1.8x10 sup 1 sup 5 cm sup - sup 2.

  6. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  7. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  8. Separately contacted edge states: A new spectroscopic tool for the investigation of the quantum Hall effect

    OpenAIRE

    Wuertz, A.; Wildfeuer, R.; Lorke, A.; Deviatov, E. V.; Dolgopolov, V. T.

    2001-01-01

    Using an innovative combination of a quasi-Corbino sample geometry and the cross-gate technique, we have developed a method that enables us to separately contact single edge channels in the quantum Hall regime and investigate equilibration among them. Performing 4-point resistance measurements, we directly obtain information on the energetic and geometric structure of the edge region and the equilibration-length for current transport across the Landau- as well as the spin-gap. Based on an alm...

  9. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  10. The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Groebner, R. J.; Leonard, A. W.; Wade, M. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Orlov, D. M. [University of California-San Diego, San Diego, California 92093 (United States); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Association FZJ-EURATOM, Juelich (Germany); Wilson, H. R. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2012-05-15

    The EPED model predicts the H-mode pedestal height and width based upon two fundamental and calculable constraints: (1) onset of non-local peeling-ballooning modes at low to intermediate mode number, (2) onset of nearly local kinetic ballooning modes at high mode number. We present detailed tests of the EPED model in discharges with edge localized modes (ELMs), employing new high resolution measurements, and finding good quantitative agreement across a range of parameters. The EPED model is then applied for the first time to quiescent H-mode (QH), finding a similar level of agreement between predicted and observed pedestal height and width, and suggesting that the model can be used to predict the critical density for QH-mode operation. Finally, the model is applied toward understanding the suppression of ELMs with 3D resonant magnetic perturbations (RMP). Combining EPED with plasma response physics, a new working model for RMP ELM suppression is developed. We propose that ELMs are suppressed when a 'wall' associated with the RMP blocks the inward penetration of the edge transport barrier. A calculation of the required location of this 'wall' with EPED is consistent with observed profile changes during RMP ELM suppression and offers an explanation for the observed dependence on safety factor (q{sub 95}).

  11. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Science.gov (United States)

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  12. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...

  13. Edge effect of low-traffic forest roads on bird communities in secondary production forests in central Europe

    Czech Academy of Sciences Publication Activity Database

    Šálek, M.; Svobodová, Jana; Zasadil, P.

    2010-01-01

    Roč. 25, č. 7 (2010), s. 1113-1124 ISSN 0921-2973 Institutional research plan: CEZ:AV0Z60930519 Keywords : Biodiversity * Bird assemblages * Czech Republic * Edge effect * Habitat fragmentation * Landscape structure * Point count method Subject RIV: EH - Ecology, Behaviour Impact factor: 3.200, year: 2010

  14. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  15. Modeling Skill Growth and Decay in Edge Organizations: Near-Optimizing Knowledge and Power Flows (Phase Two)

    Science.gov (United States)

    2006-06-01

    cost to hold it. With respect to knowledge inventory, each policy exhibits both desirable and undesirable traits. JIT seeks to accrue knowledge...Management approach. Introduction and Motivation Edge organizations [1] can only achieve their putative effectiveness through the...EOQ) and cost analysis, as well as inventory doctrines of Just-In-Case (JIC), Just-In-Time ( JIT ), and make vs. buy decisions, we examined knowledge

  16. An investigation of unsteady 3-D effects on trailing edge flaps

    Directory of Open Access Journals (Sweden)

    E. Jost

    2017-05-01

    Full Text Available The present study investigates the impact of unsteady 3-D aerodynamic effects on a wind turbine blade with trailing edge flap by means of computational fluid dynamics (CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 to 80 % blade radius. The deflection frequency is varied in the range between 1 and 6 p. To quantify 3-D effects, rotor simulations are compared to 2-D airfoil computations and the 2-D theory by Theodorsen. It was found that the deflection of the flap on the 3-D rotor causes a complex wake development and induction which influences the loads over large parts of the blade. In particular, the rotor near wake with its trailing and shed vortex structures revealed a great impact. Trailing vorticity, a 3-D phenomenon, is caused by the gradient of bound circulation along the blade span. Shed vorticity originates from the temporal bound circulation gradient and is thus also apparent in 2-D. Both lead to an amplitude reduction and shed vorticity additionally to a hysteresis of the lift response with regard to the deflection signal in the flap section. A greater amplitude reduction and a less pronounced hysteresis is observed on the 3-D rotor compared to the 2-D airfoil case. Blade sections neighboring the flap experience, however, an opposing impact and hence partly compensate for the negative effect of trailing vortices in the flap section with respect to integral loads. Comparisons to steady flap deflections at the 3-D rotor revealed the high influence of dynamic inflow effects.

  17. Detailed Analysis of Amplitude and Slope Diffraction Coefficients for knife-edge structure in S-UTD-CH Model

    Directory of Open Access Journals (Sweden)

    Eray Arik

    2017-03-01

    Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.

  18. Recycling source terms for edge plasma fluid models and impact on convergence behaviour of the BRAAMS 'B2' code

    International Nuclear Information System (INIS)

    Maddison, G.P.; Reiter, D.

    1994-02-01

    Predictive simulations of tokamak edge plasmas require the most authentic description of neutral particle recycling sources, not merely the most expedient numerically. Employing a prototypical ITER divertor arrangement under conditions of high recycling, trial calculations with the 'B2' steady-state edge plasma transport code, plus varying approximations or recycling, reveal marked sensitivity of both results and its convergence behaviour to details of sources incorporated. Comprehensive EIRENE Monte Carlo resolution of recycling is implemented by full and so-called 'shot' intermediate cycles between the plasma fluid and statistical neutral particle models. As generally for coupled differencing and stochastic procedures, though, overall convergence properties become more difficult to assess. A pragmatic criterion for the 'B2'/EIRENE code system is proposed to determine its success, proceeding from a stricter condition previously identified for one particular analytic approximation of recycling in 'B2'. Certain procedures are also inferred potentially to improve their convergence further. (orig.)

  19. Anomalies in the 1D Anderson model: Beyond the band-centre and band-edge cases

    Science.gov (United States)

    Tessieri, L.; Izrailev, F. M.

    2018-03-01

    We consider the one-dimensional Anderson model with weak disorder. Using the Hamiltonian map approach, we analyse the validity of the random-phase approximation for resonant values of the energy, E = 2 cos(πr) , with r a rational number. We expand the invariant measure of the phase variable in powers of the disorder strength and we show that, contrary to what happens at the centre and at the edges of the band, for all other resonant energies the leading term of the invariant measure is uniform. When higher-order terms are taken into account, a modulation of the invariant measure appears for all resonant values of the energy. This implies that, when the localisation length is computed within the second-order approximation in the disorder strength, the Thouless formula is valid everywhere except at the band centre and at the band edges.

  20. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  1. Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model

    International Nuclear Information System (INIS)

    Bouttier, J; Francesco, P Di; Guitter, E

    2007-01-01

    We introduce Eulerian maps with blocked edges as a general way to implement statistical matter models on random maps by a modification of intrinsic distances. We show how to code these dressed maps by means of mobiles, i.e. decorated trees with labelled vertices, leading to a closed system of recursion relations for their generating functions. We discuss particular solvable cases in detail, as well as various applications of our method to several statistical systems such as spanning trees on quadrangulations, mutually excluding particles on Eulerian triangulations or the Ising model on quadrangulations

  2. Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos

    Science.gov (United States)

    Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting

    2017-03-01

    This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.

  3. Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Inoue, H.; Yamoto, S.; Hatayama, A.; Homma, Y.

    2016-01-01

    Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)

    2016-08-15

    Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide

    Directory of Open Access Journals (Sweden)

    Chun Feng

    2014-02-01

    Full Text Available Continuum-based discrete element method (CDEM is an explicit numerical method used for simulation of progressive failure of geological body. To improve the efficiency of contact detection and simplify the calculation steps for contact forces, semi-spring and semi-edge are introduced in calculation. Semi-spring is derived from block vertex, and formed by indenting the block vertex into each face (24 semi-springs for a hexahedral element. The formation process of semi-edge is the same as that of semi-spring (24 semi-edges for a hexahedral element. Based on the semi-springs and semi-edges, a new type of combined contact model is presented. According to this model, six contact types could be reduced to two, i.e. the semi-spring target face contact and semi-edge target edge contact. By the combined model, the contact force could be calculated directly (the information of contact type is not necessary, and the failure judgment could be executed in a straightforward way (each semi-spring and semi-edge own their characteristic areas. The algorithm has been successfully programmed in C++ program. Some simple numerical cases are presented to show the validity and accuracy of this model. Finally, the failure mode, sliding distance and critical friction angle of Jiweishan landslide are studied with the combined model.

  6. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces.

    Science.gov (United States)

    Yang, Kuiwei; Zhang, Minhua; Yu, Yingzhe

    2017-07-21

    Vicinal surfaces of Ni are model catalysts of general interest and great importance in computational catalysis. Here we report a comprehensive study conducted with density functional theory on Ni[n(111) × (100)] (n = 2, 3 and 4) surfaces to explore the effect of terrace width and step edge coverage on CO adsorption and dissociation, a probe reaction relevant to many industrial processes. The coordination numbers (CN), the generalized coordination numbers and the d band partial density of states (d-PDOS) of Ni are identified as descriptors to faithfully reflect the difference of the step edge region for Ni[n(111) × (100)]. Based on analysis of the energy diagrams for CO activation and dissociation as well as the structural features of the Ni(311), Ni(211) and Ni(533) surfaces, Ni(211) (n = 3) is proposed as a model of adequate representativeness for Ni[n(111) × (100)] (n≥ 3) surface groups in investigating small molecule activation over such stepped structures. Further, a series of Ni(211) surfaces with the step edge coverage ranging from 1/4 to 1 monolayer (ML) were utilized to assess their effect on CO activation. The results show that CO adsorption is not sensitive to the step edge coverage, which could readily approach 1 ML under a CO-rich atmosphere. In contrast, CO dissociation manifests strong coverage dependence when the coverage exceeds 1/2 ML, indicating that significant adsorbate-adsorbate interactions emerge. These results are conducive to theoretical studies of metal-catalyzed surface processes where the defects play a vital role.

  7. Elevated Levels of Herbivory in Urban Landscapes: Are Declines in Tree Health More Than an Edge Effect?

    Directory of Open Access Journals (Sweden)

    Fiona J. Christie

    2005-06-01

    Full Text Available Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. Urban development has led to substantial fragmentation of areas of natural habitat, resulting in significant impacts on biodiversity and disruptions to ecological processes. We investigated the levels of leaf damage caused by invertebrates in a dominant canopy species in urban remnants in a highly fragmented urban landscape in Sydney, Australia, by assessing the frequency and extent of chewing and surface damage of leaves in urban remnants compared to the edges and interiors of continuous areas of vegetation. Although no difference was detected in the frequency of leaves showing signs of damage at small, edge, and interior sites, small sites suffered significantly greater levels of leaf damage than did interior sites. Trees at edge sites showed intermediate levels of damage, suggesting that edge effects alone are not the cause of higher levels of herbivory. These findings are the first to demonstrate the effects of urbanization on invertebrate damage in dominant trees at coarse scales. This is consistent with hypotheses predicting that changes in species composition through urban fragmentation affect ecological interactions.

  8. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  9. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    Science.gov (United States)

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  10. Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

    Directory of Open Access Journals (Sweden)

    Khaled Halteh

    2018-05-01

    Full Text Available Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

  11. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  12. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    Science.gov (United States)

    Wilroy, Jacob Aaron

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.

  13. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Science.gov (United States)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  14. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Directory of Open Access Journals (Sweden)

    J. M. Santiago

    2017-08-01

    Full Text Available Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta, and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 % by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C, although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  15. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  16. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-01-01

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  17. Nickel doping effect on resistance to movement of edge dislocations in α-Fe

    International Nuclear Information System (INIS)

    Brovkov, V.A.; Dudarev, E.F.

    1984-01-01

    Microplastic deformation of α-Fe polycrystals and Fe-Ni solid solutions is studied. Data on concentration and temperature dependences of a resistance to movement of edge dislocation at the expense of elastic interaction with atoms of the doping element are obtained

  18. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. (Argonne National Lab., IL (United States)); Rossing, T.D. (Northern Illinois Univ., De Kalb, IL (United States))

    1992-01-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  19. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. [Argonne National Lab., IL (United States); Rossing, T.D. [Northern Illinois Univ., De Kalb, IL (United States)

    1992-04-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  20. Nickel doping effect on resistance to movement of edge dislocations in. cap alpha. -Fe

    Energy Technology Data Exchange (ETDEWEB)

    Brovkov, V.A.; Dudarev, E.F. (Tomskij Gosudarstvennyj Univ. (USSR). Sibirskij Fiziko-Tekhnicheskij Inst.)

    1984-03-01

    Microplastic deformation of ..cap alpha..-Fe polycrystals and Fe-Ni solid solutions is studied. Data on the concentration and temperature dependences of resistance to movement of edge dislocation at the expense of elastic interaction with atoms of the doping element are obtained.

  1. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.

    Science.gov (United States)

    Sanchez-Yamagishi, Javier D; Luo, Jason Y; Young, Andrea F; Hunt, Benjamin M; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  2. Neutral particle and radiation effects on Pfirsch - Schlueter fluxes near the edge

    International Nuclear Information System (INIS)

    Catto, P.J.; Helander, P.; Connor, J.W.; Hazeltine, R.D.

    1998-01-01

    The edge plasma of a tokamak is affected by atomic physics processes and can have density and temperature variations along the magnetic field that strongly modify edge transport. A closed system of equations in the Pfirsch - Schlueter regime is presented that can be solved for the radial and poloidal variation of the plasma density, electron and ion temperatures, and the electrostatic potential in the presence of neutrals and a poloidally asymmetric energy radiation sink due to inelastic electron collisions. Neutrals have a large diffusivity so their viscosity and heat flux can become important even when their density is not high, in which case the neutral viscosity alters the electrostatic potential at the edge by introducing strong radial variation. The strong parallel gradient in the electron temperature that can arise in the presence of a localized radiation sink drives a convective flow of particles and heat across the field. This plasma transport mechanism can balance the neutral influx and is particularly strong if multifaceted asymmetric radiation from the edge (MARFE) occurs, since the electron temperature then varies substantially over the flux surface. copyright 1998 American Institute of Physics

  3. Edge placement error control and Mask3D effects in High-NA anamorphic EUV lithography

    Science.gov (United States)

    van Setten, Eelco; Bottiglieri, Gerardo; de Winter, Laurens; McNamara, John; Rusu, Paul; Lubkoll, Jan; Rispens, Gijsbert; van Schoot, Jan; Neumann, Jens Timo; Roesch, Matthias; Kneer, Bernhard

    2017-10-01

    To enable cost-effective shrink at the 3nm node and beyond, and to extend Moore's law into the next decade, ASML is developing a new high-NA EUV platform. The high-NA system is targeted to feature a numerical aperture (NA) of 0.55 to extend the single exposure resolution limit to 8nm half pitch. The system is being designed to achieve an on-product-overlay (OPO) performance well below 2nm, a high image contrast to drive down local CD errors and to obtain global CDU at sub-1nm level to be able to meet customer edge placement error (EPE) requirements for the devices of the future. EUV scanners employ reflective Bragg multi-layer mirrors in the mask and in the Projection Optics Box (POB) that is used to project the mask pattern into the photoresist on the silicon wafer. These MoSi multi-layer mirrors are tuned for maximum reflectivity, and thus productivity, at 13.5nm wavelength. The angular range of incident light for which a high reflectivity at the reticle can be obtained is limited to +/- 11o, exceeding the maximum angle occurring in current 0.33NA scanners at 4x demagnification. At 0.55NA the maximum angle at reticle level would extend up to 17o in the critical (scanning) direction and compromise the imaging performance of horizontal features severely. To circumvent this issue a novel anamorphic optics design has been introduced, which has a 4x demagnification in the X- (slit) direction and 8x demagnification in the Y- (scanning) direction as well as a central obscuration in the exit pupil. In this work we will show that the EUV high-NA anamorphic concept can successfully solve the angular reflectivity issues and provide good imaging performance in both directions. Several unique imaging challenges in comparison to the 0.33NA isomorphic baseline are being studied, such as the impact of the central obscuration in the POB and Mask-3D effects at increased NA that seem most pronounced for vertical features. These include M3D induced contrast loss and non

  4. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  5. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  6. Effect of stand edge on the natural regeneration of spruce, beech and Douglas-fir

    Directory of Open Access Journals (Sweden)

    Lumír Dobrovolný

    2012-01-01

    Full Text Available Our work aimed at studying the strategy of woody plants regeneration during the regeneration of a spruce stand with the admixture of beech and Douglas-fir by border cutting (NW-SE aspect on acidic sites of higher elevations in the Bohemian-Moravian Upland. Spruce is better adapted to bear shade than Douglas-fir. Nevertheless, in optimal light conditions up to a distance of ca. 35 m (about 16% DIFFSF from the stand edge, the Douglas-fir can put the spruce into danger as to height growth. By contrast to beech, the density of spruce is significantly higher within the distance of 45 m (about 15% DIFFSF from the stand edge but further on the situation would change to the benefit of beech. The density of Douglas-fir significantly dominates over beech within a distance of 35 m from the stand edge; from 55 m (less than 15% DIFFSF, the situation changes in favour of beech. Beech can survive in full shade deep in the stand core waiting for its opportunity to come. As compared to spruce and Douglas-fir, the height growth of beech was at all times significantly greater at a distance of 25 m from the stand edge. Converted to practical conditions, spruce and Douglas-fir with individually admixed beech seedlings showed good prosperity approximately up to a distance of one stand height from the edge. A mixture of spruce and beech did well at a greater distance but good prosperity at a distance of 2–3 stand heights was shown only by beech. Thus, border regeneration eliminates disadvantages of the climatic extremes of clear-cutting and specifics of shelterwood felling during which one – usually shade-tolerant tree species dominates in the natural regeneration (e.g. beech.

  7. Effects of microhabitat on leaf traits in Digitalis grandiflora L. (Veronicaceae growing at forest edge and interior

    Directory of Open Access Journals (Sweden)

    Kołodziejek J.

    2014-01-01

    Full Text Available The morphological, anatomical and biochemical traits of the leaves of yellow foxglove (Digitalis grandiflora Mill. from two microhabitats, forest interior (full shade under oak canopy and forest edge (half shade near shrubs, were studied. The microhabitats differed in the mean levels of available light, but did not differ in soil moisture. The mean level of light in the forest edge microhabitat was significantly higher than in the forest interior. Multivariate ANOVA was used to test the effects of microhabitat. Comparison of the available light with soil moisture revealed that both factors significantly influenced the morphological and anatomical variables of D. grandiflora. Leaf area, mass, leaf mass per area (LMA, surface area per unit dry mass (SLA, density and thickness varied greatly between leaves exposed to different light regimes. Leaves that developed in the shade were larger and thinner and had a greater SLA than those that developed in the half shade. In contrast, at higher light irradiances, at the forest edge, leaves tended to be thicker, with higher LMA and density. Stomatal density was higher in the half-shade leaves than in the full-shade ones. LMA was correlated with leaf area and mass and to a lesser extent with thickness and density in the forest edge microsite. The considerable variations in leaf density and thickness recorded here confirm the very high variation in cell size and amounts of structural tissue within species. The leaf plasticity index (PI was the highest for the morphological leaf traits as compared to the anatomical and biochemical ones. The nitrogen content was higher in the “half-shade leaves” than in the “shade leaves”. Denser leaves corresponded to lower nitrogen (N contents. The leaves of plants from the forest edge had more potassium (K than leaves of plants from the forest interior on an area basis but not on a dry mass basis; the reverse was true for phosphorus.

  8. Soft-edged magnet models for higher-order beam-optics map codes

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    2004-01-01

    Continuously varying surface and volume source-density distributions are used to model magnetic fields inside of cylindrical volumes. From these distributions, a package of subroutines computes on-axis generalized gradients and their derivatives at arbitrary points on the magnet axis for input to the numerical map-generating subroutines of the Lie-algebraic map code Marylie. In the present version of the package, the magnet menu includes: (1) cylindrical current-sheet or radially thick current distributions with either open boundaries or with a surrounding cylindrical boundary with normal field lines (which models high-permeability iron), (2) Halbach-type permanent multipole magnets, either as sheet magnets or as radially thick magnets, (3) modeling of arbitrary fields inside a cylinder by use of a fictitious current sheet. The subroutines provide on-axis gradients and their z derivatives to essentially arbitrary order, although in the present third- and fifth-order Marylie only the zeroth through sixth derivatives are needed. The formalism is especially useful in beam-optics applications, such as magnetic lenses, where realistic treatment of fringe-field effects is needed

  9. Wild Pigs (Sus scrofa) Mediate Large-Scale Edge Effects in a Lowland Tropical Rainforest in Peninsular Malaysia

    OpenAIRE

    Fujinuma, Junichi; Harrison, Rhett D.

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest...

  10. Strong influence of long-distance edge effect on herb-layer vegetation in forest fragments in an agricultural landscape

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Hédl, Radim; Modrý, M.

    2013-01-01

    Roč. 15, č. 6 (2013), s. 293-303 ISSN 1433-8319 Grant - others:GA MŽP(CZ) SM/6/69/05; GA MŽP(CZ) SP/2D3/139/07 Institutional support: RVO:67985807 ; RVO:67985939 Keywords : ancient forest * edge effect * habitat fragmentation * light condition * soil nutrients * species richness Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (BU-J) Impact factor: 3.324, year: 2013

  11. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  12. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    International Nuclear Information System (INIS)

    Davoudinejad, A.; Noordin, M. Y.

    2014-01-01

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  13. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    Energy Technology Data Exchange (ETDEWEB)

    Davoudinejad, A.; Noordin, M. Y. [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2014-11-15

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  14. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  15. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, M. A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, R. O.; Pablos, J. L. de

    2005-07-01

    It is well known the importance of the shear as a stabilizing mechanism to control plasma fluctuations in magnetically confined plasmas [1]. It has been clearly established that Ex B shear stabilization mechanisms are an important piece for the improvement of confinement on fusion devices. In particular both edge and core transport barriers are related to a large increase in the Ex B sheared flow. As a consequence clarifying the driving mechanisms of sheared flow in fusion plasmas is a main issue. The existence of parallel and perpendicular sheared flows at the plasma edge, and the interplay between them in different plasma conditions has been studied in the TJ-II [2]. Recent experiments carried out by means of different approaches in the TJ-II stellarator have shown that the generation of spontaneous edge perpendicular sheared flow can be externally controlled by means of plasma density with good reproducibility and reliability [3, 4]. Although experimentally the plasma density has been used as an external control knob, it would be more appropriate to characterize experimental results in terms of edge plasma gradient (e.g. ion saturation current gradient) [3]. It has also been found that there exists a coupling between the onset of sheared flow development and an increase in the level of plasma edge turbulence; once sheared flow is fully developed the level of fluctuations and turbulent transport slightly decreases whereas edge gradients and plasma density increase. It has been experimentally established that the minimum plasma density (or/and minimum level of plasma turbulence) essential for the development of the shear layer depends on the plasma magnetic configuration [5, 6]. For some plasma magnetic configurations with high iota value a sheared flow-induced regime with characteristics resembling those of an improved confinement one has been found. The similarity in the structure of the velocity shear layer and in the turbulence characteristics [7] in different

  16. Simulated Nano scale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    International Nuclear Information System (INIS)

    Sasaki, N.; Okamoto, H.; Masuda, S.; Itamura, N.; Miura, K.

    2010-01-01

    The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  17. The stabilizing effect of core pressure on the edge pedestal in MAST plasmas

    International Nuclear Information System (INIS)

    Chapman, I.T.; Simpson, J.; Saarelma, S.; Kirk, A.; O'Gorman, T.; Scannell, R.

    2015-01-01

    The pedestal pressure measured in Mega Ampere Spherical Tokamak plasmas has been shown to increase as the global plasma pressure increases. By deliberately suppressing the transition into the high-confinement regime, the core plasma pressure was systematically altered at the time of the first edge localized mode. Stability analysis shows that the enhanced Shafranov shift at higher core pressure stabilizes the ballooning modes driven by the pedestal pressure gradient, consequently allowing the pedestal to reach higher pressures. (paper)

  18. On the effects of leading edge vortex generators on an OA209 airfoil

    OpenAIRE

    Heine, Benjamin; Mulleners, Karen; Gardner, Anthony; Mai, Holger

    2009-01-01

    Leading edge vortex generators have been found to significantly increase the aerodynamic performance of an airfoil under dynamic stall conditions. However, the principle of operation of these devices is still unclear. Therefore static wind and water tunnel experiments as well as CFD simulations have been conducted on a rotary aircraft wing profile OA209. A POD analysis applied to the vector fields generated by PIV measurements showed that the vortex generators break larger flow structures...

  19. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  20. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.