WorldWideScience

Sample records for modeling edge effects

  1. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    Science.gov (United States)

    Takizuka, T.

    2017-03-01

    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  2. Edge effect modeling and experiments on active lap processing.

    Science.gov (United States)

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  3. Tasting edge effects

    CERN Document Server

    Bocquet, L

    2006-01-01

    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  4. Tasting edge effects

    Science.gov (United States)

    Bocquet, Lydéric

    2007-02-01

    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  5. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  6. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  7. Island-dynamics model for mound formation: effect of a step-edge barrier.

    Science.gov (United States)

    Papac, Joe; Margetis, Dionisios; Gibou, Frederic; Ratsch, Christian

    2014-08-01

    We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.

  8. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    Science.gov (United States)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  9. Modelling the cutting edge radius size effect for force prediction in micro milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...

  10. Casimir edge effects

    CERN Document Server

    Gies, H; Gies, Holger; Klingmuller, Klaus

    2006-01-01

    We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

  11. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    Science.gov (United States)

    Wolff, T.; Seume, J. R.

    2016-09-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.

  12. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large portio

  13. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    Science.gov (United States)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  14. EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES

    Directory of Open Access Journals (Sweden)

    A. I. Podosinnikov

    2015-03-01

    Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.

  15. On the Cutting Edge Professional Development Program - An effective model built from years of experience

    Science.gov (United States)

    Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.

    2015-12-01

    The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene

  16. Seasonality and edge effect determine herbivory risk according to different plant association models.

    Science.gov (United States)

    Miranda, M; Díaz, L; Sicilia, M; Cristóbal, I; Cassinello, J

    2011-01-01

    We report evidence of hierarchical resource selection by large herbivores and plant neighbouring effects in a Mediterranean ecosystem. Plant palatability was assessed according to herbivore foraging decisions. We hypothesize that under natural conditions large herbivores follow a hierarchical foraging pattern, starting at the landscape scale, and then selecting patches and individual plants. A between- and within-patch selection study was carried out in an area formed by scrubland and pasture patches, connected by habitat edges. With regard to between-patch selection, quality-dependent resource selection is reported: herbivores mainly consume pasture in spring and woody plants in winter. Within-patch selection was also observed in scrub habitats, influenced by season, relative patch palatability and edge effect. We defined a Proximity Index (PI) between palatable and unpalatable plants, which allowed verification of neighbouring effects. In spring, when the preferred food resource (i.e. herbs) is abundant, we observed that in habitat edges large herbivores basically select the relatively scarce palatable shrubs, whereas inside scrubland, unpalatable shrub consumption was related to increasing PI. In winter, a very different picture was observed; there was low consumption of palatable species surrounded by unpalatable species in habitat edges, where the latter were more abundant. These outcomes could be explained though different plant associations described in the literature. We conclude that optimal foraging theory provides a conceptual framework behind the observed interactions between plants and large herbivores in Mediterranean ecosystems.

  17. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    Science.gov (United States)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  18. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  19. A direct heating model to overcome the edge effect in microplates.

    Science.gov (United States)

    Lau, Chun Yat; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah

    2015-01-01

    Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of direct bottom heating of standard microplates, considerable heat transfer via conduction from the side walls was found to be responsible for lower temperatures in the liquid in wells close to the edge. Applying a two temperature heating mode, 304 K at the side compared to 310 K at the bottom, allowed for a more uniform temperature distribution. Transparency microplates were found to inherently possess immunity to the edge effect problem due to the presence of air between the liquid and solid wall.

  20. A model for managing edge effects in harvest scheduling using spatial optimization

    Science.gov (United States)

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  1. Outlier Edge Detection Using Random Graph Generation Models and Applications

    CERN Document Server

    Zhang, Honglei; Gabbouj, Moncef

    2016-01-01

    Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose outlier edge detection algorithms using two random graph generation models. We found that the edge-ego-network, which can be defined as the induced graph that contains two end nodes of an edge, their neighboring nodes and the edges that link these nodes, contains critical information to detect outlier edges. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Prefe...

  2. Dissecting new physics models through kinematic edges

    Science.gov (United States)

    Iyer, Abhishek M.; Maitra, Ushoshi

    2017-02-01

    Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.

  3. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  4. Edge effects and delamination failures

    Science.gov (United States)

    Herakovich, C. T.

    1989-01-01

    The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.

  5. Edge effect in beam monitors

    CERN Document Server

    Cuperus, J H

    1977-01-01

    Quite often, particle-beam monitors have not the same cross-section as the beam pipe or vacuum chamber in which they are mounted. In that case, the electromagnetic field of the beam is distorted in the vicinity of the edges of the monitor. This field, at the junction of two rectangular beam pipes of different dimensions, is computed for a beam with constant charge along its length. Solutions which are less accurate but easier to apply are obtained with a first order approximation. The results are extended to intensity-modulated beams and circular or elliptical cross-sections. The errors, due to the edge effect, for the electrostatic pickup and the wall-current monitor are computed. The final formulas are simple and easy to apply to practical cases. (6 refs).

  6. Edge exchangeable models for network data

    CERN Document Server

    Crane, Harry

    2016-01-01

    Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...

  7. Improved Trailing Edge Noise Model

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model. In this section, the original TNO-Blake model is modified in order to account for the effects of a pressure gradient through turbulence anisotropy. The model results are compared with measurements...

  8. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  9. Understanding and preventing the edge effect.

    Science.gov (United States)

    Cheneau, Edouard; Wolfram, Roswitha; Leborgne, Laurent; Waksman, Ron

    2003-02-01

    Edge stenosis, combining neointimal proliferation and negative remodeling, remains a serious limitation of vascular brachytherapy. This review comprehensively presents terminology, definitions, mechanisms, and treatment strategies to better understand the complexities of edge narrowing. The major contributors to this phenomenon are known; understanding the practical solutions will enable us to further minimize the problem of the edge effect.

  10. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    Science.gov (United States)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  11. [Edge effect and its impacts on forest ecosystem: a review].

    Science.gov (United States)

    Tian, Chao; Yang, Xin-bing; Liu, Yang

    2011-08-01

    Edge effect is an important concept in ecology and biological conservation, playing an important role in the study of ecological processes such as energy and material flow at ecosystem scale and landscape scale. This paper expatiated the connotation, features, quantitative evaluation (basis of quantitative analysis, strength, impact zone, and models, etc.), and applied aspects of edge effect, summarized the impacts of edge effect on forest ecosystem, analyzed the deficiencies in the study of edge effect, and prospected related research directions, aimed to provide references for forest and protected area management.

  12. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  13. [Gap edge effect of Castanopsis kawakamii community].

    Science.gov (United States)

    Liu, Jinfu; Hong, Wei; Li, Junqing; Lin, Rongfu

    2003-09-01

    This paper reported the characters of gap edge effect of Castanopsis kawakamii community in Sanming, Fujian Province. The species diversity, ecological dominance, and edge effect strength of 38 forest gaps with different development stages in different stands of Castanopsis kawakamii community were measured, and Shannon-Wiener index, Simpson index, and index of edge effect strength were calculated. The results showed that the index of the gap edge effect of Castanopsis kawakamii community was about 0.7-1.3 (according to the species diversity index) and 0.3-1.8 (according to the ecological dominance index). The gap edge effect had the trend of increasing the species diversity of forest communities. The index of gap effect was affected by the size and development stage of the gap and the related forest type. The study provided a theoretical basis for the maintenance of species diversity and the forest management in Castanopsis kawakamii community.

  14. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; B. Tóthmérész

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  15. 边缘效应的去除函数模型及实验%Removal function model and experiment of edge effect

    Institute of Scientific and Technical Information of China (English)

    邓伟杰; 张峰; 郑立功

    2011-01-01

    计算机控制光学表面技术(CCOS)是加工光学非球面的一项重要技术.在计算机控制小磨头抛光技术中,边缘效应严重制约了CCOS技术的加工精度和加工效率,是亟待解决的技术难点之一.获得磨头在加工工件边缘时的定量去除模型,并通过驻留时间算法进行补偿,是解决该问题的重要途径.采用边缘压强阶跃分布模型,并通过理论推导,得出边缘效应下的去除函数计算模型.去除函数实验的结果表明,该边缘去除函数计算模型的数值绝对误差在5%内,边缘去除函数模型与实际加工吻合很好,可以用于指导实际抛光过程.%Computer controlled optical surfacing (CCOS) is an important technology for manufacturing optical aspheric mirrors. Edge effect is one of the key problems in CCOS and restricts the fabrication efficiency and accuracy in practice seriously. It is an important way to solve edge effect by obtaining the quantitative removal model when grinding head is fabricating the edge of workpiece and compensating it with dwell time algorithm. Skin model is used to describe the pressure distribution in edge region. The calculation model of edge removal function was derived from skin model theoretically. In order to validate the edge removal function model, the removal function experiments were completed with the practical parameters. The experimental results show that the absolute value error between the theoretical model and the experimental results is less than 5%, and the calculation model of edge removal function could be used to solve edge effect in the practical fabrication.

  16. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    Science.gov (United States)

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  17. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  18. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  19. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian;

    2009-01-01

    , lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  20. [Effect of medicines for activating blood and reinforcing Qi on angiogenesis in infarcted myocardium edge area of acute myocardial infarction model in rats].

    Science.gov (United States)

    Zang, Wen-Hua; Yin, Shen-Hua; Tang, De-Cai; Li, Bing-Bing

    2014-03-01

    To study the effect of medicines for activating blood and reinforcing Qi on the number of new micro-vessels and the protein expressions of VEGF and bFGF in the infarcted myocardium edge area of acute myocardial infarction (AMI) model in rats. The AMI model of rats was established. After the successful model establishment, rats were randomly divided into the sham-operated group, the model group, the Danshen-Huangqi (1 : 2) group, the Danshen-Huangqi (1 : 1) group, the Chuanxiong-Huangqi (1 : 2) group, the Danshen group, the Chuanxiong group, the Chishao group and the Shexiang Baoxin pill group, with five rats in each group. Rats in each medicated group were orally administered with drugs as per 13.5 g x kg(-1) x d(-1) once everyday for three weeks. The immunohistochemical SP method was adopted to detect the expression of vWF in myocardial tissues, and count the number of micro-vessels (MVC). The protein expression of VEGF and bFGF in myocardial tissues were determined by Western blot. The new micro-vessels stained by vWF factor could be found in the infarcted myocardium edge area of the sham-operated group, the model group and all of medicated groups. The sham-operated group show unobvious new micro-vessels in myocardial tissues. A small amount of new micro-vessels could be seen in the infarcted myocardium edge area of the model group. Whereas a larger number of micro-vessels could be seen in the infarcted myocardium edge area of all of medicated groups. The differences between the sham-operated group and the model group had statistical significance (P effect in promoting angiogenesis. Their mechanism for promoting angiogenesis may be related to the improvement of the protein expressions of VEGF and bFGF, so as to increase the contents of VEGF and bFGF and promote the angiogenesis of new vessels.

  1. Edge effect in fluid jet polishing.

    Science.gov (United States)

    Guo, Peiji; Fang, Hui; Yu, Jingchi

    2006-09-10

    The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.

  2. Edge effect in ohmic contacts on high-resistivity semiconductors

    Science.gov (United States)

    Ruzin, Arie

    2016-01-01

    Current increase due to edge effect in ohmic contacts was calculated by finite-element software in three-dimensional devices. The emphasis in this study is on semi-intrinsic (SI) and compensated high resistivity semiconductors. It was found that the enhanced electric field around the contact edges may cause about twofold increase in the total contact current. For contact radii larger than the device thickness and nano scale contacts the impact is considerably reduced. In nanoscale contacts the edge effect does not control the electric field under the entire contact, but rather decreases. The introduction of velocity saturation model has a limited impact, and only in compensated semiconductors.

  3. Effects of Leading-Edge Radius on Aerodynamic Characteristics of 50º Delta Wings

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2010-01-01

    The study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model having a sharp leading edge and the other two having a semi-circular leading edge of different radius. The vortical flow on and off the surface of the models

  4. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  5. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    Science.gov (United States)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  6. Mechanisms and methods to resolve edge effect.

    Science.gov (United States)

    Kuchulakanti, Pramod; Lew, Robert; Waksman, Ron

    2003-06-01

    Vascular brachytherapy (VBT) has established itself as a viable modality to treat in-stent restenosis (ISR). The problems associated with VBT have been understood well and remedied. Late thrombosis has been overcome to a great extent by prolonged antiplatelet therapy. Edge effect is another important limitation of VBT and is due to inadequate radiation coverage of the edges following VBT. It may be overcome by confining injury to the lesion segment and extending the radiation sources by a few millimeters from the injured segment.

  7. Free edge effects in laminated composites

    Science.gov (United States)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  8. Community Detection Using Multilayer Edge Mixture Model

    CERN Document Server

    Zhang, Han; Lai, Jian-Huang; Yu, Philip S

    2016-01-01

    A wide range of complex systems can be modeled as networks with corresponding constraints on the edges and nodes, which have been extensively studied in recent years. Nowadays, with the progress of information technology, systems that contain the information collected from multiple perspectives have been generated. The conventional models designed for single perspective networks fail to depict the diverse topological properties of such systems, so multilayer network models aiming at describing the structure of these networks emerge. As a major concern in network science, decomposing the networks into communities, which usually refers to closely interconnected node groups, extracts valuable information about the structure and interactions of the network. Unlike the contention of dozens of models and methods in conventional single-layer networks, methods aiming at discovering the communities in the multilayer networks are still limited. In order to help explore the community structure in multilayer networks, we...

  9. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  10. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  11. The effects of leading edge roughness on dynamic stall

    Science.gov (United States)

    Hrynuk, John

    2016-11-01

    Dynamic stall is a fundamental flow phenomenon that is commonly observed for insect flight and rotorcraft. Under certain conditions a leading edge vortex forms generating large but temporary lift forces. Historically, computations studying dynamic stall on airfoil shapes have struggled to predict this vortex formation time and separation point. Reduced order models and CFD have performed well when experiments have been performed to develop separation models, but this has limited the development of robust design tools. The current study looks at the effect of leading edge surface roughness on the formation of the Dynamic Stall Vortex (DSV). Roughness elements were applied to the leading edge of a NACA 0012 airfoil and PIV data of the vortex formation process was recorded. Measurements were taken at a Reynolds number of Re = 12,000 and baseline smooth NACA 0012 data was also recorded for comparison. Surface roughness elements, below the typical scale modeled by CFD, are shown to change DSV formation angle and location.

  12. Edge effect in ohmic contacts on high-resistivity semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, Arie

    2016-01-11

    Current increase due to edge effect in ohmic contacts was calculated by finite-element software in three-dimensional devices. The emphasis in this study is on semi-intrinsic (SI) and compensated high resistivity semiconductors. It was found that the enhanced electric field around the contact edges may cause about twofold increase in the total contact current. For contact radii larger than the device thickness and nano scale contacts the impact is considerably reduced. In nanoscale contacts the edge effect does not control the electric field under the entire contact, but rather decreases. The introduction of velocity saturation model has a limited impact, and only in compensated semiconductors. - Highlights: • Ohmic contacts were modeled on semi-intrinsic and compensated semiconductors. • Edge-effect increases the contact current by a factor of ~2 for intermediate size contacts. • In larger and smaller contacts the current increase is smaller. • In smaller contacts the E-field edge-peak decreases. • With velocity saturation the current increase is less pronounced.

  13. Investigation of Edge Effects in Thermoacoustic Couple Measurements

    Science.gov (United States)

    1990-12-01

    22 Ill. RESULTS AND DISCUSSION -- 24 A. EDGE EFFECT ........................................................................................... 24...investigate the extent to which irregularities in the temperature difference extend into the plate interior. A. EDGE EFFECT We constructed a TAC (TAC#1) with

  14. Modeling the Retreat Processes of Salt Marsh Edge

    Science.gov (United States)

    Bendoni, M.; Cappietti, L.; Francalanci, S.; Rinaldi, M.; Solari, L.

    2012-12-01

    Edge erosion of salt marshes due to surface waves and tide forcing is likely the chief mechanism that models marsh boundaries and by which salt marshes in worldwide coastal areas are being lost. In order to address this problem, experimental observations in a laboratory flume and field measurements in the lagoon of Venice were conducted to understand the main processes controlling marsh edge retreat, with a focus on the erosion mechanisms caused by the action of wind and tidal waves. A physical model reproducing a salt marsh bank was built inside a long wave current flume where random surface waves were generated according to a given wave spectrum. The physical model was constructed with the original soil and plants taken in a marsh of the lagoon of Venice, while the wave climate was reproduced according to field measurements. The experiments were conducted in the case of both unvegetated and vegetated bank: a first set of experiments was carried out considering only tidal wave; in the second, bank models experienced the effect of wind waves superimposed to the tide. The following data were collected during the experiments: wave climate interacting with the bank, flow velocity measurements in the eroded quasi-equilibrium configuration, pressure distribution along bank edge and internal pressure fluctuation and damping due to wave impact. Bank geometry profile and bottom topography at different times have also been collected to characterize the erosion rate with time and the evolution of bank retreat. Subsequent to laboratory activity wave climate was measured close to a marsh edge in the Lagoon of Venice with the aim at identifying wave forcing on the bank surface during a moderate wind event and comparing results with the wave stress experienced by bank models in laboratory tests. Several pressure transducers installed close to the bed were used to collect wave height and wave direction with respect to the edge of the marsh. Laboratory data and field measurement

  15. The effect of defocus on edge contrast sensitivity

    NARCIS (Netherlands)

    Jansonius, NM; Kooijman, AC

    The effect of optical blur (defocus) on edge contrast sensitivity was studied. Edge contrast sensitivity detoriates with fairly small amounts of blur (similar to 0.5 D) and is roughly reduced by half for each dioptre of blur. The effect of blur on edge contrast sensitivity equals the effect of blur

  16. A Cortical Edge-integration Model of Object-Based Lightness Computation that Explains Effects of Spatial Context and Individual Differences

    Directory of Open Access Journals (Sweden)

    Michael E Rudd

    2014-08-01

    Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  17. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    Science.gov (United States)

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  18. The "edge effect" with patch test materials.

    Science.gov (United States)

    Fyad, A; Masmoudi, M L; Lachapelle, J M

    1987-03-01

    A positive "edge effect", i.e., the accumulation on the skin of a chemical solution (such as fluorescein 0.01% in a 50/50 water-ethanol solution) at the periphery of the patch test sites has been demonstrated. It occurs with different test materials (Finn Chamber; Silver Patch Test; Patch Test Chamber). Practical implications are discussed: this observation could be important when discussing results of laboratory investigations. In clinical practice, it could explain the occurrence of "ring-shaped" positive allergic patch test reactions to chemicals used in solution, i.e., Kathon CG or hydrocortisone.

  19. Research on reducing the edge effect in magnetorheological finishing.

    Science.gov (United States)

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  20. Edge effects in finite elongated carbon nanotubes

    CERN Document Server

    Hod, O; Scuseria, G E; Hod, Oded; Peralta, Juan E.; Scuseria, Gustavo E.

    2006-01-01

    The importance of finite-size effects for the electronic structure of long zigzag and armchair carbon nanotubes is studied. We analyze the electronic structure of capped (6,6), (8,0), and (9,0) single walled carbon nanotubes as a function of their length up to 60 nm, using a divide and conquer density functional theory approach. For the metallic nanotubes studied, most of the physical features appearing in the density of states of an infinite carbon nanotube are recovered at a length of 40 nm. The (8,0) semi-conducting nanotube studied exhibits pronounced edge effects within the energy gap that scale as the inverse of the length of the nanotube. As a result, the energy gap reduces from the value of ~1 eV calculated for the periodic system to a value of ~0.25 eV calculated for a capped 62 nm long CNT. These edge effects are expected to become negligible only at tube lengths exceeding 6 micrometers. Our results indicate that careful tailoring of the nature of the system and its capping units should be applied w...

  1. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D.-H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  2. 计及边缘效应的交流混合磁轴承建模%Modeling for AC Hybrid Magnetic Bearings Considering Edge Effect

    Institute of Scientific and Technical Information of China (English)

    朱熀秋; 丁书玲

    2016-01-01

    在混合磁轴承(hybrid magnetic bearing,HMB)建模过程中,通常忽略涡流效应、边缘效应和漏磁等因素,使得悬浮力数学模型精度降低。为了提高模型精度,提出了计及磁极端部边缘效应的混合磁轴承改进模型。该文以交流径向混合磁轴承为例分析其工作原理和磁通分布特性,采用磁场分割法分别求解不同边缘磁通区域的磁导,通过叠加原则获得单个磁极下的总磁导,根据等效磁路法建立径向悬浮力的精确数学模型。实验结果表明:改进前模型计算所得悬浮力与实验所得悬浮力误差接近10%,改进后的数学模型所得悬浮力与实验所得悬浮力误差小于5%。比较结果证明了计及边缘效应能有效提高悬浮力数学模型的精度。%In modeling proceeding of hybrid magnetic bearings (HMBs), factors such as the eddy current effect, the edge effect and the flux leakage are commonly ignored, which decreases the precision of the mathematical model of suspension forces. In order to improve the precision, an improved mathematical model of hybrid magnetic bearings considering the edge effect was established. An AC hybrid magnetic bearing was taken as an example, its working principle and features of flux distribution were analyzed. Then, the magnetic field division method was employed to calculate the permeances of different regions located around the end portion of the pole. The permeances were added by the superposition principle, and the total permeance of the single pole was obtained. The accurate model was obtained by using the equivalent magnetic circuit method. The experimental results show that the error between original model values and experimental values is about 10%, the error between improved model values and experimental values is less than 5%. The results of the comparison have verified that the consideration of the edge effect can effectively improve the precision of the mathematical model

  3. Trailing edge noise model applied to wind turbine airfoils

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model...

  4. SAR-PC: Edge Detection in SAR Images via an Advanced Phase Congruency Model

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-02-01

    Full Text Available Edge detection in Synthetic Aperture Radar (SAR images has been a challenging task due to the speckle noise. Ratio-based edge detectors are robust operators for SAR images that provide constant false alarm rates, but they are only optimal for step edges. Edge detectors developed by the phase congruency model provide the identification of different types of edge features, but they suffer from speckle noise. By combining the advantages of the two edge detectors, we propose a SAR phase congruency detector (SAR-PC. Firstly, an improved local energy model for SAR images is obtained by replacing the convolution of raw image and the quadrature filters by the ratio responses. Secondly, a new noise level is estimated for the multiplicative noise. Substituting the SAR local energy and the new noise level into the phase congruency model, SAR-PC is derived. Edge response corresponds to the max moment of SAR-PC. We compare the proposed detector with the ratio-based edge detectors and the phase congruency edge detectors. Receiver Operating Characteristic (ROC curves and visual effects are used to evaluate the performance. Experimental results of simulated images and real-world images show that the proposed edge detector is robust to speckle noise and it provides a consecutive edge response.

  5. Can a partial volume edge effect reduction algorithm improve the repeatability of subject-specific finite element models of femurs obtained from CT data?

    Science.gov (United States)

    Peleg, Eran; Herblum, Ryan; Beek, Maarten; Joskowicz, Leo; Liebergall, Meir; Mosheiff, Rami; Whyne, Cari

    2014-01-01

    The reliability of patient-specific finite element (FE) modelling is dependent on the ability to provide repeatable analyses. Differences of inter-operator generated grids can produce variability in strain and stress readings at a desired location, which are magnified at the surface of the model as a result of the partial volume edge effects (PVEEs). In this study, a new approach is introduced based on an in-house developed algorithm which adjusts the location of the model's surface nodes to a consistent predefined threshold Hounsfield unit value. Three cadaveric human femora specimens were CT scanned, and surface models were created after a semi-automatic segmentation by three different experienced operators. A FE analysis was conducted for each model, with and without applying the surface-adjustment algorithm (a total of 18 models), implementing identical boundary conditions. Maximum principal strain and stress and spatial coordinates were probed at six equivalent surface nodes from the six generated models for each of the three specimens at locations commonly utilised for experimental strain guage measurement validation. A Wilcoxon signed-ranks test was conducted to determine inter-operator variability and the impact of the PVEE-adjustment algorithm. The average inter-operator difference in stress values was significantly reduced after applying the adjustment algorithm (before: 3.32 ± 4.35 MPa, after: 1.47 ± 1.77 MPa, p = 0.025). Strain values were found to be less sensitive to inter-operative variability (p = 0.286). In summary, the new approach as presented in this study may provide a means to improve the repeatability of subject-specific FE models of bone obtained from CT data.

  6. Habitat edges have weak effects on duck nest survival at local spatial scales

    Science.gov (United States)

    Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.

    2015-01-01

    Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.

  7. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  8. The influence of edge effects on the determination of the doping profile of silicon pad diodes

    CERN Document Server

    Hufschmidt, M; Garutti, E; Klanner, R; Kopsalis, I; Schwandt, J

    2016-01-01

    Edge effects for square p+n pad diodes with guard rings, fabricated on high-ohmic silicon, are investigated. Using capacitance-voltage measurements of two pad diodes with different areas, the planar and the edge contributions to the diode capacitance are determined separately. It is shown that the doping concentration derived from the capacitance-voltage measurements with and without edge corrections differ significantly. After the edge correction, the bulk doping of the pad diodes is found to be uniform within +/- 1.5%. The voltage dependence of the edge capacitance is compared to the predictions of two simple models.

  9. Effect of forest edges on deposition of radioactive aerosols

    Science.gov (United States)

    Ould-Dada, Z.; Copplestone, D.; Toal, M.; Shaw, G.

    The possible enhancement of aerosol deposition at forest edges was investigated in a wind tunnel and in the field. The wind tunnel study was carried out using 0.82 μm mass median aerodynamic diameter uranium particles and a composite canopy of rye grass and spruce saplings. The field study was undertaken at a coniferous woodland near to BNFL Sellafield, Cumbria, UK. Two transects were set through the woodland to determine the influence of the forest edge on atmospheric deposition of radionuclides released under authorisation from the Sellafield site. Results from the wind tunnel study showed that the deposition flux of uranium particles decreased with distance downwind from the grass-tree edge towards the interior of the canopy. The deposition flux at the edge was maximal at about 4×10 -7 μg of U cm -2 s -1. This was 3 times higher than that observed over grass where a constant flux of about 1.32×10 -7 μg of U cm -2 s -1 occurred. Results from the field study showed a clear influence of the forest edge on the atmospheric deposition of 241Am and 137Cs. Activity depositions of around 4750 and 230 Bqm -2 for 137Cs and 241Am, respectively, were measured in front of the woodland. Activity deposition inside the forest edge, however, rose to levels of between 20,200 and 50,900 Bq m -2 and 1100 and 3200 Bq m -2 for 137Cs and 241Am, respectively, depending upon the transect. Similar activity concentrations were measured in the pasture to the front and behind Lady Wood. Results from these studies corroborate those obtained from various studies on air pollutants including radionuclides. This underlines the importance of deposition at the edge of forests and its contribution to the overall canopy deposition. The edge effect is therefore an important factor that should be considered in the assessment of fallout impact, whether this is to be made by either direct sampling or by modelling.

  10. Free-edge effects in laminates under extension, bending and twisting. II - Sublaminate/layer modeling and analysis

    Science.gov (United States)

    Yin, Wan-Lee

    1992-01-01

    The stress-function-based variational method of Yin (1991) is extended and modified into a combined layer/sublaminate approach applicable to a laminated strip composed of a large number of differently orientated, anisotropic elastic plies. Lekhnitskii's (1963) stress functions are introduced into two interior layers adjacent to a particular interface. The remaining layers are grouped into an upper sublaminate and a lower sublaminate. The stress functions are expanded in truncated power series of the thickness coordinate, and the differential equations governing the coefficient functions are derived by using the complementary virtual work principle. The layer/sublaminate approach limits the dimension of the eigenvalue problem to a fixed number irrespective of the number of layers in the sublaminate, so that reasonably accurate solutions of the interlaminar stresses can be computed with extreme ease. For symmetric, four-layer, angle-ply and cross-ply laminates, a comparison of the previous analysis results based on the pure layer model and new results based on two different layer/sublaminate models indicates reasonable over-all agreement in the interlaminar stresses and superior agreement in the total peeling and shearing force.

  11. EDgE multi-model hydro-meteorological seasonal hindcast experiments over Europe

    Science.gov (United States)

    Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Oldrich; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel

    2017-04-01

    Extreme hydrometeorological events (e.g., floods, droughts and heat waves) caused serious damage to society and infrastructures over Europe during the past decades. Developing a seamless and skillful operational seasonal forecasting system of these extreme events is therefore a key tool for short-term decision making at local and regional scales. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the skill of a newly created large multi-model hydro-meteorological ensemble for predicting extreme events over the Pan-EU domain at a higher resolution 5×5 km2. Two state-of-the-art seasonal prediction systems were chosen for this project. Two models from the North American MultiModel ensemble (NMME) with 22 realizations, and two models provided by the ECMWF with 30 realizations. All models provide daily forcings (P, Ta, Tmin, Tmax) of the the Pan-EU at 1°. Downscaling has been carried out with the MTCLIM algorithm (Bohn et al. 2013) and external drift Kriging using elevation as drift to induce orographic effects. In this project, four high-resolution seamless hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the common hindcast period of 1993-2012 resulting in an ensemble size of 208 realizations. Key indicators are focussing on six terrestrial Essential Climate Variables (tECVs): river runoff, soil moisture, groundwater recharge, precipitation, potential evapotranspiration, and snow water equivalent. Impact Indicators have been co-designed with stakeholders in Norway (hydro-power), UK (water supply), and Spain (river basin authority) to provide an improved information for decision making. The Indicators encompass diverse information such as the occurrence of high and low streamflow percentiles (floods, and hydrological drought) and lower percentiles of top soil moisture (agricultural drought) among others. Preliminary results evaluated at study sites in Norway

  12. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  13. Edge magnetism of Heisenberg model on honeycomb lattice.

    Science.gov (United States)

    Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau

    2017-03-07

    Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.

  14. Contacts and Edge State Equilibration in the Fractional Quantum Hall Effect

    OpenAIRE

    Kane, C. L.; Fisher, Matthew P. A.

    1995-01-01

    We develop a simple kinetic equation description of edge state dynamics in the fractional quantum Hall effect (FQHE), which allows us to examine in detail equilibration processes between multiple edge modes. As in the integer quantum Hall effect (IQHE), inter-mode equilibration is a prerequisite for quantization of the Hall conductance. Two sources for such equilibration are considered: Edge impurity scattering and equilibration by the electrical contacts. Several specific models for electric...

  15. Edge effect on resistance scaling rules in graphene nanostructures.

    Science.gov (United States)

    Xu, Guangyu; Torres, Carlos M; Tang, Jianshi; Bai, Jingwei; Song, Emil B; Huang, Yu; Duan, Xiangfeng; Zhang, Yuegang; Wang, Kang L

    2011-03-09

    We report an experimental investigation of the edge effect on the room-temperature transport in graphene nanoribbon and graphene sheet (both single-layer and bilayer). By measuring the resistance scaling behaviors at both low- and high-carrier densities, we show that the transport of single-layer nanoribbons lies in a strong localization regime, which can be attributed to an edge effect. We find that this edge effect can be weakened by enlarging the width, decreasing the carrier densities, or adding an extra layer. From graphene nanoribbon to graphene sheet, the data show a dimensional crossover of the transport regimes possibly due to the drastic change of the edge effect.

  16. Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Yaser M. Banadaki

    2016-03-01

    Full Text Available In this paper, we present a physics-based analytical model of GNR FET, which allows for the evaluation of GNR FET performance including the effects of line-edge roughness as its practical specific non-ideality. The line-edge roughness is modeled in edge-enhanced band-to-band-tunneling and localization regimes, and then verified for various roughness amplitudes. Corresponding to these two regimes, the off-current is initially increased, then decreased; while, on the other hand, the on-current is continuously decreased by increasing the roughness amplitude.

  17. Edges and Diffractive Effects in Casimir Energies

    CERN Document Server

    Kabat, Daniel; Nair, V P

    2010-01-01

    The prototypical Casimir effect arises when a scalar field is confined between parallel Dirichlet boundaries. We study corrections to this when the boundaries themselves have apertures and edges. We consider several geometries: a single plate with a slit in it, perpendicular plates separated by a gap, and two parallel plates, one of which has a long slit of large width, related to the case of one plate being semi-infinite. We develop a general formalism for studying such problems, based on the wavefunctional for the field in the gap between the plates. This formalism leads to a lower dimensional theory defined on the open regions of the plates or boundaries. The Casimir energy is then given in terms of the determinant of the nonlocal differential operator which defines the lower dimensional theory. We develop perturbative methods for computing these determinants. Our results are in good agreement with known results based on Monte Carlo simulations. The method is well suited to isolating the diffractive contri...

  18. Edge effect of strained bilayer nanofilms for tunable multistability and actuation.

    Science.gov (United States)

    Hu, N; Han, X; Huang, S; Grover, H M; Yu, X; Zhang, L N; Trase, I; Zhang, J X J; Zhang, L; Dong, L X; Chen, Z

    2017-03-02

    We employed both theoretical and computational models supported by experiments to study the multistable behavior of an edge-effect driven Si/Cr micro-claw. Our study showed that individual micro-claws demonstrate either monostability or bistability as the magnitude of the edge effect is varied.

  19. Josephson effects in an alternating current biased transition edge sensor

    CERN Document Server

    Gottardi, Luciano; Akamatsu, Hiroki; van der Kuur, Jan; Bruijn, Marcel P; Hartog, Roland H den; Hijmering, Richard; Khosropanah, Pourya; Lambert, Colin; van der Linden, Anton J; Ridder, Marcel L; Suzuki, Toyo; Gao, Jan R

    2016-01-01

    We report the experimental evidence of the ac Josephson effect in a transition edge sensor (TES) operating in a frequency domain multiplexer and biased by ac voltage at MHz frequencies. The effect is observed by measuring the non-linear impedance of the sensor. The TES is treated as a weakly linked superconducting system and within the resistively shunted junction model framework. We provide a full theoretical explanation of the results by finding the analytic solution of the non-inertial Langevian equation of the system and calculating the non-linear response of the detector to a large ac bias current in the presence of noise.

  20. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  1. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  2. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    Science.gov (United States)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  3. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  4. Crystallography of Zr poisoning of Al-Ti-B grain refinement using edge-to-edge matching model

    Institute of Scientific and Technical Information of China (English)

    黄元春; 肖政兵; 刘宇

    2013-01-01

    The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.

  5. Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-02-01

    To explore the edge effect on intrasplat cracking of thermally sprayed ceramic splats, crack patterns of splats were experimentally observed and investigated through mechanical analysis. Both the polycrystalline splats and single-crystal splats showed obvious edge effects, i.e., preferential cracking orientation and differences in domain size between center fragments and edge fragments. In addition, substrate/interface delamination on the periphery was clearly observed for single-crystal splats. Mechanical analysis of edge effect was also carried out, and it was found that both singular normal stress in the substrate and huge peeling stress and shear stress at the interface were induced. Moreover, effective relief of tensile stress in splats is discussed. The good correspondence between experimental observations and mechanical analysis is elaborated. The edge effect can be used to tailor the pattern morphology and shed further light on coating structure design and optimization.

  6. Improvement of airfoil trailing edge bluntness noise model

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær;

    2016-01-01

    , Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...... that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated...... with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model....

  7. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  8. Cascade trailing-edge noise modeling using a mode-matching technique and the edge-dipole theory

    Science.gov (United States)

    Roger, Michel; François, Benjamin; Moreau, Stéphane

    2016-11-01

    An original analytical approach is proposed to model the broadband trailing-edge noise produced by high-solidity outlet guide vanes in an axial turbomachine. The model is formulated in the frequency domain and first in two dimensions for a preliminary assessment of the method. In a first step the trailing-edge noise sources of a single vane are shown to be equivalent to the onset of a so-called edge dipole, the direct field of which is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a second step the diffraction of each plane-wave mode is derived considering the cascade as an array of bifurcated waveguides and using a mode-matching technique. The cascade response is finally synthesized by summing the diffracted fields of all cut-on modes to yield upstream and downstream sound power spectral densities. The obtained spectral shapes are physically consistent and the present results show that upstream radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. Even though the trailing-edge noise sources are not vane-to-vane correlated their radiation is strongly determined by a cascade effect that consequently must be accounted for. The interest of the approach is that it can be extended to a three-dimensional annular configuration without resorting to a strip theory approach. As such it is a promising and versatile alternative to previously published methods.

  9. Improvement of airfoil trailing edge bluntness noise model

    Directory of Open Access Journals (Sweden)

    Wei Jun Zhu

    2016-02-01

    Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.

  10. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  11. Improvement of TNO type trailing edge noise models

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge

    2016-01-01

    The paper describes an improvement of the so-called TNO model to predict the noise emission from aerofoil sections due to the interaction of the boundary layer turbulence with the trailing edge. The surface pressure field close to the trailing edge acts as source of sound in the TNO model....... It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...... the turbulence cross correlation terms. The predictions of the new model are in better agreement with measurements of the surface pressure and far field sound spectra. The computational cost of the new model is only slightly higher than the one of the TNO model, because we derived an analytical solution...

  12. Effect of extended confinement on the structure of edge channels in the quantum anomalous Hall effect

    Science.gov (United States)

    Yue, Z.; Raikh, M. E.

    2016-09-01

    The Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side of the ferromagnetic transition. We study analytically the effect of an extended confinement on the structure of the edge modes. We employ the simplest model of the extended confinement in the form of a potential step next to the hard wall. It is shown that, unlike the conventional quantum Hall effect, where all edge channels are chiral, in the QAH effect, a complex structure of the boundary leads to nonchiral edge modes which are present on both sides of the ferromagnetic transition. Wave functions of nonchiral modes are different above and below the transition: on the "topological" side, where the chiral edge mode is supported, nonchiral modes are "repelled" from the boundary; i.e., they are much less localized than on the "trivial" side. Thus, the disorder-induced scattering into these modes will boost the extension of the chiral edge mode. The prime experimental manifestation of nonchiral modes is that, by contributing to longitudinal resistance, they smear the QAH transition.

  13. Resilience of southwestern Amazon forests to anthropogenic edge effects.

    Science.gov (United States)

    Phillips, Oliver L; Rose, Sam; Mendoza, Abel Monteagudo; Vargas, Percy Núñez

    2006-12-01

    Anthropogenic edge effects can compromise the conservation value of mature tropical forests. To date most edge-effect research in Amazonia has concentrated on forests in relatively seasonal locations or with poor soils in the east of the basin. We present the first evaluation from the relatively richer soils of far western Amazonia on the extent to which mature forest biomass, diversity, and composition are affected by edges. In a southwestern Amazonian landscape we surveyed woody plant diversity, species composition, and biomass in 88x0.1 ha samples of unflooded forest that spanned a wide range in soil properties and included samples as close as 50 m and as distant as >10 km from anthropogenic edges. We applied Mantel tests, multiple regression on distance matrices, and other multivariate techniques to identify anthropogenic effects before and after accounting for soil factors and spatial autocorrelation. The distance to the nearest edge, access point, and the geographical center of the nearest community ("anthropogenic-distance effects") all had no detectable effect on tree biomass or species diversity. Anthropogenic-distance effects on tree species composition were also below the limits of detection and were negligible in comparison with natural environmental and spatial factors. Analysis of the data set's capacity to detect anthropogenic effects confirmed that the forests were not severely affected by edges, although because our study had few plots within 100 m of forest edges, our confidence in patterns in the immediate vicinity of edges is limited. It therefore appears that the conservation value of most "edge" forests in this region has not yet been compromised substantially. We caution that because this is one case study it should not be overinterpreted, but one explanation for our findings may be that western Amazonian tree species are naturally faster growing and more disturbance adapted than those farther east.

  14. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  15. Edge detection based on Hodgkin-Huxley neuron model simulation.

    Science.gov (United States)

    Yedjour, Hayat; Meftah, Boudjelal; Lézoray, Olivier; Benyettou, Abdelkader

    2017-04-03

    In this paper, we propose a spiking neural network model for edge detection in images. The proposed model is biologically inspired by the mechanisms employed by natural vision systems, more specifically by the biologically fulfilled function of simple cells of the human primary visual cortex that are selective for orientation. Several aspects are studied in this model according to three characteristics: feedforward spiking neural structure; conductance-based model of the Hodgkin-Huxley neuron and Gabor receptive fields structure. A visualized map is generated using the firing rate of neurons representing the orientation map of the visual cortex area. We have simulated the proposed model on different images. Successful computer simulation results are obtained. For comparison, we have chosen five methods for edge detection. We finally evaluate and compare the performances of our model toward contour detection using a public dataset of natural images with associated contour ground truths. Experimental results show the ability and high performance of the proposed network model.

  16. Pre-Forming Effects on AHSS Edge Cracking

    Science.gov (United States)

    Chen, Xiaoming; Chen, Ke; Smith, Lorenzo

    2011-08-01

    Edge cracking in advanced high strength steels (AHSS) is a significant failure mode in many sheet metal stamping processes. Edge pre-forming into a wave (or scallop) shape is a common technique used in conventional steels to gather material in high edge stretch regions in preparation for the subsequent edge stretch process. The pre-forms designed for mild steels do not always apply to AHSS because the properties of AHSS can differ greatly from those of conventional steels. This work has studied the effects of pre-forming on AHSS edge cracking. Experiments have been conducted to stretch pre-formed steel strips to failure. Strain distributions of pre-forms with various levels of stretch have been measured using digital image correlation (DIC) technology. Finite element analyses have been performed and compared with the experimental results. Different failure criteria have also been evaluated for use in this type of application.

  17. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  18. Reduction of wafer-edge overlay errors using advanced correction models, optimized for minimal metrology requirements

    Science.gov (United States)

    Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon

    2016-03-01

    In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.

  19. An edge element approach for dynamic micromagnetic modeling

    Science.gov (United States)

    Bottauscio, O.; Chiampi, M.; Manzin, A.

    2008-04-01

    This paper proposes a three-dimensional dynamic micromagnetic model, based on the Galerkin weak formulation, reconstructing magnetization by finite element edge vector shape functions. The demagnetizing filed is computed using a hybrid finite element boundary element method. The procedure is compared to analytical formulas and simulations performed with the NIST/OOMMF code, focusing on damping and precessional switching in magnetic thin films.

  20. Bryophyte responses to microclimatic edge effects across riparian buffers.

    Science.gov (United States)

    Stewart, Katherine J; Mallik, Azim U

    2006-08-01

    Although riparian buffers are an important aspect of forest management in the boreal forest of Canada, little is known about the habitat conditions within buffers, due in part to complex edge effects in response to both the upland clearcut and the stream. We investigated microclimatic conditions and bryophyte growth and vitality in seven locations between the stream edge and 60 m into the upland undisturbed conifer forests and at the clearcut sites with riparian buffer 30 km northwest of Thunder Bay, Ontario, Canada. We hypothesized that the growth and vitality of a pleurocarpous moss, Hylocomium splendens, and an acrocarpous moss, Polytrichum commune, would be directly related to the microclimatic gradients detected. We further hypothesized that sensitivity of the bryophytes to environmental factors will vary depending on their life form type, i.e., pleurocarpous moss will respond differently than the acrocarpous moss. Both bryophyte species were transplanted in pots and placed at 10-m intervals along 60-m transects perpendicular to the stream across the buffer and undisturbed sites. Bryophyte growth, cover, and vitality, as well as microclimatic parameters and plant cover, were measured over the summer in 2003. The riparian buffers were simultaneously affected by microclimatic gradients extending from both the clearcut edge and the riparian-upland ecotonal edge. Both bryophyte species responded to changes in the microclimatic conditions. However, vapor pressure deficit (VPD) was the most important factor influencing the growth of H. splendens, whereas for P. commune growth soil moisture was most important. Our study confirms earlier findings that interior forest bryophytes such as H. splendens can be used as indicators to monitor edge effects and biodiversity recovery following forest harvesting. We demonstrate that growth and vitality of these bryophytes reflect the prevailing near-ground microclimatic conditions at the forest edges. Abundance estimates of such

  1. Edge effect on vascular epiphytes in a subtropical Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Juliana Santos Bianchi

    2014-03-01

    Full Text Available Forest fragmentation affects biological communities by reducing habitat and increasing edges, thus reducing the effective size of the habitable zones. The subtropical atlantic Araucaria forest, typical on the southern Brazil, in some regions has been reduced to less than 1% of its original size lasting only in small isolated fragments. This study aimed to analyse the impact the edge has on vascular epiphyte ensemble in a remnant of Araucaria forest. We surveyed 40 host trees in four transects: one at the edge; and three at 15, 30 and 60 m from the edge. On each host tree we estimated the epiphyte biomass, using four size classes. We compared the transects using Jackknife estimator of absolute species number, diversity indices, non-metric multi-dimensional scaling and multi-response permutation procedure analysis. We recorded 85 epiphytes species. Absolute species richness and diversity were lower at the edge and higher at 60 m in from the edge. Shannon's evenness did not differ significantly among transects and Simpson's evenness values were inconsistent. The vascular epiphyte community under study was significantly altered by the edge.

  2. The effect of leading-edge sweep angle asymmetry on lateral aerodynamics

    Institute of Scientific and Technical Information of China (English)

    ZHAN JingXia; WANG JinJun

    2009-01-01

    Based on the results of force measurement experiment in a low speed wind tunnel,the effect of asymmetrical leading-edge sweep angle on aerodynamic load was investigated with the commonswift's wing model.The wing model was divided into three segments,i.e.,arm wing,hand wingin and hand wingout,and the roll moment produced by the variation of asymmetrical change of wing segment's leading-edge sweep angle was analyzed.

  3. The effect of leading-edge sweep angle asymmetry on lateral aerodynamics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the results of force measurement experiment in a low speed wind tunnel, the effect of asymmetrical leading-edge sweep angle on aerodynamic load was investigated with the commonswift’s wing model. The wing model was divided into three segments, i.e., arm wing, hand wingin and hand wingout, and the roll moment produced by the variation of asymmetrical change of wing segment’s leading-edge sweep angle was analyzed.

  4. Edge effects reverse facilitation by a widespread foundation species

    Science.gov (United States)

    Jurgens, Laura J.; Gaylord, Brian

    2016-11-01

    Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.

  5. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  6. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    Science.gov (United States)

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  7. Free-edge delamination - Laminate width and loading conditions effects

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1989-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progressive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  8. Free-edge delamination: Laminate width and loading conditions effects

    Science.gov (United States)

    Murthy, P. L. N.; Chamis, C. C.

    1987-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progrssive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  9. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan

    2003-09-01

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  10. Edge effect on carabid assemblages along forest-grass transects

    Directory of Open Access Journals (Sweden)

    T. Magura

    2001-02-01

    Full Text Available During 1997 and 1998, we have tested the edge-effect for carabids along oak-hornbeam forest-grass transects using pitfall traps in Hungary. Our hypothesis was that the diversity of carabids will be higher in the forest edge than in the forest interior. We also focused on the characteristic species of the habitats along the transects and the relationships between their distribution and the biotic and abiotic factors.

    Our results proved that there was a significant edge effect on the studied carabid communities: the Shannon diversity increased significantly along the transects from the forest towards the grass. The diversity of the carabids were significantly higher in the forest edge and in the grass than in the forest interior. The carabids of the forest, the forest edge and the grass are separated from each other by principal coordinates analysis and by indicator species analysis (IndVal, suggesting that each of the three habitats has a distinct species assemblages. There were 5 distinctive groups of carabids: 1 habitat generalists, 2 forest generalists, 3 species of the open area, 4 forest edge species, and 5 forest specialists. It was demonstrated by multiple regression analyses, that the relative air moisture, temperature of the ground, the cover of leaf litter, herbs, shrubs and canopy cover, abundance of the carabids’ preys are the most important factors determining the diversity and spatial pattern of carabids along the studied transects.

  11. Portal to non-MSSM models using kinematic edges

    CERN Document Server

    Iyer, Abhishek M

    2016-01-01

    A heavy Higgs like resonance ($H_1$) is a characteristic feature of many new physics scenarios beyond the Standard Model (SM). In the event of a discovery it is essential to identify the true nature of underlying theory. In this work we propose a channel, $H_1\\rightarrow t_2t$, where $t_2$ is a vector-like gauge singlet top-partner that decays into $Wb, Zt,ht$. We construct different invariant mass distributions which are characterized by the presence of kinematic edges, unique to the topology under consideration. Using these kinematic edges, the masses of the heavy resonances can be extracted upto a reasonable accuracy. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these vector-like states in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non MSSM-like scenarios.

  12. A novel edge detection in medical images by fusing of multi-model from different spatial structure clues.

    Science.gov (United States)

    Jia, Xibin; Huang, Haiyong; Wang, Runyuan

    2014-01-01

    Edge detection has been widely used in medical image processing, automatic diagnosis, et al. A novel edge detection algorithm, based on the fusion model, is proposed by combination with the two proposed models as follows: the matrix of most probable distribution of edge point and the matrix of the difference weight of each point. The most probable distribution of edge point can be obtained by analyzing the variance among 4-connected neighborhood points around each pixel under estimation in the image to label the all candidate edge points in the image. The difference weight of each point can be gotten by analyzing the brightness difference between the neighborhood point and the under-estimating pixel to represent the probability of being edge. The two matrices gotten from the different descriptions of spatial structure are fused together and derive from the final edge image with thresholding method on the fusion matrix. The experiments are performed based on the public diabetic retinopathy database DRIVE. According to the edge images obtained, the proposed method is subjectively analyzed to be complete and close to the Ground Truth image with very low noise in comparison with the Sobel, Canny and LOG edge detectors. The F1 measure, ROC measure and PFOM measure are separately adopted to make quantitative evaluation of the proposed edge detection algorithm. Experimental results show that the proposed method is able to improve the effect of edge detection on medical images.

  13. 8 π -periodic dissipationless ac Josephson effect on a quantum spin Hall edge via a quantum magnetic impurity

    Science.gov (United States)

    Hui, Hoi-Yin; Sau, Jay D.

    2017-01-01

    Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.

  14. 利用端部效应改正的LS+AR模型进行日长变化预报%Prediction of LOD Change Based on the LS and AR Model with Edge Effect Corrected

    Institute of Scientific and Technical Information of China (English)

    刘建; 王琪洁; 张昊

    2013-01-01

    Aiming to resolve the edge effect in the process of predicting length of day (LOD) by the least squares and autoregressive (LS+AR) model,we employed a time series analysis model to extrapolate LOD series and produce a new series.Then,we used the new series to solve the coefficients for the LS model.At last,we used the LS+AR model to predict the LOD series again.By comparing the accuracy of LOD prediction by edge-effect corrected LS +AR and that by LS+AR,we conclude that edge-effect corrected LS+AR can improve the prediction accuracy,especially for medium-term and long-term predictions.%针对LS+AR模型在日长变化预报过程中存在的端部效应现象,采用时间序列分析方法对日长变化的序列进行外推,形成一个新的序列,用这个新序列求得LS模型的系数,然后再用LS+ AR模型对日长变化原始序列进行预报.实验结果表明,利用端部效应改正的LS+ AR模型与LS+ AR模型相比,在日长变化的预报精度上有一定的改善,尤其在跨度为中长期时改善更为明显.

  15. Fractional quantum Hall edge: Effect of nonlinear dispersion and edge roton

    OpenAIRE

    Jolad, Shivakumar; Sen, Diptiman; Jain, Jainendra K.

    2010-01-01

    According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a s...

  16. Finite size effects on the helical edge states on the Lieb lattice

    Science.gov (United States)

    Rui, Chen; Bin, Zhou

    2016-06-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin-orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).

  17. Improved Estimation of Forestry Edge Effects Accounting for Detection Probability

    OpenAIRE

    Hocking, Daniel; Babbitt, Kimberly; Yamasaki, Mariko

    2013-01-01

    Poster presented at the 98th annual meeting of the Ecological Society of America (ESA) in Minneapolis, Minnesota, USA. We used a non-linear, parametric model accounting for detection probability to quantify red-backed salamander (Plethodon cinereus) abundance across clearcut-forest edges. This approach allows for projection across landscapes and prediction given alternative logging plans.

  18. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

    OpenAIRE

    Chang-Wan Kim; Mai Duc Dai; Kilho Eom

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on...

  19. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...

  20. Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE

    Energy Technology Data Exchange (ETDEWEB)

    Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)

    2016-08-15

    Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  2. Frequency-domain optical mammography: edge effect corrections.

    Science.gov (United States)

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  3. Computer Modeling of the Surface Texture Treated by Mill with Curved Cutting Edge

    Directory of Open Access Journals (Sweden)

    M. S. Potapova

    2015-01-01

    Full Text Available Application of mills with a curvilinear profile of the cutting edge (often called rough end mills allows us to increase milling rate, but a roughness of the surface treated by such mills is higher, than after milling by the "ordinary" mills with the "smooth" cutting edge. Deterioration of a roughness is caused by a curvature of cutting edge. The shape and sizes of a profile are of crucial importance for forming roughness on a surface. A literary review revealed that depending on a profile of the cutting edge the roughness of the machined surface makes Ra2…12,5μm.There is a developed parametrical computer model to visualize roughness formed on a surface after milling by the fluting cutter and curved cutting edge mill. The computer model also allows a 3D chip type to be cut off from a work-piece by the mills with various cutting edge profiles. When developing the model it was assumed that the tilt angle of a cutting flute is equal 0 °, a trajectory of the tooth movement is a circle rather than a trochoidal curve.An experimental test of the model has shown that the radial beats of the mill teeth have a very significant effect on the extent of the roughness formed on the machined surface. After amendments - taking into consideration teeth beats - introduced into model the modeling error made less than 5% that can be explained by the fact that profile parameters of the cutting edge of mills embedded in the model are inaccurate because of the tilt angle the cutting flutes.The analysis of the surface model has shown that after milling the work piece has a cellular structure. Each tooth with curved cutting edge forms the cell repeating with the next turn of a mill. The adjacent teeth form identical cells displaced in the feed path with respect to the cell formed by the previous tooth by the chip load Sz. Unlike processing by the ordinary mills with the "smooth" cutting edge in this case on a surface there is a surface texture not only in the feed

  4. Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades

    Science.gov (United States)

    Murray, Mark; Gruber, Timothy; Fredriksson, David

    2010-11-01

    This project investigated the impact that the addition of leading edge protuberances (tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower flow speeds. The addition of leading edge tubercles to lifting foils has been shown, in previous research, to delay the onset of stall without significant hydrodynamic costs. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed in SolidWorks and manufactured utilizing rapid prototype techniques. All tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using a specifically designed experimental apparatus. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity is also compared between the blade designs. For all test criteria, the tubercle modified blades significantly outperformed the smooth leading edge baseline design blades.

  5. Reminder of the edge effect in Synchrotron radiation

    CERN Document Server

    Burkhardt, H

    1998-01-01

    The synchrotron radiation in the LHC will be rather soft and weak, compared to high energy electron machines. Still it is expected to generate non negligible heating and photon-induced gas desorption. A summary of standard formulas and numbers for the LHC have been collected in this note, including a very rough discussion of the spectrum shift expected by the edge effect.

  6. Quantification of the edge effect in calcified bioprosthetic tissues.

    Science.gov (United States)

    Wika, K E; Utoh, J; Brown, J; Harasaki, H

    1993-10-01

    In bioprosthetic tissue samples that had been implanted in the subcutaneous space of rats, and recurring pattern of calcification was observed. In this pattern, which we call the edge effect, the interior of the tissue is calcified and is surrounded and separated from the subcutaneous fluid by a zone that is free from calcification. The edge effect has been qualitatively described in the literature for subcutaneous implants and for valve leaflets, and it may be related to the mechanism of calcification for these materials. The thickness of the calcification free outer layer was quantified for glutaraldehyde treated bovine pericardium, glycerol treated bovine pericardium, glutaraldehyde treated human dura mater, and glycerol treated human dura mater. The edge effect values were found to be unique and consistent for each material type, and they were inversely related to the shrinkage temperatures and the calcium contents of the materials. It was determined that the chemical treatment was more important than the tissue type in determining the edge effect value.

  7. Edge effects and submicron tracks in magnetic tape recording

    NARCIS (Netherlands)

    Hozoi, Adrian

    2005-01-01

    The scope of the work presented in this thesis was to investigate the recording phenomena at very high track density and understand the requirements for reaching submicron tracks in magnetic tape. A broad study of edge effects is presented with a focus on side writing and erasing, which are critical

  8. Galactic Edge Clouds I: Molecular Line Observations and Chemical Modelling of Edge Cloud 2

    CERN Document Server

    Ruffle, P M E; Roberts, H; Lubowich, D A; Henkel, C; Pasachoff, J M; Brammer, G

    2007-01-01

    Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2) ~ 10^4 cm^-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 M_sun and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (Av < 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are...

  9. Model analysis of edge relaxation phenomena in Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, Shogo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-09-01

    From the view point of the oscillatory characteristics, the heat transport in the plasma edge region is investigated based on a transition transport model with hysteresis nature. A hysteresis type flux-force relation is incorporated into the model by introducing a transition model of the heat diffusivity. For a given influx from the upstream side, the one dimensional heat transport equitation is solved numerically. The time evolution of the heat flux oscillation due to the hysteresis nature and the parameter dependences of its amplitude and frequency are examined. The non-monotonous relation between the frequency of the flux oscillation and the influx is obtained. The critical behavior of the transition between transport mechanisms, i.e., the hysteresis type and the discontinuous one, is expressed as power law relations of them. The self-organized criticality like behavior, i.e., power spectrum obeying power law, is found in a limiting case of the model. (author)

  10. Edge Effects and Ecological Traps: Effects on Shrubland Birds in Missouri

    Science.gov (United States)

    April A. Woodward; Alix D. Fink; Frank R. Thompson III

    2001-01-01

    The effect of habitat edge on avian nesting success has been the focus of considerable debate. We studied relationships between habitat edges, locations of nests, and predation. We tested the ecological trap hypothesis for 5 shrubland bird species in the Missouri Ozarks. We compared habitat selection and daily nest predation rates among 3 distance-to-edge categories....

  11. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    AHMED, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  12. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    Directory of Open Access Journals (Sweden)

    Roland Schmied

    2015-02-01

    Full Text Available The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IVMe3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  13. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  14. Radiation-induced edge effects in deep submicron CMOS transistors

    CERN Document Server

    Faccio, F

    2005-01-01

    The study of the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology has demonstrated its increased radiation tolerance with respect to older technology nodes. While the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift-an effect that we call Radiation Induced Narrow Channel Effect (RINCE).

  15. Effect of leading-edge porosity on blade-vortex interaction noise

    Science.gov (United States)

    Lee, Soogab

    1993-01-01

    The effect of the porous leading-edge of an airfoil on the blade-vortex interaction noise, which dominates far-field acoustic spectrum of the helicopter, is investigated. The thin-layer Navier-Stokes equations are solved with a high-order upwind-biased scheme and a multizonal grid system. The Baldwin-Lomax turbulence model is modified for considering transpiration on the surface. The amplitudes of the propagating acoustic wave in the near-field are calculated directly from the computation. The porosity effect on the surface is modeled. Results show leading-edge transpiration can suppress pressure fluctuations at the leading-edge during BVI, and consequently reduce the amplitude of propagating noise by 30 percent at maximum in the near-field. The effect of porosity factor on the noise level is also investigated.

  16. Stabilizing effects of resistivity on low-n edge localized modes in NSTX

    CERN Document Server

    Banerjee, Debabrata; Maingi, Rajesh

    2016-01-01

    The stabilizing effects of enhanced edge resistivity on the low-n edge localized modes (ELMs) are reported for the first time in the context of ELM suppression in H-mode discharge due to Lithium-conditioning in the National Spherical Torus Experiment (NSTX). Here n is the toroidal mode number. Linear stability analysis of the corresponding experimental equilibrium suggests that the change in the equilibrium plasma density profile alone due to Lithium-conditioning may be insufficient for a complete suppression of ELMs. The enhanced resistivity due to the increased effective electric charge number Z eff after Lithium-conditioning can account for additional stabi- lization effect necessary for full ELM suppression. Remarkably, such a stabilizing effect of enhanced edge resistivity on the low-n ELMs only exists when two-fluid effects are considered in the MHD model.

  17. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  18. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    Science.gov (United States)

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  19. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  20. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  1. Enhancing Image Denoising Performance of Bidimensional Empirical Mode Decomposition by Improving the Edge Effect

    Directory of Open Access Journals (Sweden)

    Feng-Ping An

    2015-01-01

    Full Text Available Bidimensional empirical mode decomposition (BEMD algorithm, with high adaptive ability, provides a suitable tool for the noisy image processing, and, however, the edge effect involved in its operation gives rise to a problem—how to obtain reliable decomposition results to effectively remove noises from the image. Accordingly, we propose an approach to deal with the edge effect caused by BEMD in the decomposition of an image signal and then to enhance its denoising performance. This approach includes two steps, in which the first one is an extrapolation operation through the regression model constructed by the support vector machine (SVM method with high generalization ability, based on the information of the original signal, and the second is an expansion by the closed-end mirror expansion technique with respect to the extrema nearest to and beyond the edge of the data resulting from the first operation. Applications to remove the Gaussian white noise, salt and pepper noise, and random noise from the noisy images show that the edge effect of the BEMD can be improved effectively by the proposed approach to meet requirement of the reliable decomposition results. They also illustrate a good denoising effect of the BEMD by improving the edge effect on the basis of the proposed approach. Additionally, the denoised image preserves information details sufficiently and also enlarges the peak signal-to-noise ratio.

  2. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  3. Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.

    2011-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  4. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study

    Directory of Open Access Journals (Sweden)

    Porter Dwayne E

    2010-07-01

    Full Text Available Abstract Background This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station or restaurant (limited service or full service restaurants. We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. Results The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed and also for short range accessibility Conclusions It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  5. Model Checking with Edge-Valued Decision Diagrams

    Science.gov (United States)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  6. Corridors promote fire via connectivity and edge effects.

    Science.gov (United States)

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously

  7. Unusual edge effect in patch testing with silver nitrate.

    Science.gov (United States)

    Iliev, D; Elsner, P

    1998-03-01

    Silver nitrate is a widely used substance and has been applied topically for cauterizing bleeding and healing wounds. In the past it has even been used to mark patch test sites, when no one knew that the substance itself might be a sensitizer. However, there are also toxic reactions to that substance. We report a case in which a positive "edge effect" at the periphery of the patch test site could be shown. It can be explained by the unequal distribution of patch test solutions in the different patch test systems with a concentration at the rim. Distinguishing between allergic and toxic reactions may be difficult when an edge effect occurs. Therefore, in certain rare cases a biopsy or a lymphocyte transformation test might be of help.

  8. Gravitational acceleration and edge effects in molecular clouds

    CERN Document Server

    Li, Guang-Xing; Megeath, Tom; Wyrowski, Friedrich

    2016-01-01

    Gravity plays important roles in the evolution of molecular clouds. We present an acceleration mapping method to estimate the acceleration induced by gravitational interactions in molecular clouds based on observational data. We find that the geometry of a region has a significant impact on the behavior of gravity. In the Pipe nebula which can be approximated as a gas filament, we find that gravitational acceleration can effectively compress the end of this filament, which may have triggered star formation. We identify this as the "gravitational focusing" effect proposed by Burkert & Hartman (2004). In the sheet-like IC348-B3 region, gravity can lead to collapse at its edge, while in the centrally condensed NGC1333 cluster-forming region gravity can drive accretion towards the center. In general, gravitational acceleration tends to be enhanced in the localized regions around the ends of the filaments and the edges of sheet-like structures. Neglecting magnetic fields, these "gravitational focusing" and "ed...

  9. Edge-to-edge interfaces in Ti-Al modeled with the embedded atom method

    Science.gov (United States)

    Reynolds, W. T.; Farkas, D.

    2006-03-01

    The atomistic structure and energies of high-index interphase boundaries are explored using a combination of molecular statics and dynamics simulations with embedded atom potentials. We investigate planar boundaries between the α2 and γ phases in the Ti-Al system. The class of boundaries considered has a high-index boundary orientation; the orientation relationship between the α2 and γ phases also is high index, and a set of planes from each phase meet edge to edge at the boundary plane. For the particular case of a boundary that is commensurate in one direction and coincides with a moiré plane given by the so-called “Δ g” diffraction condition, the boundary is not structurally singular, but it is energetically stable and does not appear to dissociate into other low-energy configurations. Misfit compensating defects are not observed; misfit in directions other than the commensurate one appears to be distributed uniformly. The boundary energy is evaluated as a function of the orientation of the boundary plane, and the edge-to-edge (moiré) boundary is found to lie in an energy cusp.

  10. Entanglement and Majorana edge states in the Kitaev model

    Science.gov (United States)

    Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala

    2016-07-01

    We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.

  11. Fractional Quantum Hall Effect via Holography Chern-Simons, Edge States, and Hierarchy

    CERN Document Server

    Fujita, Mitsutoshi; Ryu, Shinsei; Takayanagi, Tadashi

    2009-01-01

    We present three holographic constructions of fractional quantum Hall effect (FQHE) via string theory. The first model studies edge states in FQHE using supersymmetric domain walls in N=6 Chern-Simons theory. We show that D4-branes wrapped on CP^1 or D8-branes wrapped on CP^3 create edge states that shift the rank or the level of the gauge group, respectively. These holographic edge states correctly reproduce the Hall conductivity. The second model presents a holographic dual to the pure U(N)_k (Yang-Mills-)Chern-Simons theory based on a D3-D7 system. Its holography is equivalent to the level-rank duality, which enables us to compute the Hall conductivity and the topological entanglement entropy. The third model introduces the first string theory embedding of hierarchical FQHEs, using IIA string on C^2/Z_n.

  12. Electromagnetic effects on rippling instability and tokamak edge fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Sadayoshi; Saleem, Hamid [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-07-01

    Electromagnetic effects on rippling mode are investigated as a cause of low frequency electromagnetic fluctuations in tokamak edge region. It is shown that, in a current-carrying resistive plasma, the purely growing electrostatic rippling mode can turn out to be an electromagnetic oscillatory instability. The resistivity fluctuation and temperature gradient are the main sources of this instability, which requires both parallel and perpendicular wave vectors. The Alfven waves in a coupled dispersion relation are found heavily damped in such dissipative plasmas. (author)

  13. Variation in Local-Scale Edge Effects: Mechanisms and landscape Context

    Science.gov (United States)

    Therese M. Donovan; Peter W. Jones; Elizabeth M. Annand; Frank R. Thompson III

    1997-01-01

    Ecological processes near habitat edges often differ from processes away from edges. Yet, the generality of "edge effects" has been hotly debated because results vary tremendously. To understand the factors responsible for this variation, we described nest predation and cowbird distribution patterns in forest edge and forest core habitats on 36 randomly...

  14. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  15. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  16. Effects of timber harvests and silvicultural edges on terrestrial salamanders.

    Science.gov (United States)

    MacNeil, Jami E; Williams, Rod N

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.

  17. Effects of timber harvests and silvicultural edges on terrestrial salamanders.

    Directory of Open Access Journals (Sweden)

    Jami E MacNeil

    Full Text Available Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus and northern slimy salamanders (P. glutinosus from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m. Small harvests (<4 ha and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple

  18. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  19. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  20. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...... the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....

  1. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  2. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  3. Model-Checking with Edge-Valued Decision Diagrams

    Science.gov (United States)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  4. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...

  5. The influence of edge and corner evolution on plasmon properties and resonant edge effect in gold nanoplatelets.

    Science.gov (United States)

    Xu, Xi-Bin; Luo, Jiang-Shan; Liu, Miao; Wang, Yu-Ying; Yi, Zao; Li, Xi-Bo; Yi, You-Gen; Tang, Yong-Jian

    2015-01-28

    In this paper a simulation of the properties of surface plasmons on gold nanoplatelets with various cross-sections inscribed in a circle and an investigation of their field distributions to assign multiple SPRs are described. The manipulated propagation can be obtained through the evolution of edges and corners. Furthermore, the particle morphology and the associated spectral positions alone do not uniquely reflect the important details of the local field distribution or the resonance modes. The plasmon modes were investigated and found to be mainly excited along the edges and in the side and sloped side surfaces. The strong field distributions can generally be found around the corners and how the plasmons transmit through the corners to adjacent edges was also investigated. Besides the plasmons excited along the edges as were found for the triangular nanoplatelets, plasmons were excited in the interior region of the triangular surfaces and were also investigated. Despite this in the infrared region, plasmon modes were found to be along the edges for the hexagonal nanoplatelets. Also, it can be seen that the change of nanoplatelet thickness can support different plasmon modes ranging from dipolar resonance mode to quadrupole resonance mode. The thickness far below the skin depth can display complex plasmon modes along the edges and on the side and sloping side surfaces as well as the strong coupling between the top and bottom surfaces. The observed plasmon resonance modes in this simulation reflect the interference of all these contributions including the plasmons along the edges and on the side surfaces. This is an essential step towards a thorough understanding of plasmon modes and the effect of edge and corner evolution in polygonous nanoplatelets.

  6. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  7. Comparison between cohesive zone models and a coupled criterion for prediction of edge debonding

    OpenAIRE

    Vandellos, T.; Martin, E.; Leguillon, D.

    2014-01-01

    International audience; The onset of edge debonding within a bonded specimen submitted to bending is modeled with two numerical approaches: the coupled criterion and the cohesive zone model. The comparison of the results obtained with the both approaches evidences that (i) the prediction of edge debonding strongly depends on the shape of the cohesive law and (ii) the trapezoidal cohesive law is the most relevant model to predict the edge debonding as compared with the coupled criterion.

  8. Effects of leading and trailing edge flaps on the aerodynamics of airfoil/vortex interactions

    Science.gov (United States)

    Hassan, Ahmed A.; Sankar, L. N.; Tadghighi, H.

    1994-01-01

    A numerical procedure has been developed for predicting the two-dimensional parallel interaction between a free convecting vortex and a NACA 0012 airfoil having leading and trailing edge integral-type flaps. Special emphasis is placed on the unsteady flap motion effects which result in alleviating the interaction at subcritical and supercritical onset flows. The numerical procedure described here is based on the implicit finite-difference solutions to the unsteady two-dimensional full potential equation. Vortex-induced effects are computed using the Biot-Savart Law with allowance for a finite core radius. The vortex-induced velocities at the surface of the airfoil are incorporated into the potential flow model via the use of the velocity transpiration approach. Flap motion effects are also modeled using the transpiration approach. For subcritical interactions, our results indicate that trailing edge flaps can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, our results demonstrate the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time-dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented

  9. A characterization of edge reflection positive partition functions of vertex coloring models

    NARCIS (Netherlands)

    G. Regts (Guus)

    2013-01-01

    htmlabstractSzegedy (B. Szegedy, Edge coloring models and reflection positivity, Journal of the American Mathematical Society 20, 2007, 969-988.) showed that the partition function of any vertex coloring model is equal to the partition function of a complex edge coloring model. Using some results in

  10. A characterization of edge-reflection positive partition functions of vertex-coloring models

    NARCIS (Netherlands)

    G. Regts (Guus); J. Nešetřil (Jaroslav); M Pellegrini

    2013-01-01

    htmlabstractSzegedy (B. Szegedy, Edge coloring models and reflection positivity, Journal of the American Mathematical Society 20, 2007, 969-988.) showed that the partition function of any vertex coloring model is equal to the partition function of a complex edge coloring model. Using some results in

  11. Single velocity-component modeling of leading edge turbulence interaction noise.

    Science.gov (United States)

    Gill, J; Zhang, X; Joseph, P

    2015-06-01

    A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack.

  12. 2D edge plasma modeling extended up to the main chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-08-01

    Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.

  13. RETRACTED: Flap side edge noise modeling and prediction

    Science.gov (United States)

    Guo, Yueping

    2013-08-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the first author because of the overlap with previously published papers. The first author takes full responsibility and sincerely apologizes for the error made.This article has been retracted at the request of the Editor-in-Chief.The article duplicates significant parts of an earlier paper by the same author, published in AIAA (Y.P. Guo, Aircraft flap side edge noise modeling and prediction. American Institute of Aeronautics and Astronautics, (2011), 10.2514/6.2011-2731). Prior to republication, conference papers should be comprehensively extended, and re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  14. Single pass sparsification in the streaming model with edge deletions

    CERN Document Server

    Goel, Ashish; Post, Ian

    2012-01-01

    In this paper we give a construction of cut sparsifiers of Benczur and Karger in the {\\em dynamic} streaming setting in a single pass over the data stream. Previous constructions either required multiple passes or were unable to handle edge deletions. We use $\\tilde{O}(1/\\e^2)$ time for each stream update and $\\tilde{O}(n/\\e^2)$ time to construct a sparsifier. Our $\\e$-sparsifiers have $O(n\\log^3 n/\\e^2)$ edges. The main tools behind our result are an application of sketching techniques of Ahn et al.[SODA'12] to estimate edge connectivity together with a novel application of sampling with limited independence and sparse recovery to produce the edges of the sparsifier.

  15. Edge effects on invisibility of hyperbolic multilayered nanotubes

    CERN Document Server

    Díaz-Aviñó, Carlos; Zapata-Rodríguez, Carlos J

    2016-01-01

    Invisibility of nanotubes has recently been demonstrated in highly anisotropic metamaterials in the transition regime from hyperbolic to elliptic dispersion [Sci. Rep. 5 (2015) 16027]. In such study, the characterization of a realistic multilayered metamaterial was carried out by means of an effective medium approach providing average components of the permittivity tensor and wave fields. Here, the edge effects of the metal-dielectric stratified nanotube for different combinations were thoroughly analyzed. We show how the boundary layers, which in principle remain fully irrelevant in the estimation of the effective permittivity of the nanotube, however play a critical role in the scattering spectra and the near field patterns. A dramatic enhancement of the scattered wave field is unexpectedly experienced at the frequencies of interest when a dielectric layer is chosen to be in contact with the cavity core.

  16. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.

    2010-01-29

    We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T{sub c} of the TES is current dependent and at fixed current scales as 1/L{sup 2}. We have also found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 {micro}m, 1450 times the mean-free path.

  17. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.

    2010-01-01

    We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.

  18. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    Science.gov (United States)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  19. Edge effect on magnetic phases of doped zigzag graphone nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Drissi, L.B. [LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat (Morocco); International Center for Theoretical Physics, ICTP, Trieste (Italy); Zriouel, S.; Saidi, E.H. [LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat (Morocco)

    2015-01-15

    Curie temperature T{sub C} has important implications for the experimental realization of magnetic graphone nanostructures relevant for future spintronic applications. Using both Monte Carlo method and mean field theory, we study magnetic properties of zigzag graphone nanoribons (ZGONR) doped with magnetic impurities M. We show that T{sub C} increases with the number of dopants but for configurations with fixed number M, T{sub C} is not very sensitive to impurities distances d(M−M). In particular, in bidoped ZGONR configurations, T{sub C} has different values for the same d(M−M). This surprising behavior stems from edge effect. The result as derived in this report is easily adapted to predict how the magnetism is influenced in all half hydrogenated four-electrons hexagonal nanoribbon devices. - Highlights: • We investigate the possibility of controlling the magnetism in zigzag graphone nanoribbons. • We study different configurations of Mono-, bi- and tri-doped ZGONR by TM impurities. • We show that Curie temperature is more sensitive to edges than impurities distances. • We provide a qualitative way of determining which maximal and minimal TC for wide ZGONRs.

  20. Isotope effect on gyro-fluid edge turbulence and zonal flows

    CERN Document Server

    Meyer, Ole Hauke Heinz

    2016-01-01

    The role of ion polarisation and finite Larmor radius on the isotope effect on turbulent tokamak edge transport and flows is investigated by means of local electromagnetic multi-species gyro-fluid computations. Transport is found to be reduced with the effective plasma mass for protium, deuterium and tritium mixtures. This isotope effect is found for both cold and warm ion models, but significant influence of finite Larmor radius and polarisation effects are identified. Sheared flow reduction of transport through self generated turbulent zonal flows and geodesic acoustic modes in the present model (not including neoclassical flows) is found to play only a minor role on regulating isotopically improved confinement.

  1. Modelling Combined Heat Exchange in the Leading Edge of Perspective Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Kandinsky Roman O.

    2015-01-01

    Full Text Available In this paper gas dynamic numerical modelling of leading edge flow is presented and thermal loading parameters are determined. Numerical modelling of combined radiative and conductive heat transfer of the wing edge is carried out, thermal state of structure is given and the results are analyzed.

  2. A note on adding and deleting edges in hierarchical log-linear models

    DEFF Research Database (Denmark)

    Edwards, David

    2012-01-01

    The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given......The operations of edge addition and deletion for hierarchical log-linear models are defined, and polynomial-time algorithms for the operations are given...

  3. [Cultured epidermis in the treatment of leg ulcer: "edge effect" and correlation with keratinocyte proliferation index].

    Science.gov (United States)

    Giannotti, V; Pimpinelli, N; Mariotti, V; Borgognoni, L; Reali, U M

    1990-04-01

    Cultured keratinocyte grafting (KG) of chronic leg ulcers produces an impressive stimulation of host epithelization by an effect on the edge of the ulcer, which starts to grow in rapidly ("edge effect"). In 5 patients with chronic leg ulcers treated by KG, we have studied the proliferation index of the epidermis of the edge and of the graft area and that of secondary culture keratinocytes. The aim of the study was to correlate this parameter with the clinical evolution of the treated lesions. We found a significant correlation between the proliferation index of the edge epidermis and the clinical evidence of "edge effect".

  4. Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruiqiang; Qi, Shifei; Jia, Jianfeng [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Torre, Bryna [Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Zeng, Hao [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Wu, Haishun [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Xu, Xiaohong, E-mail: xuxiaohong_ly@163.com [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China)

    2015-02-25

    Highlights: • The size effect affects both the visible light absorption and the zigzag edge state. • Zigzag edge state is important than armchair edge state for visible light absorption. • The Seam atoms should be noted for the randomly shaped GQDs. - Abstract: Using the ab initio density-functional theory method, we calculated the size effect and edge shape effect on UV–visible light absorption of different shapes of graphene quantum dots (GQDs). There are two interesting findings in this study. First, the edge shape effect increase with increasing the size of square GQDs. Second, the Seam atoms, located at the boundary between zigzag and armchair edges, hardly contribute to the strongest visible light absorption. This refinement of the edge-shape effect can be found in rectangular, triangular and hexagonal GQDs. This new finding will be useful in applications of GQDs in the visible light absorption nanodevices.

  5. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Yandong Xiao

    Full Text Available Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  6. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    Science.gov (United States)

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  7. Effects of Edge Directions on the Structural Controllability of Complex Networks

    Science.gov (United States)

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  8. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    OpenAIRE

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation stat...

  9. Model regularization for seismic traveltime tomography with an edge-preserving smoothing operator

    Science.gov (United States)

    Zhang, Xiong; Zhang, Jie

    2017-03-01

    The solutions of the seismic first-arrival traveltime tomography are generally non-unique, and the Tikhonov model regularization for the inversion is commonly used to stabilize the inversion. However, the Tikhonov regularization for traveltime tomography often produces a low-resolution velocity model. To sharpen the velocity edges for the traveltime tomographic results and fit data at the same time, we should apply the edge-preserving concepts to regularize the inversion. In this study, we develop a new model regularization method by introducing an edge-preserving smoothing operator to detect the model edges in traveltime tomography. This edge-preserving smoothing operator is previously used in processing seismic images for enhancing resolution. We design three synthetic velocity models with sharp interfaces and with or without velocity gradients to study the performance of the regularization method with the edge-preserving smoothing operator. The new edge-preserving regularization not only sharpens the model edges but also maintains the smoothness of the velocity gradient in the layer.

  10. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus, a globally invasive nest predator, by altering vegetation structure.

    Directory of Open Access Journals (Sweden)

    Jay Ruffell

    Full Text Available Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments. This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  11. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    Science.gov (United States)

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  12. Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

    Science.gov (United States)

    Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.

    2016-09-01

    Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

  13. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  14. Topological Invariants of Edge States for Periodic Two-Dimensional Models

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Julio Cesar; Schulz-Baldes, Hermann, E-mail: schuba@mi.uni-erlangen.de; Villegas-Blas, Carlos [Instituto de Matematicas, UNAM (Mexico)

    2013-06-15

    Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z{sub 2} -invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.

  15. Topological invariants of edge states for periodic two-dimensional models

    CERN Document Server

    Avila, Julio Cesar; Villegas-Blas, Carlos

    2012-01-01

    Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z_2-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.

  16. Interaction effects along the edge of a topological superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher [Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)

    2015-07-01

    Topological nodal superconductors, such as d{sub xy}-wave and nodal non-centrosymmetric superconductors, exhibit protected zero-energy flat-band edge states. These zero-energy edge modes are protected by time-reversal and translation symmetry and their stability is guaranteed by the conservation of a quantized topological invariant. Here, we study the fate of these flat-band edge states in the presence of interactions. We find that Hubbard interactions lead to spontaneous breaking of time-reversal or translation symmetry at the edge of the system. For the d{sub xy}-wave superconductor in the presence of attractive Hubbard interactions we find that the flat-band states become unstable towards the formation of a charge-density wave state or a state with s-wave type pairing correlations. Repulsive Hubbard interactions, on the other hand, induce ferromagnetic order at the edge of the d{sub xy}-wave superconductor.

  17. Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brenda, L.; Haddad, Nick, M.

    2011-08-01

    Using a model plant-pathogen system in a large-scale habitat corridor experiment, we found that corridors do not facilitate the movement of wind-dispersed plant pathogens, that connectivity of patches does not enhance levels of foliar fungal plant disease, and that edge effects are the key drivers of plant disease dynamics. Increased spread of infectious disease is often cited as a potential negative effect of habitat corridors used in conservation, but the impacts of corridors on pathogen movement have never been tested empirically. Using sweet corn (Zea mays) and southern corn leaf blight (Cochliobolus heterostrophus) as a model plant-pathogen system, we tested the impacts of connectivity and habitat fragmentation on pathogen movement and disease development at the Savannah River Site, South Carolina, USA. Over time, less edgy patches had higher proportions of diseased plants, and distance of host plants to habitat edges was the greatest determinant of disease development. Variation in average daytime temperatures provided a possible mechanism for these disease patterns. Our results show that worries over the potentially harmful effects of conservation corridors on disease dynamics are misplaced, and that, in a conservation context, many diseases can be better managed by mitigating edge effects.

  18. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    Science.gov (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  19. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Directory of Open Access Journals (Sweden)

    Simone D Langhans

    Full Text Available Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m, distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest, and time of the year (February-November across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy, to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  20. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Science.gov (United States)

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  1. Cutting edge curve models for equal pitch cutters and their applications

    Institute of Scientific and Technical Information of China (English)

    吕广明; 王洪滨; 唐余勇; 彭龙刚

    2004-01-01

    A mathematic model is established using infinitesimal geometry for the cutting edge design of special milling cutters which use equal lead helix as cutting edges; equations are given for front-end and proclitic surface of revolution of ball pillar milling cutters, ball taper milling cutters and angularly conical milling cutters;and corresponding models are established for the continuity cutting edge curves of milling cutters. Typical examples are given to illustrate the applications of mathematic models, which prove the correctness and applicability of these geometric models.

  2. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad;

    2013-01-01

    This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...

  3. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas;

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...

  4. Effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons

    Science.gov (United States)

    Ma, R.; Geng, H.; Deng, W. Y.; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-09-01

    We study numerically the effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons (ZPNRs) based on the tight-binding model and the scattering-matrix method. It is interesting to find that the band dispersion, conductance, and thermopower can be modulated by applying a bias voltage and boundary potentials to the two layers of the ZPNRs. Under a certain bias voltage, the twofold-degenerate quasi-flat-edge bands split perfectly. The conductance can be switched off, and the thermopower around zero energy increases. In addition, when only the boundary potential of the top layer or bottom layer is adjusted, only one edge band bends and merges into the bulk band. The first conductance plateau is strongly decreased to e2/h around zero energy. In particular, when the two boundary potentials are adjusted, all the edge bands bend and fully merge into the bulk band, and the bulk energy gap is maximized. More interestingly, a pronounced conductance plateau with G =0 is found around zero energy, which is attributable to the opening of the bulk energy gap between the valence and conduction bands. Meanwhile, the thermopower can be enhanced more than twice compared to that of the perfect ZPNRs. The large magnitude of thermopower is ascribed to the appearance of the bulk energy gap around zero energy. Our results show that the modulated ZPNRs are more reliable in a thermoelectric application.

  5. Combined effect of matrix cracking and stress-free edge on delamination

    Science.gov (United States)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  6. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    Science.gov (United States)

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  7. Modeling Edge Effects of Tillage Erosion

    Science.gov (United States)

    Tillage erosion has been recognized as an important factor in redistribution of soil over time and in the development of morphological changes within agricultural fields. Field borders, fences, and vegetated strips that interrupt soil fluxes lead to the creation topographic discontinuities or lynche...

  8. Reducing edge effects and improving position resolution in position sensitive NaI(Tl) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, R.; Haigh, A.T.; Karp, J.S. (Univ. of Pennsylvania, Philadelphia (United States))

    1993-04-01

    Large two dimensional position sensitive NaI (Tl) crystals used in positron emission tomographs and elsewhere normally have gaps or inactive, unusable areas at the edges. Experiments aimed at reducing these edge effects have been performed. Unencapsulated crystals have been used to test the feasibility of optically coupling crystals together to decrease gap size. Other experiments increased the sampling of the scintillation light at the edges in order to obtain better position sensitivity. Work was also performed to treat the edges to reduce unwanted reflections and increase the position sensitive area. Finally, experiments aimed at improving the position resolution throughout the crystal as well as at the edges were performed.

  9. Effect of trailing edge shape on the wake and propulsive performance of pitching panels

    Science.gov (United States)

    van Buren, Tyler; Floryan, Daniel; Brunner, Daniel; Senturk, Utku; Smits, Alexander

    2016-11-01

    We present the effects of the trailing edge shape on the wake and propulsive performance of a pitching panel with an aspect ratio of 1. The trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the streamwise velocity field contains a single jet-like structure. Conversely, convex trailing edges promote wake compression and produce a wake split into four jets. Deviation from the square trailing edge mostly reduces the thrust and efficiency. Supported by the Office of Naval Research under MURI Grant Number N00014-14-1-0533.

  10. The influence of edge effects on the determination of the doping profile of silicon pad diodes

    Science.gov (United States)

    Fretwurst, E.; Garutti, E.; Hufschmidt, M.; Klanner, R.; Kopsalis, I.; Schwandt, J.

    2017-09-01

    Edge effects for square p+ n pad diodes with guard rings, fabricated on high-ohmic silicon, are investigated. Using capacitance-voltage measurements of two pad diodes with different areas, the planar and the edge contributions to the diode capacitance are determined separately. It is found that the edge contributions are significant and that they strongly influence the determination of the doping concentration using capacitance-voltage measurements. After edge correction, the bulk doping of the pad diodes is found to be uniform within ± 1.5 %, which agrees with expectations. The edge-correction method is verified using TCAD simulations of two circular pad diodes with different radii.

  11. Edge effect on vascular epiphytic composition in a fragment of Atlantic Forest in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Randolpho Gonçalves Dias-Terceiro

    2015-06-01

    Full Text Available Epiphytes are common in the canopy of temperate and tropical forests, where they substantially contribute to species diversity and to key ecosystem processes. However, little is known about the effects caused by deforestation on this group of species, especially in northeastern Brazil, an area experiencing intense anthropogenic pressure. This study aimed to evaluate the effect of environmental variables on the structure of assemblies of vascular epiphytes in a fragment of open ombrophilous forest, Areia, northeastern Brazil. Sixty 10 × 10 m sampling plots were installed to cover different environments within the fragment. The relationship between environmental variables and species composition was evaluated by means of a generalized linear mixed model. The composition of assemblies of epiphytes differed with respect to distance from the edge and luminosity. In the study area, deforestation led to a change in the composition of epiphytic species both at the edge and the interior of the fragment.

  12. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  13. Numerical analysis of edge effects in side illuminated strip detectors for digital radiology

    CERN Document Server

    Krizaj, D

    2000-01-01

    The influence of edge defects on side illuminated X-ray strip detectors for digital radiology is investigated by numerical device modeling. By assuming positive fixed oxide charges on side and top surfaces simulations have shown strong curvature of the equipotential lines in the edge region. A fraction of the edge generated current surpasses the edge guard-ring junction and is collected by the readout strips. As a consequence, strips cannot be placed close to the edge of the structure and collection efficiency is reduced. An n-on-n instead of a p-on-n strip detector is proposed enabling collection of edge generated carriers by a very narrow guard-ring junction and placement of the readout strip close to the edge without increase of the strip leakage current.

  14. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  15. Model-based edge detector for spectral imagery using sparse spatiospectral masks.

    Science.gov (United States)

    Paskaleva, Biliana S; Godoy, Sebastián E; Jang, Woo-Yong; Bender, Steven C; Krishna, Sanjay; Hayat, Majeed M

    2014-05-01

    Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector.

  16. Effect of blunt trailing edge on rotor broadband noise

    Science.gov (United States)

    Chou, S.-T.; George, A. R.

    1986-01-01

    The production of high-frequency broadband noise by turbulent vortex shedding from rotor blades with blunt trailing edges is investigated analytically. The derivation of the governing equations, analogous to that of Kim and George (1982) for boundary-layer/trailing-edge noise, is explained, and numerical results are compared with the experimental data of Hubbard et al. (1981) and Lowson et al. (1972) in graphs. It is shown that vortex-shedding noise is a significant component of blunt-trailing-edge rotor broadband noise and that the analytical method employed gives reasonable predictions. The need for a better empirical expression for the normalized spectrum and for more measurements of surface pressure fluctuations near blunt trailing edges is indicated.

  17. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  18. Roughness Effects on the Formation of a Leading Edge Vortex

    Science.gov (United States)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface. This patterning is an important natural flow control mechanism that is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. The increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test this theory, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Particle Image Velocimetry (PIV) captured images of the LEV generated by the plate when towed upwards through the particle-seeded flow. Codes written in MatLab were used to automatically track and determine the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding provided by NSF REU site Grant EEC 1358991 and CBET 1628600.

  19. Measurement of the heat transfer and the film cooling effectiveness at a film-cooled leading edge of a turbine blade and derivation of a local model. Pt. C: derivation of a local model. Final report; Messung von Waermeuebergang und Filmkuehleffektivitaet im Bereich der filmgekuehlten Vorderkante eines Turbinenschaufelprofils und Ableitung lokaler Modelle. T. C: Ableitung lokaler Modelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Biba, S.

    1998-03-31

    Today, the heat transfer on a film-cooled leading edge of a high pressure turbine blade is calculated either by simple but inaccurate correlations or highly complex 3-D-simulations of the entire blade flow. The aim of the project was to derive an improved local model of the heat transfer at the leading edge in order to develop new, more precise correlations. This was done in order to minimize the cooling mass flow requirements and therefore to improve the efficiency of gas turbines. A new simple model of the near wall flow at the film cooled leading edge was derived. The model is based on the modification of the well-known turbulent boundary layer flow at a flat plate. This leads to semi-empirical correlations for the prediction of the adiabatic film cooling effectiveness and the heat transfer coefficient. The parameters of these correlations are matched to measurements at a film cooled leading edge model. By applying the correlations, the heat transfer at the leading edge can be predicted sufficiently accurate in dependence on the downstream distance, the blowing ratio and the Reynolds-number. The correlations can be implemented in existing 2-D-methods for the design of a blade cooling configuration. (orig.) [Deutsch] Der Waermeeintrag an einer filmgekuehlten Vorderkante einer Hochdruckturbinenschaufel wird derzeit mittels einfacher, nicht hinreichend genauer Korrelationen oder durch komplexe 3-D-Simulationen der Stroemung berechnet. Ziel des Vorhabens ist es, zur Minimierung des Kuehlungsmassenstroms und damit zur Wirkungsgradverbesserung der Gasturbine ein verbessertes lokales Modell des Waermeuebergangs und genauere Korrelationen herzuleiten. Im Vorhaben wurde ein Modell fuer die wandnahe Stroemung an einer filmgekuehlten Vorderkante entwickelt. Das Modell beruht auf der Modifikation der bekannten turbulenten Grenzschicht an einer ebenen Platte. Die Modellierung fuehrt zu halb-empirischen Korrelationen fuer die adiabate Filmkuehleffektivitaet und dem

  20. Edge effects in the directionally biased distribution of Choristoneura rosaceana (Lepidoptera: Tortricidae) in apple orchards.

    Science.gov (United States)

    Hsu, C L; Agnello, A M; Reissig, W H

    2009-04-01

    Edge effect tests have been used in a number of studies on obliquebanded leafroller, Choristoneura rosaceana (Harris), to test for evidence of mated female immigration into pheromone-treated orchards. This type of test compares obliquebanded leafroller presence or activity around the perimeter of an orchard against presence or activity in the interior. Higher numbers detected around the edges of an orchard would indicate higher levels of flight activity at the edge, a pattern that could be generated by high levels of immigration. Recent work has shown that the spatial distribution of recaptured obliquebanded leafroller adults released from a single location can be directionally biased, which could obscure the ability to detect an edge effect. To test this theory, data from an orchard study conducted in 1991 that found no significant edge effect was reanalyzed. When we accounted for the directional bias in the distribution of first-generation mated female moths, we found an edge effect with significantly more mated females captured in the edge traps than in the center or mid-interior traps. No edge effect was found when the directional bias was ignored. In addition, second-generation males and mated females both showed a significant edge effect that had not been detected in the original analysis, which had combined both first- and second-generation data.

  1. [Edge effects of forest landscape in upper reaches of Minjiang River].

    Science.gov (United States)

    Wen, Qing-Chun; Li, Xiu-Zhen; He, Hong-Shi; Li, Li-Guang; Li, Yue-Hui; Yang, Meng

    2007-10-01

    By using GIS and RS techniques, the edge effects of forest landscape in the upper reaches of Minjiang River, Sichuan Province of China were studied on landscape scale. The results showed that there was a distinct boundary between forestland and farmland, with the vegetation changed significantly. The biomass at forestland edge was lower than that in forestland interior, with the edge effect width being 60 m, whereas the biomass in farmland exterior was higher than that in farmland interior, with the edge effect width being 60-90 m. Forestland-grassland boundary was naturally formed and changed gradually. The biomass at forestland edge was lower than that in forestland interior, while that at grassland edge was higher than that in grassland interior, with the edge effect being 60 m for forestland and 45-75 m for grassland. The edge effect of forestland-shrub land boundary was similar to that of forestland-grassland boundary, with the edge effect width being 60 m for forestland and 45-75 m for shrub land.

  2. Multiscale edge detection and parametric shape modeling for boundary delineation in optoacoustic images

    CERN Document Server

    Mandal, Subhamoy; Nagaraj, Yeshaswini; Ben, Xose Luis Dean; Razansky, Daniel

    2015-01-01

    In this article, we present a novel scheme for segmenting the image boundary (with the background) in optoacoustic small animal in vivo imaging systems. The method utilizes a multiscale edge detection algorithm to generate a binary edge map. A scale dependent morphological operation is employed to clean spurious edges. Thereafter, an ellipse is fitted to the edge map through constrained parametric transformations and iterative goodness of fit calculations. The method delimits the tissue edges through the curve fitting model, which has shown high levels of accuracy. Thus, this method enables segmentation of optoacoutic images with minimal human intervention, by eliminating need of scale selection for multiscale processing and seed point determination for contour mapping.

  3. Multiscale edge detection and parametric shape modeling for boundary delineation in optoacoustic images.

    Science.gov (United States)

    Mandal, S; Viswanath, P S; Yeshaswini, N; Dean-Ben, X L; Razansky, D

    2015-08-01

    In this article, we present a novel scheme for segmenting the image boundary (with the background) in optoacoustic small animal in vivo imaging systems. The method utilizes a multiscale edge detection algorithm to generate a binary edge map. A scale dependent morphological operation is employed to clean spurious edges. Thereafter, an ellipse is fitted to the edge map through constrained parametric transformations and iterative goodness of fit calculations. The method delimits the tissue edges through the curve fitting model, which has shown high levels of accuracy. Thus, this method enables segmentation of optoacoutic images with minimal human intervention, by eliminating need of scale selection for multiscale processing and seed point determination for contour mapping.

  4. Quantum spin-quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures

    Science.gov (United States)

    Zhou, Tong; Zhang, Jiayong; Xue, Yang; Zhao, Bao; Zhang, Huisheng; Jiang, Hua; Yang, Zhongqin

    2016-12-01

    A novel topological insulator with tunable edge states, called a quantum spin-quantum anomalous Hall (QSQAH) insulator, is predicted in a heterostructure of a hydrogenated Sb (S b2H ) monolayer on a LaFe O3 substrate by using ab initio methods. The substrate induces a drastic staggered exchange field in the S b2H film, which plays an important role to generate the QSQAH effect. A topologically nontrivial band gap (up to 35 meV) is opened by Rashba spin-orbit coupling, which can be enlarged by strain and an electric field. To understand the underlying physical mechanism of the QSQAH effect, a tight-binding model based on px and py orbitals is constructed. With the model, the exotic behaviors of the edge states in the heterostructure are investigated. Dissipationless chiral charge edge states related to one valley are found to emerge along both sides of the sample, whereas low-dissipation spin edge states related to the other valley flow only along one side of the sample. These edge states can be tuned flexibly by polarization-sensitive photoluminescence controls and/or chemical edge modifications. Such flexible manipulations of the charge, spin, and valley degrees of freedom provide a promising route towards applications in electronics, spintronics, and valleytronics.

  5. Characterizing Polar Mesospheric Summer Echo Edge Effect Formation

    Science.gov (United States)

    Yee, J.; Bahcivan, H.

    2013-12-01

    Polar Mesospheric Summer Echoes (PMSEs) form in the summer mesopause region, between altitudes of 80 and 90 km. This phenomenon occurs in this region because of the extremely cold temperatures that allow for ice particles to develop, sediment, and grow to sizes as large as ~20 nm. Because these ice particles are immersed in the plasma of the D-region, electrons can attach to the ice surfaces and charge them. There are two trains of thought when it comes to the backscatter seen in sounding rocket and radar measurements of PMSEs. The first assumes that the structure of the PMSEs is driven by turbulent velocity fields and that radar detections are due to turbulent scattering. The second theory on the scatter from PMSE structures is that the echoes result from multiple sharp small-scale ledges that produce an edge scatter. In decomposing sounding rocket data, results have indicated that both scattering mechanisms play a role in PMSE backscatter. However, whereas the turbulent scatter theory is well developed, the physics behind the sharp-edge phenomena in the edge scattering theory has not been explained to date. We investigate the formation of the sharp edges in electron density detected by sounding rockets and in backscattered power detected by ground-based radars during PMSE regions by exploring the initial process by which PMSEs form using a one dimensional (1D) particle-in-cell (PIC) simulation. The simulation, adapted from the Plasma Theory and Simulation Group at UC Berkley, starts with the ice particles immersed in a warm electron-ion plasma and allows for the charging process of the ice particles. Starting with an initial Gaussian distribution of ice particles, we show that as the ice particles charge, they increase in mass more quickly (i.e. accumulate more electrons and ions) at the edges of the PMSE structure. This increased mass decreases the diffusion rates of the edges and 'freezes' the edges of the PMSE. This result demonstrates that the reason for the

  6. Interaction between leading and trailing edge vortex shedding: effects of bluff body geometry

    Science.gov (United States)

    Taylor, Zachary; Kopp, Gregory; Gurka, Roi

    2011-11-01

    Elongated bluff bodies are distinguished from shorter bluff bodies (e.g., circular cylinders) by the fact that they have separating-reattaching flow at the leading edge as well as having vortex shedding at the trailing edge. Engineering examples of these bodies include heat exchanger fins and long-span suspension bridges. We have performed experiments on elongated bluff bodies of varying geometry. These experiments have been performed at Reynolds numbers O(104) based on the thickness of the model. Both surface pressure measurements (using 512 simultaneously sampled pressure taps) and PIV are used to quantify the flow fields of these bodies. The leading edge separation angle is controlled by changing the leading edge geometry. It is observed that the size of the leading edge separation bubble increases with increasing leading edge separation angle. As the size of the leading edge separation bubble increases, it is shown to continually decrease the shedding frequency for a given elongation ratio. It is suggested that the shedding frequency is diminished because the trailing edge vortex shedding is affected by the structures being shed from the leading edge separation bubble. The implications of this competition between leading and trailing edge flows will be explored.

  7. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  8. A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    CERN Document Server

    Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B

    2016-01-01

    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.

  9. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    Science.gov (United States)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  10. Effect of leading-edge roughness on stability and transition of wind turbine blades

    Science.gov (United States)

    Kutz, Douglas; Freels, Justin; Hidore, John; White, Edward

    2011-11-01

    Over time, wind turbine blades erode due to impacts with sand and other debris. The resulting surface roughness degrades the blades' aerodynamic performance. Experimental studies conducted at the Texas A&M University Low-Speed Wind Tunnel examine roughness effects using a 2D NACA 63-418 airfoil with interchangeable leading edges of varying roughness at chord Reynolds numbers up to 3 . 0 ×106 . These data reveal decreased CL , max and increased CD , min as roughness increases. At very high roughness levels, even the lift curve slope is reduced. To better understand these findings and improve modeling of roughness effects, extensive boundary layer measurements including surface-mounted hotfilms and boundary-layer velocity profiles are used to assess how laminar-to-turbulent transition is promoted by roughness. As expected, roughness accelerates transition. Tollmien-Schlichting (TS) transition is observed only for a smooth leading edge while bypass transition is observed for the moderate and high roughness levels. Results are compared to N-factor transition predictions generated with software used by the wind industry. Predictions are successful for the smooth leading edge but even the low roughness level prevents correct transition prediction using TS-based methods. Support for this work by Vestas Technology Americas, Inc., is gratefully acknowledged as is the support of the wind-energy research group and the Low-Speed Wind Tunnel staff.

  11. TRANSVERSE EDGE EFFECT IN INDUCTION PUMPS (K VOPROSU O POPERECHNOM KRAEVOM EFFEKTE V INDUKTSIONNYKH NASOSAKH),

    Science.gov (United States)

    Experimental investigations of the transverse edge effect in induction pumps were carried out on metallic plates in the channel of a mercury pump at...a flow rate Q = 0. The following formula was derived for determining the coefficient of K sub delta which characterizes the transverse edge effect : K

  12. EDGE EFFECT INFLUENCE TO REFLECTED IMPEDANCE OF EDDY-CURRENT PROBE

    Directory of Open Access Journals (Sweden)

    О. Закревський

    2012-04-01

    Full Text Available This work is dedicated to solve analytically the edge effect Eddy-Current Probe (ECP problem which helpto carry out mathematical research the edge effect influence to ECP precision and sensitivity ultrasonictransducer mechanical amplitude oscillation measurement mathematical research, pointed to cylindricalconductive objects radius control possibility with superimposed ECP.

  13. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration

    Science.gov (United States)

    Curran, Paul J.; Dungan, Jennifer L.; Macler, Bruce A.; Plummer, Stephen E.

    1991-01-01

    The effect of a leaf pigment - red amaranthin - on red edge and chlorophyll concentration is investigated in amaranth leaves by means of treatments with nitrate and salts. A near-linear relationship between red edge and chlorophyll concentration is observed for leaves with low amaranthin concentration, and no relationship is noted at high concentrations. The study demonstrates the limitation inherent in estimating chlorophyll concentration by using remotely sensed red edge.

  14. Automatic barcode recognition method based on adaptive edge detection and a mapping model

    Science.gov (United States)

    Yang, Hua; Chen, Lianzheng; Chen, Yifan; Lee, Yong; Yin, Zhouping

    2016-09-01

    An adaptive edge detection and mapping (AEDM) algorithm to address the challenging one-dimensional barcode recognition task with the existence of both image degradation and barcode shape deformation is presented. AEDM is an edge detection-based method that has three consecutive phases. The first phase extracts the scan lines from a cropped image. The second phase involves detecting the edge points in a scan line. The edge positions are assumed to be the intersecting points between a scan line and a corresponding well-designed reference line. The third phase involves adjusting the preliminary edge positions to more reasonable positions by employing prior information of the coding rules. Thus, a universal edge mapping model is established to obtain the coding positions of each edge in this phase, followed by a decoding procedure. The Levenberg-Marquardt method is utilized to solve this nonlinear model. The computational complexity and convergence analysis of AEDM are also provided. Several experiments were implemented to evaluate the performance of AEDM algorithm. The results indicate that the efficient AEDM algorithm outperforms state-of-the-art methods and adequately addresses multiple issues, such as out-of-focus blur, nonlinear distortion, noise, nonlinear optical illumination, and situations that involve the combinations of these issues.

  15. Edge effect in charged-particle analyzing magnets

    NARCIS (Netherlands)

    Braams, C.M.

    1964-01-01

    The manner in which local saturation of pole pieces with sharp edges affects the fall-off of the magnetic induction in the fringing-field region is discussed and measured. Local saturation appears to set in at a field strength well below that at which over-all saturation of the pole pieces becomes n

  16. Edge effect in charged-particle analyzing magnets

    NARCIS (Netherlands)

    Braams, C.M.

    The manner in which local saturation of pole pieces with sharp edges affects the fall-off of the magnetic induction in the fringing-field region is discussed and measured. Local saturation appears to set in at a field strength well below that at which over-all saturation of the pole pieces becomes

  17. Noise model for serrated trailing edges compared to wind tunnel measurements

    Science.gov (United States)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong; Madsen, Jesper

    2016-09-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However, it is by decades faster than LES methods.

  18. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong;

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...

  19. Understanding of edge and screw dislocations in nanostructures by modeling and simulations

    Science.gov (United States)

    Dontsova, Evgeniya

    The role of the extended dislocation defects in nanostructures only recently began to be explored. In bulk materials, dislocations are modeled only away from their cores within the framework of the continuum mechanics. It is known that applying continuum modeling in the core region leads to divergences. In nanostructures, the core region dominates and new investigation methods are needed. This work contributes to the fundamental understanding of the role of dislocations in important carbon and zinc oxide nanostructures, by using atomistic investigation methods. In quasi-zero-dimensional structures, thesis describes the first attempt to rationalize dislocation processes in carbon nano-onions. Experiments show that carbon nano-onions exhibit an unusual dislocation dynamics with unexpected attraction of outer edge dislocation towards the core. Atomistic calculations combined with rigorous energy analysis attribute this behavior to an unusual inward driving force on the outer edge dislocation associated with a reduction in the number of dangling bonds. Moving on to quasi-one-dimensional nanostructures, we study the stability of screw-dislocated zinc oxide structures in the wurtzite phase with a symmetry-adapted molecular dynamics methodology, which introduces a significant simplification in the simulation domain size by accounting for the helical symmetry explicitly. The goal is to provide the theoretical support for a universal screw-dislocation-driven growth mechanism suggested by recent experiments. Moreover, the effects of axial screw dislocations on the electronic properties in helical zinc oxide nanowires and nanotubes are explored. We demonstrate significant screw-dislocation-induced band gap modifications that originate in the highly distorted cores. Finally, using the same objective technique, we investigate the stability against torsional deformations of quasi-one-dimensional graphene nanoribbons with bare, F-, and OH-saturated armchair edges. The prevalence

  20. Awareness of Central Luminance Edge is Crucial for the Craik-O'Brien-Cornsweet Effect.

    Science.gov (United States)

    Masuda, Ayako; Watanabe, Junji; Terao, Masahiko; Watanabe, Masataka; Yagi, Akihiro; Maruya, Kazushi

    2011-01-01

    The Craik-O'Brien-Cornsweet (COC) effect demonstrates that perceived lightness depends not only on the retinal input at corresponding visual areas but also on distal retinal inputs. In the COC effect, the central edge of an opposing pair of luminance gradients (COC edge) makes adjoining regions with identical luminance appear to be different. To investigate the underlying mechanisms of the effect, we examined whether the subjective awareness of the COC edge is necessary for the generation of the effect. We manipulated the visibility of the COC edge using visual backward masking and continuous flash suppression while monitoring subjective reports regarding online percepts and aftereffects of adaptation. Psychophysical results showed that the online percept of the COC effect nearly vanishes in conditions where the COC edge is rendered invisible. On the other hand, the results of adaptation experiments showed that the COC edge is still processed at the early stage even under the perceptual suppression. These results suggest that processing of the COC edge at the early stage is not sufficient for generating the COC effect, and that subjective awareness of the COC edge is necessary.

  1. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    Science.gov (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  2. Effect of edge vacancies on localized states in semi-infinite zigzag graphene sheet

    Science.gov (United States)

    Glebov, A. A.; Katkov, V. L.; Osipov, V. A.

    2016-12-01

    The effect of vacancies on the robustness of zero-energy edge electronic states in zigzag-type graphene layer is studied at different concentrations and distributions of defects. All calculations are performed by using the Green's function method and the tight-binding approximation. It is found that the arrangement of defects plays a crucial role in the destruction of the edge states. We have specified a critical distance between edge vacancies when their mutual influence becomes significant and affects markedly the density of electronic states at graphene edge.

  3. Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture

    Directory of Open Access Journals (Sweden)

    Elly C. Knight

    2014-06-01

    Full Text Available Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

  4. Gate Bias Effects on Samples with Edge Gates in the Quantum Hall Regime

    OpenAIRE

    若林 淳一; 風間 重雄; 長嶋 登志夫

    2001-01-01

    We have fabricated GaAs/AlGaAs heterostructure Hall samples that have edge gate with several widths along both sides of the sample. The gate width dependence of an effect of the gate voltage to the Hall resistance was measured at the middle of a transition region between the adjacent quantum Hall plateaus. The results have been analyzed based on two model functions of current distribution;an exponential type and the modified Beenakker type. The results of the former have shown qualitative agr...

  5. Consistent approach to edge detection using multiscale fuzzy modeling analysis in the human retina

    Directory of Open Access Journals (Sweden)

    Mehdi Salimian

    2012-06-01

    Full Text Available Today, many widely used image processing algorithms based on human visual system have been developed. In this paper a smart edge detection based on modeling the performance of simple and complex cells and also modeling and multi-scale image processing in the primary visual cortex is presented. A way to adjust the parameters of Gabor filters (mathematical models of simple cells And the proposed non-linear threshold response are presented in order to Modeling of simple and complex cells. Also, due to multi-scale modeling analysis conducted in the human retina, in the proposed algorithm, all edges of the small and large structures with high precision are detected and localized. Comparing the results of the proposed method for a reliable database with conventional methods shows the higher Performance (about 4-13% and reliability of the proposed method in the detection and localization of edge.

  6. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  7. Improved segmentation of low-contrast lesions using sigmoid edge model.

    Science.gov (United States)

    Foruzan, Amir Hossein; Chen, Yen-Wei

    2016-07-01

    The intensity profile of an image in the vicinity of a tissue's boundary is modeled by a step/ramp function. However, this assumption does not hold in cases of low-contrast images, heterogeneous tissue textures, and where partial volume effect exists. We propose a hybrid algorithm for segmentation of CT/MR tumors in low-contrast, noisy images having heterogeneous/homogeneous or hyper-/hypo-intense abnormalities. We also model a smoothed noisy intensity profile by a sigmoid function and employ it to find the true location of boundary more accurately. A novel combination of the SVM, watershed, and scattered data approximation algorithms is employed to initially segment a tumor. Small and large abnormalities are treated distinctly. Next, the proposed sigmoid edge model is fitted to the normal profile of the border. The estimated parameters of the model are then utilized to find true boundary of a tissue. We extensively evaluated our method using synthetic images (contaminated with varying levels of noise) and clinical CT/MR data. Clinical images included 57 CT/MR volumes consisting of small/large tumors, very low-/high-contrast images, liver/brain tumors, and hyper-/hypo-intense abnormalities. We achieved a Dice measure of [Formula: see text] and average symmetric surface distance of [Formula: see text] mm. Regarding IBSR dataset, we fulfilled Jaccard index of [Formula: see text]. The average run-time of our code was [Formula: see text] s. Individual treatment of small and large tumors and boundary correction using the proposed sigmoid edge model can be used to develop a robust tumor segmentation algorithm which deals with any types of tumors.

  8. An experimental study of the edge effect on transition of the rotating-disk boundary-layer flow

    Science.gov (United States)

    Imayama, Shintaro; Lingwood, R. J.; Alfredsson, P. Henrik

    2011-11-01

    Lingwood [J. Fluid Mech., 299, 17 (1995)] showed that the flow instability in the rotating-disk boundary layer is not only of convective nature but also that the flow becomes absolutely unstable. Furthermore, in the absence of bypass mechanisms, the absolute instability triggers nonlinearity and transition to turbulence at a fixed Reynolds number (Re). Healey [J. Fluid Mech., 663, 148 (2010)] suggested that the observed spread (albeit small) in transition Re in different experiments is an effect of the Re at the disk edge and provided a nonlinear model to take this effect into account. Here, we further investigate this problem experimentally with hot-wire measurements on a rotating polished glass disk with a diameter of 474 mm and a total imbalance and surface roughness less than 10 μm. To investigate the influence of the disk edge, we vary Re at the disk edge by changing the rotational speed and map the development of the disturbance velocity in the radial direction. Furthermore, the effect of a stationary annular plate around the edge of the rotating disk is also investigated. Our experiments show no effect of the disk edge Re on the stability and transition, however there was a shift of both the growth curve and the transition Re by about 10 units with and without the outer stationary plate, with the lower Re observed with the plate.

  9. The effect of acoustic forcing on trailing edge separation and near wake development of an airfoil

    Science.gov (United States)

    Huang, L. S.; Bryant, T. D.; Maestrello, L.

    1988-01-01

    An experimental study was conducted to investigate the effect of acoustic forcing on flow fields near the trailing edge of a symmetric airfoil at zero angle of attack. At low chord Reynolds numbers, the boundary layers separate from the surfaces in the rear part of the airfoil and create recirculation regions near the trailing edge. It is shown that with the introduction of acoustic forcing through a slot in the vicinity of the separation point, periodic large-scale structures are generated in the trailing edge region. Significant reduction of trailing edge separation is achieved. It is also found that the most effective forcing frequency to control trailing edge separation is the wake vortex shedding frequency. As a result of forcing, applied only on the upper surface, the upper boundary layer is accelerated and the flow over the lower surface decelerated. Consequently, an asymmetric wake is formed. The results presented indicate that the development of the near wake varies with forcing conditions.

  10. Graphical Gaussian models with edge and vertex symmetries

    DEFF Research Database (Denmark)

    Højsgaard, Søren; Lauritzen, Steffen L

    2008-01-01

    study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...... of variable labels. For such models a particularly simple maximization of the likelihood function is available...

  11. Hybrid Finite Element Analysis of Free Edge Effect in Symmetric Composite Laminates

    Science.gov (United States)

    1983-06-01

    ANALYSIS OF FREE EDGE EFFECT IN L AUTHOR(S 61102F S.W. Lee237B J.J. Rhiu S.C. Won,, I ~ 7. PENOAMnG ORGANIZATION NAME(S) AND ADORES4 S) L. PERFORMING...ANALYSIS OF FREE EDGE EFFECT IN SYMMETRIC COMPOSITE LAMINATES S. W. Lee I 3. Phi S. C. Wong Department of Aerospace Engineering University of Maryland...collocation method. In this report, we present an efficient hybrid finite element method for analysis of interlaminar stress or free edge effect in

  12. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  13. Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil.

    Science.gov (United States)

    Silva, I A A; Pereira, A F N; Barros, I C L

    2011-05-01

    We have investigated how edge effects influence the fern community of Jaguarão Forest (08º 35' 49" S and 35º 15' 39" W), located in the district of Rio Formoso, Pernambuco, Brazil. A comparative analysis was made of the interior and edge of the fragment of forest, regarding the richness, abundance and diversity of ferns in the two areas. Six plots of 10 × 20 m were chosen, three in each area. A total of 381 ferns were recorded, which were distributed among 25 species, 17 genera and 12 families. The two areas (edge and interior) were found to differ, with distinct relative air humidities and temperatures (p = 0.00254 and p = 0.00019, respectively). The interior showed higher diversity (t = 7.251 and p = 0.018) and richness (t = 6.379 and p = 0.023) than the edge area, but the same abundance (t = 1.728; p = 0.226) as the edge. Regarding the composition of the flora, it was clear that the interior is a habitat completely distinct from the edge with regard to the fern community, given that only one species, Adiantum petiolatum Desv., was common to both environments. It was concluded that the edge effect causes a decrease in richness and abundance of the fern species found in Jaguarão Forest, where the more sensitive species are being replaced by species that are tolerant to the disturbance caused by the creation of an edge.

  14. Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M. D.; Dameron, A. A.; Moricone, T. J.; Reese, M. O.

    2011-02-01

    Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets along with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used to estimate moisture ingress rates and compare the results of these two methods. Encapsulant materials were also evaluated for comparison and to highlight the need for edge seals. Of the materials studied, desiccant filled polyisobutylene materials demonstrate by far the best potential to keep moisture out for a 20 to 30 year lifetime.

  15. CFD analysis of cascade effects in marine propellers with trailing edge modification

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2015-01-01

    investigated intensively by viscous flow solvers, although RANS CFD is prevalent in marine industry nowadays. In the current work, the cascade effect of a marine propeller is analyzed by CFD simulations on a threedimensional propeller model with varying the number of blades. The influence of trailing-edge......Propeller blades are different from a single hydrofoilin isolation due to cascade effects that blades mutually affect hydrodynamic characteristics of each other in proximity. Propeller design programs based lifting-line theory and blade element momentum theory take into account cascade effect...... by using cascade correction theory, which has been developed on the basis of wind tunnel tests for a row of evenly spaced airfoils. Cascade effects of marine propellers have been on research by inviscid flow solvers such as boundary element methods and vortex lattice methods, but it has not been...

  16. EFFECTS OF EDGE COVERING ON TENSILE STRENGTH OF MDF

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available Dowels, 6, 8 and 10 mm ? diameters were bonded with PVAc adhesive on Medium Density Fiberboard (MDF. Edges were covered with 5, 8 and 12 mm beech wood materials, drilled 25 mm depth. Tensile strength measurments were made on the samples. The highest tensile strength value was given as 6 mm ? dowel and MDF covered with 8 mm thickness beech wood material (2.294 N/mm2, the lowest value was obtained with 10 mm ? dowel and with unprocessed MDF (1.314 N/mm2.

  17. Experimental Investigation of Effect of the Sail with Leading Edge Fillet on Flow around a Submarine

    Directory of Open Access Journals (Sweden)

    Mohsen Rahmany

    2016-06-01

    Full Text Available Because of connecting the various appendages of submarine to the main body the vortices have been created that disrupt the flow uniformity and make the undesirable features such as vortex formation to flow. Vortices that have been created due to the connectivity of sail to the body of submarines have a significant impact on non-uniformity of submarine wake at location of the propeller disc. In present research the use of hot wire anemometer has created vertical flow field in back of the two sails in an experimental model of standard submarines in a wind tunnel. Sails have a same cross-section and height, but one simple and the other has a fillet at the leading edge. The vortical flow field in the form of a horseshoe vortex at downstream of sail has been obtained at four locations. The results of research have specified the formation of a horseshoe vortex on the body of submarine model due to the effect of connectivity sail to body. The amount and intensity of the vortex flow has considerably reduced in the sail with fillet on leading edge. In addition, increasing space from sail to downstream increases the amount of axial speed at the center of vortex but the range the vortex covers is smaller. Results have clearly shown the symmetry flow around sail of a submarine model.

  18. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...

  19. Pyramidal Edge Detection Method Based on AWFM Filtering and Fuzzy Linking Model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repetitive AWFM filtering and subsampling of original image. Then it utilizes multiple heuristic linking criteria between the edge nodes of two adjacent levels and considers the linkage as a fuzzy model, which is trained offline. Through this fuzzy linking model, the boundaries detected at coarse resolution are propagated and refined to the bottom level from the coarse-to fine edge detection. The validation experiment results demonstrate that the proposed approach has superior performance compared with standard fixed resolution detector andprevious multiresolution approach, especially in impulse noise environment.

  20. Examination of edge effects in a Cryptomeria fortunei plantation in Zhougong Mountain, western Sichuan

    Directory of Open Access Journals (Sweden)

    Deyi Wang

    2016-08-01

    Full Text Available To investigate edge effects on community structure, species composition and diversity in an artificial forest, research was conducted on Zhougong Mountain, a forest park in western Sichuan, and a large fragmented plantation of Cryptomeria fortunei was selected as the sample plot. The average DBH (diameter at breast height, average height, average density, richness index (D and Shannon-Wiener index (H were used to evaluate edge effects. Based on a field survey, 5 transects (width = 10 m were established from the edge to interior forest (gradient 1 to gradient 5, and 4 small plots (10 m × 10 m were chosen in each transect using a random sampling method. Results showed that 111 species, belonging to 96 genera and 54 families were recorded in 20 small plots with a total area of 2,000 m2. The following results were also found in this investigation: (1 The number of species decreased away from the edge to forest interior. (2 In terms of community structure, a decrease of average DBH was found in the tree layer with the increase of edge gradients. Average density followed the opposite pattern and no significant differences were found in average height. In the shrub layer, average density decreased with the increase of edge gradients and no significant differences were found in average height. Average density and height both decreased from the edge to interior forest in the herb layer. (3 Based on the analysis of species diversity, richness index (D and Shannon-Wiener index (H of the plantation, decreased values were generally found with an increase of edge gradients, and were much more obvious in the shrub and herb layer. Moreover, the number of common species and Sørensen’s similarity coefficient between edge gradients in the forest interior and edge 1 both showed a decreasing trend from the edge to interior forest. (4 Based on a comprehensive analysis, a clear change of community was found between edge 2 and edge 3, indicating that edge effects

  1. Boundary-induced dynamics in one-dimensional topological systems and memory effects of edge modes

    Science.gov (United States)

    He, Yan; Chien, Chih-Chun

    2016-07-01

    Dynamics induced by a change of boundary conditions reveals rate-dependent signatures associated with topological properties in one-dimensional Kitaev chain and SSH model. While the perturbation from a change of the boundary propagates into the bulk, the density of topological edge modes in the case of transforming to open boundary condition reaches steady states. The steady-state density depends on the transformation rate of the boundary and serves as an illustration of quantum memory effects in topological systems. Moreover, while a link is physically broken as the boundary condition changes, some correlation functions can remain finite across the broken link and keep a record of the initial condition. By testing those phenomena in the nontopological regimes of the two models, none of the interesting signatures of memory effects can be observed. Our results thus contrast the importance of topological properties in boundary-induced dynamics.

  2. Diversity of galling insects in Styrax pohlii (Styracaceae): edge effect and use as bioindicators.

    Science.gov (United States)

    de Araújol, Walter Santos; Julião, Genimar Rebouças; Ribeiro, Bárbara Araújo; Silva, Isadora Portes Abraham; dos Santos, Benedito Baptista

    2011-12-01

    Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae) host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior) were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i) because of their host-specificity, (ii) they are sensitive to changes in plant quality, and (iii) present dissimilar and specific responses to local variation in habitat conditions.

  3. Diversity of galling insects in Styrax pohlii (Styracaceae: edge effect and use as bioindicators

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araújo

    2011-12-01

    Full Text Available Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i because of their host-specificity, (ii they are sensitive to changes in plant quality, and (iii present dissimilar and specific responses to local variation in habitat conditions. Rev. Biol. Trop. 59 (4: 1589-1597. Epub 2011 December 01.

  4. Edge Effect Correction in the S-A Method for Geochemical Anomaly Separation

    Institute of Scientific and Technical Information of China (English)

    Ge Yong; Cheng Qiuming; Zhang Shenyuan

    2004-01-01

    Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and holes (with missing data) often causes frequency distribution distortion in the frequency domain. For example, bright strips are commonly seen in frequency distribution when using a Fourier transform. Such edge effect distortion may affect information extraction results; sometimes severely, depending on the edge abruptness of the image. Traditionally, edge effects are reduced by smoothing the image boundary prior to applying a Fourier transform. Zero-padding is one of the most commonly used smoothing methods. This simple method can reduce the edge effect to some degree but still distorts the image in some cases. Moreover, due to the complexity of geoscience images, which can include irregular shapes and holes with missing data, zero-padding does not always give satisfactory results. This paper proposes the use of decay functions to handle edge effects when extracting information from geoscience images. As an application, this method has been used in a newly developed multifractal method (S-A) for separating geochemical anomalies from background patterns. A geochemical dataset chosen from a mineral district in Nova Scotia, Canada was used to validate the method.

  5. Effect of Edge Roughness on Electronic Transport in Graphene Nanoribbon Channel Metal Oxide Semiconductor Field-Effect Transistors

    OpenAIRE

    D Basu; Gilbert, M.J.; Register, L. F.; Macdonald, A. H.; Banerjee, S. K.

    2007-01-01

    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the ban...

  6. Aspects of modelling classical or synchronous modelling with Solid Edge ST 9

    Directory of Open Access Journals (Sweden)

    Goanta Adrian Mihai

    2017-01-01

    Full Text Available The current situation of the design activity is dependent on both the level of training of the human resources and the financial resources of companies required purchasing the design software packages and complex calculation equipment. Consequently, the situation is very diverse in the sense that there are design cases using only drawing software but also classical 3D or synchronous modelling situations, simple or integrated into software packages that meet the Product Lifecycle Management (PLM principles. The natural tendency in modelling and design is primarily to the high computing power integrated software or somewhat simplified versions that, however, allow at least FEA modelling, simulation and the related 2D documentation. The paper presents some aspects of modernity in synchronous modelling as compared to the classic one, made with 2016 version of Solid Edge software from SIEMENS. Basically there were studied and analysed aspects of modelling ease, speed of changes and also optimization of commands in the modelling process of the same piece in the two versions mentioned: classic and synchronous. It is also presented the alternative path from one method to another within the same process of piece modelling, depending on the advantages provided by each method. In other words, the work is based on a case study of modelling a piece under the two modelling versions of which some aspects were highlighted and conclusions were drawn.

  7. Effect of readout direction in the edge profile on the modulation transfer function of computed radiographic systems by use of the edge method.

    Science.gov (United States)

    Tanaka, Nobukazu; Morishita, Junji; Tsuda, Norisato; Ohki, Masafumi

    2013-07-01

    We investigated the effect of the readout direction of the edge profile obtained by the edge method on the presampled modulation transfer function (MTF) in various computed radiographic (CR) systems. There were no differences in the MTFs derived from two edge profiles in the sub-scanning direction of four CR systems used in this study. On the other hand, the MTFs measured at a readout direction from the low (edge) to the high (direct exposure) exposure region were higher than those measured at a readout direction from the high to the low exposure region in the laser-beam scanning direction for three of the four CR systems. Although this phenomenon depends on the CR system, it is important to understand and indicate both MTFs at the two edge profiles in the laser-beam scanning direction for accurate assessment of the resolution property.

  8. Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators

    Science.gov (United States)

    Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.

    2015-11-01

    The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.

  9. Role of edge effect on small mammal populations in a forest fragment

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.

    2000-06-27

    In many cases, edge effect may determine the distribution and densities of small mammal populations. In 1995 and 1998, a mark and recapture study was conducted at the Savannah River Site (SRS), Aiken, SC, to evaluate the role of forest edge habitat. The area studied was an abandoned home site that had been recently isolated by a timber harvest. Harvest activities left a distinct edge of old field and planted pine contrasting with a relatively xeric, mixed hardwood stand. Trapping was conducted for 17 days in 1995 and 14 days in 1998. Three 30 m by 150 m grids were placed in the clear-cut, edge, and hardwood interior habitats. For both years the principal species captured were Peromyscus gossypinus, P. polionotus, and Neotoma floridana. The edge habitat accounted for approximately 55 percent of all captures and nearly four times as many recaptures as the interior and clear-cut habitats. In 1998, greater numbers of N. floridana were trapped than in 1995. The results indicate that the use of edge habitat can be pronounced even within simple communities. Stewards of managed or restored habitats need to carefully consider the role of edge in these systems. In managed areas such as waste sites, movement of material within the food chain could be reduced by minimizing edge habitat around the points of contamination.

  10. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    Science.gov (United States)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  11. Edge effects on N2O, NO and CH4 fluxes in two temperate forests.

    Science.gov (United States)

    Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal

    2017-01-01

    Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N2O), nitric oxide (NO) and methane (CH4). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N2O, NO and CH4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N2O emissions. The fluxes of NO and CH4 differed between forest edge and interior, but not for N2O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of tip shape on line edge roughness measurement based on atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Shanghai Second Polytechnic University, Shanghai 201209 (China); Wang Fei; Zhao Xuezeng [School of Mechanical and Electronic Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2010-12-15

    Atomic force microscopy (AFM) is an important tool in line edge roughness (LER) measurements, where accuracy for line edge identification is influenced by the shape of the tip. In this article, the effect of tip shape on LER measurement based on AFM is studied theoretically. The formulas for calculating the distance between the measured and actual line edge of the sample are presented. The effects of the three kinds of tips with different shapes are experimentally compared for validation. Suggestions on how to reduce measuring error caused by tip shape are also given.

  13. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  14. Pitch Wetting on Model Basal and Edge-Plane Surfaces

    Science.gov (United States)

    2004-06-04

    spin coating and then utilize the films as model substrates for pitch wetting studies. Experimental Films from indanthrone disulfonate (Optiva...Inc. South San Francisco) were formed on quartz from 7.5 wt% aqueous solution either by spin coating (rotation rate: 500 rmp for 20 seconds and then...formed by spin coating (Figs. 3,4) and Meyer-bar-coating (Fig. 5) of indanthrone disulfonate aqueous solutions followed by drying and direct

  15. A simple technique for reducing edge effect in cell-based assays.

    Science.gov (United States)

    Lundholt, Betina Kerstin; Scudder, Kurt M; Pagliaro, Len

    2003-10-01

    Several factors are known to increase the noise and variability of cell-based assays used for high-throughput screening. In particular, edge effects can result in an unacceptably high plate rejection rate in screening runs. In an effort to minimize these variations, the authors analyzed a number of factors that could contribute to edge effects in cell-based assays. They found that pre-incubation of newly seeded plates in ambient conditions (air at room temperature) resulted in even distribution of the cells in each well. In contrast, when newly seeded plates were placed directly in the CO(2) incubator, an uneven distribution of cells occurred in wells around the plate periphery, resulting in increased edge effect. Here, the authors show that the simple, inexpensive approach of incubating newly seeded plates at room temperature before placing them in a 37 degrees C CO(2) incubator yields a significant reduction in edge effect.

  16. An atomic and molecular fluid model for efficient edge-plasma transport simulations at high densities

    Science.gov (United States)

    Rognlien, Thomas; Rensink, Marvin

    2016-10-01

    Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  17. Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks

    Science.gov (United States)

    Seol, Jaechun; Shaing, Kerchung; Aydemir, Ahmet

    2016-10-01

    In the high confinement mode of tokamaks, magnitude of the radial electric field increases at the edge. Thus, the poloidal flow inside the transport barrier can be sonic when the edge pressure gradient is not steep enough to make the poloidal flow subsonic. When the poloidal Mach number is close to unity, a shock appears in the low field side and causes a large density perturbation. In this study, we describe a shock induced by the sonic poloidal plasma flow. Then, an entropy production across the shock is calculated. Finally, we introduce a simple model for Type III edge localized modes using the poloidal density variation driven by the sonic poloidal flow.

  18. A new analytical edge spread function fitting model for modulation transfer function measurement

    Institute of Scientific and Technical Information of China (English)

    Tiecheng Li; Huajun Feng; Zhihai Xu

    2011-01-01

    @@ We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method.The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF.Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference.A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.%We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF). The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method. The differentiation of the ESF yields the line spread function (LSF), the Fourier transform of which gives the profile of two-dimensional MTF. Compared with the previous methods, the MTF estimate determined by our method conforms more closely to the reference. A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.

  19. HL-2A Tokamak Edge Modeling with B2

    Institute of Scientific and Technical Information of China (English)

    Pan Yudong(潘宇东); Wang Enyao(王恩耀); Liu Yi(刘仪)

    2003-01-01

    The outer divertor plasma of HL-2A and its associated scrape-off plasma have been simulated using a two-dimensional multi-species fluid code of Braams with a simplified neutral gas model. HL-2A has a double-null closed divertor in separate divertor chambers above and below the nearly circular plasma tours. The computed numerical grid is developed according to an ideal magnetic surface. The calculation is involved only with pure hydrogen plasma. The emphasis has been focused on parametric studies involving variation of the assumptions made for the core plasma. The peak temperatures and the heat flux near the target are of the principal concern.

  20. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    OpenAIRE

    Meng Xian Hong; Liu Wei

    2016-01-01

    In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the eff...

  1. Edge effects in game-theoretic dynamics of spatially structured tumours.

    Science.gov (United States)

    Kaznatcheev, Artem; Scott, Jacob G; Basanta, David

    2015-07-06

    Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries.

  2. Effect of gender on results of percutaneous edge-to-edge mitral valve repair with MitraClip system.

    Science.gov (United States)

    Estévez-Loureiro, Rodrigo; Settergren, Magnus; Winter, Reidar; Jacobsen, Per; Dall'Ara, Gianni; Sondergaard, Lars; Cheung, Gary; Pighi, Michele; Ghione, Matteo; Ihlemann, Nikolaj; Moat, Neil E; Price, Susanna; Streit Rosenberg, Tine; Di Mario, Carlo; Franzen, Olaf

    2015-07-15

    Knowledge regarding gender-specific results of percutaneous edge-to-edge mitral valve repair is scarce. The aim of this study was to investigate gender differences in outcomes in a cohort of patients treated with MitraClip implantation. A multicenter registry of 173 patients treated with MitraClip prostheses from 2009 to 2012 at 3 experienced centers was performed. One hundred nine patients (63%) were men. Men were younger (mean age 73 ± 10 vs 79 ± 9 years, p = 0.001) and had a higher prevalence of previous coronary bypass graft surgery (34% vs 13%, p = 0.002), previous myocardial infarction (46% vs 20%, p = 0.001), and diabetes mellitus (26% vs 11%, p = 0.020). There were no differences regarding New York Heart Association (NYHA) functional class before the intervention (NYHA class III or IV in 95% of men vs 97% of women, p = 0.472) or the cause of mitral regurgitation (MR) (functional in 58% of men vs 48% of women, p = 0.233). Men exhibited significantly larger ventricles (mean indexed left ventricular end-systolic diameter 2.4 ± 0.8 vs 2.0 ± 1.6 cm/m(2), p = 0.002, and mean indexed left ventricular end-diastolic volume 92.7 ± 46.1 vs 59.9 ± 24.6 ml/m(2), p effective treatment of MR in men and women. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Basu, D.; Gilbert, M. J.; Register, L. F.; Banerjee, S. K.; MacDonald, A. H.

    2008-01-01

    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However, the band gap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve in complementary MOS applications.

  4. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  5. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  6. Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching

    Science.gov (United States)

    Levy, B. S.; Van Tyne, C. J.

    2012-07-01

    Failure in sheared-edge stretching often limits the use of advanced high-strength steel sheets in automotive applications. The present study analyzes data in the literature from laboratory experiments on both the shearing process and the characteristics of sheared edges. Shearing produces a surface with regions of rollover, burnish, fracture, and burr. The effect of clearance and tensile strength on the shear face characteristics is quantified. Higher strength, lower ductility steels exhibit an increase in percent fracture region. The shearing process also creates a zone of deformation adjacent to the shear face called the shear-affected zone (SAZ). From an analysis of data in the literature, it is concluded that deformation in the SAZ is the dominant factor in controlling failure during sheared-edge stretching. The characteristics of the shear face are generally important for failures during sheared-edge stretching only as there is a correlation between the characteristics of the shear face and the characteristics of the SAZ. The effect of the shear burr on shear-edge stretching is also related to a correlation with the characteristics of the SAZ. In reviewing the literature, many shearing variables that could affect sheared-edge stretching limits are not identified or if identified, not quantified. It is likely that some of these variables could affect subsequent sheared-edge stretching limits.

  7. Implementation of GTNEUT for Analysis of the Effect of Neutral Particles on Edge Phenomena in DIII-D

    Science.gov (United States)

    Friis, Z. W.; Stacey, W. M.; Groebner, R. J.; Rognlien, T. D.

    2008-11-01

    In order to establish an accurate and computationally economical code for routine analysis of the effects of neutral atoms on edge phenomena in DIII-D, the Georgia Tech 2D Neutral Transport (GTNEUT) code [1], which can use an arbitrarily complex two-dimensional grid to represent the plasma edge geometry, is being implemented in an integrated system. The grid generation capability built into the UEDGE code [2], which utilizes equilibrium-fitting data taken from experiment, is being incorporated. GTNEUT requires the background plasma temperature and density distributions. Measured background plasma data (Thomson, Langmuir probe, CER, and reflectometer) will be supplemented with calculated parameters from a coupled core plasma and ``2-point'' divertor model. 6pt [1] J. Mandrekas, J. Computer Phys. Comm. 161, 36 (2004). [2]T.D. Rognlien, et al., User Manual of UEDGE Edge-Plasma Transport Code (2007).

  8. Effects of Angle of Attack and Velocity on Trailing Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2006-01-01

    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  9. Study of Edge Effects in the Breakdown Process of p+ on n-bulk Silicon Diodes

    CERN Document Server

    Borrello, L; Da Rold, M; Dell'Orso, R; Dutta, S; Messineo, A; Mihul, A; Militaru, O; Tonelli, G; Verdini, P G; Wheadon, R; Xie, Z

    1998-01-01

    The paper describes the role of the n+ edge implants in the breakdown process of p+ on n-bulk silicon diodes. Laboratory measurements and simulation studies are presented on a series of test structures aimed at an optimisation of the design in the edge region. The dependence of the breakdown voltage on the geometrical parameters of the devices is discussed in detail. Design rules are extracted for the use of n-wells along the scribe line to avoid surface conduction of current generated by the exposed edges. The effect of neutron irradiation has been studied up to a fluence 1.8*10^15 n/cm2.

  10. Effect of MAE on the properties of phosphate edge-cladding glasses

    Institute of Scientific and Technical Information of China (English)

    Fenggang Zhao; Guonian Wang; Lili Hu

    2007-01-01

    Edge-cladding is a key factor in improving saturated small signal gain coefficient βs of large laser disc glass. In this paper, the glasses were melted with traditional method. The influences of mixed alkali effect (MAE) on refractive index, thermal expansion coefficient α, glass transition temperature Tg, dilatometer softening temperature Td, and relative chemical durability of phosphate edge-cladding glasses were studied.The results reveal that when Li/(Na + Li) = 0.5, Tg, Td, and dissolution rate (DR) reach a minimal value.These results are preferred in phosphate edge-cladding glasses.

  11. MMSE Multiuser Detector Alleviating Edge Effect in Asynchronous DS-CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    WANGLing; JIAOLicheng; TAOHaihong; LIUFang

    2005-01-01

    Multiuser detection is a key technique in DS-CDMA systems. At the base station, the received signal is the compositive signal transmitted by active users in the system over asynchronous channels, the Multiple access interference (MAI) components of which is more serious than that in synchronous systems. In this paper, based on the compact matrix signal model of the asynchronous system, a MMSE (Minimum mean square error) Multiuser detector alleviating edge effect (MMSEAEE) with low complexity is proposed. The asymptotic efficiency, near-far effect resistance and computational complexity of the multiuser detector are analyzed qualitatively. Finally, the bit error rate is simulated via plentiful Monte Carlo numerical experiments. With performance analysis and numerical simulation, it is shown that MMSEAEE with low complexity offers significant performance improvement over some existing popular detectors in eliminating multiple access interference and near-far resistance.

  12. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  13. Effect of graded interlayer on the mode I edge delamination by residual stresses in multilayer coating-based systems

    Science.gov (United States)

    Zhang, X. C.; Xu, B. S.; Wang, H. D.; Wu, Y. X.

    2008-01-01

    The mode I edge delamination could be initiated due to the presence of the interfacial peeling stresses near the edges of the multilayered systems due to the material mismatches between the adjacent layers. However, the exact peeling stress distributions could not be obtained by using the existing analytical and numerical models. It was proposed recently that the peeling moment resulting from the localized peeling stresses could be used to characterize mode I edge delamination. In this paper, the effect of the graded interlayer on the mode I edge delamination by thermal residual stresses in multilayer coating-based systems was investigated. Following the previous analysis approaches, the exact closed-form solutions for the peeling moments at individual interfaces and the curvatures for bilayer system, typical thermal barrier coating (TBC) system and TBC-based system with a graded interlayer inserted between the metallic layer and the ceramic layer were, respectively, derived. Case studies showed that the edge delamination by thermal stress could be impeded by properly selecting the coating materials and individual layer thicknesses. These studies may provide some important insights for developing fail-safe designing methodologies for multilayered systems.

  14. The FACETS project: integrated core-edge-wall modeling with concurrent execution

    Science.gov (United States)

    Cary, J. R.; Balay, S.; Candy, J.; Carlsson, J. A.; Cohen, R. H.; Epperly, T.; Estep, D. J.; Fahey, M. R.; Groebner, R. J.; Hakim, A. H.; Hammett, G. W.; Indireshkumar, K.; Kruger, S. E.; Maloney, A. D.; McCune, D. C.; McInnes, L.; Morris, A.; Pankin, A.; Pletzer, A.; Pigarov, A.; Rognlien, T. D.; Shasharina, S.; Shende, S.; Vadlamani, S.; Zhang, H.

    2009-11-01

    The multi-institutional FACETS project has the physics goals of using computation to understand of how a consistent, coupled core-edge-wall plasma evolves, including energy flow, particle recycling, and the variation of power density on divertor plates with plasma under different conditions. FACETS is being developed to take advantage of Leadership Class Facilities (LCFs), while still being able to run on laptops with reduced fidelity models. This presentation will provide a high-level overview of the project, discussing the issues of componentization, solvers, performance monitoring, testing, visualization and first physics results for core-edge coupling.

  15. Edge effects in the magnetic interference pattern of a ballistic SNS junction

    Science.gov (United States)

    Meier, Hendrik; Fal'ko, Vladimir I.; Glazman, Leonid I.

    2016-05-01

    We investigate the Josephson critical current Ic(Φ ) of a wide superconductor-normal metal-superconductor (SNS) junction as a function of the magnetic flux Φ threading it. Electronic trajectories reflected from the side edges alter the function Ic(Φ ) as compared to the conventional Fraunhofer-type dependence. At weak magnetic fields, B ≲Φ0/d2 , the edge effect lifts zeros in Ic(Φ ) and gradually shifts the minima of that function toward half-integer multiples of the flux quantum. At B >Φ0/d2 , the edge effect leads to an accelerated decay of the critical current Ic(Φ ) with increasing Φ . At larger fields, eventually, the system is expected to cross into a regime of "classical" mesoscopic fluctuations that is specific for wide ballistic SNS junctions with rough edges.

  16. EDGE EFFECT IN ATLANTIC FOREST REMNANTS IN THE WATERSHED OF THE RIVER TAPACURÁ, PERNAMBUCO

    Directory of Open Access Journals (Sweden)

    Lamartine Soares Cardoso de Oliveira

    2015-06-01

    Full Text Available The objective of this study was to evaluate the edge effect on arboreal component of two Atlantic Forest fragments, in the Watershed of Tapacurá River, Pernambuco. For the sampling of the adult component 15 plots of 10 x 25 m were plotted and subplots of 1 x 25 m for the regeneration. The plots were arranged in three environments, with five sampling units each, according to distance from the edge. Comparisons between the environments were performed by specie composition, Venn diagram and cluster analysis. The greatest richness was observed in the area farther from the edge and the greatest number of individuals near the edge. In the Mata da Onça, the farthest edge environments were similar, but different in composition and structure as compared to the nearest environment. However, in the Mata da Buchada the first two environments near to the edge were similar. The interaction between the human environment and the fragment affects the arboreal community in the fragment edges.

  17. Refinement of a discontinuity-free edge-diffraction model describing focused wave fields.

    Science.gov (United States)

    Sedukhin, Andrey G

    2010-03-01

    Two equivalent forms of a refined discontinuity-free edge-diffraction model describing the structure of a stationary focused wave field are presented that are valid in the framework of the scalar Debye integral representation for a diffracted rotationally symmetric converging spherical wave of a limited yet not-too-low angular opening. The first form describes the field as the sum of a direct quasi-spherical wave and a plurality of edge quasi-conical waves of different orders, the optimum discontinuity-free angular spectrum functions of all the waves being dependent on the polar angle only. According to the second form, the focused field is fully characterized by only three components--the same quasi-spherical wave and two edge quasi-conical waves of the zero and first order, of which the optimum discontinuity-free angular spectrum functions are dependent on both the polar angle and the polar radius counted from the geometrical focus.

  18. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2016-08-15

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  19. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  20. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Directory of Open Access Journals (Sweden)

    Yizhuang Liu

    2016-08-01

    Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  1. Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2015-12-01

    Full Text Available Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

  2. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    Science.gov (United States)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  3. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    Directory of Open Access Journals (Sweden)

    Tatar V.

    2015-01-01

    Full Text Available One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  4. Extension of a vortex-lattice method to include the effects of leading-edge separation

    Science.gov (United States)

    Mook, D. T.; Maddox, S. A.

    1974-01-01

    Vortex-lattice methods have been used successfully to obtain the aerodynamic coefficients of lifting surfaces without leading-edge separation. It is shown how an existing vortex-lattice method can be modified to include the effects of leading-edge separation. The modified version is then used to calculate the aerodynamic loads on a highly swept delta wing. The results are compared with Peckham's (1958) experimental data.

  5. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    Science.gov (United States)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  6. The impact of edge effect on termite community (Blattodea: Isoptera in fragments of Brazilian Atlantic Rainforest

    Directory of Open Access Journals (Sweden)

    C. S. Almeida

    Full Text Available Abstract Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m, while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting.

  7. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2016-09-26

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  8. The influence of edge effects on crack propagation in snow stability tests

    Directory of Open Access Journals (Sweden)

    E. H. Bair

    2014-01-01

    Full Text Available Propagation tests are used to assess the likelihood of crack propagation in a snowpack, yet little is known about how test length affects propagation. Guidelines suggest beams with lengths around 1 m for Extended Column Tests (ECTs and Propagation Saw Tests (PSTs. To examine how test length affects propagation, we performed 163 ECTs and PSTs 1 to 10 m long. On days with full crack propagation in 1.0 to 1.5 m tests, we then made videos of tests 2 to 10 m long. We inserted markers for particle tracking to measure collapse amplitude, collapse wave speed, and wavelength. We also used a finite element model to simulate the strain energy release rate at fixed crack lengths. We find that: (1 the proportion of tests with full propagation decreased with test length; (2 collapse was greater at the ends of the beams than in the centers; (3 collapse amplitudes in the longer tests were consistent with the shorter tests and did not reach a constant value; (4 collapse wavelengths in the longer tests were around 3 m, 2 × greater than what is predicted by the anticrack model. Based on our field tests and FE models, we conclude that the shorter tests fully propagated more frequently because of increased stress concentration from the far edge. The FE model suggests this edge effect occurs for PSTs up to 2 m long or a crack to beam length ratio ≥ 0.20. Our results suggest that ECT and PST length guidelines may need to be revisited.

  9. Marsh Edge Erosion Effects in Coupled Barrier Island-Marsh Systems

    Science.gov (United States)

    Lauzon, R.; Moore, L. J.; Murray, A. B.; Walters, D.; Fagherazzi, S.; Mariotti, G.

    2014-12-01

    While until recently marsh loss was largely thought to be due to an inability for vertical accretion rates to match rates of sea level rise, marsh edge erosion by wind waves is now thought to be the leading cause of marsh loss worldwide. To better understand the response of coastal ecosystems to future changes in sea level and storm intensity, we further develop the coupled barrier-island marsh evolution model GEOMBEST+. We use the relationship between wave height (and therefore energy) and fetch and wind speed to add marsh edge erosion to the model, as well as to provide a more physical formulation for bay bottom erosion. Previous research addressing marshes in isolation from barrier islands (Mariotti and Fagherazzi, 2013) suggests that the existence of a backbarrier marsh is an unstable state, tending to either grow laterally to completely fill an adjacent basin or to erode away completely. Previous results of GEOMBEST+ experiments (Walters et al., in review) suggest that couplings with an adjacent barrier island can add an additional alternate long-lasting state: a narrow marsh supported by sediment influx from overwash. Here we present the results of new GEOMBEST+ model experiments that address how the addition of lateral erosion by wind waves affects the existence and characteristics of the narrow marsh state. Specifically, we seek to address how the frequency and characteristic time and space scales of the narrow march state are affected. Model experiments also explore more broadly the importance of wind wave effects in understanding the coupled dynamics of marsh-barrier island systems.

  10. Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling

    Science.gov (United States)

    Peabody, Hume L.

    2010-01-01

    A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESATAN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the

  11. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  12. Effect of Asymmetrical Edge Disconnection on Equivalent Series Resistance of Metalized Polypropylene Capacitors

    Directory of Open Access Journals (Sweden)

    J. Sivakumar

    2014-01-01

    Full Text Available In order to investigate the effect of asymmetrical partial edge disconnection on the Equivalent Series Resistance (ESR of Metalized polypropylene capacitors an experimental study has been made. Theoretical analysis made using PSPICE simulation package reveals that electrode resistance of individual turn rises from 10 to 30% depending on the location of the turn. This rise is not measureable at all the frequencies as ESR is frequency dependent and it includes resistance due to electrodes and dielectric losses. Metalized polypropylene capacitors were made with partial edge disconnection at one end (asymmetrical with different magnitudes of edge disconnection by masking during the process of zinc spraying. Measurements of ESR have been made in a wide range of frequencies from 20 Hz to 50 MHz and the theoretical results are validated through the experimental data. A short time step stress test was conducted on the capacitors, which can be further developed as a type test to identify the capacitors with partial edge disconnection.

  13. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.

    Science.gov (United States)

    Kotakoski, Jani; Santos-Cottin, David; Krasheninnikov, Arkady V

    2012-01-24

    Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage.

  14. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  15. A MODIFIED NONLINEAR DIFFUSION MODEL AND ITS APPLICATION TO IMAGE SMOOTHING AND EDGE DETECTION

    Institute of Scientific and Technical Information of China (English)

    Xu Deliang; Wang Yaguang; Zhou Chuqin; Shen Haiping

    2001-01-01

    A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model.

  16. X-ray edge singularity in integrable lattice models of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Essler, F.H. [Department of Physics, Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Frahm, H. [Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    1997-09-01

    We study the singularities in x-ray absorption spectra of one-dimensional Hubbard and t-J models. We use boundary conformal field theory and the Bethe ansatz solutions of these models with both periodic and open boundary conditions to calculate the exponents describing the power-law decay near the edges of x-ray absorption spectra in the case where the core-hole potential has bound states. {copyright} {ital 1997} {ital The American Physical Society}

  17. Characterisation and modelling of transition edge sensor distributed read-out imaging devices

    Science.gov (United States)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.; Goldie, David J.

    2006-04-01

    We report on the experimental characterisation and modelling of Transition Edge Sensor (TES)-based Distributed Read-Out Imaging Devices (DROIDs), for use as position-sensitive detectors in X-ray astronomy. Latest experimental results from prototype DROIDs using Ir TESs with Au absorbers are reported. Through modelling and the development of signal processing algorithms we are able to design the DROID for optimum spectral and spatial resolution depending upon application.

  18. Characterisation and modelling of transition edge sensor distributed read-out imaging devices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stephen J. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom)]. E-mail: sts@star.le.ac.uk; Whitford, Chris H. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom); Fraser, George W. [Department of Physics and Astronomy, Space Research Centre, Leicester University, Michael Atiyah Building, University Road, Leicester, LE1 7RH (United Kingdom); Goldie, David J. [Astrophysics Group, Cavendish Laboratory, Department of Physics, Cambridge University, Madingley Road Cambridge, CB3 OHE (United Kingdom)

    2006-04-15

    We report on the experimental characterisation and modelling of Transition Edge Sensor (TES)-based Distributed Read-Out Imaging Devices (DROIDs), for use as position-sensitive detectors in X-ray astronomy. Latest experimental results from prototype DROIDs using Ir TESs with Au absorbers are reported. Through modelling and the development of signal processing algorithms we are able to design the DROID for optimum spectral and spatial resolution depending upon application.

  19. Conduction band edge effective mass of La-doped BaSnO3

    Science.gov (United States)

    James Allen, S.; Raghavan, Santosh; Schumann, Timo; Law, Ka-Ming; Stemmer, Susanne

    2016-06-01

    BaSnO3 has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO3 thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  20. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    Science.gov (United States)

    Yang; Baeder, J. D.

    2016-09-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.

  1. Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets

    Science.gov (United States)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2016-11-01

    The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.

  2. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  3. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  4. ELM control with RMP: plasma response models and the role of edge peeling response

    CERN Document Server

    Liu, Yueqiang; Kirk, A; Li, Li; Loarte, A; Ryan, D A; Sun, Youwen; Suttrop, W; Yang, Xu; Zhou, Lina

    2016-01-01

    Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.

  5. Model calculations of edge dislocation defects and vacancies in {alpha}-Iron lattice

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, L; Troev, T; Nankov, N; Popov, E, E-mail: lpetrov@inrne.bas.b [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2010-01-01

    Two models of defects in perfect {alpha}-iron lattice were discussed. In the perfect bcc iron lattice 42x42x42 a{sub o} (a{sub o} = 2,87 A) an edge dislocation was created, moving the second half of the bulk on one a{sub o} distance. This action generates a little volume in the middle of the bulk witch increases of the positron lifetime (PLT) calculated using the superimposed-atom method of Puska and Nieminen [1]. The result of 118 ps PLT in simple edge dislocation's model is in a good concurrence with earlier publications and experimental data [2]. Through the dislocation line one, two and three vacancies were localized. These models give the results for PLT of 146, 157 and 167 ps respectively. The computer simulations were performed using Finnis-Sinclair (FS) N-body potential.

  6. ELM control with RMP: plasma response models and the role of edge peeling response

    Science.gov (United States)

    Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina

    2016-11-01

    Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.

  7. Edge oxidation effect of chemical-vapor-deposition-grown graphene nanoconstriction.

    Science.gov (United States)

    Iqbal, Muhammad Waqas; Iqbal, Muhammad Zahir; Jin, Xiaozhan; Hwang, Chanyong; Eom, Jonghwa

    2014-03-26

    The edge oxidation effects of chemical-vapor-deposition-grown graphene devices with nanoconstrictions of different sizes are presented. The effects of edge oxidation on the doping level of a nanoconstriction graphene device were identified by Raman spectroscopy and using the back-gate-voltage-dependent resistance. Strong p-type doping was observed as the size of nanoconstriction decreased. The Dirac point of the graphene device shifted toward positive voltage, and the positions of the G and 2D peaks in Raman spectroscopy shifted toward a higher wave number, indicating the p-type doping effect of the graphene device. p-type doping was lifted by deep-ultraviolet light illumination under a nitrogen atmosphere at room temperature. p-type doping was restored by deep-ultraviolet light illumination under an oxygen atmosphere at room temperature. Edge oxidation in the narrow structures explains the origin of the p-type doping effect widely observed in graphene nanodevices.

  8. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado.

    Science.gov (United States)

    Ishino, M N; De Sibio, P R; Rossi, M N

    2012-08-01

    The edge of a forest fragment can be considered a zone of transition between the interior of the fragment and the surrounding habitat matrix. Plants along the edge are more exposed to disturbance and microclimate variation than interior plants, resulting in the so-called edge effect. In this study, we compared leaf area, fluctuating asymmetry and chemical (water, nitrogen and tannins) leaf traits between Erythroxylum tortuosum plants inhabiting the edge with those growing in the interior of a cerrado fragment in Brazil. We also describe the temporal variation in the vegetative and reproductive phenological events of E. tortuosum plants throughout the season. Nitrogen, leaf area and fluctuating asymmetry did not differ between the two plant groups. Young leaves of the edge plants had significantly higher levels of tannins and lower levels of water than those of interior plants. We suggest that differences in leaf chemical concentrations between edge and interior plants may occur due to factors such as light intensity, wind, temperature and leaf age rather than plant stress. With respect to plant phenology, most reproductive events occurred during the spring. Leaf buds and young leaves prevailed during the rainy season. In the dry season, however, the vegetative events decreased due to leaf senescence followed by leaf abscission.

  9. [Edge effect on the dynamics of pests and natural enemies in cotton agroecosystems].

    Science.gov (United States)

    Ge, Feng; Men, Xingyuan; Su, Jianwei; Liu, Xinghui; Ding, Yanqin

    2004-01-01

    Investigation on the population dynamics of pests and natural enemies on the cotton plants in the middle and edge of cotton agroecosystems showed that the population of the 2nd generation of cotton bollworms (Heliocopavar armigia) and seedling aphids (Aphis gossyppi) was respectively 1.94 times and 1.09 times higher, but that of the 3rd generation cotton bollworms and summer aphids population was respectively 62.12% and 97.73% lower in the edge than in the middle of cotton agroecosystem. The population of predacious ladybeetles, predacious bugs, spiders and parasites in the edge of cotton agroecosystem was 73.81%, 35.79%, 52.90% and 39.11% of that in the middle of cotton agroecosystem, respectively. The greater diversity of pest community and the less diversity of natural enemies community were found in the edge than in the middle of cotton agroecosystem. The increase of energy utilization efficiency and gross production in the edge of cotton agroecosystems showed the edge effect of cotton agroecosystems.

  10. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae, a typical plant of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    MN. Ishino

    Full Text Available The edge of a forest fragment can be considered a zone of transition between the interior of the fragment and the surrounding habitat matrix. Plants along the edge are more exposed to disturbance and microclimate variation than interior plants, resulting in the so-called edge effect. In this study, we compared leaf area, fluctuating asymmetry and chemical (water, nitrogen and tannins leaf traits between Erythroxylum tortuosum plants inhabiting the edge with those growing in the interior of a cerrado fragment in Brazil. We also describe the temporal variation in the vegetative and reproductive phenological events of E. tortuosum plants throughout the season. Nitrogen, leaf area and fluctuating asymmetry did not differ between the two plant groups. Young leaves of the edge plants had significantly higher levels of tannins and lower levels of water than those of interior plants. We suggest that differences in leaf chemical concentrations between edge and interior plants may occur due to factors such as light intensity, wind, temperature and leaf age rather than plant stress. With respect to plant phenology, most reproductive events occurred during the spring. Leaf buds and young leaves prevailed during the rainy season. In the dry season, however, the vegetative events decreased due to leaf senescence followed by leaf abscission.

  11. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    Science.gov (United States)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  12. Identification of plasma-edge-related operational regime boundaries and the effect of edge instability on confinement in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Suttrop, W.; Kaufmann, M.; Blank, H.J. de; Bruesehaber, B.; Lackner, K.; Mertens, V.; Murmann, H.; Neuhauser, J.; Ryter, F.; Salzmann, H.; Schweinzer, J.; Stober, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Zohm, H. [Institut fuer Plasmaforschung, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    1997-12-01

    Local edge parameters on the ASDEX Upgrade tokamak are investigated at the L-mode to H-mode transition, during phases with various types of edge-localized modes (ELMs), and at the density limit. A scaling law for the boundary electron temperature, T{sub e,b}{sup thresh} {proportional_to} n{sub e,b}{sup -0.3}B{sub t}{sup 0.8}I{sub p}{sup 0.5}, is found which describes the H-mode threshold for deuterium-puffed discharges with favourable ion {nabla}B-drift direction. The region of stable operation is bounded by type I ELMs near the ideal ballooning limit and by a minimum temperature necessary to avoid thermal instability of the plasma edge. Stationary operation with type III ELMs imposes an upper limit on the edge temperature. Within the entire range of boundary densities investigated (n{sub e,b}{<=}8x10{sup 19}m{sup -3}), both L-mode and H-mode are found to be accessible. During type I ELMy H-mode, a relation of global confinement with the edge pressure gradient is found which is connected with a loss of the favourable density dependence predicted by the ITER-92P and ITER-93H ELMy H-mode scalings. At high density, better confinement is achieved in H-modes with an edge pressure gradient below the ideal ballooning limit, e.g. during type III ELMy H-mode with impurity-seeded radiation. (author)

  13. Effect of gender on results of percutaneous edge-to-edge mitral valve repair with MitraClip system

    DEFF Research Database (Denmark)

    Estévez-Loureiro, Rodrigo; Settergren, Magnus; Winter, Reidar

    2015-01-01

    Knowledge regarding gender-specific results of percutaneous edge-to-edge mitral valve repair is scarce. The aim of this study was to investigate gender differences in outcomes in a cohort of patients treated with MitraClip implantation. A multicenter registry of 173 patients treated with Mitra......Clip prostheses from 2009 to 2012 at 3 experienced centers was performed. One hundred nine patients (63%) were men. Men were younger (mean age 73 ± 10 vs 79 ± 9 years, p = 0.001) and had a higher prevalence of previous coronary bypass graft surgery (34% vs 13%, p = 0.002), previous myocardial infarction (46% vs...

  14. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    Science.gov (United States)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-30

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  15. Evidence for a coherent southeastern edge of the Farallon slab window from USArray tomography models

    Science.gov (United States)

    Panessa, Alexander

    Before the San Andreas Fault developed, subduction of the ancient Farallon plate dominated North America's west coast. As the Pacific-Farallon ridge reached the continent and Farallon subduction became restricted to separate regions, an area with no slab formed under southwestern North America. The northern boundary of this "slab window" is well-defined in recent high-resolution tomography models derived from USArray data, but the geometry of the southeastern edge of the slab window has received less attention. I will show that this eastern edge exists as a coherent boundary separating the subducted Cocos plate from the slab window. I adapt stage pole data for the Cocos plate into a single surface slab model designed to track the motion of the plate through time. This model of the Cocos plate geometry is consistent with recently published tomography models derived from combinations of USArray and global seismic data. The tomography results suggest the subducted slab remains intact along the southeastern edge of the Farallon slab window.

  16. Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations

    Science.gov (United States)

    Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.

  17. High beta and second region stability analysis and ICRF edge modeling

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report describes the tasks accomplished under Department of Energy contract [number sign]DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.

  18. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  19. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    CERN Document Server

    Wei, Qun

    2011-01-01

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  20. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  1. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    Science.gov (United States)

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  2. Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity

    Science.gov (United States)

    Li, L.; Liu, Y. Q.; Kirk, A.; Wang, N.; Liang, Y.; Ryan, D.; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; Zhong, F. C.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-12-01

    Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor {{q}95} , for various choices of the toroidal mode number n  =  1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying {{q}95} , are computationally observed and investigated.

  3. Leading edge film cooling effects on turbine blade heat transfer

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  4. FEMHD: An adaptive finite element method for MHD and edge modelling

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R.

    1995-07-01

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  5. Spin-Filter Effect Induced by Magnetic Edge States of Zigzag Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhan-Feng; LI Jian; SHEN Shun-Qing; LIU Wu-Ming

    2008-01-01

    @@ Spin-filter effect is predicted in a weak coupled junction composed of a nonmagnetic metal electrode and a zigzag carbon nanotube. This effect is induced by the magnetic edge states of the nanotube, and can produce spinpolarized current in the absence of an external magnetic field. We find that the spin polarization of the current changes its sign at the half-filling point of the nanotube, thus electric field control of spin transport can be realized. Furthermore, we find the coupling strength of the junction may cause a magnetic transition on the edge of the nanotube.

  6. Atomic physics effects on tokamak edge drift-tearing modes

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  7. Atomic physics effects on tokamak edge drift-tearing modes

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  8. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  9. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Science.gov (United States)

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality

  10. The Double-Edged Effects of Social Media Terror Communication

    DEFF Research Database (Denmark)

    Nickel, Sandro

    2014-01-01

    that social media contribute to extending surveillance: by being a temptation for intelligence services, by not resisting state authorities and via constructing threat perceptions among populations which in effect deliver security politicians ‘windows of opportunity’ in order to implement ever more...

  11. Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length

    Science.gov (United States)

    Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard

    2016-07-01

    Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.

  12. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  13. Leading edge sweep effects in generic three-dimensional sidewall compression scramjet inlets

    Science.gov (United States)

    Cozart, Aaron B.; Holland, Scott D.; Trexler, Carl A.; Perkins, John N.

    1992-01-01

    A computational and experimental study of generic 3D sidewall compression inlets is conducted to examine the effects of fore and aft leading edge sweep on the internal shock structure. Inlets with leading edge sweeps of +30 deg and -30 deg with sidewall compression angles of 6 deg were tested in the NASA Langley Mach 4 air tunnel at a geometric contraction ratio of 1.87. The principal difference in performance was determined to be in the mass capture. Spillage was identified as having two components: a pressure induced component and a sweep induced component. It was found that while the direction of the leading edge sweep had a large influence on the spillage, the pressure effects were more important.

  14. Percolation model of excess electrical noise in transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: lindeman@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Fallows, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rocks, L.E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-04-15

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R{sub N}) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.

  15. EFFECTS OF ISLAND-EDGE EXCHANGE BARRIER ON 2D PATTERN FORMATION IN SURFACTANT-MEDIATED EPITAXY

    Institute of Scientific and Technical Information of China (English)

    王戴木; 孙霞; 吴自勤

    2001-01-01

    The nucleation and growth of two-dimensional islands in a surfactant-mediated epitaxy system have been studied by computer simulation. To improve the recent results published in the literature, we use a configuration-dependent energy barrier for the exchange process at the island edge in our model. The simulations produce fractal islands at high temperatures or low deposition fluxes, and a transition to regular compact islands occurs at lower temperaturesor higher fluxes, in good agreement with the recent experimental results. The barrier for the island-edge exchange has quite a strong effect on the island density as a function of temperature and flux. A small change of the island-edge exchange barrier induces a large variation of the island density in the low-temperature or high-flux region. The flux-dependent island density shows a clear scaling-law behaviour in the intermediate-flux region. The scaling exponent increases evidently as the island-edge exchange barrier increases.

  16. Effect of intrinsic curvature and edge tension on the stability of binary mixed-membrane three-junctions

    Science.gov (United States)

    Gardner, Jasmine M.; Deserno, Markus; Abrams, Cameron F.

    2016-08-01

    We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting us to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.

  17. Effect of intrinsic curvature and edge tension on the stability of binary mixed-membrane three-junctions.

    Science.gov (United States)

    Gardner, Jasmine M; Deserno, Markus; Abrams, Cameron F

    2016-08-21

    We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting us to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.

  18. The agile edge managing projects effectively using agile scrum

    CERN Document Server

    Vanderjack, Brian

    2015-01-01

    This concise book is an effective source for understanding Agile Scrum development; why we use it and how it works. It will explain how work gets done in manageable iterations (sprints) and the team meetings that keep work on track (ceremonies). Also, since risk is a constant threat to any team-based project, managing risk in an Agile Scrum environment is specii cally discussed. This book is for: New Agile Scrum team members. Team leaders - this book describes the foundation of Agile Scrum, which can save time getting team members on the same page. Trainer/Educator of Agile Scrum - this book clearly defines Agile Scrum in a structured way so that students can learn how to effectively serve on an Agile team to improve their marketability. If you need to know Agile Scrum, this book will show you how to own it.

  19. Forest edges: Effects on vegetation, environmental gradients and local avian communities in the Sierra Juarez, Oaxaca, Mexico

    Science.gov (United States)

    Burcsu, Theresa Katherine

    Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in

  20. Edge Effects Influence the Abundance of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) in Woody Plant Nurseries.

    Science.gov (United States)

    Venugopal, P Dilip; Martinson, Holly M; Bergmann, Erik J; Shrewsbury, Paula M; Raupp, Michael J

    2015-06-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål), has caused severe economic losses in the United States and is also a major nuisance pest invading homes. In diverse woody plant nurseries, favored host plants may be attacked at different times of the season and in different locations in the field. Knowledge of factors influencing H. halys abundance and simple methods to predict where H. halys are found and cause damage are needed to develop effective management strategies. In this study, we examined H. halys abundance on plants in tree nurseries as a function of distance from field edges (edge and core samples) and documented the abundance in tree nurseries adjoining different habitat types (corn, soybean, residential areas, and production sod). We conducted timed counts for H. halys on 2,016 individual trees belonging to 146 unique woody plant cultivars at two commercial tree nurseries in Maryland. Across three years of sampling, we found that H. halys nymphs and adults were more abundant at field edges (0-5 m from edges) than in the core of fields (15-20 m from edges). Proximity of soybean fields was associated with high nymph and adult abundance. Results indicate that monitoring efforts and intervention tactics for this invasive pest could be restricted to field edges, especially those close to soybean fields. We show clearly that spatial factors, especially distance from edge, strongly influence H. halys abundance in nurseries. This information may greatly simplify the development of any future management strategies.

  1. Reduction of edge effect on disk electrodes by optimized current waveform.

    Science.gov (United States)

    Wang, Boshuo; Petrossians, Artin; Weiland, James D

    2014-08-01

    Rectangular pulses applied to disk electrodes result in high current density at the edges of the disk, which can lead to electrode corrosion and tissue damage. We explored a method for reducing current density and corrosion, by varying the leading edge of the current pulse. Finite-element modeling and mathematical analysis were used to predict an optimal waveform that reduces current density at the edge while also maintaining short pulse duration. An approximation of the optimized waveform was implemented experimentally and applied to platinum disk electrodes. Surface analysis using energy-dispersive spectroscopy showed significant reduction of corrosion on the periphery of these electrodes after pulsing, compared to those pulsed with the control rectangular waveform.

  2. The agile edge managing projects effectively using agile scrum

    CERN Document Server

    Vanderjack, Brian

    2015-01-01

    This concise book is an effective source for understanding Agile Scrum development; why we use it and how it works. It will explain how work gets done in manageable iterations (sprints) and the team meetings that keep work on track (ceremonies). Also, since risk is a constant threat to any team-based project, managing risk in an Agile Scrum environment is specii cally discussed. This book is for: New Agile Scrum team members. Team leaders - this book describes the foundation of Agile Scrum, which can save time getting team members on the same page. Trainer/Educator of Agile Scrum - this boo

  3. Edge effects in some perturbations of the GUE

    CERN Document Server

    Bassler, K E; Frankel, N E

    2010-01-01

    A bordering of GUE matrices is considered, in which the bordered row consists of zero mean complex Gaussians N$[0,\\sigma/2] + i {\\rm N}[0,\\sigma/2]$ off the diagonal, and the real Gaussian N$[\\mu,\\sigma/\\sqrt{2}]$ on the diagonal. We compute the explicit form of the eigenvalue probability function for such matrices, as well as that for matrices obtained by repeating the bordering. The correlations are in general determinantal, and in the single bordering case the explicit form of the correlation kernel is computed. In the large $N$ limit it is shown that $\\mu$ and/or $\\sigma$ can be tuned to induce a separation of the largest eigenvalue. This effect is shown to be controlled by a single parameter, universal correlation kernel.

  4. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)

    Science.gov (United States)

    Yeckel, Andrew

    2016-09-01

    A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.

  5. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    Directory of Open Access Journals (Sweden)

    MOMCILO STEVANOVIC

    2006-04-01

    Full Text Available The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequence, as well as, by comparing the values of the tensile strength of the same lay-up laminate coupons but of different widths. The edge effects were analysed by observing failure, identifying the interlayer where axial cracks at the free edge were initiated or inhibited and by computing interlaminar stresses and strains in the interlayer near the free edge of the coupon. The established edge effect was first correlated to the sign of the normal edge interlaminar stress. The extent of the edge effect was then successfully correlated to the edge interlaminar normal stress normalized to the size of the edge boundary region in which the stress appeared.

  6. Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    King, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); University of California-Berkeley, Berkeley, California 94720-7300 (United States); Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Hill, D. N.; Meyer, W. H.; Geer, R. [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); La Haye, R. J.; Petty, C. C.; Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Turco, F. [Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050 (United States); Rhodes, T. L. [University of California-Los Angeles, PO Box 957099, Los Angeles, California 90095-7099 (United States); Morse, E. C. [University of California-Berkeley, Berkeley, California 94720-7300 (United States)

    2011-03-15

    Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at {rho}{>=} 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

  7. Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D.

    Science.gov (United States)

    King, J D; Makowski, M A; Holcomb, C T; Allen, S L; Hill, D N; La Haye, R J; Turco, F; Petty, C C; Van Zeeland, M A; Rhodes, T L; Meyer, W H; Geer, R; Morse, E C

    2011-03-01

    Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at ρ ≥ 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

  8. Spin-filter and negative differential resistance effect in zigzag-edged bilayer graphene nanoribbon devices

    Directory of Open Access Journals (Sweden)

    Yun Ni

    2016-02-01

    Full Text Available By performing first-principle quantum transport calculation, the spin-dependent transport properties of zigzag-edged bilayer graphene nanoribbon based devices are investigated. There are four kinds of structures with different stacking sequences and treatment of dangling bonds considered in our work. It is shown that the devices are perfect spin-filters with extremely large spin polarization as well as substantial negative differential resistance effects, which are affected by the stacking sequences and edge structures. All these phenomena can be explained by the spin-resolved local density of states and the tranmission spectra.

  9. Edge effect enhanced photo-thermionic emission from a carbon nanotubes array

    Science.gov (United States)

    Li, Chi; Li, Zhenjun; Chen, Ke; Bai, Bing; Dai, Qing

    2017-02-01

    Employing optical field enhancement at the edges of the nanostructures, an enhanced photo-thermionic emission (PTE) was obtained from a well-defined carbon nanotube (CNT) cluster array. Compared with the un-patterned carbon nanotube film, the PTE from the CNT cluster array was enhanced 10 times at the same laser intensity. The concept was proved by the computer simulation as well. We believe that an edge effect enhanced CNT PTE emitter is of great potential for application in next-generation portable and inexpensive vacuum electronic devices.

  10. INVESTIGATION OF THE EFFECTS OF DIFFERENT EDGE JOINT ELEMENTS ON DIAGONAL TENSILE STRENGTH IN FURNITURE EDGE JOINTS

    Directory of Open Access Journals (Sweden)

    Arif GÜRAY

    2002-01-01

    Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.

  11. The "edge effect" after implantation of beta-emitting (55Co) stents with high initial activity.

    Science.gov (United States)

    Cervinka, Pavel; St'ásek, Josef; Costa, Marco Aurelio; Stursa, Jan; Fiser, Miloslav; Vodnanský, Petr; Kocisová, Michaela; Veselka, Josef; Pleskot, Miloslav; Malý, Jaroslav

    2004-01-01

    The aim of this study was to evaluate the incidence and the cause of "edge restenosis" after implantation of high activity 41.1 microCi +/- 1.2 microCi = 1520 kBq +/- 44 kBq, beta-emitting (55Co) stents. Proton bombarding in cyclotron has brought the radioactivity. Intravascular ultrasound (IVUS) investigation has been completed in 10 patients. The angiographies performed at 6 month revealed restenosis >50% in 5 cases (50%). The analysis of edges (5 mm distally and proximally to the last stent struts) showed no significant changes in TVV (187.3 +/- 62.60 mm3 and 176.9 +/- 53.5 mm3) but PMV increase significantly (i.e. neointimal proliferation) from 61.9 +/- 31.2 mm3 to 82.2 +/- 43.4 mm3 (pedge effect"/neointimal hyperplasia was in this trial sharp fall-off in radiation at the edges of the stents.

  12. Effect of ICRH on the JET edge plasma with carbon and beryllium coated limiters

    Energy Technology Data Exchange (ETDEWEB)

    Clement, S. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)); Erents, S.K. (UKAEA Culham Lab., Abingdon (US)); Tagle, J.A.; Brinkschulte, H.; Bures, M.; De Kock, L. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-04-01

    Investigation of the scrape-off Layer (SOL) at different poloidal positions has been carried out with Langmuir probes for limiter discharges with ion cyclotron resonance heating (ICRH) at JET. A comparison of the effects of ICRH on the edge is presented for operation with all carbon limiters, and for operation with a beryllium layer evaporated on the walls and limiters of JET. The behaviour of the SOL parameters is similar for both cases, although edge temperatures tend to be lower in the Be case. Measurements with probes between the belt limiters and close to the ICRH antennas show that the edge parameters in this region are strongly influenced by the vicinity of an active antenna. (orig.).

  13. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; CUI Ming-Qi; YAN Fen; ZHAO Jia; SUN Li-Juan; ZHENG Lei; MA Chen-Yan; XI Shi-So; ZHAO Yi-Dong

    2008-01-01

    @@ We present magneto-optical (MO) Faraday spectra measured around the M2,3 edges (60-70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF).A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges.The MO effect becomes resonantly enhanced at the M2,3 edges,and accordingly large values for the rotation angle β of 1.85 ± 0.19°for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field,the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical.The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured.

  14. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Xiong, Bin; Han, Muran

    2014-01-01

    This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions...... of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system...

  15. Road-edge effects on herpetofauna in a lowland Amazonian rainforest

    Science.gov (United States)

    Ross J. Maynard; Nathalie C. Aall; Daniel Saenz; Paul S. Hamilton; Matthew A. Kwiatkowski

    2016-01-01

    The impact of roads on the flora and fauna of Neotropical rainforest is perhaps the single biggest driver of habitat modification and population declines in these ecosystems. We investigated the road-edge effect of a low-use dirt road on amphibian and reptile abundance, diversity, and...

  16. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  17. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  18. Resistive Reduced MHD Modeling of Multi-Edge-Localized-Mode Cycles in Tokamak X -Point Plasmas

    Science.gov (United States)

    Orain, F.; Bécoulet, M.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Morales, J.; Garbet, X.; Nardon, E.; Pamela, S.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X -point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  19. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    Science.gov (United States)

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B5 and B6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η(1) coordination) and concave (η(2) coordination) sites. Our analysis shows that the CO π-metal dπ hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η(2) adsorption mode, which destabilizes the η(2) transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  20. Current gain mechanism in planar GaAs MESFETs due to new photovoltaic self-biasing edge-effect.

    OpenAIRE

    Abbott, Derek; Eshraghian, K.

    1996-01-01

    A significant new internal gain effect, in planar MES­FETs has been discovered which we call the "photo­voltaic self-biasing edge-effect." The edge-effect can be exploited to attain up to a factor of ten improvement in detector photosensitivity.

  1. Kane-Mele Hubbard model on a zigzag ribbon: Stability of the topological edge states and quantum phase transitions

    Science.gov (United States)

    Chung, Chung-Hou; Lee, Der-Hau; Chao, Sung-Po

    2014-07-01

    We study the quantum phases and phase transitions of the Kane-Mele Hubbard (KMH) model on a zigzag ribbon of honeycomb lattice at a finite size via the weak-coupling renormalization group (RG) approach. In the noninteracting limit, the Kane-Mele (KM) model is known to support topological edge states where electrons show helical property with orientations of the spin and momentum being locked. The effective interedge hopping terms are generated due to finite-size effect. In the presence of an on-site Coulomb (Hubbard) interaction and the interedge hoppings, special focus is put on the stability of the topological edge states (TI phase) in the KMH model against (i) the charge and spin gaped (II) phase, (ii) the charge gaped but spin gapless (IC) phase, and (iii) the spin gaped but charge gapless (CI) phase depending on the number (even/odd) of the zigzag ribbons, doping level (electron filling factor) and the ratio of the Coulomb interaction to the interedge tunneling. We discuss different phase diagrams for even and odd numbers of zigzag ribbons. We find the TI-CI, II-IC, and II-CI quantum phase transitions are of the Kosterlitz-Thouless (KT) type. By computing various correlation functions, we further analyze the nature and leading instabilities of these phases. The relevance of our results for graphene is discussed.

  2. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh

    2013-05-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic parameters for the density of states, some discrepancies are found at the quantitative level. © 2013 American Physical Society.

  3. Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2011-08-15

    BOLD fMRI is accepted as a noninvasive imaging modality for neuroimaging and brain mapping. A BOLD fMRI dataset consists of magnitude and phase components. Currently, only the magnitude is used for neuroimage analysis. In this paper, we show that the fMRI-magnitude-based neuroimage analysis may suffer two pitfalls: one is that the magnitude is non-negative and cannot differentiate positive from negative BOLD activity; the other is an edge effect that may manifest as an edge enhancement or a spatial interior dip artifact at a local uniform BOLD region. We demonstrate these pitfalls via numeric simulations using a BOLD fMRI model and also via a phantom experiment. We also propose a solution by making use of the fMRI phase image, the counterpart of the fMRI magnitude.

  4. Edge Detection Model Based on Involuntary Eye Movements of the Eye-Retina System

    Directory of Open Access Journals (Sweden)

    András Róka

    2007-03-01

    Full Text Available Traditional edge-detection algorithms in image processing typically convolute afilter operator and the input image, and then map overlapping input image regions tooutput signals. Convolution also serves as a basis in biologically inspired (Sobel, Laplace,Canny algorithms. Recent results in cognitive retinal research have shown that ganglioncell receptive fields cover the mammalian retina in a mosaic arrangement, withinsignificant amounts of overlap in the central fovea. This means that the biologicalrelevance of traditional and widely adapted edge-detection algorithms with convolutionbasedoverlapping operator architectures has been disproved. However, using traditionalfilters with non-overlapping operator architectures leads to considerable losses in contourinformation. This paper introduces a novel, tremor-based retina model and edge-detectionalgorithm that reconciles these differences between the physiology of the retina and theoverlapping architectures used by today's widely adapted algorithms. The algorithm takesinto consideration data convergence, as well as the dynamic properties of the retina, byincorporating a model of involuntary eye tremors and the impulse responses of ganglioncells. Based on the evaluation of the model, two hypotheses are formulated on the highlydebated role of involuntary eye tremors: 1 The role of involuntary eye tremors hasinformation theoretical implications 2 From an information processing point of view, thefunctional role of involuntary eye-movements extends to more than just the maintenance ofaction potentials. Involuntary eye-movements may be responsible for the compensation ofinformation losses caused by a non-overlapping receptive field architecture. In support ofthese hypotheses, the article provides a detailed analysis of the model's biologicalrelevance, along with numerical simulations and a hardware implementation.

  5. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.

    Science.gov (United States)

    Mellon, S J; Kwon, Y-M; Glyn-Jones, S; Murray, D W; Gill, H S

    2011-12-01

    The occurrence of pseudotumours (soft tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been associated with high serum metal ion levels and consequently higher than normal bearing wear. We investigated the relationship between serum metal ion levels and contact stress on the acetabular component of MoMHRA patients for two functional activities; gait and stair descent. Four subjects with MoMHRA, who had their serum metal ion levels measured, underwent motion analysis followed by CT scanning. Their motion capture data was combined with published hip contact forces and finite element models representing 14% (peak force) and 60% (end of stance) of the gait cycle and 52% (peak force) of stair descent activity were created. The inclination angle of the acetabular component was increased by 10° in 1° intervals and the contact stresses were determined at each interval for each subject. When the inclination angle was altered in such a way as to cause the hip contact force to pass through the edge of the acetabular component edge-loading occurred. Edge-loading increased the contact stress by at least 50%; the maximum increase was 108%. Patients with low serum metal ion levels showed no increase in contact stress at peak force during gait or stair descent. Patients with high serum metal ion levels exhibited edge-loading with an increase to the inclination angle of their acetabular components. The increase in inclination angle that induced edge-loading for these subjects was less than the inter-subject variability in the angle of published hip contact forces. The results of this study suggest that high serum metal ion levels are the result of inclination angle influenced edge-loading but that edge-loading cannot be attributed to inclination angle alone and that an individual's activity patterns can reduce or even override the influence of a steep acetabular component and prevent edge-loading. Copyright © 2011 IPEM

  6. Jet formation at the sea ice edge

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.

    2014-12-01

    The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

  7. Influence of the Transverse Field Component on the Edge Effect in a Short-Gap Discharge

    Science.gov (United States)

    Ye, Qizheng; Yu, Dahai; Cai, Huanqing; Shao, Guiwei; Tan, Dan

    2013-11-01

    In a general plane-parallel electrode system, the edge of the electrode will undermine the uniformity of the dielectric barrier discharge (DBD) because of the influence of the distorted electrical field. In this paper, the influence of the non-uniform electrical field on the edge effect of DBDs in a short-gap is investigated. We present some of the experimental results of DBDs produced by three kinds of convex-spherical electrodes. The results show that there is a dark area (the homogeneous discharge) in the central region of the electrode and a bright halo (the filamentary discharge) in the outer peripheral region, and the radius of the dark region is determined by the electrode geometry. The calculated results of the transverse (radial) field component distribution on the surface of the electrodes show that the edge effect does not come from the electrode edge, but the transverse field. The discharge has enough space to be fully developed and then format the filamentary discharge in the outer peripheral region because the streamer of the filamentary discharge is driven to move along the direction of the longer path by the transverse field. Thus, the homogeneous discharge (the Townsend DBD or a glow DBD) could not be produced in this area.

  8. Contributions by a novel edge effect to the permselectivity of an electrosynthesized polymer for microbiosensor applications.

    Science.gov (United States)

    Rothwell, Sharon A; Kinsella, Michael E; Zain, Zainiharyati M; Serra, Pier A; Rocchitta, Gaia; Lowry, John P; O'Neill, Robert D

    2009-05-15

    Pt electrodes of different sizes (2 x 10(-5)-2 x 10(-2) cm(2)) and geometries (disks and cylinders) were coated with the ultrathin non-conducting form of poly(o-phenylenediamine), PPD, using amperometric electrosynthesis. Analysis of the ascorbic acid (AA) and H(2)O(2) apparent permeabilities for these Pt/PPD sensors revealed that the PPD deposited near the electrode insulation (Teflon or glass edge) was not as effective as the bulk surface PPD for blocking AA access to the Pt substrate. This discovery impacts on the design of implantable biosensors where electrodeposited polymers, such as PPD, are commonly used as the permselective barrier to block electroactive interference by reducing agents present in the target medium. The undesirable "edge effect" was particularly marked for small disk electrodes which have a high edge density (ratio of PPD-insulation edge length to electrode area), but was essentially absent for cylinder electrodes with a length of >0.2 mm. Sample biosensors, with a configuration based on these findings (25 microm diameter Pt fiber cylinders) and designed for brain neurotransmitter L-glutamate, behaved well in vitro in terms of Glu sensitivity and AA blocking.

  9. Analyzing the edge effects in a Brazilian seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    D. M. Arruda

    Full Text Available Abstract Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I Are there differences in canopy cover along the edge-interior gradient during the dry season? (II How does the microclimate (air temperature, soil temperature, and relative humidity vary along that gradient? (III How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  10. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  11. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    Science.gov (United States)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  12. The use of end and edge effects for induction heater design

    Energy Technology Data Exchange (ETDEWEB)

    Nemkov, V.; Demidovich, V.; Rudnev, V. [Electrical Engineering Institute (Russian Federation); Fishman, O. [Inductotherm Corp. (United States)

    1992-12-31

    The influence of inductor geometry and current frequency on end and edge effects of induction heating were studied. The effects occur in induction heating and melting arrangements due to the distortion of electromagnetic fields near the end or edge zones of materials to be heated. Experimental results were compared with results of numerical simulations. The power distribution along the length and the width of work pieces being heated in homogeneous magnetic fields was calculated for different rates of skin-effect. It was concluded that an increase of power distribution occurs in the end zone for non-magnetic materials, but for magnetic materials power distribution can fluctuate depending on the relation of skin-effect parameters and relative permeability. 9 figs.

  13. Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas

    to the numerical CFD model. A sensitivity analysis with regards to the resolution of the structured forest height grid obtained from the implemented digital elevation model (DEM) was carried out. CFD calculations were conducted with the forest height grid taken as input and the complete methodology results......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...... are finally briefly compared to the wind measurements of the site with regards to the calculated wind field prediction accuracy....

  14. Device modeling of superconductor transition edge sensors based on the two-fluid theory

    CERN Document Server

    Wang, Tian-Shun; Zhu, Qing-Feng; Wang, Jun-Xian; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang

    2012-01-01

    In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.

  15. Modelling of turbulent impurity transport in fusion edge plasmas using measured and calculated ionization cross sections

    CERN Document Server

    Kendl, Alexander

    2014-01-01

    Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.

  16. Model for computing kinetics of the graphene edge epitaxial growth on copper

    Science.gov (United States)

    Khenner, Mikhail

    2016-06-01

    A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper surface is used to compute growth of a single-layer graphene island. The speed of the island's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.

  17. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  18. Numerical 3D analysis of cloud cavitation shedding frequency on a circular leading edge hydrofoil with a barotropic cavitation model

    Science.gov (United States)

    Blume, M.; Skoda, R.

    2015-12-01

    A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.

  19. Living on the Edge: A Toy Model for Holographic Reconstruction of Algebras with Centers

    CERN Document Server

    Donnelly, William; Marolf, Donald; Wien, Jason

    2016-01-01

    We generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary boundary regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the $\\frac{\\delta \\text{Area}}{4G_N}$ term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this $\\frac{\\delta \\text{Area}}{4G_N}$ term can be reinterpreted as a part of the bulk entropy of gravitons under...

  20. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss.

    Science.gov (United States)

    Baltzer, Jennifer L; Veness, Tyler; Chasmer, Laura E; Sniderhan, Anastasia E; Quinton, William L

    2014-03-01

    Much of the world's boreal forest occurs on permafrost (perennially cryotic ground). As such, changes in permafrost conditions have implications for forest function and, within the zone of discontinuous permafrost (30-80% permafrost in areal extent), distribution. Here, forested peat plateaus underlain by permafrost are elevated above the surrounding permafrost-free wetlands; as permafrost thaws, ground surface subsidence leads to waterlogging at forest margins. Within the North American subarctic, recent warming has produced rapid, widespread permafrost thaw and corresponding forest loss. Although permafrost thaw-induced forest loss provides a natural analogue to deforestation occurring in more southerly locations, we know little about how fragmentation relates to subsequent permafrost thaw and forest loss or the role of changing conditions at the edges of forested plateaus. We address these knowledge gaps by (i) examining the relationship of forest loss to the degree of fragmentation in a boreal peatland in the Northwest Territories, Canada; and (ii) quantifying associated biotic and abiotic changes occurring across forest-wetland transitions and extending into the forested plateaus (i.e., edge effects). We demonstrate that the rate of forest loss correlates positively with the degree of fragmentation as quantified by perimeter to area ratio of peat plateaus (edge : area). Changes in depth of seasonal thaw, soil moisture, and effective leaf area index (LAIe ) penetrated the plateau forests by 3-15 m. Water uptake by trees was sevenfold greater in the plateau interior than at the edges with direct implications for tree radial growth. A negative relationship existed between LAIe and soil moisture, suggesting that changes in vegetation physiological function may contribute to changing edge conditions while simultaneously being affected by these changes. Enhancing our understanding of mechanisms contributing to differential rates of permafrost thaw and associated

  1. The Effect of Edge Definition of Complex Networks on Protein Structure Identification

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2013-01-01

    Full Text Available The main objective of this study is to explore the contribution of complex network together with its different definitions of vertexes and edges to describe the structure of proteins. Protein folds into a specific conformation for its function depending on interactions between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual components residues, and edges were interactions between residues. What is the proper time for representing a protein structure as a network? To confirm the effect of different definitions of vertexes and edges in constructing the amino acid interaction networks, protein domains and the structural unit of proteins were described using this method. The identification performance of 2847 proteins with domain/domains proved that the structure of proteins was described well when was around 5.0–7.5 Å, and the optimal cutoff value for constructing the protein structure networks was 5.0 Å ( distances while the ideal community division method was community structure detection based on edge betweenness in this study.

  2. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  3. Hall effect, edge states, and Haldane exclusion statistics in two-dimensional space

    Science.gov (United States)

    Ye, F.; Marchetti, P. A.; Su, Z. B.; Yu, L.

    2015-12-01

    We clarify the relation between two kinds of statistics for particle excitations in planar systems: the braid statistics of anyons and the Haldane exclusion statistics (HES). It is shown nonperturbatively that the HES exists for incompressible anyon liquid in the presence of a Hall response. We also study the statistical properties of a specific quantum anomalous Hall model with Chern-Simons term by perturbation in both compressible and incompressible regimes, where the crucial role of edge states to the HES is shown.

  4. Edge states and quantum phase transition in graphene under in-plane effective exchange fields

    Science.gov (United States)

    Liu, Zheng-Fang; Wu, Qing-Ping; Chen, Ai-Xi; Xiao, Xian-Bo; Liu, Nian-Hua; Miao, Guo-Xing

    2017-02-01

    We investigated the edge states and quantum phase transition in graphene under an in-plane effective exchange field. The result shows that the combined effects of the in-plane effective exchange field and a staggered sublattice potential can induce zero-energy flat bands of edge states. Such flat-band edge states can evolve into helical-like ones in the presence of intrinsic spin-orbit coupling, with a unique spin texture. We also find that the bulk energy gap induced by the spin-orbit coupling and staggered sublattice potential can be closed and reopened with the in-plane effective exchange field, and the reopened bulk gap can be even larger than that induced by only the spin-orbit coupling and staggered sublattice potential, which is different from the case of an out-of-plane effective exchange field. The calculated spin-dependent Chern numbers suggest that the bulk gap closing and reopening is accompanied by a quantum phase transition from a trivial insulator phase across a metal phase into a spin-dependent quantum Hall phase.

  5. Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors.

    Science.gov (United States)

    Liu, Fei; Wang, Jian; Guo, Hong

    2016-10-27

    Black phosphorus (BP) tunneling field effect transistors (TFETs) using heterojunctions (Hes) are investigated by atomistic quantum transport simulations. It is observed that edge states have a great impact on the transport characteristics of BP He-TFETs, which results in the potential pinning effect and deterioration of gate control. However, the on-state current can be effectively enhanced by using hydrogen to saturate the edge dangling bonds in BP He-TFETs, by which means edge states are quenched. By extending layered BP with a smaller band gap to the channel region and modulating the BP thickness, the device performance of BP He-TFETs can be further optimized and can fulfil the requirements of the international technology road-map for semiconductors (ITRS) 2013 for low power applications. In 15 nm 3L-1L and 4L-1L BP He-TFETs along the armchair direction the on-state currents are over two times larger than the current required by ITRS 2013 and can reach above 10(3) μA μm(-1) with the fixed off-state current of 10 pA μm(-1). It is also found that the ambipolar effect can be effectively suppressed in BP He-TFETs.

  6. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arribas, A. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)], E-mail: alf@we.lc.ehu.es; Barandiaran, J.M.; Cos, D. de [Departamento de Electricidad y Electronica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain)

    2008-07-15

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices.

  7. Different edge effects of paclitaxel-and sirolimus-eluting stents on proximal and distal edges in patients with unstable angina:serial intravascular ultrasound analysis

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-liang; YE Fei; ZHANG Jun-jie; LIU Zhi-zhong; SHAN Shou-jie; SUN Xue-wen; ZHANG Ai-ping; CHEN Jing-guo; XU Ya-wei; YANG Song; CHEN Feng; LUO Weng-ping

    2009-01-01

    Background It is unclear whether edge segments have different responses to paclitaxel eluting stent (PES) and sirolimus eluting stent (SES) implantation in patients with unstable angina. This study aimed to compare the different vascular edge responses in patients with unstable angina and single de novo coronary lesion treated with SES and PES. Methods Two hundred and fifty-five patients with unstable angina and single de novo lesion were randomly assigned to PES and SES groups. Serial volumetric intravascular ultrasound (IVUS) images were taken immediately after stenting and at an eight-month follow-up. Five-mm edge segments proximal and distal to the stents were analyzed. Results Baseline characteristics were comparable between the two groups. At proximal-edge segment, the vessel area decreased and the plaque area increased significantly in the PES group as compared with the SES group. A significant net loss of lumen area was found in the PES group (from (11.10±3.12) mm2 at baseline to (9.92+3.59) mm2 at the follow-up, P <0.001). At the distal-edge segment, the net loss of lumen area in the PES group (from (7.71±2.81) mm2 at baseline to (6.66±2.29) mm2 at the follow-up, P <0.001) was attributed to a significant increase of plaque area. Proximal-edge stenosis was commonly seen in the PES group (20.0%) as compared with the SES group (5.0%, P=0.001). This correlated with the higher incidence of target lesion revascularization in the PES group (P=-0.03). Subsegmentally, the smallest A lumen area was located at 2 mm proximally in both groups, at 0 mm distally in the PES group, and at 1 mm distally in the SES group. Conclusions The two groups demonstrated negative remodeling of edge segments. PES was less effective than SES in inhibiting the growth of plaque within the first 1-mm length proximal to the stent.

  8. The influence of the edge effect on the skyrmion generation in a magnetic nanotrack

    Science.gov (United States)

    Ran, N.; Zhao, G. P.; Tang, H.; Shen, L. C.; Lai, P.; Xia, J.; Zhang, X.; Zhou, Y.

    2017-02-01

    Magnetic skyrmions might be used for building next-generation nanomagnetic and spintronic devices, as they have several perspective properties, such as topologically protected stability, nanoscale size, and ultra-low depinning current density. Here we study the influence of the edge effect on the current-induced generation of a magnetic skyrmion in a finite-length thin-film ferromagnetic nanotrack with interface-induced Dzyaloshinskii-Moriya interaction. It shows that a stable skyrmion or a bunch of skyrmions can be successfully generated as long as the distance between the current injection region and the nanotrack terminal is larger than a certain threshold. We investigate the failed skyrmion generation caused by the edge effect, which will lead to an error writing event. We also present the phase diagrams of the skyrmion generation obtained for different material and geometric parameters. Our results could be useful for designing skyrmion-based information storage devices.

  9. The influence of the edge effect on the skyrmion generation in a magnetic nanotrack

    Directory of Open Access Journals (Sweden)

    N. Ran

    2017-02-01

    Full Text Available Magnetic skyrmions might be used for building next-generation nanomagnetic and spintronic devices, as they have several perspective properties, such as topologically protected stability, nanoscale size, and ultra-low depinning current density. Here we study the influence of the edge effect on the current-induced generation of a magnetic skyrmion in a finite-length thin-film ferromagnetic nanotrack with interface-induced Dzyaloshinskii-Moriya interaction. It shows that a stable skyrmion or a bunch of skyrmions can be successfully generated as long as the distance between the current injection region and the nanotrack terminal is larger than a certain threshold. We investigate the failed skyrmion generation caused by the edge effect, which will lead to an error writing event. We also present the phase diagrams of the skyrmion generation obtained for different material and geometric parameters. Our results could be useful for designing skyrmion-based information storage devices.

  10. Modelling of spectral lines emitted by hydrogen isotopes for ionising and recombining plasma conditions of Tokamak edges

    Energy Technology Data Exchange (ETDEWEB)

    Koubiti, M.; Marandet, Y.; Godbert-Mouret, L.; Stamm, R.; Touati, K. [Physique des Interactions Ioniques et Moleculaires, UMR 6633 CNRS/Universite de Provence, centre de Saint-Jerome, Marseille (Spain); Capes, H.; Escarguel, A.; Guirlet, R.; Michelis, C. De [Departement de Recherches sur la Fusion Controlee, Association EURATOM-CEA Cadrache, Saint Paul lez Durance (France)

    2001-07-01

    The plasma in the periphery of a magnetic fusion device plays an important role in the spread of particle and heat power. To optimise its role, it is necessary to characterize the edge plasma and understand all the interaction processes between the plasma constituents (ions, electrons and neutrals), and also their interactions with the device walls. For that purpose, high-resolution passive emission spectroscopy is well suitable since it is a non-intrusive method However, edge plasma diagnostics based on this method requires the accurate modelling of the observed spectra. A lineshape model initially developed for Stark broadening has been recently updated to include the Zeeman effect. The synthetic line profiles can be convolved with a Gaussian or a Lorentzian to account for the Doppler broadening and the instrumental function. For ionising conditions of edge plasmas such as those realized in front of the neutraliser plates (NP) of the Tore-Supra (TS) Ergodic Divertor where the electron temperature and density are usually higher than 10 eV and lower than 10{sup 19} m{sup -3}, the electron excitation of deuterium atoms dominates the recombination and only the first lines of the Balmer series are measured By fitting and analysing the spectrum of the deuterium Balmer {alpha} line (D{alpha}) emitted at different radial positions, information on the edge neutral populations can be obtained. In particular the neutral pro' auction mechanism and the dominant neutral relaxation processes can be identified from Doppler profile analysis. For this purpose we have analysed the lineshape of (D{alpha}) emitted in front of an equatorial NP of the ergodic diverter by a plasma region extending up to 2 cm radially away from the NP surface. For recombining plasma conditions such as Hose obtained in axisymmetric divertors, the electron temperature and density are respectively lower than 1 eV and higher than 10{sup 20} m{sup -3}, the volume recombination dominates the excitation

  11. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    Science.gov (United States)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  12. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  13. An edge-to-edge Deployment Model for Pre-Congestion Notification: Admission Control over a DiffServ Region

    NARCIS (Netherlands)

    Briscoe, B.; Eardley, P.; Songhurst, D.; Le Faucheur, F.; Charny, A.; Liatsos, V.; Babiarz, J.; Chan, K.; Dudley, S.; Karagiannis, G.; Bader, A.; Westberg, L.; Briscoe, B.; Eardley, P.; Songhurst, D.; Le Faucheur, F.; Charny, A.; Liatsos, V.; Babiarz, J.; Chan, K.; Dudley, S.; Karagiannis, G.; Bader, A.; Westberg, L.

    2006-01-01

    This document describes a deployment model for pre-congestion notification (PCN) operating in a large DiffServ-based region of the Internet. PCN-based admission control protects the quality of service of existing flows in normal circumstances, whilst if necessary (eg after a large failure) pre-empti

  14. Quantitative measurement of eyestrain on 3D stereoscopic display considering the eye foveation model and edge information.

    Science.gov (United States)

    Heo, Hwan; Lee, Won Oh; Shin, Kwang Yong; Park, Kang Ryoung

    2014-05-15

    We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD), stereoscopic disparity (SD), frame cancellation effect (FCE), and edge component (EC) of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.

  15. Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information

    Directory of Open Access Journals (Sweden)

    Hwan Heo

    2014-05-01

    Full Text Available We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user’s gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD, stereoscopic disparity (SD, frame cancellation effect (FCE, and edge component (EC of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.

  16. Effect of Asymmetrical Edge Disconnection on Equivalent Series Resistance of Metalized Polypropylene Capacitors

    OpenAIRE

    J Sivakumar; S. Usa; M.A. Panneerselvam

    2014-01-01

    In order to investigate the effect of asymmetrical partial edge disconnection on the Equivalent Series Resistance (ESR) of Metalized polypropylene capacitors an experimental study has been made. Theoretical analysis made using PSPICE simulation package reveals that electrode resistance of individual turn rises from 10 to 30% depending on the location of the turn. This rise is not measureable at all the frequencies as ESR is frequency dependent and it includes resistance due to electrodes and ...

  17. Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles.

    Science.gov (United States)

    Bi, Lei; Yang, Ping; Kattawar, George W

    2010-08-20

    The extinction efficiency factor associated with the scattering of a plane electromagnetic wave impinging on a basal face of a dielectric disk or a cylindrical particle is investigated by employing the physical-geometric optics hybrid (PGOH) method and the discrete-dipole approximation (DDA) method. It is found that the derived extinction efficiency factor from the PGOH is a function of the thickness of the disk, or the length of the cylinder, and the refractive index, but is independent of the diameter and shape of the cross section of the basal face of the particle. Furthermore, the oscillations of the extinction efficiency factor versus the thickness or length of the particle do not diminish if the particle is not absorptive. The values of the extinction efficiency factor simulated from the DDA method are quite different from those computed from the PGOH, although the size parameter of the particle is in the commonly recognized geometric optics regime. To explain the difference, the concept of the edge effect associated with the tunneling rays in the semiclassical scattering theory is generalized from the case of spherical particles to that of nonspherical particles based on the localization principle. Accordingly, the edge-effect contribution can be distinguished and removed from the extinction cross section calculation by the DDA method. The remaining part of the extinction cross section, associated with the interference between the transmitted rays and incident rays, agrees well with the results computed from the PGOH, and the agreement illustrates the presence of the edge effect in the case of nonspherical particles with surfaces that have no curvature along the incident direction. It is found that the asymptotic extinction efficiency factor may not necessarily converge to 2, but it depends on the specific physical processes of the interference between diffracted and transmitted light and of the edge effect.

  18. Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes

    Science.gov (United States)

    Shohany, Boshra Ghanbari; Roknabadi, Mahmood Rezaee; Kompany, Ahmad

    2016-10-01

    In this work, the structural and electronic properties of armchair and zigzag graphdiyne nanotubes (GDYNTs) have been investigated using the density functional theory (DFT). All the nanotubes under investigation exhibited semiconducting behavior. The edge configuration and diameter effects on the electrical transport of graphdiyne nanotubes are studied using non-equilibrium Green's function (NEGF) method. Our results showed that the currents in the zigzag graphdiyne nanotubes are remarkably higher comparing to the armchair nanotubes.

  19. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...... responses, and the results were compared with that of simulations conducted by applying a one-dimensional thermophysical model. It was observed that adding the buffer layer to the structure of the bolometer results in an increased response at higher modulation frequencies. Results from simulations made...

  20. On leading-edge vortex attachment in rotary systems: Incident flow effects

    Science.gov (United States)

    Medina, Albert; Jones, Anya R.

    2015-11-01

    The mechanism governing the stable attachment of the leading-edge vortex (LEV) in rotating systems has been believed to be rooting in a balance between the rate vorticity production from the leading-edge shear layer and the convection of vorticity-bearing mass from within the LEV to the surrounding flow field. In such a relation, the accumulation of vorticity within a vortical structure is regulated by convective influences effectively draining the structure of circulatory strength. This work numerically investigates the shear rate-convection balance assertion in low-aspect ratio rectangular flat plates undergoing unidirectional rotation in a steady freestream. The freestream is oriented parallel to the rotational axis and the effect of advance ratio on the resulting flow structures is compared with a rotary plate operating in a quiescent fluid. Depending on advance ratio, the incidence angle of the plate is adjusted to maintain a constant effective attack angle of α =45° based on plate tip speeds. Of interest is the response of the system over a Reynolds number range Re = [102 :103 ] where axial flow prominence shifts from aft of the leading-edge vortex to within the structure.

  1. Effect of Percutaneous Edge-to-Edge Repair on Mitral Valve Area and Its Association With Pulmonary Hypertension and Outcomes.

    Science.gov (United States)

    Utsunomiya, Hiroto; Itabashi, Yuji; Kobayashi, Sayuki; Rader, Florian; Hussaini, Asma; Makar, Moody; Trento, Alfredo; Siegel, Robert J; Kar, Saibal; Shiota, Takahiro

    2017-08-15

    Percutaneous edge-to-edge repair using the MitraClip system causes reduction in mitral valve area (MVA). However, its clinical impact is not fully elucidated. This study assessed the impact of postprocedural MVA reduction on pulmonary hypertension and outcomes. A total of 92 patients with grades 3 to 4 + mitral regurgitation (MR) who underwent MitraClip therapy were retrospectively reviewed. Using intraprocedural, 3-dimensional transesophageal echocardiography, postprocedural MVA was obtained by 2 optimized planes through the medial and lateral orifices of the repaired valve. MVA was reduced by 60.1% immediately after MitraClip procedure (p <0.001). Postprocedural MVA correlated moderately with mean transmitral pressure gradient (TMPG) in the majority of patients (r = -0.56, p <0.001), but discordance of MVA and TMPG was observed in 40% of patients. In multivariable linear regression analysis, postprocedural MVA ≤1.94 cm(2) was independently associated with a blunted decrease in systolic pulmonary artery pressure at 1-month follow-up (β-estimate -4.63, 95% confidence interval -9.71 to -0.15, p = 0.042). Postprocedural MVA ≤1.94 cm(2) was an independent predictor of all-cause mortality and heart failure hospitalization after MitraClip (hazard ratio 4.28, 95% confidence interval 1.56 to 11.7, p = 0.005) even after adjustment for age, gender, atrial fibrillation, cause of MR, left ventricular systolic function, pre-existing pulmonary hypertension, and residual MR. After further adjustment for TMPG ≥5 mm Hg, postprocedural MVA ≤1.94 cm(2) remained predictive for adverse outcomes (p = 0.048). In conclusion, the intraprocedural assessment of MVA by 3-dimensional transesophageal echocardiography can predict hemodynamic response and postprocedural prognosis after MitraClip therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets

    Science.gov (United States)

    Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea

    2015-12-01

    We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern—controlled via magnetic field and/or area variation—reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.

  3. Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diodes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.; Sopori, B.; Ravindra, N. M.

    2009-02-01

    In this work, computer simulations are used to determine the influence of edge conditions on the overall performance of mesa diodes under dark and illuminated conditions. In particular, we examine the effect of edge shape on the I-V characteristics of the diode.

  4. Computational Modeling of a Mechanized Benchtop Apparatus for Leading-Edge Slat Noise Treatment Device Prototypes

    Science.gov (United States)

    Turner, Travis L.; Moore, James B.; Long, David L.

    2017-01-01

    Airframe noise is a growing concern in the vicinity of airports because of population growth and gains in engine noise reduction that have rendered the airframe an equal contributor during the approach and landing phases of flight for many transport aircraft. The leading-edge-slat device of a typical high-lift system for transport aircraft is a prominent source of airframe noise. Two technologies have significant potential for slat noise reduction; the slat-cove filler (SCF) and the slat-gap filler (SGF). Previous work was done on a 2D section of a transport-aircraft wing to demonstrate the implementation feasibility of these concepts. Benchtop hardware was developed in that work for qualitative parametric study. The benchtop models were mechanized for quantitative measurements of performance. Computational models of the mechanized benchtop apparatus for the SCF were developed and the performance of the system for five different SCF assemblies is demonstrated.

  5. Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity

    Science.gov (United States)

    Hammerton, P. W.; Kerschen, E. J.

    1998-01-01

    An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.

  6. Facebook and its effects on users' empathic social skills and life satisfaction: a double-edged sword effect.

    Science.gov (United States)

    Chan, Terri H

    2014-05-01

    This study examines how Facebook usage affects individual's empathic social skills and life satisfaction. Following the self-presentational theory, the study explores a key component of the Internet paradox-whether Facebook suppresses or enhances users' interpersonal competence (specifically empathic social skills), given their respective personality makeup. Going further, the study assesses these events' subsequent impacts on users' psychological well-being. Analogous to a double-edged sword, Facebook activities are hypothesized to suppress the positive effect of a user's extraversion orientation on empathic social skills but lessen the negative effect of neuroticism on these skills. The study examines a sample of college-aged Facebook users (n=515), who responded to a large-scale online survey. The findings from a structural equation modeling analysis indicate that while empathic social skills are positively associated with life satisfaction, Facebook activities mainly exert suppression effects. Only upon low usage can Facebook activities lessen the negative effect of neuroticism on empathic social skills, suggesting that Facebook may appear as a less threatening platform for social interactions among neurotics. Yet, results in general suggest that undesirable effects may occur at high levels of Facebook usage whereby both extroverted and neurotic users displace real world social ties to online ones. The findings point to the complex ways in which social media usage may impact the livelihood of users.

  7. Beyond edge effects: landscape controls on forest structure in the southeastern US

    Science.gov (United States)

    Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.

    2016-12-01

    The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age

  8. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  9. On anisotropy and internal pressure errors in numerical ocean models and processes near the shelf edge

    Energy Technology Data Exchange (ETDEWEB)

    Thiem, Oeyvind A.

    2004-12-01

    In this thesis the focus has been on anisotropy, internal pressure errors and shelf edge/slope processes. Anisotropy is a common problem in ocean models. Especially where a rectangular grid is used to discretize the horizontal. Selecting a horizontal grid, which reduces the anisotropy, will therefore probably be important when new ocean models are being developed. Hexagonal grid discretization in the horizontal has the desired property of reducing anisotropy, and therefore this grid should be considered as a reasonable choice for new ocean models. In sigma coordinate models internal pressure errors occur in areas with steep topography. In the second paper in this thesis, it is shown that the internal pressure errors depend on the grid orientation. It is further shown that the erroneous velocities in the sea mount test case of Beckmann and Haidvogel (1993) can be reduced significantly by first computing the internal pressure gradients in both the original and a coordinate system where the axis are rotated 45 degrees to the original. Then a normalized weighted linear combination of the two estimates is used as the internal pressure gradients in the simulation. A following up paper where this method is used on a real ocean should be performed to investigate how well this method performs in domains with irregular topography. In such an experiment the boundary should be closed and the initial velocities set to zero. The occurring currents should then be compared with a corresponding experiment, where the initial pressure gradients are computed in the original grid only. In the third and fourth paper the focus is on the use of BOM in along shelf barotropic flow. First the generation of eddies is investigated. This is done in the third paper and two simulations are performed. The first simulation is a barotropic simulation, and the second is a two layer simulation. The results from both simulations show development of eddies, but the strength of the eddies depend on the

  10. On Network-Error Correcting Convolutional Codes under the BSC Edge Error Model

    CERN Document Server

    Prasad, K

    2010-01-01

    Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error $p_e$($0\\leq p_e<0.5$). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small $p_e$ should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low $p_e$ and high $p_e$ regimes. For the low $p_e$ regime, convolutional codes with g...

  11. Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion.

    Science.gov (United States)

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications.

  12. Plasmonic band edge effects on the transmission properties of metal gratings

    Directory of Open Access Journals (Sweden)

    D. de Ceglia

    2011-09-01

    Full Text Available We present a detailed analysis of the optical properties of one-dimensional arrays of slits in metal films. Although enhanced transmission windows are dominated by Fabry-Perot cavity modes localized inside the slits, the periodicity introduces surface modes that can either enhance or inhibit light transmission. We thus illustrate the interaction between cavity modes and surface modes in both finite and infinite arrays of slits. In particular we study a grating that clearly separates surface plasmon effects from Wood-Rayleigh anomalies. The periodicity of the grating induces a strong plasmonic band gap that inhibits coupling to the cavity modes for frequencies near the center of the band gap, thereby reducing the transmission of the grating. Strong field localization at the high energy plasmonic band edge enhances coupling to the cavity modes while field localization at the low energy band edge leads to weak cavity coupling and reduced transmission.

  13. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    Science.gov (United States)

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  14. Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region.

    Science.gov (United States)

    Robol, Valentina; Grassi, Massimo; Casco, Clara

    2013-08-09

    Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A system model for pinhole SPECT simulating edge penetration, detector, and pinhole response and non-uniform attenuation

    Science.gov (United States)

    Wietholt, Christian; Hsiao, Ing-Tsung; Chen, Chin-Tu

    2007-03-01

    Small animal SPECT using low energy photons of I-125 and approaching resolutions of microscopic levels, imaging parameters such as pinhole edge penetration, detector blur, geometric response, detector and pinhole misalignment, and gamma photon attenuation and scatter can have increasingly noticeable and/or adverse effects on reconstructed image quality. Iterative reconstruction algorithms, the widelyaccepted standard for emission tomography, allow modeling of such parameters through a system matrix. For this Monte Carlo simulation study, non-uniform attenuation correction was added to the existing system model. The model was constructed using ray-tracing and further included corrections for edge penetration, detector blur, and geometric aperture response. For each ray passing through different aperture locations, this method attenuates a voxel's contribution to a detector element along the photon path, which is then weighted according to a pinhole penetration model. To lower the computational and memory expenses, symmetry along the detector axes and an incremental storage scheme for the system model were used. For evaluating the nonuniform attenuation correction method, 3 phantoms were designed of which projection images were simulated using Monte Carlo methods. The first phantom was used to examined skin artifacts, the second to simulate attenuation by bone, and the third to generate artifacts of an air-filled space surrounded by soft tissue. In reconstructions without attenuation correction, artifacts were observed with up to a 40% difference in activity. These could be corrected using the implemented method, although in one case overcorrection occurred. Overall, attenuation correction improved reconstruction accuracy of the radioisotope distribution in the presence of structural differences.

  16. Modeling the Effects of Ecosystem Fragmentation and Restoration: Management Models for Mobile Animals. Volume 1. Appendices I-II

    Science.gov (United States)

    2007-11-02

    mesquite in mesquite (no edge effect ) How to Run the Model Open an existing or new ArcView GIS project. Open a View, and if not already present, add...values, which in the same example would be 0.7 and 25, respectively. To model no edge effect (the null model) for any one edge type, enter a value of...units for dmax are the same as the map units of the habitat spatial data. For edge types in which no edge effect will be modeled, enter a “basal

  17. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    Science.gov (United States)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    implementation of injecting flow at/near the trailing edge as a wake filling strategy. However, data do support the notion that noise reductions can be realized not only for tones but perhaps more importantly, also for broadband. Furthermore, the technique can be implemented without adversely effecting overall fan aerodynamic performance.

  18. Reconstruction of binary geological images using analytical edge and object models

    Science.gov (United States)

    Abdollahifard, Mohammad J.; Ahmadi, Sadegh

    2016-04-01

    Reconstruction of fields using partial measurements is of vital importance in different applications in geosciences. Solving such an ill-posed problem requires a well-chosen model. In recent years, training images (TI) are widely employed as strong prior models for solving these problems. However, in the absence of enough evidence it is difficult to find an adequate TI which is capable of describing the field behavior properly. In this paper a very simple and general model is introduced which is applicable to a fairly wide range of binary images without any modifications. The model is motivated by the fact that nearly all binary images are composed of simple linear edges in micro-scale. The analytic essence of this model allows us to formulate the template matching problem as a convex optimization problem having efficient and fast solutions. The model has the potential to incorporate the qualitative and quantitative information provided by geologists. The image reconstruction problem is also formulated as an optimization problem and solved using an iterative greedy approach. The proposed method is capable of recovering the image unknown values with accuracies about 90% given samples representing as few as 2% of the original image.

  19. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models

    CERN Document Server

    Kopparapu, Ravi kumar; Haqq-Misra, Jacob; Yang, Jun; Kasting, James F; Meadows, Victoria; Terrien, Ryan; Mahadevan, Suvrath

    2016-01-01

    Terrestrial planets at the inner edge of the habitable zone of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly-rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the habitable zone for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3-D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar clo...

  20. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    Science.gov (United States)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  1. Crack edge detection using comprehensive CV and facet model.%综合CV和Facet模型的裂纹边缘检测

    Institute of Scientific and Technical Information of China (English)

    向才兵; 曾理

    2011-01-01

    Edge detection of CV model is continuous and closed,but the accuracy is not high. While the result of Facet model has high accuracy, but is not continuous.A new method of comprehensive CV model and Facet model is researched in this paper. This method includes several parts as follow. Firstly,the crack edge is detected by CV model in the whole image.Secondly,the new crack edge is detected by Facet model only in the neighborhood of CV detection result. Thirdly,the final crack edge is attained by combining detection results of CV and Facet together. This method is applied to crack edge detection of industrial CT images.The experimental results show the effectiveness of it.%CV模型能检测到连续封闭的裂纹边缘,但边缘的定位精度不高,Facet模型定位裂纹边缘的精度高,但不连续.针对上述问题,研究了一种综合CV和Facet模型的算法.该算法利用CV模型进行边缘检测,在CV边缘点的附近运用Facet模型进行检测,将两种方法分别获得的边缘点进行融合得到连续封闭且定位准确的边缘.将该算法应用于工业CT图像的裂纹边缘检测中,实验结果表明该方法是有效的.

  2. Efficient light amplification in low gain materials due to a photonic band edge effect.

    Science.gov (United States)

    Ondič, L; Pelant, I

    2012-03-26

    One of the possibilities of increasing optical gain of a light emitting source is by embedding it into a photonic crystal (PhC). If the properties of the PhC are tuned so that the emission wavelength of the light source with gain falls close to the photonic band edge of the PhC, then due to low group velocity of the light modes near the band edge caused by many multiple reflections of light on the photonic structure, the stimulated emission can be significantly enhanced. Here, we perform simulation of the photonic band edge effect on the light intensity of spectrally broad source interacting with a diamond PhC with low optical gain. We show that even for the case of low gain, up to 10-fold increase of light intensity output can be obtained for the two-dimensional PhC consisting of only 19 periodic layers of infinitely high diamond rods ordered into a square lattice. Moreover, considering the experimentally feasible structure composed of diamond rods of finite height - PhC slab - we show that the gain enhancement, even if reduced compared to the ideal case of infinite rods, still remains relatively high. For this particular structure, we show that up to 3.5-fold enhancement of light intensity can be achieved.

  3. Evaluation of edge effect due to phase contrast imaging for mammography.

    Science.gov (United States)

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  4. The effects of dust scattering on high-resolution X-ray absorption edge structure

    Science.gov (United States)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  5. Effects of Nonequilibrium at Edge of Boundary Layer on Convective Heat Transfer to a Blunt Body

    Science.gov (United States)

    Goekcen, Tahir; Edwards, Thomas A. (Technical Monitor)

    1996-01-01

    This investigation is a continuation of a previous study on nonequilibrium convective heat transfer to a blunt body. In the previous study, for relatively high Reynolds number flows, it was found that: nonequilibrium convective heat transfer to a blunt body is not strongly dependent on freestream parameters, provided that the thermochemical equilibrium is reached at the edge of boundary layer; and successful testing of convective heat transfer in an arc-jet environment is possible by duplicating the surface pressure and total enthalpy. The nonequilibrium convective heat transfer computations are validated against the results of Fay and Riddell/Goulard theory. Present work investigates low Reynolds number conditions which are typical in an actual arc-jet flow environment. One expects that there will be departures from the Fay and Riddell/Goulard result since certain assumptions of the classical theory are not satisfied. These departures are of interest because the Fay and Riddell/Goulard formulas are extensively used in arc-jet testing (e.g., to determine the enthalpy of the flow and the catalytic efficiency of heat shield materials). For practical sizes of test materials, density of the test flow (and Reynolds number) in an arc-jet is such that thermochemical equilibrium may not be reached at the edge of boundary layer. For blunt body flows of nitrogen and air, computations will be presented to show the effects of thermochemical nonequilibrium at the boundary layer edge on nonequilibrium heat transfer.

  6. Effects of Nonequilibrium at Edge of Boundary Layer on Convective Heat Transfer to a Blunt Body

    Science.gov (United States)

    Goekcen, Tahir; Edwards, Thomas A. (Technical Monitor)

    1996-01-01

    This investigation is a continuation of a previous study on nonequilibrium convective heat transfer to a blunt body. In the previous study, for relatively high Reynolds number flows, it was found that: nonequilibrium convective heat transfer to a blunt body is not strongly dependent on freestream parameters, provided that the thermochemical equilibrium is reached at the edge of boundary layer; and successful testing of convective heat transfer in an arc-jet environment is possible by duplicating the surface pressure and total enthalpy. The nonequilibrium convective heat transfer computations are validated against the results of Fay and Riddell/Goulard theory. Present work investigates low Reynolds number conditions which are typical in an actual arc-jet flow environment. One expects that there will be departures from the Fay and Riddell/Goulard result since certain assumptions of the classical theory are not satisfied. These departures are of interest because the Fay and Riddell/Goulard formulas are extensively used in arc-jet testing (e.g., to determine the enthalpy of the flow and the catalytic efficiency of heat shield materials). For practical sizes of test materials, density of the test flow (and Reynolds number) in an arc-jet is such that thermochemical equilibrium may not be reached at the edge of boundary layer. For blunt body flows of nitrogen and air, computations will be presented to show the effects of thermochemical nonequilibrium at the boundary layer edge on nonequilibrium heat transfer.

  7. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  8. Confidence level fusion of edge histogram descriptor, hidden Markov model, spectral correlation feature, and NUKEv6

    Science.gov (United States)

    Ho, K. C.; Gader, P. D.; Frigui, H.; Wilson, J. N.

    2007-04-01

    This paper examines the confidence level fusion of several promising algorithms for the vehiclemounted ground penetrating radar landmine detection system. The detection algorithms considered here include Edge Histogram Descriptor (EHD), Hidden Markov Model (HMM), Spectral Correlation Feature (SCF) and NUKEv6. We first form a confidence vector by collecting the confidence values from the four individual detectors. The fused confidence is assigned to be the difference in the square of the Mahalanobis distance to the non-mine class and the square of the Mahalanobis distance to the mine class. Experimental results on a data collection that contains over 1500 mine encounters indicate that the proposed fusion technique can reduce the false alarm rate by a factor of two at 90% probability of detection when compared to the best individual detector.

  9. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data

    DEFF Research Database (Denmark)

    Kamruzzaman, M.; Lutz, Th.; Würz, W.;

    2012-01-01

    -layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re  =  2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd....

  10. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    Science.gov (United States)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  11. Diversity of galling insects in Styrax pohlii (Styracaceae: edge effect and use as bioindicators

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araújo

    2011-12-01

    Full Text Available Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i because of their host-specificity, (ii they are sensitive to changes in plant quality, and (iii present dissimilar and specific responses to local variation in habitat conditions. Rev. Biol. Trop. 59 (4: 1589-1597. Epub 2011 December 01.Los impactos de la fragmentación de los bosques y el efecto de borde sobre las interacciones planta-herbívoros son relativamente desconocidos, y las relaciones entre los insectos inductores de agallas y sus plantas hospederas son muy susceptibles a las variaciones ambientales. El objetivo de nuestro estudio fue probar la hipótesis de efecto de borde en los insectos inductores de agallas asociados con la planta hospedera

  12. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    , in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...... of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...

  13. Micro-mechanics of fiber reinforced bounded and unbounded solids: effective local and non-local thermo-elastic properties, stress concentration factors, and edge effect

    Science.gov (United States)

    2005-07-01

    thermo-elastic properties, stress concentration factors, and edge effect 5. FUNDING NUMBERS FA8655-05-1-5008 6. AUTHOR(S) 7...unbounded solids, Thermo-elastic properties, Stress concentration factors, edge effect , Non-linear elastic stress, Inclusion-reinforced materials...factors, and edge effect Project manager: Maslov Borys Petrovich, Dr. Sc. in Physics and Mathematics Phone: +380-44-454-7764, Fax: –, E-mail

  14. Layering, interface and edge effects in multi-layered composite medium

    Science.gov (United States)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  15. Investigation of edge- and bulk-related resistive switching behaviors and backward-scan effects in SiOx-based resistive switching memory

    Science.gov (United States)

    Chang, Yao-Feng; Ji, Li; Wang, Yanzhen; Chen, Pai-Yu; Zhou, Fei; Xue, Fei; Fowler, Burt; Yu, Edward T.; Lee, Jack C.

    2013-11-01

    Switching characteristics of edge and bulk device structures and an unusual backward-scan effect are investigated in SiOx-based resistive memory. Adding external resistance is found to dramatically affect reset voltage, providing insight into the unique unipolar operation. Non-edge, bulk SiOx-based devices allow flexibility in the fabrication process and hydrogen incorporation improves electroforming and device yield. A backward-scan phenomenon is examined by investigating the DC and AC pulse responses, which defines requirements for ON and OFF programming duration. Circuit-level simulation using a Verilog-A model aids device characterization and programming strategy development for future nonvolatile memory applications.

  16. RESEARCH OF AERODYNAMIC CHARACTERISTICS OF THE MODEL OF MANEUVERABLE AIRCRAFT WITH MECHANIZED LEADING EDGE USING SOFTWARE ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    A. V. Golovnev

    2015-01-01

    Full Text Available The calculations of the aerodynamic characteristics of the aircraft model having mechanized leading edge are conducted, and then comparing the results with experimental data. It is shown that the use of computational methods for the determination of the aerodynamic characteristics allows to deepen the results of experimental modeling in air tunnels.

  17. Elongated Quantum Dots of Ge on Si Growth Kinetics Modeling with Respect to the Additional Energy of Edges

    Science.gov (United States)

    Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.

    2016-08-01

    In this paper refining of mathematical model for calculation of parameters of selforganised quantum dots (QDs) of Ge on Si grown by the method of molecular beam epitaxy (MBE) is done. Calculations of pyramidal and wedge-like clusters formation energy were conducted with respect to contributions of surface energy, additional edge energy, elastic strain relaxation, and decrease in the atoms attraction to substrate. With the help of well-known model based on the generalization of classical nucleation theory it was shown that elongated islands emerge later than pyramidal clusters. Calculations of QDs surface density and size distribution function for wedge-like clusters with different length to width ratio were performed. The absence of special geometry of islands for which surface density and average size of islands reach points of extremum that was predicted earlier by the model not taking into account energy of edges was revealed when considering the additional contribution of edge formation energy.

  18. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  19. Effects of a trailing edge flap on the aerodynamics and acoustics of rotor blade-vortex interactions

    Science.gov (United States)

    Charles, B. D.; Tadghighi, H.; Hassan, A. A.

    1992-01-01

    The use of a trailing edge flap on a helicopter rotor has been numerically simulated to determine if such a device can mitigate the acoustics of blade vortex interactions (BVI). The numerical procedure employs CAMRAD/JA, a lifting-line helicopter rotor trim code, in conjunction with RFS2, an unsteady transonic full-potential flow solver, and WOPWOP, an acoustic model based on Farassat's formulation 1A. The codes were modified to simulate trailing edge flap effects. The CAMRAD/JA code was used to compute the far wake inflow effects and the vortex wake trajectories and strengths which are utilized by RFS2 to predict the blade surface pressure variations. These pressures were then analyzed using WOPWOP to determine the high frequency acoustic response at several fixed observer locations below the rotor disk. Comparisons were made with different flap deflection amplitudes and rates to assess flap effects on BVI. Numerical experiments were carried out using a one-seventh scale AH-1G rotor system for flight conditions simulating BVI encountered during low speed descending flight with and without flaps. Predicted blade surface pressures and acoustic sound pressure levels obtained have shown good agreement with the baseline no-flap test data obtained in the DNW wind tunnel. Numerical results indicate that the use of flaps is beneficial in reducing BVI noise.

  20. Finite-width effects for the localized edge modes in zigzag graphene nanoribbons

    Science.gov (United States)

    Akbari-Sharbaf, Arash; Cottam, Michael G.

    2016-06-01

    A matrix formalism is used to derive the analytical Green's functions describing correlations between any two atomic sites on a zigzag (ZZ) graphene nanoribbon, incorporating modified electronic hopping values between edge sites that may be distinct from the hopping between interior sites. An analysis of the poles of our Green's functions shows two distinct types of localized edge modes in the electronic spectrum. The first of these, the "zero" mode, is a topologically induced mode arising from the bipartite honeycomb lattice structure of graphene and is always present along ZZ edges. The second type of localized edge mode is present at edges when the edge-to-bulk hopping ratio deviates significantly from unity. The correlations between edge sites are found to exhibit strikingly different features when mediated by the zero edge mode compared with mediation by the "modified" edge mode. In particular, the zero-mode spectral intensity for correlations between two atomic sites along opposite edges can be comparable in strength with that between two sites on the same edge of a finite-width ribbon, before it eventually tends to zero as the ribbon width tends to infinity. This remarkable behavior shows a strong dependence on the sublattice labels of the sites and is in contrast with properties of the modified hopping edge modes. The explicit form of our analytical expressions for the electronic spectrum enables us to predict the zero-mode properties (including frequency, spatial attenuation, and intensity) when the hopping values along ZZ edges are modified.

  1. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  2. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  3. Mesh Size and Damped Edge Effects in Micromagnetic Spin Wave Simulation

    CERN Document Server

    Venkat, G; Fangohr, H; Prabhakar, A

    2014-01-01

    We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been suggested. In a separate study, spin wave reflections are absorbed by introducing highly damped edges in the device. However, an abrupt change in the damping parameter causes reflections. We compare damping profiles and identify an exponential damping profile as causing significantly less reflections.

  4. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  5. Space environmental effects on LDEF composites: Leading graphite/epoxy panel, selected trailing edge specimens

    Science.gov (United States)

    Dursch, Harry; George, Pete; Hill, Sylvester

    1992-01-01

    The composite electronics-module cover for the leading edge (row D9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a multi-oriented layup. This panel contained thermal control coatings in three of the four quadrants with the fourth quadrant left uncoated as a control. The composite experienced different thermal cycling extremes in each quadrant due to the differing optical properties of the coatings. Results will be presented on microcracking and other Low Earth Orbital (LEO) effects on the coated panel substrate.

  6. A limiting analysis for edge effects in angle-ply laminates

    Science.gov (United States)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  7. Compressible Navier-Stokes equations: A study of leading edge effects

    Science.gov (United States)

    Hariharan, S. I.; Karbhari, P. R.

    1987-01-01

    A computational method is developed that allows numerical calculations of the time dependent compressible Navier-Stokes equations.The current results concern a study of flow past a semi-infinite flat plate.Flow develops from given inflow conditions upstream and passes over the flat plate to leave the computational domain without reflecting at the downstream boundary. Leading edge effects are included in this paper. In addition, specification of a heated region which gets convected with the flow is considered. The time history of this convection is obtained, and it exhibits a wave phenomena.

  8. Modeling of transient dust events in fusion edge plasmas with DUSTT-UEDGE code

    Science.gov (United States)

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-10-01

    It is well known that dust can be produced in fusion devices due to various processes involving structural damage of plasma exposed materials. Recent computational and experimental studies have demonstrated that dust production and associated with it plasma contamination can present serious challenges in achieving sustained fusion reaction in future fusion devices, such as ITER. To analyze the impact, which dust can have on performance of fusion plasmas, modeling of coupled dust and plasma transport with DUSTT-UEDGE code is used by the authors. In past, only steady-state computational studies, presuming continuous source of dust influx, were performed due to iterative nature of DUSTT-UEDGE code coupling. However, experimental observations demonstrate that intermittent injection of large quantities of dust, often associated with transient plasma events, may severely impact fusion plasma conditions and even lead to discharge termination. In this work we report on progress in coupling of DUSTT-UEDGE codes in time-dependent regime, which allows modeling of transient dust-plasma transport processes. The methodology and details of the time-dependent code coupling, as well as examples of simulations of transient dust-plasma transport phenomena will be presented. These include time-dependent modeling of impact of short out-bursts of different quantities of tungsten dust in ITER divertor on the edge plasma parameters. The plasma response to the out-bursts with various duration, location, and ejected dust sizes will be analyzed.

  9. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  10. Effect of an edge at cup rim on contact stress during micro-separation in ceramic-on-ceramic hip joints.

    Science.gov (United States)

    Liu, Feng; Fisher, John

    2017-09-01

    Alumina ceramic total hip joint bearings have shown superior wear properties. The joint bearing may undergo adverse conditions such as micro-separation causing head contact on the cup rim. As a transition, an edge is formed between the cup bearing and the rim. The aim of this study was to predict the effect of the edge on contact stresses in order to better understand the mechanisms of wear. A finite element contact model was developed under the conditions of the head displacements 0.5-2 mm and vertical loads 0.5-3 kN. The edge contact produced the most severe stresses capable of causing elevated wear and damage to ceramic bearings. The study shows that the bearing design should be considered in association with clinical conditions to eliminate severe stress.

  11. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    Science.gov (United States)

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  12. Edge Effect and the Developing Direction of Ecosystem Balance%生态边缘效应与生态平衡变化方向

    Institute of Scientific and Technical Information of China (English)

    关卓今; 裴铁璠

    2001-01-01

    Human activities produce inany ecosystems which form new edgeswith original ones.On the other hand, the edge effects also change the quality of ecosystems. The new edge effects will show positive or negative ecological effect on the original ecosystems, which is named as edge effect directivity.Therefoe that human activities can affect the change directions of ecosystem quality with edge effects. It is important to study to the edge effect and the change direction of ecosystem balance,so as to regulate and control the ecosystems wisely.

  13. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

    to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge...

  14. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae).

    Science.gov (United States)

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-06-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.

  15. Boolean operations of STL models based on edge-facet intersection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For the data processing of the Rapid Prototyping Manufacturing, Boolean operation can offer a versatile tool for editing or modifying the STL model, adding the artificial construction, and creating the complex assistant support structure to meet the special technical requests. The topological structure of STL models was built firstly in order to obtain the neighborhood relationship among the triangular facets. The intersection test between every edge of one solid and every facet of another solid Was taken to get the intersection points. According to the matching relationship of the triangle index recorded in the data structure of the intersection points, the intersection segments array and the intersection loop were traced out. Each intersected triangle was subdivided by the Constrained Delaunay Triangulations. The intersected surfaces were divided into several surface patches along the intersection loops. The inclusion prediction between the surface patch and the other solid was taken by testing whether the candidate point Was inside or outside the solid region of the slice. Detecting the loops for determination of the valid intersection lines greatly increases the efficiency and the reliability of the process.

  16. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  17. Edge adaptive directional total variation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2013-11-01

    Full Text Available The directional total variation (DTV model has been proposed very recently for image denoising. However, the DTV model works well when there is just one dominant direction in the image. In this Letter, the authors propose to make the DTV model adaptive to image edge direction so that the proposed model can handle images with several dominant directions. Experiment and comparison show the effectiveness of the proposed method.

  18. Effects of edge beams on mechanic behavior under lateral load in reinforced concrete hollow slab-column structure

    Institute of Scientific and Technical Information of China (English)

    成洁筠; 杨建军; 唐小弟

    2008-01-01

    In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.

  19. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations.

    Science.gov (United States)

    Qian, Ken K; Grobelny, Pawel J; Tyagi, Madhusudan; Cicerone, Marcus T

    2015-04-06

    Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.

  20. The dust scattering component of X-ray extinction: Effects on continuum fitting and high-resolution absorption edge structure

    CERN Document Server

    Corrales, L; Wilms, J; Baganoff, F

    2016-01-01

    Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust scattering component is not included in the current absorption models: phabs, tbabs, and tbnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25%. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total ext...

  1. Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R

    DEFF Research Database (Denmark)

    Højsgaard, Søren; Lauritzen, Steffen L

    2007-01-01

    In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices o...... of same colour are restricted to being identical. We describe algorithms for maximum likelihood estimation and discuss model selection issues. The paper illustrates the practical use of the gRc package......In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices...

  2. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  3. Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons

    Science.gov (United States)

    Cheng, Cheng; Han, Han; Ren, Cui-Lan; Wang, Chang-Ying; Shao, Kuan; Huai, Ping

    2016-08-01

    The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons (GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzag GNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides. Project supported by the International S & T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant Nos. 91326105, 21306220, and 21501189), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  4. Sensitivity improvement of a miniaturized label-free electrochemical impedance biosensor by electrode edge effect

    Science.gov (United States)

    Kuo, Yi-Ching; Chen, Ching-Sung; Chang, Ku-Ning; Lin, Chih-Ting; Lee, Chih-Kung

    2014-07-01

    Point-of-care (PoC) biosensors continue to gain popularity because of the desire to improve cost performance in today's health care industry. As cardiovascular disease (CVD) remains one of the top three leading causes of death in Asia, a tool that can help to detect CVDs is highly sought after. We present a high-sensitivity PoC biosensor that can be used to detect CVD biomarkers. To meet the requirements of a PoC biosensor, we adopted electrochemical methods as the basis of the detection. A more stable three-electrode configuration was miniaturized and put onto a biochip. To improve the detection sensitivity associated with the reduced size in the biochip, computer simulation was used to investigate several potential effective possibilities. We found that the electrolyte current density on the edge near the working electrode (WE) and counter electrode (CE) was higher. This was verified using an atomic force microscope to measure the surface potential. We then experimented with the configuration by lengthening the edge of the WE and CE without changing the area of the WE and CE and maintained the gap between the two electrodes. We found improved measurement efficiency with our newly developed biochip.

  5. Effect of biasing on plasma rotation in the edge of IR-T1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, S.; Ghoranneviss, M.; Arvin, R.; Gheydi, M.; Nikmohammadi, A. [Plasma physics Research Center, Science and Research Branch, Islamic Azad University, P.O.Box: 14665-768 Tehran (Iran, Islamic Republic of); Khorshid, P.; Bolourian, H. [Department of Physics, Islamic Azad University, Mashhad Branch, Mashhad (Iran, Islamic Republic of)

    2011-07-01

    Full text of publication follows: Electrode biasing experiments were carried out on the IR-T1 Tokamak. The effects of radial electric field (Er) on plasma fluid velocity and magnetic island rotation investigated by a Mach/Langmuir electric probe and an array of 12 Mirnov coils. The Results have shown a change in the fluid velocity during biasing regime. References: [1] Van Oost G. et al. 2001 Czech. J. of Phys. 51 957; [2] Effect of Plasma Biasing on Suppression of Electrostatic Fluctuation in the Edge Region of STP-3(M) Reversed Field Pinch J. Phys. Soc. Jpn. 74 (2005) pp.605-612; [3] Weynants R. R. and Van Oost G. 1993 Plasma Phys. Contr. Fusion 35 B177. (authors)

  6. Conveying Cutting-Edge Discoveries to Nonscientists: Effective Communication with Media

    Science.gov (United States)

    Gupta, Nikhil; Hamilton, Kathleen; Chamot, Joshua

    2013-07-01

    The benefits of using information and news media for disseminating cutting-edge scientific discoveries to the public are well known. Taxpayers and lawmakers need to be informed about the implications of public investments, young students' interest can be molded toward science- and technology-based careers, and public awareness of important issues can be raised by effectively using media. However, communication with news media is different from the means commonly used by scientists—journal publications and conference presentations. This article is intended to provide information on three basic aspects of media interactions—why, what, and how to communicate. The increasing importance of this mode of dissemination in this information age cannot be ignored; rather, it can be effectively utilized for educating a wider population base.

  7. Bayesian edge detector for SAR imagery using discontinuity-adaptive Markov random field modeling

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhan; He You; Cai Fuqing

    2013-01-01

    Synthetic aperture radar (SAR) image is severely affected by multiplicative speckle noise, which greatly complicates the edge detection. In this paper, by incorporating the discontinuity-adaptive Markov random field (DAMRF) and maximum a posteriori (MAP) estimation criterion into edge detection, a Bayesian edge detector for SAR imagery is accordingly developed. In the pro-posed detector, the DAMRF is used as the a priori distribution of the local mean reflectivity, and a maximum a posteriori estimation of it is thus obtained by maximizing the posteriori energy using gradient-descent method. Four normalized ratios constructed in different directions are computed, based on which two edge strength maps (ESMs) are formed. The final edge detection result is achieved by fusing the results of two thresholded ESMs. The experimental results with synthetic and real SAR images show that the proposed detector could efficiently detect edges in SAR images, and achieve better performance than two popular detectors in terms of Pratt’s figure of merit and visual evaluation in most cases.

  8. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  9. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  10. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.

    Science.gov (United States)

    Majumder, Rupamanjari; Pandit, Rahul; Panfilov, A V

    2014-10-01

    Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na(+) current (INa), L-type slow inward Ca(2+) current (ICaL), slow delayed-rectifier current (IKs), rapid delayed-rectifier current (IKr), inward rectifier K(+) current (IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.

  11. EDGE BASED 3D INDOOR CORRIDOR MODELING USING A SINGLE IMAGE

    Directory of Open Access Journals (Sweden)

    A. Baligh Jahromi

    2015-08-01

    Full Text Available Reconstruction of spatial layout of indoor scenes from a single image is inherently an ambiguous problem. However, indoor scenes are usually comprised of orthogonal planes. The regularity of planar configuration (scene layout is often recognizable, which provides valuable information for understanding the indoor scenes. Most of the current methods define the scene layout as a single cubic primitive. This domain-specific knowledge is often not valid in many indoors where multiple corridors are linked each other. In this paper, we aim to address this problem by hypothesizing-verifying multiple cubic primitives representing the indoor scene layout. This method utilizes middle-level perceptual organization, and relies on finding the ground-wall and ceiling-wall boundaries using detected line segments and the orthogonal vanishing points. A comprehensive interpretation of these edge relations is often hindered due to shadows and occlusions. To handle this problem, the proposed method introduces virtual rays which aid in the creation of a physically valid cubic structure by using orthogonal vanishing points. The straight line segments are extracted from the single image and the orthogonal vanishing points are estimated by employing the RANSAC approach. Many scene layout hypotheses are created through intersecting random line segments and virtual rays of vanishing points. The created hypotheses are evaluated by a geometric reasoning-based objective function to find the best fitting hypothesis to the image. The best model hypothesis offered with the highest score is then converted to a 3D model. The proposed method is fully automatic and no human intervention is necessary to obtain an approximate 3D reconstruction.

  12. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Science.gov (United States)

    Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-06-01

    Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q  =  10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95  =  4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP

  13. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    Science.gov (United States)

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for

  14. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the mod

  15. Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect.

    Science.gov (United States)

    Hu, Zhonghan; Margulis, Claudio J

    2007-11-01

    Ionic liquids (ILs) have recently attracted significant attention from academic and industrial sources. This is because, while their vapor pressures are negligible, many of them are liquids at room temperature and can dissolve a wide range of polar and nonpolar organic and inorganic molecules. In this Account, we discuss the progress of our laboratory in understanding the dynamics, spectroscopy, and fluid dynamics of selected imidazolium-based ILs using computational and analytical tools that we have recently developed. Our results indicate that the red edge effect, the non-Newtonian behavior, and the existence of locally heterogeneous environments on a time scale relevant to chemical and photochemical reactivity are closely linked to the viscosity and highly structured character of these liquids.

  16. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.

    Science.gov (United States)

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne

    2014-02-18

    A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

  17. Investigation of Surface Roughness Effect on Transition Edge Sensor Microcalorimeters Using Multilayer Readout Wiring

    Science.gov (United States)

    Kuromaru, G.; Kuwabara, K.; Miyazaki, N.; Suzuki, S.; Hosoya, S.; Koizumi, Y.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Mitsuda, K.; Hidaka, M.; Satoh, T.

    2016-07-01

    We are developing a transition edge sensor (TES) using multilayer readout wiring for future X-ray astronomy satellites. Although we fabricated a first full 20 × 20 pixels TES array, we could not confirm transition of the TES. Considering possible causes, we focused on surface roughness of the TES film. We checked the fabrication process steps that can influence the surface roughness step by step, and changed wiring material (Al to Nb) and also a process condition of an ion milling. As a result, we succeeded to reduce the surface roughness from 4.5 to 2.5 nm rms at 1 \\upmu m scale. However, the transition was not observed probably because the TES films in our samples with surface roughness more than {˜ }1 nm rms tend not to show the transition. Therefore, to suppress the surface roughness even more, we discuss possible process effects and mitigations.

  18. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2016-04-01

    Full Text Available Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min-1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min-1 cutting with a sharper knife-edge angle (15° required less peak force and specific energy than that of high-speed cutting (40 mm min-1 with a wider knife-edge angle (25°. The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min-1 and edge angle 150 to 285.1 N (40 mm min-1 and 250, and cucumber, at 11.61 (20 mm min-1 and 150 to 21.41 N (40 mm min-1 and 250, respectively. High speed (40 mm min-1, with a large knife-edge angle (25°, required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min-1, with a small knife-edge angle (150, is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05. Linear or quadratic regressions gave a good fit of these variables. 

  19. Effects of Blowing Ratio Measured by Liquid Crystal on Heat Transfer Characteristics of Trailing Edge Cutback

    Institute of Scientific and Technical Information of China (English)

    Yuan Hepeng; Zhu Huiren; Kong Manzhao

    2008-01-01

    This article deals with the effects of a blowing ratio measured with narrowbend liquid crystal in transonic experiments on the heat transfer characteristics of trailing edge cutback. The experimental results are compared end contrasted in terms of available data for tra-ditional experiments with thermocouples. It is concluded that the blowing ratio exerts rather significant effects on film cooling effec-tiveness distribution of the rib center line. As the blowing ratio decreases, similar to the cooling effectiveness distribution curve of the slot center line, that of the rib center line makes a clockwise rotation about the end. When the blowing ratio increases, the regular film cooling effectiveness curve of the surface becomes rather smooth. On the whole measuring surface, the most intensive heat transfer oc-curs at the extended borderline of the slot end the rib, neither at the rib center line nor at the slot center line. The experimental results of cooling effectiveness measured with thermocouples are lower than those with liquid crystal. In addition, the transient experiments using narrowband liquid crystal can eliminate the higher errors of Nusselt numbers in measurements with thermocouples at the slot outlet.

  20. Edge-Termination and Core-Modification Effects of Hexagonal Nanosheet Graphene

    Directory of Open Access Journals (Sweden)

    Jin-Pei Deng

    2014-02-01

    Full Text Available Optimized geometries and electronic structures of two different hexagonal grapheme nanosheets (HGNSs, with armchair (n-A-HGNS, n = 3–11 and zigzag (n-Z-HGNS, n = 1–8 edges have been calculated by using the GGA/PBE method implemented in the SIESTA package, with the DZP basis set, where n represents the number of peripheral rings. The computed HOMO-LUMO energy gap (Eg = ELUMO − EHOMO decreases for fully H-terminated A- and Z-HGNSs with increasing n, i.e., with increasing nanosheet size and pπ-orbitals being widely delocalized over the sheet surface. The full terminations, calculated with various functional groups, including the electron-withdrawing (F-, Cl-, and CN- and -donating (OH-, and SH- substitutions, were addressed. Significant lowering of EHOMO and ELUMO was obtained for CN-terminated HGNS as compared to those for H-terminated ones due to the mesomeric effect. The calculated Eg value decreases with increasing n for all terminations, whereby for the SH-termination in HGNS, the termination effect becomes less significant with increasing n. Further, the calculation results for stabilities of HGNS oxides support the tendency toward the oxidative reactivity at the edge site of the sheet, which shows most pronounced C-C bond length alternation, by chemical modification. Physical properties of HGNSs with various numbers of the core-defects, which can be obtained by strong oxidation, were also investigated. Their structures can change drastically from planar to saddle-like shapes. These conformations could be used as stationary phases with controlled interaction in the separation methods such as HPLC and the other chemical analysis techniques.