Fully implicit kinetic modelling of collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Mousseau, V.A.
1996-05-01
This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.
Modern methods in collisional-radiative modeling of plasmas
2016-01-01
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...
Collisional-radiative model: a plasma spectroscopy theory for experimentalists
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, Takashi [Kyoto Univ. (Japan); Sawada, Keiji
1997-01-01
The rate equation describing the population n(p) of an excited (and the ground state) level p of ions immersed in plasma is shown. In 1962, the method of quasi-steady state solution (collisional-radiative model) was proposed. Its idea is explained. The coupled differential equations reduce to a set of coupled linear equations for excited levels. The solution of these coupled equations is presented. The equations giving the ionization and recombination of this system of ions under consideration are described in terms of the effective rate coefficients. The collisional-radiative ionization and recombination rate coefficients are expressed in terms of the population coefficients for p > 1. As for ionizing plasma, the excited level populations, the populations, the population distribution among the excited levels, two regimes of the excited levels, the dominant flows of electrons among the levels and so on are shown. As for recombining plasma, the excited level populations, the population distribution among the excited levels, the dominant flows of electrons and so on are shown. Ionization balance plasma may be considered. (K.I.)
Plasma-statistical models of the atom in the theory of some collisional and radiative processes
Astapenko, VA
2002-01-01
A plasma-statistical model was used to describe collisional and radiative processes involving target ionization, namely, collisional ionization of atoms and incoherent polarization bremsstrahlung. The cross sections of these processes were expressed through the Compton profile of X-ray scattering, f
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2017-06-23
account for all processes of the collisional cascade during the relaxation of a hot plasma. To this end, the focus was in the development of (a) a...Collisional Radiative operator was necessary to accurately account for all processes of the collisional cascade during the relaxation of a hot plasma. To this...important to note that this is a code-to- code comparison and the validation of these simulations is an area of active research in the non-local
An experimentally constrained MHD model for a collisional, rotating plasma column
Wright, A. M.; Qu, Z. S.; Caneses, J. F.; Hole, M. J.
2017-02-01
A steady-state single fluid MHD model which describes the equilibrium of plasma parameters in a collisional, rotating plasma column with temperature gradients and a non-uniform externally applied magnetic field is developed. Two novel methods of simplifying the governing equations are introduced. Specifically, a ‘radial transport constraint’ and an ordering argument are applied. The reduced system is subsequently solved to yield the equilibrium of macroscopic plasma parameters in the bulk region of the plasma. The model is benchmarked by comparing these solutions to experimental measurements of axial velocity and density for a hydrogen plasma in the converging-field experiment MAGPIE and overall a good agreement is observed. The plasma equilibrium is determined by the interaction of a density gradient, due to a temperature gradient, with an electric field. The magnetic field and temperature gradient are identified as key parameters in determining the flow profile, which may be important considerations in other applications.
Collisional-radiative modelling for the spectroscopic diagnostic of turbulent plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Lefevre, T.; Escarguel, A.; Capes, H.; Catoire, F.; Marandet, Y.; Stamm, R. [PIIM, Universite de Provence, CNRS, Marseille (France); Rosmej, F.B. [Universite Pierre et Marie Curie, Paris (France)] [LULI, Palaiseau (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [NFI, Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Bonhomme, G. [IJL, Universite de Nancy, CNRS, Vandoeuvre-les-Nancy (France)
2011-07-01
Spectroscopy is a diagnostic method widely used in plasma physics research, e.g. in laboratory experiments, in fusion devices or in astrophysics. Information on the plasma parameters (electron density, temperature etc.) can be obtained from the analysis of both line shapes and intensities through the use of suitable models. The aim of the present paper is to assess the role of turbulent fluctuations on line intensity ratios in the case of weakly radiating plasmas. This involves the use of collisional-radiative modelling. In the present work we address the radiation due to atomic lines in turbulent helium plasmas at low density/temperature. The statistical formalism previously used in line shape modelling is adapted in this way, and the atomic populations are calculated with a collisional-radiative code. Different regimes, according to the turbulence correlation time, have been considered. In the static case, which corresponds to low-frequency fluctuations, it has been shown that the turbulence can lead to an increase of the line intensities. An application to helium in realistic experimental conditions has revealed that line ratios are sensitive to the fluctuations, which offers a track to a diagnostic. In the dynamic case, the use of a reduced model in the case of an ideal two-level atom has revealed the possibility for a significant dependence of the atomic populations on the turbulence frequency
A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State
Institute of Scientific and Technical Information of China (English)
DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin
2009-01-01
A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.
X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model
Institute of Scientific and Technical Information of China (English)
Wang Jun; Zhang Hong; Cheng Xin-Lu
2013-01-01
Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER),so the determination and modeling of spectra of tungsten plasma,especially the spectra at high temperature were intensely focused on recently.In this work,using the atomic structure code of Cowan,a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed.Based on this model,the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated.The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63％ and 1.26％,respectively.The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.
A collisional-radiative model for low-pressure weakly magnetized Ar plasmas
Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr
2016-09-01
Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.
Uttamsing Rajput, Rajendrasing; Alona, Khaustova; Loyan, Andriy V.
2017-03-01
Electric propulsion offers higher specific impulse compared to the chemical propulsion systems. It reduces the overall propellant mass and enables high operational lifetimes. Scientific Technological Center of Space Power and Energy (STC SPE), KhAI is involved in designing, manufacturing and testing of stationary plasma thrusters (SPT). Efforts are made to perform plasma diagnostics with corona and collisional radiative models (C-R model), as expected corona model falls short below 4 eV because of the heavy particle collisions elimination, whereas the C-R model's applicability is confirmed. Several tests are performed to analyze the electron temperature at various operational parameters of thruster like discharge voltage and mass flow rate. SPT-20M8 far and near-field plumes diagnostics are performed. Feasibility of C-R model by comparing its result to optical emission spectroscopy (OES) to investigate the electron temperature is validated with the probe measurements within the 10% of discrepancy.
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
An advanced time-dependent collisional-radiative model of helium plasma discharges
Claustre, J.; Boukandou-Mombo, C.; Margot, J.; Matte, J.-P.; Vidal, F.
2017-10-01
A new spatially averaged time-dependent collisional-radiative model for helium plasmas, coupled to the electron Boltzmann equation (EBE), has been developed. Its main novelties are: (1) full time dependence for both the multi-species kinetics and the EBE. It is shown that this is necessary to correctly simulate discharges where the parameters vary on nanoseconds-microsecond timescales. (2) All electron processes are accounted for accurately. In particular, for the various ionization and recombination processes, free electrons are added or removed at the appropriate energy, with the appropriate interpolation on the energy grid. (3) The energy dependence of the electron loss by ambipolar diffusion is taken into account approximately. (4) All of the processes which are known to be important in helium discharges for pressure P≤slant 760 Torr are included, and 42 energy levels up to n = 6, where n is the main quantum number, are taken into account. Atomic and molecular ions, as well as excimers, are also included. (5) The gas temperature is calculated self-consistently. The model is validated through comparisons with known numerical steady-state results of Santos et al (2014 J. Phys. D. 47 265201) which they compared to their experimental results, and good agreement is obtained for their measured quantities. It is then applied to post-discharge decay cases with very short power decay times. The time evolution of the population densities and reaction rates are analyzed in detail with emphasis on the observed large increase of the metastable density.
Resonant scattering as a sensitive diagnostic of current collisional plasma models
Ogorzalek, Anna; Zhuravleva, Irina; Allen, Steven W.; Pinto, Ciro; Werner, Norbert; Mantz, Adam; Canning, Rebecca; Fabian, Andrew C.; Kaastra, Jelle S.; de Plaa, Jelle
2017-08-01
Resonant scattering is a subtle process that suppresses fluxes of some of the brightest optically thick X-ray emission lines produced by collisional plasmas in galaxy clusters and massive early-type galaxies. The amplitude of the effect depends on the turbulent structure of the hot gas, making it a sensitive velocity probe. It is therefore crucial to properly model this effect in order to correctly interpret high resolution X-ray spectra. Our measurements of resonant scattering with XMM-Newton Reflection Grating Spectrometer in giant elliptical galaxies and with Hitomi in the center of Perseus Cluster show that the potentially rich inference from this effect is limited by the uncertainties in the atomic data underlying plasma codes such as APEC and SPEX. Typically, the effect is of the order of 10-20%, while the discrepancy between the two codes is of similar order or even higher. Precise knowledge of the emissivity and oscillator strengths of lines emitted by Fe XVII and Fe XXV, as well as their respective uncertainties propagated through plasma codes are key to understanding gas dynamics and microphysics in giant galaxies and cluster ICM, respectively. This is especially crucial for massive ellipticals, where sub-eV resolution would be needed to measure line broadening precisely, making resonant scattering an important velocity diagnostic in these systems for the foreseeable future. In this poster, I will summarize current status of resonant scattering measurements and show how they depend on the assumed atomic data. I will also discuss which improvements are essential to maximize scientific inference from future high resolution X-ray spectra.
Fine velocity structures collisional dissipation in plasmas
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures
Collisional Drift Waves in Stellarator Plasmas
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-10-07
A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
Directory of Open Access Journals (Sweden)
Keiji Sawada
2016-12-01
Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.
Energy Technology Data Exchange (ETDEWEB)
Krychowiak, M; Koenig, R; Wolf, R; Klinger, T [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Mertens, Ph; Schweer, B; Brezinsek, S; Schmitz, O; Samm, U [Institut fuer Energieforschung (Plasmaphysik), FZ Juelich, EURATOM Association, TEC, Juelich (Germany); Brix, M, E-mail: maciej.krychowiak@ipp.mpg.d [UKAEA, JET-Experimental Department, EURATOM Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)
2010-05-01
Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative (CR) model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Laser-induced fluorescence spectroscopy on a thermal helium beam in the edge plasma of the tokamak TEXTOR in Juelich was applied to validate the CR model of helium. By use of a high-power, pulsed laser system (a dye laser pumped by an excimer laser) several laser excitation schemes starting from the n=2 levels have been tried. The fluorescence light was observed at the laser wavelength and elsewhere in the spectrum providing information on population densities of initial levels as well as on collisional population transfer between excited levels. This paper summarises the results of the measurements, showing principal limits and possible improvements of this experimental validation method of the CR model of the diagnostic helium beam.
Krychowiak, M.; Mertens, Ph; König, R.; Schweer, B.; Brezinsek, S.; Schmitz, O.; Brix, M.; Samm, U.; Wolf, R.; Klinger, T.
2010-05-01
Local values of the electron density and temperature in the edge of a fusion plasma can be derived with high space and time resolution by the use of line radiation of atomic helium beams. The accuracy of this method is mainly limited by the uncertainties in the collisional-radiative (CR) model which is needed in order to obtain both plasma parameters from the measured relative intensities of atomic helium lines. Laser-induced fluorescence spectroscopy on a thermal helium beam in the edge plasma of the tokamak TEXTOR in Jülich was applied to validate the CR model of helium. By use of a high-power, pulsed laser system (a dye laser pumped by an excimer laser) several laser excitation schemes starting from the n=2 levels have been tried. The fluorescence light was observed at the laser wavelength and elsewhere in the spectrum providing information on population densities of initial levels as well as on collisional population transfer between excited levels. This paper summarises the results of the measurements, showing principal limits and possible improvements of this experimental validation method of the CR model of the diagnostic helium beam.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Institute of Scientific and Technical Information of China (English)
Yu Yi-Qing; Xin Yu; Ning Zhao-Yuan
2011-01-01
This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements.Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay.taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Fe XVII Emission from Hot, Collisional Plasmas
Energy Technology Data Exchange (ETDEWEB)
Beiersdorfer, P; Bitter, M; von Goeler, S; Hill, K W
2004-12-03
The ratios of the Fe XVII 3s {yields} 2p transitions to that of the dominant 3d {yields} 2p transition measured in high-temperature tokamak plasmas are compared to solar and astrophysical observations. Good agreement is found, indicating that the collisional line formation processes active in opacity-free, low-density, high-temperature laboratory plasmas are a good description of those found in astrophysical plasmas.
Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.
Sherrill, M E; Mancini, R C; Bailey, J; Filuk, A; Clark, B; Lake, P; Abdallah, J
2007-11-01
Plasma plumes produced by laser ablation are an established method for manufacturing the high quality stoichiometrically complex thin films used for a variety of optical, photoelectric, and superconducting applications. The state and reproducibility of the plasma close to the surface of the irradiated target plays a critical role in producing high quality thin films. Unfortunately, this dense plasma has historically eluded quantifiable characterization. The difficulty in modeling the plume formation arises in the accounting for the small amount of energy deposited into the target when physical properties of these exotic target materials are not known. In this work we obtain the high density state of the plasma plume through the use of an experimental spectroscopic technique and a custom spectroscopic model. In addition to obtaining detailed temperature and density profiles, issues regarding line broadening and opacity for spectroscopic characterization will be addressed for this unique environment.
Advanced Multifluid and Collisional-Radiative Models for Laser-Plasma Interaction (Briefing Charts)
2014-12-01
direct control of computational cost in particle methods • Future Work: Test merge in non - Maxwellian laser plasma test case Control Merge & Split...shocks Current focus: Develop advanced multiscale algorithms for plasma M&S in highly non ‐equilibrium condition and with collisional‐radiative kinetics...Radiative (CR) model • Non -equilibrium modeling of the atomic state distribution function (ASDF) – Detailed state-to-state model of atomic
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2016-11-29
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...Briefing Charts 3. DATES COVERED (From - To) 02 November 2016 – 30 November 2016 4. TITLE AND SUBTITLE A Hybrid Model for Multiscale Laser Plasma...Briefing Charts 15. SUBJECT TERMS N/ A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE
Physics of Collisional Plasmas Introduction to High-Frequency Discharges
Moisan, Michel
2012-01-01
The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...
Energy Technology Data Exchange (ETDEWEB)
May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C
2008-02-20
M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the Omega laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be {approx} 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.
Energy Technology Data Exchange (ETDEWEB)
May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C
2008-07-02
M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.
Complexity Reduction of Collisional-Radiative Kinetics for Atomic Plasma
2013-12-23
tioned (e.g., for non - Maxwellian kinetics), one must be able to correctly apportion the changes in energy, e.g., to Ee and Eh (for heavy particles) and (b...or disclose the work. 14. ABSTRACT Thermal non -equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional...prohibitively large, making multidimensional and unsteady simulations of non -equilibrium radiating plasma particularly challenging. In this paper, we
Surface waves in the magnetized, collisional dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)
2013-10-15
The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.
Continuum Kinetic Model for Simulating Low-Collisionality Regimes in Plasmas
2013-06-01
properties for non -linear plasma phenomena require further investigation. VII. CONCLUSIONS A fourth order accurate algorithm in space and time has been...theory, each particle species is treated as a distribution function evolving in position-velocity phase space . For a collisionless plasma , the evolution... Maxwellian distribution in velocity space with a small position-dependent perturbation: f(x, v)|t=0 = 1√ 2π exp ( −v 2 2 ) (1 + a cos(kx)) , (16) with
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Longitudinal dielectric permettivity of quantum Maxwell collisional plasmas
Latyshev, A. V.; Yushkanov, A. A.
2010-01-01
The kinetic equation of Wigner -- Vlasov -- Boltzmann with collision integral in relaxation BGK (Bhatnagar, Gross and Krook) form in coordinate space for quantum non--degenerate (Maxwellian) collisional plasma is used. Exact expression (within the limits of considered model) is found. The analysis of longitudinal dielectric permeability is done. It is shown that in the limit when Planck's constant tends to zero of expression for dielectric permettivity transforms into the classical case of di...
Theory of sheath in a collisional multi-component plasma
Indian Academy of Sciences (India)
M K Mahanta; K S Goswami
2001-04-01
The aim of this brief report is to study the behaviour of sheath structure in a multicomponent plasma with dust-neutral collisions. The plasma consists of electrons, ions, micron size negatively charged dust particles and neutrals. The sheath-edge potential and sheath width are calculated for collisionally dominated sheath. Comparison of collisionless and collisionally dominated sheath are made.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Evdokimov, K. E.; Konishchev, M. E.; Pichugin, V. F.; Pustovalova, A. A.; Ivanova, N. M.; Sun', Ch.
2017-09-01
A method for determining the electron temperature and electron density in a plasma is proposed that is based on minimization of the difference between the experimental relative intensities of the spectral argon (Ar) lines and those same intensities calculated with the aid of the collisional-radiative model. The model describes the kinetics of the ground state and 40 excited states of the Ar atom and takes into account the following processes: excitation and deactivation of the states of the atom by electron impact, radiative decay of the excited states, self-absorption of radiation, ionization of excited states by electron impact, and quenching of metastable states as a consequence of collisions with the chamber walls. Using the given method, we have investigated the plasma of a magnetron discharge on a laboratory setup for intermediate-frequency magnetron sputtering for a few selected operating regimes.
Longitudinal dielectric permettivity of quantum Maxwell collisional plasmas
Latyshev, A V
2010-01-01
The kinetic equation of Wigner -- Vlasov -- Boltzmann with collision integral in relaxation BGK (Bhatnagar, Gross and Krook) form in coordinate space for quantum non--degenerate (Maxwellian) collisional plasma is used. Exact expression (within the limits of considered model) is found. The analysis of longitudinal dielectric permeability is done. It is shown that in the limit when Planck's constant tends to zero of expression for dielectric permettivity transforms into the classical case of dielectric permettivity. At small values of wave number it has been received the solution of the dispersion equation. Damping of plasma oscillations has been analized. The analytical comparison with the dielectric Mermin' function received with the use of the kinetic equation in momentum space is done. Graphic comparison of the real and imaginary parts of dielectric permettivity of quantum and classical plasma is done also.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Gangwar, Reetesh K.; Dipti; Srivastava, Rajesh; Stafford, Luc
2016-06-01
A collisional-radiative (C-R) model for krypton plasma using fully relativistic distorted-wave cross sections for electron excitations was developed. The model was applied to the characterization of inductively coupled Kr plasma with cylindrical geometry over the pressure regime 1-50 mTorr. Radially averaged emission intensities from transitions of Kr (4p55p → 4p55s) in the range 500-900 nm were recorded at 17 cm from the planar RF-driven coil, with the plasma operated in the inductive regime (H mode). The measured emission intensities were then fitted by varying the electron density, n e, and electron temperature, T e, in the C-R model. At both low and high pressures, variations of the electron density by over two orders of magnitude had only a minor role on the relative emission intensities. On the other hand, T e values deduced from the comparison between experiment and model decreased from 6.7 to 2.6 eV as pressure increased from 1 to 50 mTorr. These results are found to be in good agreement with the effective electron temperature determined from Langmuir probe measurements and the predictions of a model based on the particle balance equation of charged particles.
Renormalized dissipation in plasmas with finite collisionality
Energy Technology Data Exchange (ETDEWEB)
Parker, S.E. [Princeton Plasma Physics Lab., NJ (United States); Carati, D. [Universite Libre de Bruxelles (Belgium). Service de Physique Statistique
1995-05-01
A nonlinear truncation procedure for Fourier-Hermite expansion of Boltzmann-type plasma equations is presented which eliminates fine velocity scale, taking into account its effect on coarser scales. The truncated system is then transformed back to (x, v) space which results in a renormalized Boltzmann equation. The resulting equation may allow for coarser velocity space resolution in kinetic simulations while reducing to the original Boltzmann equation when fine velocity scales are resolved. To illustrate the procedure, renormalized equations are derived for one dimensional electrostatic plasmas in which collisions are modeled by the Lenard-Bernstein operator.
Langmuir probe in collisionless and collisional plasma including dusty plasma
Bose, Sayak; Kaur, Manjit; Chattopadhyay, P. K.; Ghosh, J.; Saxena, Y. C.; Pal, R.
2017-04-01
Measurements of local plasma parameters in dusty plasma are crucial for understanding the physics issues related to such systems. The Langmuir probe, a small electrode immersed in the plasma, provides such measurements. However, designing of a Langmuir probe system in a dusty plasma environment demands special consideration. First, the probe has to be miniaturized enough so that its perturbation on the ambient dust structure is minimal. At the same time, the probe dimensions must be such that a well-defined theory exists for interpretation of its characteristics. The associated instrumentation must also support the measurement of current collected by the probe with high signal to noise ratio. The most important consideration, of course, comes from the fact that the probes are prone to dust contamination, as the dust particles tend to stick to the probe surface and alter the current collecting area in unpredictable ways. This article describes the design and operation of a Langmuir probe system that resolves these challenging issues in dusty plasma. In doing so, first, different theories that are used to interpret the probe characteristics in collisionless as well as in collisional regimes are discussed, with special emphasis on application. The critical issues associated with the current-voltage characteristics of Langmuir probe obtained in different operating regimes are discussed. Then, an algorithm for processing these characteristics efficiently in presence of ion-neutral collisions in the probe sheath is presented.
Modeling of collisional excited x-ray lasers using short pulse laser pumping
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira; Moribayashi, Kengo; Utsumi, Takayuki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment
1998-03-01
A simple atomic kinetics model of electron collisional excited x-ray lasers has been developed. The model consists of a collisional radiative model using the average ion model (AIM) and a detailed term accounting (DTA) model of Ni-like Ta. An estimate of plasma condition to produce gain in Ni-like Ta ({lambda}=44A) is given. Use of the plasma confined in a cylinder is proposed to preform a uniform high density plasma from 1-D hydrodynamics calculations. (author)
Numerical study of drift-kinetic evolution of collisional plasmas in tori
Energy Technology Data Exchange (ETDEWEB)
Beasley, Jr., C. O.; Meier, H. K.; van Rij, W. I.; McCune, J. E.
1976-03-01
Preliminary numerical results for the dynamics of toroidally confined plasmas in the drift-kinetic, Fokker--Planck description are discussed. These solutions were obtained by using the techniques inherent to the collisional plasma model (CPM) described in detail elsewhere. An initial value problem is solved in the local approximation in which collisions and particle dynamics compete in a given magnetic field to set up a quasi-equilibrium. Both the plasma (guiding center) distribution function and many macroscopic quantities of interest are monitored. Good agreement with corresponding but more approximate theories is obtained over a wide range of collisionality, particularly with regard to the neoclassical particle flux. Encouraging confirmation of earlier results for the distribution function is achieved when due account is taken of the differing collisionality of particles with differing energies. These initial results indicate the potential importance of certain non-local effects as well as inclusion of self-consistency between fields and plasma currents and densities.
Latyshev, A. V.; Yushkanov, A. A.
2013-01-01
The formula for dielectric function of non-degenerate and maxwellian collisional plasmas is transformed to the form, convenient for research. Graphic comparison of longitudinal dielectric functions of quantum and classical non-degenerate collisional plasmas is made.
Latyshev, A V
2013-01-01
The formula for dielectric function of non-degenerate and maxwellian collisional plasmas is transformed to the form, convenient for research. Graphic comparison of longitudinal dielectric functions of quantum and classical non-degenerate collisional plasmas is made.
Collisionality dependent transport in TCV SOL plasmas
DEFF Research Database (Denmark)
Garcia, Odd Erik; Pitts, R.A.; Horacek, J.
2007-01-01
Results are presented from probe measurements in the low field side scrape-off layer (SOL) region of TCV during plasma current scan experiments. It is shown that with decreasing plasma current the radial particle density profile becomes broader and the fluctuation levels and turbulence driven...... radial particle flux increase. In the far SOL the fluctuations exhibit a high degree of statistical similarity and the particle density and flux at the wall radius scale inversely with the plasma current. Together with previous TCV density scan experiments, this indicates that plasma fluctuations...
Kinetic simulation study of one dimensional collisional bounded plasma
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A self-consistent kinetic simulation study ofone dimensional collisional bounded plasma is presented.The formation of stable sheath potential is investigated.It is found that mass ratio of electron and ion not onlyaffects the level of sheath potential, but also affectsthe ion temperature of system. It is clarified that the effects of secondaryemission electron on both the total potential dropand the temperature are not important.
Construction of Larger Area Density-Uniform Plasma with Collisional Inductively Coupled Plasma Cells
Institute of Scientific and Technical Information of China (English)
OUYANG Liang; LIU Wandong; BAI Xiaoyan; CHEN Zhipeng; WANG Huihui; LI LUO Chen; JI Liangliang; HU Bei
2007-01-01
The plasma density and electron temperature of a multi-source plasma system composed of several collisional inductively coupled plasma (ICP) cells were measured by a double-probe. The discharges of the ICP cells were shown to be independent of each other. Furthermore, the total plasma density at simultaneous multi-cell discharge was observed to be approximately equal to the summation of the plasma density when the cells discharge separately. Based on the linear summation phenomenon, it was shown that a larger area plasma with a uniform density and temperature profile could be constructed with multi-collisional ICP cells.
Collisional current drive in two interpenetrating plasma jets
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2011-10-15
The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.
The acoustic instabilities in magnetized collisional dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Pandey, B. P., E-mail: birendra.pandey@mq.edu.au [Department of Physics and Astrophysics, Macquarie University, Sydney, NSW 2109 (Australia); Vladimirov, S. V., E-mail: s.vladimirov@physics.usyd.edu.au [Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Dwivedi, C. B., E-mail: jagatpurdwivedi@gmail.com [Ved–Vijnanam Pravartanam Samitihi, Pratapgarh (Awadh), Jagatpur, Bharat (India)
2014-09-15
The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.
Collisional Sheath in the Electronegative Radio-Frequency Plasma
Institute of Scientific and Technical Information of China (English)
GAN Baoxia; DENG Wenjuan; CHEN Yinhua
2007-01-01
A model of collisional RF sheath with negative ions is discussed in this paper.The influences of collision and negative ions on the parameters of the sheath are studied through numerical simulation.It is found that when the collision coefficient increases and the RF power is fixed,the electrode potential and sheath electric field potential increase,the electrode current and thickness of the sheath decrease.When the negative ion content changes,the same phenomenon occurs.
Moser, A L
2014-01-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex ...
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Taheri Boroujeni, S.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)
2013-12-15
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
Colloidal Plasmas : Dynamo transformation of the collisional R-T in a weakly ionized plasma
Indian Academy of Sciences (India)
C B Dwivedi
2000-11-01
Theoretical prediction of a new kind of normal mode behaviour of electro-mechanical nature was ﬁrst time reported by Dwivedi and Das in 1992 in the context of mesospheric modeling of observed neutral induced turbulence. Local dynamo action (due to relative neutral ﬂow) governs the basic physical principle for linear excitation of the neutral induced low frequency instability (NILF) in mesospheric plasma, which comprises of weakly ionized inhomogeneous gas conﬁned by the external gravity and ambient magnetic ﬁeld. The present contribution offers physical explanation in terms of dynamo transformation of neutral drag effect as a source to understand complete suppression of the usual collisional R-T and in turn linear driving of the NILF. It is therefore emphasized, worth calling it as the dynamo instability.
Formation and evolution of vortices in a collisional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Jana, Sayanee [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, Debabrata, E-mail: debu@ustc.edu.cn [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India)
2016-07-29
Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge–Kutta–Gill time integrator. - Highlights: • A numerical study of vortex evolution in strongly coupled dusty plasma is presented. • Dust-neutral drag is first time considered with the Generalized Hydrodynamic model (GH). • Dust-neutral drag force balances the nonlinear effect of elastic stress. • Localized non-propagating monopole structure is generated for some duration. • Dipole vortices are produced after interaction between two monopole vortices.
Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.
2015-11-01
Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.
Expansion of Collisional Radiative Model for Helium line ratio spectroscopy
Cinquegrani, David; Cooper, Chris; Forest, Cary; Milhone, Jason; Munoz-Borges, Jorge; Schmitz, Oliver; Unterberg, Ezekial
2015-11-01
Helium line ratio spectroscopy is a powerful technique of active plasma edge spectroscopy. It enables reconstruction of plasma edge parameters like electron density and temperature by use of suitable Collisional Radiative Models (CRM). An established approach is successful at moderate plasma densities (~1018m-3 range) and temperature (30-300eV), taking recombination and charge exchange to be negligible. The goal of this work is to experimentally explore limitations of this approach to CRM. For basic validation the Madison Plasma Dynamo eXperiment (MPDX) will be used. MPDX offers a very uniform plasma and spherical symmetry at low temperature (5-20 eV) and low density (1016 -1017m-3) . Initial data from MPDX shows a deviation in CRM results when compared to Langmuir probe data. This discrepancy points to the importance of recombination effects. The validated model is applied to first time measurement of electron density and temperature in front of an ICRH antenna at the TEXTOR tokamak. These measurements are important to understand RF coupling and PMI physics at the antenna limiters. Work supported in part by start up funds of the Department of Engineering Physics at the UW - Madison, USA and NSF CAREER award PHY-1455210.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes
Directory of Open Access Journals (Sweden)
Alexander V. Demura
2015-05-01
Full Text Available The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW. Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections.
Collisional transport across the magnetic field in drift-fluid models
DEFF Research Database (Denmark)
Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry;
2016-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...... located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport....
Colloidal Plasmas : Electrostatic sheath at the boundary of a collisional dusty plasma
Indian Academy of Sciences (India)
S K Baishya; G C Das; Joyanti Chutia
2000-11-01
Considering the Boltzmann response of the ions and electrons in plasma dynamics and inertial dynamics of the dust charged grains in a highly collisional dusty plasma, the nature of the electrostatic potential near a boundary is investigated. Based on the ﬂuid approximation, the formation as well as the characteristic behaviours of the sheath is studied. It is expected that the presence of dust charged grains will lead to a very different behaviour of the sheath as compared to that of electron-ion plasma. Moreover, the collisions of the dust charged grains with the neutrals are expected to exhibit novel features.
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
ultracold neutral plasmas, which are formed by photoionizing laser cooled atoms. These are the coldest neutral plasmas every created, and they allow...and received the “Editors’ Suggestion” distinction. We also completed numerical modeling of laser cooling a neutral plasma and construction of the...We also had to install several laser systems for driving the laser - cooling transitions in the ions and for repumping atoms out of dark states
Stults, Joshua
This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent
Institute of Scientific and Technical Information of China (English)
刘秋艳; 李弘; 陈志鹏; 谢锦林; 刘万东
2011-01-01
Continuous emission spectrum measurement is applied for the inconvenient diagnos- tics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron tem- perature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method.
Liang, G Y; Wang, F L; Wu, Y; Zhong, J Y; Zhao, G
2014-01-01
Several laboratory facilities were used to benchmark theoretical spectral models those extensively used by astronomical communities. However there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and investigate the effects from non-thermal electrons, contribution from metastable level-population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e. Comet, Cygnus X-3) are presented. Time evolution of charge stage and level population are also explored for collisional and photoionized plasmas.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Latyshev, A V
2013-01-01
The kinetic description of magnetic susceptibility and Landau diamagnetism of quantum collisional plasmas with any degeration of electronic gas is given. The correct expression of electric conductivity of quantum collisional plasmas with any degeration of electronic gas (see A. V. Latyshev and A. A. Yushkanov, Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. - Theor. and Math. Phys., V. 175(1):559-569 (2013)) is used.
Collisional effects in the ion Weibel instability for two counter-propagating plasma streams
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Fiuza, F.; Huntington, C. M.; Ross, J. S.; Park, H.-S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2014-03-15
Experiments directed towards the study of the collisionless interaction between two counter-streaming plasma flows generated by high-power lasers are designed in such a way as to make collisions between the ions of the two flows negligibly rare. This is reached by making flow velocities v as high as possible and thereby exploiting the 1/v{sup 4} dependence of the Rutherford cross-section. At the same time, the plasma temperature of each flow may be relatively low so that collisional mean-free paths for the intra-stream particle collisions may be much smaller than the characteristic spatial scale of the unstable modes required for the shock formation. The corresponding effects are studied in this paper for the case of the ion Weibel (filamentation) instability. Dispersion relations for the case of strong intra-stream collisions are derived. It is shown that the growth-rates become significantly smaller than those stemming from a collisionless model. The underlying physics is mostly related to the increase of the electron stabilizing term. Additional effects are an increased “stiffness” of the collisional ion gas and the ion viscous dissipation. A parameter domain where collisions are important is identified.
Collisional effects on the current-filamentation instability in a dense plasma
Institute of Scientific and Technical Information of China (English)
HAO Biao; SHENG Zheng-Ming; ZHANG Jie
2009-01-01
The collisional current-filamentation instability (CFI) is studied for a nonrelativistic electron beampenetrating an infinite uniform plasma.It is analytically shown that the CFI is driven by the drift-anisotropyrather than the classical anisotropy of the beam and the background plasma.Therefore,collisional effects can either attenuate or enhance the CFI depending on the drift-anisotropy of the beam-plasma system.Numerical results are given for some typical parameters,which show that collisional effects cannot stabilize but enhance the CFI in a dense plasma.Thus,the CFI may play a dominant role in the fast electron transport and deposition relevant to the fast ignition scenario(FIS).
Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere
Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan
2014-06-01
The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.
Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas
Squire, J.; Schekochihin, A. A.; Quataert, E.
2017-05-01
This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.
Dielectric function of a collisional plasma for arbitrary ionic charge
Nersisyan, H B; Andreev, N E; Matevosyan, H H
2013-01-01
Simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge, that is valid for the long-wavelength, high-frequency perturbations is derived using approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions into dielectric function is treated phenomenologically introducing some parameter $\\varkappa $ which is chosen in such a way to get well-known expression for stationary electric conductivity in low-frequency region and fulfill requirement of vanishing contribution of electron-electron collisions at high frequency region. This procedure ensures the applicability of our model in the wide ranges of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike interpolation formula proposed earlier by Brantov \\emph{...
Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption
Wani, Manzoor Ahmad; Kant, Niti
2016-09-01
This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II
Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma
Energy Technology Data Exchange (ETDEWEB)
Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in
2008-10-15
The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.
Fluid Simulation of the Ion Temperature Effects on a Collisional Magnetized Sheath of a Dusty Plasma
Directory of Open Access Journals (Sweden)
I Driouch
2013-01-01
Full Text Available The properties of magnetized dusty plasma sheath with finite ion temperature are studied using a fluid model. Hot electrons, fluid ions, neutral particles and cold fluid dust grains are taken into account in this system. Considering the cross section for collisions between the dust and neutrals has a power law dependence on the dust flow velocity, the fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures. A significant change is observed in the quantities characterizing the sheath with respect to the cold ion assumption. In addition, the result reveals that the effect of ion temperature is more obvious on the dust dynamics in collisional sheath with constant cross section.
Collisional transport across the magnetic field in drift-fluid models
Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul
2015-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum and pressures in drift-fluid turbulence models and thereby obviate the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model...
The Stability of Weakly Collisional Plasmas with Thermal and Composition Gradients
Pessah, Martin E; 10.1088/0004-637X/764/1/13
2013-01-01
Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly-collisional, magnetized plasmas which are stratified in temperature. These studies have improved our understanding of the physics governing the intra-cluster medium (ICM), but assumed that ICM is a homogeneous. This, however, might not be a good approximation if heavy elements sediment in the inner region of the galaxy cluster. In this paper, we analyze the stability of a weakly-collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly-collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that, depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject ...
Collisional Energy Loss of a Heavy Quark in an Anisotropic Quark-Gluon Plasma
Romatschke, P; Romatschke, Paul; Strickland, Michael
2004-01-01
We compute the leading-order collisional energy loss of a heavy quark propagating through a quark-gluon plasma in which the quark and gluon distributions are anisotropic in momentum space. Following the calculation outlined for QED in an earlier work we indicate the differences encountered in QCD and their effect on the collisional energy loss results. For a 20 GeV bottom quark we show that momentum space anisotropies can result in the collisional heavy quark energy loss varying with the angle of propagation by up to 50%. For low velocity quarks we show that anisotropies result in energy gain instead of energy loss with the energy gain focused in such a way as to accelerate particles along the anisotropy direction thereby reducing the momentum-space anisotropy. The origin of this negative energy loss is explicitly identified as being related to the presence of plasma instabilities in the system.
Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations
Hellinger, Petr
2014-01-01
Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the ...
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Taheri Boroujeni, S. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Collisional transport across the magnetic field in drift-fluid models
DEFF Research Database (Denmark)
Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry
2016-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Latyshev, A V
2015-01-01
From kinetic Vlasov equation for collisional plasmas distribution function is received in square-law approximation on size of electromagnetic field. The formula for calculation electric current is deduced at any temperature (any degree of degeneration electronic gas). This formula contains one-dimension quadrature. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current is perpendicular to the known transversal classical current, received at the linear analysis. When frequency of collisions tends to zero, all received results for collisional plasma pass in known corresponding formulas for collisionless plasma. The case of small values of wave number is considered. It is shown, that the received quantity of longitudinal current at tendency of frequency of collisions to zero also passes in known corresponding expression of current for collisionless plasmas. Graphic comparison of dimensionless size of current is spen...
Sugama, H.; Nunami, M.; Nakata, M.; Watanabe, T.-H.
2017-02-01
A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation.
SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.
Urdampilleta, I.; Kaastra, J. S.
2017-03-01
Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).
Collisional broadening of angular correlations in a multiphase transport model
Edmonds, Terrence; Wang, Fuqiang
2016-01-01
Systematic comparisons of jetlike correlation data to radiative and collisional energy loss model calculations are essential to extract transport properties of the quark-gluon medium created in relativistic heavy ion collisions. This paper presents a transport study of collisional broadening of jetlike correlations, by following parton-parton collision history in a multiphase transport (AMPT) model. The correlation shape is studied as a function of the number of parton-parton collisions suffered by a high transverse momentum probe parton ($N_{\\rm coll}$) and the azimuth of the probe relative to the reaction plane ($\\phi_{\\rm fin.}^{\\rm probe}$). Correlation is found to broaden with increasing $N_{\\rm coll}$ and $\\phi_{\\rm fin.}^{\\rm probe}$ from in- to out-of-plane direction. This study provides a transport model benchmark for future jet-medium interaction studies.
Collisional effects on the oblique instability in relativistic beam-plasma interactions
Hao, B.; Ding, W. J.; Sheng, Z. M.; Ren, C.; Kong, X.; Mu, J.; Zhang, J.
2012-07-01
The general oblique instability for a relativistic electron beam propagating through a warm and resistive plasma is investigated fully kinetically by a variable rotation method. Analysis shows that the electrostatic part of the oblique instability is attenuated and eventually stabilized by collisional effects. However, the electromagnetic part of the oblique instability (EMOI) is enhanced. Since the current-filamentation instability as a special case of the EMOI has a larger growth rate, it becomes dominant in the collisional case as shown in our two-dimensional particle-in-cell simulations. While the beam diverges in the collisionless case, it can become magnetically collimated in the collisional case due to stabilization of the electrostatic instabilities when the initial beam spreading angle is less than certain magnitude such as a dozen degrees.
Collisional-Radiative Modeling of Tungsten at Temperatures of 1200–2400 eV
Directory of Open Access Journals (Sweden)
James Colgan
2015-04-01
Full Text Available We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.
Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma
Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L
2013-01-01
In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...
Frassinetti, L.; Beurskens, M. N. A.; Saarelma, S.; Boom, J. E.; Delabie, E.; Flanagan, J.; Kempenaars, M.; Giroud, C.; Lomas, P.; Meneses, L.; Maggi, C. S.; Menmuir, S.; Nunes, I.; Rimini, F.; Stefanikova, E.; Urano, H.; Verdoolaege, G.; Contributors, JET
2017-01-01
A dimensionless collisionality scan in low-triangularity plasmas in the Joint European Torus with the ITER-like wall (JET-ILW) has been performed. The increase of the normalized energy confinement (defined as the ratio between thermal energy confinement and Bohm confinement time) with decreasing collisionality is observed. Moreover, at low collisionality, a confinement factor H98, comparable to JET-C, is achieved. At high collisionality, the low normalized confinement is related to a degraded pedestal stability and a reduction in the density-profile peaking. The increase of normalized energy confinement is due to both an increase in the pedestal and in the core regions. The improvement in the pedestal is related to the increase of the stability. The improvement in the core is driven by (i) the core temperature increase via the temperature-profile stiffness and by (ii) the density-peaking increase driven by the low collisionality. Pedestal stability analysis performed with the ELITE (edge-localized instabilities in tokamak equilibria) code has a reasonable qualitative agreement with the experimental results. An improvement of the pedestal stability with decreasing collisionality is observed. The improvement is ascribed to the reduction of the pedestal width, the increase of the bootstrap current and the reduction of the relative shift between the positions of the pedestal density and pedestal temperature. The EPED1 model predictions for the pedestal pressure height are qualitatively well correlated with the experimental results. Quantitatively, EPED1 overestimates the experimental pressure by 15-35%. In terms of the pedestal width, a correct agreement (within 10-15%) between the EPED1 and the experimental width is found at low collisionality. The experimental pedestal width increases with collisionality. Nonetheless, an extrapolation to low-collisionality values suggests that the width predictions from the KBM constraint are reasonable for ITER.
Hedin, G.; Brzozowski, J. H.; Hörling, P.; Mazur, S.; Nordlund, P.; Drake, J. R.
1996-05-01
The effects of plasma collisionality on power balance and magnetic fluctuations have been studied on the Extrap T1 reversed-field pinch. A characteristic minimum in loop voltage is observed as the plasma collisionality decreases. The minimum is caused by an increase in the anomalous input power and coincides with a change of scaling of the magnetic fluctuations and a rapid increase of the electron mean free path. However, the increase of anomalous input power in the low collisional regime appears to have little influence on the total amount of energy stored in the plasma.
Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone
Energy Technology Data Exchange (ETDEWEB)
Chang, C.S. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences]|[Korea Advanced Inst. of Science and Technology, Seoul (Korea, Republic of); Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S. [Princeton Univ., NJ (United States). Plasma Physics Lab.
1994-08-01
An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.
The exact form of the Bohm criterion for a collisional plasma
Tsankov, Tsanko Vaskov
2016-01-01
A long-standing debate in the literature about the kinetic form of the Bohm criterion is resolved for plasmas with single positive ion species when transport is dominated by charge exchange collisions. The solution of the Boltzmann equation for the ions gives the exact form free of any divergence and contains an additional term that is not included in the classical result. This term includes collisional and geometric effects and leads to a noticeable correction. Further, the question is addressed whether the space charge argument at the bottom of the Bohm criterion can actually lead to a meaningful definition of the transition point between bulk and sheath. The analysis is supported by a numerical model and experiments, showing excellent agreement throughout. As a novelty in diagnostics, the theoretical results allow from the ion velocity distribution function (IVDF), measured at the wall, a reconstruction of the IVDF and the electric field at any point in the plasma. This property is used to reconstruct non-...
Collisional-radiative model for the visible spectrum of W{sup 26+} ions
Energy Technology Data Exchange (ETDEWEB)
Ding, Xiaobin, E-mail: dingxb@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jiaxin [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Koike, Fumihiro [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nakamura, Nobuyuki [Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Dong, Chenzhong [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)
2016-02-22
Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W{sup 26+} ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio is sensitive to the electron density were selected as potential candidates of plasma diagnostics. Their electron density dependence is theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.
Collisional-Radiative Model for the visible spectrum of $W^{26+}$ ions
Ding, Xiaobin; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A; Nakamura, Nobuyuki; Dong, Chenzhong
2015-01-01
Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W$^{26+}$ ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio are sensitive to the electron density were selected as potential candidate of plasma diagnostics. Their electron density dependence are theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.
Collisional transport in a plasma with steep gradients
Energy Technology Data Exchange (ETDEWEB)
Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-06-01
The validity is given to the newly proposed two {delta}f method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)
Anomalous collisional absorption of laser pulses in underdense plasma at low temperature
Kundu, M.
2015-04-01
In a previous paper [M. Kundu, Phys. Plasmas 21, 013302 (2014), 10.1063/1.4862038], fractional collisional absorption (α ) of laser light in underdense plasma was studied by using a classical scattering model of electron-ion collision frequency νei, where total velocity v =√{vth2+v02 } (with vth and v0 as the thermal and the ponderomotive velocity of an electron) dependent Coulomb logarithm lnΛ (v ) was shown to be responsible for the anomalous (unconventional) increase of νei and α (∝νei ) with the laser intensity I0 up to a maximum value about an intensity Ic in the low temperature (TeIc . One may object that the anomalous increase in νei and α were partly due to the artifact introduced in lnΛ through the maximum cutoff distance bmax∝v . In this work, we show similar anomalous increase in νei and α versus I0 (in the low temperature and underdense density regime) with more accurate quantum and classical kinetic models of νei without using lnΛ , but with a proper choice of the total velocity dependent inverse cutoff length kmax∝v2 (classical) or kmax∝v (quantum). For a given I0<5 ×1014Wcm -2 , νei versus Te also exhibits so far unnoticed identical anomalous increase as νei versus I0, even if the conventional kmax∝vth2 or kmax∝vth (without v0) is chosen. The total velocity dependent kmax in the kinetic models, as proposed here, is found to explain the anomalous increase of α with I0 measured in some earlier laser-plasma experiments.
Sheared velocity flows as a source of pressure anisotropy in low collisionality plasmas
Del Sarto, Daniele; Pegoraro, Francesco; Cerri, Silvio Sergio; Califano, Francesco; Tenerani, Anna
2015-04-01
Non-Maxwellian metaequilibrium states may exist in low-collisionality plasmas as evidenced by direct (particle distributions) and indirect (e.g., instabilities driven by pressure anisotropy) satellite and laboratory measurements. These are directly observed in the solar wind (e.g. [1]), in magnetospheric reconnection events [2], in magnetically confined plasmas [3] or in simulations of Vlasov turbulence [4]. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic. We discuss how the propagation of "magneto-elastic" waves can affect the pressure tensor anisotropization and the small scale formation that arise from the interplay between the gyrotropic terms due to the magnetic field and flow vorticity, and the non-gyropropic effect of the flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution. This anisotropization mechanism might provide a good candidate for the understanding of the observed correlation between the presence of a sheared velocity flow and the signature of pressure anisotropies which are not yet explained within the standard models based e.g. on the CGL paradigm (see also [5]). Examples of these signatures are provided by the threshold lowering of ion-Weibel instabilities in the geomagnetic tail, observed in concomitance to the presence of a velocity shear in the near-earth plasma profile [6], or by the relatively stronger anisotropization measured for core protons in the fast solar wind [4,7] or in "space simulation" laboratory plasma experiments [3]. 1] E. Marsch et al., Journ. Geophys. Res. 109, A04120 (2004); Yu. V. Khotyainstev at el., Phys. Rev. Lett. 106, 165001 (2011). [2] N. Aunai et al., Ann. Geophys. 29, 1571 (2011); N. Aunai et al., Journ. Geophys. Res. 116, A09232 (2011). [3] E.E. Scime et al., Phys. Plasmas 7, 2157
Particle in cell calculation of plasma force on a small grain in a non-uniform collisional sheath
Hutchinson, I H
2013-01-01
The plasma force on grains of specified charge and height in a collisional plasma sheath are calculated using the multidimensional particle in cell code COPTIC. The background ion velocity distribution functions for the unperturbed sheath vary substantially with collisionality. The grain force is found to agree quite well with a combination of background electric field force plus ion drag force. However, the drag force must take account of the non-Maxwellian (and spatially varying) ion distribution function, and the collisional drag enhancement. It is shown how to translate the dimensionless results into practical equilibrium including other forces such as gravity.
Collisional processes of interest in MFE plasma research
Energy Technology Data Exchange (ETDEWEB)
Olson, R.E.
1990-05-24
Research on this grant is devoted to the calculation of heavy particle collision cross sections needed for diagnostic studies of magnetic fusion plasmas. This work requires the development and testing of new theoretical methods, with the implementation of benchmarked techniques to collisions pertinent to fusion reactors. Within the last context, we have provided charge-exchange-recombination cross sections to specific n,1-levels for diagnostic studies on TFTR and for a major compilation for IAEA. We have also completed a cross section study related to the planned neutral beam current drive for ITER. In addition, calculations were completed to assess the use of He neutral atom angular scattering measurements for JT-60. Also, new theoretical methods have been developed to more accurately calculate cross sections involving either He or H{sub 2} targets and partially stripped multiply-charged ions.
Energy Technology Data Exchange (ETDEWEB)
Borovsky, J.E.
1987-02-01
The propagation of ultralow-frequency (ulf) electromagnetic signals (Alfven and magnetosonic waves) in collisional, inhomogeneous, magnetized plasmas is analyzed by numerical simulation. The problem is formulated from a Maxwell-equation orbit-theory approach rather than from a magnetohydrodynamic point of view, and the problem is numerically treated in a fully time-dependent manner. Boundary-value-problem behavior is distinguished from initial-value-problem behavior. The propagation of two-dimensional small-amplitude electromagnetic disturbances in plasmas with spatially dependent densities and in plasmas with spatially dependent conductivities is numerically simulated, and when possible, the simulations are compared with theory. Changes in the plasma density lead to changes in the signal speed and to reflections; collisions lead to changes in the signal speed, to reflections, and to attenuations. Theoretical descriptions based upon discontinuities in the media are generally incorrect in predicting the amplitudes of signals reflected from plasma inhomogeneities. 19 refs., 16 figs.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, T., E-mail: t.yamamoto@ppl.appi.keio.ac.jp; Shibata, T.; Ohta, M.; Yasumoto, M.; Nishida, K.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland); Sawada, K. [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Fantz, U. [Max-Plank-Instutut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)
2014-02-15
To control the H{sup 0} atom production profile in the H{sup −} ion sources is one of the important issues for the efficient and uniform surface H{sup −} production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H{sup 0} atoms from H{sub 2} molecules in the model geometry of the radio-frequency (RF) H{sup −} ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H{sup 0} production and the Balmer H{sub α} photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H{sup −} ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established.
Moradi, Afshin
2016-04-01
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.
Collisional thermalization of hydrogen and helium in solar-wind plasma.
Maruca, B A; Bale, S D; Sorriso-Valvo, L; Kasper, J C; Stevens, M L
2013-12-13
In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0 AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1 AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0 AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.
The stability of weakly collisional plasmas with thermal and composition gradients
DEFF Research Database (Denmark)
Pessah, M.E.; Chakraborty, S.
2013-01-01
Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant...... approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both...... in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from...
Singh, Navpreet; Gupta, Naveen; Singh, Arvinder
2016-12-01
This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.
Collisional damping of helicon waves in a high density hydrogen linear plasma device
Caneses, Juan F.; Blackwell, Boyd D.
2016-10-01
In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}∼ 1–2 × 1019 m‑3, {{T}\\text{e}}∼ 1–6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50–200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4–8 G and {λz}∼ 10–15 cm) propagating away from the antenna region which become collisionally absorbed within 40–50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.
Rosenberg, M J; Li, C K; Fox, W; Zylstra, A B; Stoeckl, C; Séguin, F H; Frenje, J A; Petrasso, R D
2015-05-22
An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, β≲20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}∼20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.
Collisional modelling of the debris disc around HIP 17439
Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Eiroa, C.
2014-07-01
We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme, the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a previous study, we assumed that the size and radial distribution of the circumstellar dust are independent power laws. There, several scenarios capable of explaining the observations were suggested after exploring a very broad range of possible model parameters. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, which are the actual physical processes operating in debris discs. We find that all scenarios discussed in the first paper are physically reasonable and can reproduce the observed spectral energy distribution along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120 au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. Good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not confirmed - although not ruled out - by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of distinguishing between the competing scenarios by future observations are discussed.
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Jafari Milani, M. R., E-mail: mrj.milani@gmail.com [Plasma Physics Research School, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Farahbod, A. H. [Plasma Physics Research School, Tehran (Iran, Islamic Republic of)
2014-06-15
The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.
Modeling Collisional Cascades In Debris Disks: The Numerical Method
Gaspar, Andras; Ozel, Feryal; Rieke, George H; Cooney, Alan
2011-01-01
We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.
MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan, E-mail: agaspar@as.arizona.edu, E-mail: dpsaltis@as.arizona.edu, E-mail: fozel@as.arizona.edu, E-mail: grieke@as.arizona.edu, E-mail: acooney@physics.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)
2012-04-10
We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.
Energy Technology Data Exchange (ETDEWEB)
Tracy, M.D.
1993-01-08
Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach n{sub c}/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 {le} k{sub ia}{lambda}{sub ii} {le} {infinity}) and ZT{sub e}/T{sub i}, where k{sub ia} is the ion- acoustic wave number, {lambda}{sub ii} is the ion-ion mean free path, Z is the ionization state of the plasma, and T{sub e}, T{sub i} are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (k{sub ia}{lambda}{sub ei}, k{sub ia}{lambda}{sub ee} {ge} 1), and quasineutrality holds, ({alpha} {much_gt}1), where {alpha} = 1/k{lambda}{sub DE} and {lambda}{sub DE} is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.
Laser plasma physics in shock ignition – transition from collisional to collisionless absorption
Directory of Open Access Journals (Sweden)
Klimo O.
2013-11-01
Full Text Available Shock Ignition is considered as a relatively robust and efficient approach to inertial confinement fusion. A strong converging shock, which is used to ignite the fuel, is launched by a high power laser pulse with intensity in the range of 1015 − 1016 W/cm2 (at the wavelength of 351 nm. In the lower end of this intensity range the interaction is dominated by collisions while the parametric instabilities are playing a secondary role. This is manifested in a relatively weak reflectivity and efficient electron heating. The interaction is dominated by collective effects at the upper edge of the intensity range. The stimulated Brillouin and Raman scattering (SBS and SRS respectively take place in a less dense plasma and cavitation provides an efficient collisionless absorption mechanism. The transition from collisional to collisionless absorption in laser plasma interactions at higher intensities is studied here with the help of large scale one-dimensional Particle-in-Cell (PIC simulations. The relation between the collisional and collisionless processes is manifested in the energy spectrum of electrons transporting the absorbed laser energy and in the spectrum of the reflected laser light.
Nonlinear Transport Processes in Tokamak Plasmas. Part I: The Collisional Regimes
Sonnino, Giorgio
2008-01-01
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear (Onsager) transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for JET plasmas are also reported. We found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor, which may be of the order 100. The nonlinear classical coefficients exceed the neoclassical ones by a factor, which may be of order 2. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain...
The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma
Energy Technology Data Exchange (ETDEWEB)
Berger, R L; Valeo, E J
2004-07-15
The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub lh} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub lh} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.
The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma
Energy Technology Data Exchange (ETDEWEB)
R.L. Berger; E.J. Valeo
2004-08-18
The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.
Coupled dust drift acoustic shock and soliton in collisional four component magnetized dusty plasmas
Farooq, M.; Ahmad, Mushtaq; Jan, Qasim
2017-09-01
Low frequency electrostatic coupled dust drift dust acoustic waves are studied in an inhomogeneous, collisional four component dust magnetoplasma composed of dust components of opposite polarity, along with Boltzmannian ions and electrons. The nonlinear evolution equation in the form of an ordinary differential equation and its limiting cases are derived and solved using the Tanh-method. The numerical analysis of the obtained solutions is studied for both laboratory and cosmic plasma systems. It is observed that, depending on the values of the plasma parameters like ion and electron temperatures, and charge number, both rarefactive and compressive shock and solitary waves may exist. It is shown that the concepts of a critical ion and electron temperatures/density in the nonlinear equations treatment, and of a changeover from compressive to rarefactive shock and soliton characters, correspond to the formation of rarefactive regimes, at which the electric stresses maximize and density minimizes.
Collisional modelling of the debris disc around HIP 17439
Schüppler, Ch; Krivov, A V; Ertel, S; Marshall, J P; Eiroa, C
2014-01-01
We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narro...
3D multispecies collisional model of Ganymede's atmosphere
Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.
2016-10-01
Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G
2008-10-15
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
Collisional Grooming Models of the Kuiper Belt Dust Cloud
Kuchner, Marc J
2010-01-01
We modeled the 3-D structure of the Kuiper Belt dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of ~10^-4 primarily show an azimuthally-symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical Kuiper Belt. For models with lower optical depths (10^-6 and 10^-7), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's Kuiper Belt dust, and probably other aspects of the Solar System dust c...
Collisional modelling of the AU Microscopii debris disc
Schüppler, Ch; Krivov, A V; Ertel, S; Marshall, J P; Wolf, S; Wyatt, M C; Augereau, J -C; Metchev, S A
2015-01-01
The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observatio...
Institute of Scientific and Technical Information of China (English)
夏雄平; 易林
2012-01-01
Effect of higher order axial electron temperature on self-focusing of electromagnetic pulsed beam in collisional plasma is investigated.It is shown that higher order axial electron temperature T p4 is not trivial than T p0 and T p2,which can modify slightly radial redistribution of electron density and increases effective dielectric constant.As a result,on one hand,slightly reduce electromagnetic beam self-focusing in the course of oscillatory convergence,on the other hand,quicken beam divergence in the course of steady divergence,i.e.,higher order axial electron temperature T p4 can decrease the influence of collisional nonlinearity in collisional plasma.
Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field
Institute of Scientific and Technical Information of China (English)
邹秀; 刘惠平; 邱明辉; 孙骁航
2011-01-01
The sheath criterion for a collisional electronegative plasma sheath in an applied magnetic field is investigated.It is assumed that the system consists of hot electrons,hot negative ions and cold positive ions.The effect of an applied magnetic field on the sheath criterion is discussed.The results reveal that the magnetic field has effects on both the upper and lower limits,which cause the range of the ion Mach number to increase.In addition,the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.%The sheath criterion for a collisioned electronegative plasma sheath in an applied magnetic Geld is investigated. It is assumed that the system consists of hot electrons, hot negative ions and cold positive ions. The effect of an applied magnetic Reid on the sheath criterion is discussed. The results reveal that the magnetic field has effects on both the upper and lower limits, which cause the range of the ion Mach number to increase. In addition, the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.
Merritt, Elizabeth C; Hsu, Scott C; Adams, Colin S; Gilmore, Mark A
2013-01-01
We report spatially resolved experimental measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density $\\sim 10^{14}$ cm$^{-3}$, electron temperature $\\approx 1.4$ eV, ionization fraction near unity, and velocity $\\approx 40$ km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)]. The observed stagnation layer emission morphology is consistent with hydrodynamic oblique shock theory at early times, and then undergoes an evolution at later times that is coincident with the theoretically predicted transition to detached shock formation.
Collisional relaxation of a strongly magnetized two-species pure ion plasma
Energy Technology Data Exchange (ETDEWEB)
Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2014-04-15
The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two
Sonnino, Giorgio; Peeters, Philippe; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György
2015-01-01
In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.
Baalrud, S. D.; Hegna, C. C.; Callen, J. D.
2009-11-01
Ion-ion streaming instabilities are excited in the presheath region of plasmas with multiple ion species if the ions are much colder than the electrons. Streaming instabilities onset when the relative fluid flow between ion species exceeds a critical speed, δVc, of order the ion thermal speeds. Using a generalized Lenard-Balescu theory that accounts for instability-enhanced collective responses [1], one is able to show the instabilities rapidly enhance the collisional friction between ion species far beyond the contribution from Coulomb collisions alone. This strong frictional force determines the relative fluid speed between species. When this condition is combined with the Bohm criterion generalized for multiple ion species, the fluid speed of each ion species is determined at the sheath edge. For each species, this speed differs from the common ``system'' sound speed by a factor that depends on the species concentrations, masses and δVc.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).
Nonlinear wave structures in collisional plasma of auroral E-region ionosphere
Directory of Open Access Journals (Sweden)
A. V. Volosevich
Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Mass Hierarchy of Collisional Energy Loss
Kolevatov, Rodion
2008-01-01
Collisional parton energy loss is revisited within a simple model assuming incoherent elastic scattering of on-shell projectile partons on partonic constituents of the QGP with HTL screening. The thermal motion of plasma particles is carefully taken into account. Results on $dE/dx$ are found to be consistent with other authors. There is a significant discrepancy in the energy loss pattern for the cases with thermal motion on and off, which illustrates the importance of taking the kinematics into account exactly. The dependence on the mass of the partons forming the plasma is included in the calculations and its influence on the collisional energy loss is studied. The mass hierarchy of collisional energy loss is found to have a strong dependence on the mass introduced for plasma particles. Due to difference in the mass hierarchy with radiative energy loss, the collisional one when included increases the relative suppression of heavy quarks compared to light quarks.
Directory of Open Access Journals (Sweden)
Nersisyan Hrachya B.
2013-11-01
Full Text Available The low-velocity stopping power of ions in a magnetized collisional plasma is studied through the linear response theory. The collisions are taken into account through a number-conserving relaxation time approximation. One of the major objectives of this study is to compare and contrast our theoretical results with those obtained through a diffusion coefficient formulation based on Dufty-Berkovsky relation.
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
Energy Technology Data Exchange (ETDEWEB)
Venugopal, Chandu [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Kurian, M J [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Antony, S [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Anilkumar, C P [Indian Institute of Geomagnetism, Tirunelveli-627 011, Tamil Nadu (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram-695 581, Kerala (India)
2007-05-15
We have investigated the stability of the lower hybrid wave in a collisional plasma containing hydrogen and positively and negatively charged oxygen ions. The collisions of all the species in the plasma have been considered. The electrons, streaming parallel to the magnetic field, can excite the instability if their drift velocity exceeds the parallel phase velocity of the wave. This is true for both the weakly as well as the strongly collisional cases. If the ion collisions are neglected, the growth/damping rate depends on the electron collision frequency and is modified by a factor dependent directly on the number densities and square of the charges on the oxygen ions and inversely on the masses of these ions. Ion collisions, however only damp the wave; this damping being dependent also on the ion collision frequencies, in addition to the above dependencies. We find that the dispersion relation in the low collisional limit can account for lower hybrid waves in the observed frequency range.
2014-07-01
Magnetized plasmas are often modeled with MHD with a hierarchy of descriptions: Ideal, resistive, Hall MHD . – Generalized model : multi-fluid (Braginskii... modeling of the atomic state distribution function (ASDF) – Detailed state-to-state model of atomic transition, i.e., excitation and ionization...moment of the kinetic equations with fluid closure – 5-moment model yields Euler/NS systems: multi-species, multi- temperature CR models
Exponentially long Equilibration times in a 1-D Collisional Model of a classical gas
DEFF Research Database (Denmark)
Hjorth, Poul; Benettin, G.
1999-01-01
separation between the time scale for the vibration and the time scale associated with a typical binary collision in the gas. We consider here a simple 1-D model, and show how, when these time scales are well separated, the collisional dynamics is constrained by a many-particle adiabatic invariant....... The effect is that the collisional energy exchanges between the translational and the vibrational degrees of freedom are slowed down by an exponential factor (as Jeans conjectured). A metastable situation thus occurs, in which the fast vibrational degrees of freedom effectivly do not contribute...
Keenan, Brett D; Medvedev, Mikhail V
2015-01-01
High-amplitude, chaotic/turbulent electromagnetic fluctuations are ubiquitous in high-energy-density laboratory and astrophysical plasmas, where they can be excited by various kinetic-streaming and/or anisotropy-driven instabilities, such as the Weibel instability. These fields typically exist on "sub-Larmor scales" -- scales smaller than the electron Larmor radius. Electrons moving through such magnetic fields undergo small-angle stochastic deflections of their pitch-angles, thus establishing diffusive transport on long time-scales. We show that this behavior, under certain conditions, is equivalent to Coulomb collisions in collisional plasmas. The magnetic pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasicollisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified mag...
Jeans stability in collisional quantum dusty magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Jamil, M.; Asif, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mir, Zahid [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Faculty of Engineering and Technology, Superior University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
Collisional excitation and emission of H-alpha Stark multiplet in fusion plasmas
Marchuk, O.; Ralchenko, Y.; Janev, R. K.; Biel, W.; Delabie, E.; Urnov, A. M.
2010-01-01
We study the excitation of parabolic Stark states in hydrogen atoms by collisions with fast ions. It is shown that excitation cross sections are very sensitive to the angle between the electric field and the projectile velocity. The calculated collisional data are implemented in a newly developed co
AN ANALYTIC MODEL FOR TRANSIENT COLLISIONAL X-RAY LASERS
Institute of Scientific and Technical Information of China (English)
LI YING-JUN; ZHANG JIE; TENG Al-PING
2001-01-01
A set of similarity equations is derived to describe the hydrodynamics of transient X-ray lasers from slab plasmas generated by combined irradiation of nanosecond and picosecond laser pulses. By separating nanosecond and picosecond laser heating processes into different periods, analytical solutions are obtained for the similarity equations. The calculated results are in agreement with numerical simulations and experimental data.
Jian, Xiang; Chen, Jiale; Chan, Vincent S.; Zhuang, Ge; Li, Guoqiang; Deng, Zhao; Shi, Nan; Xu, Guoliang; Staebler, Gary M.; Guo, Wenfeng
2017-04-01
The optimization of a CFETR baseline scenario (Chan et al 2015 Nucl. Fusion 55 023017) with an electron cyclotron (EC) wave and neutral beam (NB) is performed using a multi-dimensional code suite. TGLF and NEO are used to calculate turbulent and neoclassical transport. The evaluation of sources and sinks, as well as the current evolution, are performed using ONETWO, and the equilibrium is updated using EFIT. The pedestal is consistent with the EPED model. Rotation shear is controlled using NB. It has been found that both fusion gain Q and NB power deposited in the edge increase with decreasing NB energy, with NB providing current drive, torque, energy and particle source simultaneously. By using an optimized combination of two NBs, Q can be kept at a high level while the NB edge power is reduced. Pedestal collisionality is controlled to find an optimization path for Q by trading off between the pedestal density and temperature with the pedestal pressure fixed. It has been found that Q increases with pedestal collisionality, while the density peaking factor (DPF) remains almost unchanged. The invariance of DPF can be explained by the change of the dominant type of turbulence from the core to the edge (i.e. trapped electron mode in the core and ion temperature gradient mode at the edge), and collisionality has the opposite effect on particle transport for these two modes. A weaker dependence of DPF on collisionality makes a higher density operation more favorable for fusion gain.
Modeling the Collisional-Plastic Stress Transition for Bin Discharge of Granular Material
Pannala, Sreekanth; Daw, C. Stuart; Finney, Charles E. A.; Benyahia, Sofiane; Syamlal, Madhava; O'Brien, Thomas J.
2009-06-01
We propose a heuristic model for the transition between collisional and frictional/plastic stresses in the flow of granular material. Our approach is based on a physically motivated, nonlinear `blending' function that produces a weighted average of the limiting stresses, depending on the local void fraction in the flow field. Previously published stress models are utilized to describe the behavior in the collisional (Lun et al., 1984) and quasi-static limits (Schaeffer, 1987 and Syamlal et al.., 1993). Sigmoidal and hyperbolic tangent functions are used to mimic the observed smooth yet rapid transition between the collisional and plastic stress zones. We implement our stress transition model in an open-source multiphase flow solver, MFIX (Multiphase Flow with Interphase eXchanges, www.mfix.org) and demonstrate its application to a standard bin discharge problem. The model's effectiveness is illustrated by comparing computational predictions to the experimentally derived Beverloo correlation. With the correct choice of function parameters, the model predicts bin discharge rates within the error margins of the Beverloo correlation and is more accurate than one of the alternative granular stress models proposed in the literature. Although a second granular stress model in the literature is also reasonably consistent with the Beverloo correlation, we propose that our alternative blending function is likely to be more adaptable to situations with more complex solids properties (e.g., `sticky' solids).
Modeling the Collisional-Plastic Stress Transition for Bin Discharge of Granular Material
Energy Technology Data Exchange (ETDEWEB)
Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Benyahia, S. [National Energy Technology Laboratory (NETL); Syamlal, M. [National Energy Technology Laboratory (NETL); O' Brien, T. J. [National Energy Technology Laboratory (NETL)
2009-01-01
We propose a heuristic model for the transition between collisional and frictional/plastic stresses in the flow of granular material. Our approach is based on a physically motivated, nonlinear blending function that produces a weighted average of the limiting stresses, depending on the local void fraction in the flow field. Previously published stress models are utilized to describe the behavior in the collisional (Lun et al., 1984) and quasi-static limits (Schaeffer, 1987 and Syamlal et al., 1993). Sigmoidal and hyperbolic tangent functions are used to mimic the observed smooth yet rapid transition between the collisional and plastic stress zones. We implement our stress transition model in an opensource multiphase flow solver, MFIX (Multiphase Flow with Interphase eXchanges, www.mfix.org) and demonstrate its application to a standard bin discharge problem. The model s effectiveness is illustrated by comparing computational predictions to the experimentally derived Beverloo correlation. With the correct choice of function parameters, the model predicts bin discharge rates within the error margins of the Beverloo correlation and is more accurate than one of the alternative granular stress models proposed in the literature. Although a second granular stress model in the literature is also reasonably consistent with the Beverloo correlation, we propose that our alternative blending function is likely to be more adaptable to situations with more complex solids properties (e.g., sticky solids).
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department, University of Birjand, Birjand 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of)
2015-07-15
The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.
Collisional features in a model of a planetary ring
Lawney, Brian; Jenkins, J.T; Burns, J.A.
2012-01-01
Images taken by the Cassini spacecraft display numerous “propellers”, telltale disturbances detected in Saturn’s outer A ring. In conventionally accepted models (Seiß, M., Spahn, F., Sremčević, M., Salo, H. [2005]. Geophys. Res. Lett. 32, L11205; Lewis, M., Stewart, G. [2009]. Icarus 199, 387–412),
DEFF Research Database (Denmark)
Wiesen, S.; Fundamenski, W.; Wischmeier, M.
2011-01-01
A revised formulation of the perpendicular diffusive transport model in 2D multi-fluid edge codes is proposed. Based on theoretical predictions and experimental observations a dependence on collisionality is introduced into the transport model of EDGE2D–EIRENE. The impact on time-dependent JET ga...
Energy Technology Data Exchange (ETDEWEB)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com [Department of Physics, National Institute of Technology Jalandhar (India); Singh, Navpreet, E-mail: navpreet.nit@gmail.com [Guru Nanak Dev University College, Kapurthala, Punjab (India)
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.
Collisional and Thermal Emission Models of Debris Disks: Towards Planetesimal Population Properties
Krivov, Alexander V; Löhne, Torsten; Mutschke, Harald
2008-01-01
Debris disks around main-sequence stars are believed to derive from planetesimal populations that have accreted at early epochs and survived possible planet formation processes. While debris disks must contain solids in a broad range of sizes - from big planetesimals down to tiny dust grains - debris disk observations are only sensitive to the dust end of the size distribution. Collisional models of debris disks are needed to "climb up" the ladder of the collisional cascade, from dust towards parent bodies, representing the main mass reservoir of the disks. We have used our collisional code to generate five disks around a sun-like star, assuming planetesimal belts at 3, 10, 30, 100, and 200 AU with 10 times the Edgeworth-Kuiper-belt mass density, and to evolve them for 10 Gyr. Along with an appropriate scaling rule, this effectively yields a three-parametric set of reference disks (initial mass, location of planetesimal belt, age). For all the disks, we have generated spectral energy distributions (SEDs), ass...
Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong
2016-10-01
We derive the electric permittivity ɛ and magnetic permeability μM of the quark-gluon plasma (QGP) with the kinetic theory associated with a Bhatnagar-Gross-Krook (BGK) collisional kernel. Based on them, we study the effect of collisions on the refractive index of QGP. Compared to the collisionless case, collisions change the ω -behavior of ɛ and μM dramatically, which is responsible for the fact that the real and imaginary parts of n2 and the Depine-Lakhtakia index nDL are smooth functions of ω . For a small collision rate ν , the Depine-Lakhtakia index nDL is negative in some frequency range. When the collision rate increases, the frequency range for nDLindex nDL is positive for all frequency regions, which indicates a normal refractive index. In contrast to the collisionless case, there exists some frequency range in which nDLnegative refractive index.
Wünderlich, D.; Wimmer, C.; Friedl, R.
2015-04-01
A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.
Energy Technology Data Exchange (ETDEWEB)
Wünderlich, D., E-mail: dirk.wuenderlich@ipp.mpg.de; Wimmer, C. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Friedl, R. [AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)
2015-04-08
A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.
A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas
Eremin, Denis; Mussenbrock, Thomas
2015-01-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $\\gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma ...
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Tinakiche, Nouara [Faculty of Sciences, Department of Physics, University of Boumeredes U.M.B.B., Boumerdes 35000 (Algeria)
2015-12-15
A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.
Long-Lived Vortex Structures in Collisional Pure and Gas-Discharge Nonneutral Electron Plasmas
Kervalishvili, N. A.
2013-01-01
The analysis of experimental investigations of equilibrium, interaction and dynamics of vortex structures in pure electron and gas-discharge electron nonneutral plasmas during the time much more than the electron-neutral collision time has been carried out. The problem of long confinement of the column of pure electron plasma in Penning-Malmberg trap is considered. The mechanism of stability of long-lived vortex structure in gas-discharge nonneutral electron plasma is investigated. The collap...
Impact of the Collisional Plasma on the Propagation of Millimeter Waves
Institute of Scientific and Technical Information of China (English)
袁忠才; 时家明; 汪家春; 许波
2004-01-01
The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.
MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Andras; Psaltis, Dimitrios; Rieke, George H.; Oezel, Feryal, E-mail: agaspar@as.arizona.edu, E-mail: dpsaltis@as.arizona.edu, E-mail: grieke@as.arizona.edu, E-mail: fozel@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)
2012-07-20
We explore the evolution of the mass distribution of dust in collision-dominated debris disks, using the collisional code introduced in our previous paper. We analyze the equilibrium distribution and its dependence on model parameters by evolving over 100 models to 10 Gyr. With our numerical models, we confirm that systems reach collisional equilibrium with a mass distribution that is steeper than the traditional solution by Dohnanyi. Our model yields a quasi-steady-state slope of n(m) {approx} m{sup -1.88} [n(a) {approx} a{sup -3.65}] as a robust solution for a wide range of possible model parameters. We also show that a simple power-law function can be an appropriate approximation for the mass distribution of particles in certain regimes. The steeper solution has observable effects in the submillimeter and millimeter wavelength regimes of the electromagnetic spectrum. We assemble data for nine debris disks that have been observed at these wavelengths and, using a simplified absorption efficiency model, show that the predicted slope of the particle-mass distribution generates spectral energy distributions that are in agreement with the observed ones.
Hydrodynamic Models for Multicomponent Plasmas with Collisional-Radiative Kinetics
2014-12-01
characteristics. Paper AIAA- 2011-61, January 2011. [18] J.-L. Cambier, T. Roth , C. Zeineh, and A. R. Karagozian. The pulse deto- nation rocket induced MHD...Cole, T. Roth , A. R. Karagozian, and J.-L. Cambier. Magnetohydrodynamic augmentation of pulse detonation rocket engines. Journal of Propulsion and...Glinsky, W. L. Kruer, S. C. Wilks, J. Wood- worth, E. M. Campbell, M. D. Perry, and R. J. Mason . Ignition and high gain with ultrapowerful lasers
Thermal-mechanical Numerical Models of Evolution For Different Precambrian Collisional Zones
Parphenuk, O.
Precambrian continental shields such as the Anabar, Baltic and Canadian, are the structurally stable areas for at least the last 1.6 Ga. Deeply eroded structures of the shields formed in the process of multistage tectonic evolution including horizontal shortening and collision by overthrusting expose at the surface middle to the lower crustal rocks uplifted along the faults from the depths 20-40 km. Thermal-mechanical model of horizontal shortening and continental crust formation in collisional zones is developed and applied to the modelling of thermal and dynamic evolution of different Archean and Proterozoic structures. The thermal structure of the lithosphere subjected to compression and shortening resulted in crustal thickening determines in large scale the further tectonic and thermal evolution of collisional zones. The lithospheric exten- sion in orogenic structures can be the possible reaction to the increase of vertical stress due to the uplift and crustal roots formation. But the number of examples exist of the areas which did not experience post-orogenic extension: the collisional structures of the Anabar Shield, the Kapuskasing structural zone of the Canadian Shield etc. The numerical modelling of the process of brittle overthrusting in the upper crust and the lower crustal viscous flow demonstrated the possibility of different structural forma- tions with thickened upper crust, uplift at the surface and progressively increasing erosion level of the rocks exumated from different depths. The thermal and rheolog- ical conditions are discussed for the formation and preservation of crustal roots. The topography of the uplift and crustal roots strongly depends on the number of param- eters, the most important of which are the viscosity values and contrast for the lower crust and lithospheric upper mantle, the initial dip angle of fault, the rate of shortening and erosion, the thermal regime of the region.
Generation of Electrojets in Weakly Ionized Plasmas through a Collisional Dynamo
Dimant, Yakov S; Fletcher, Alex C
2016-01-01
Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. This letter argues that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for electrojet formation, $\
Rosin, M S; Rincon, F; Cowley, S C
2010-01-01
Plasmas have a natural tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius with growth rates of a fraction of the ion cyclotron frequency - much faster than either the global dynamics or local turbulence. The instabilities can dramatically modify the macroscopic dynamics of the plasma. Nonlinear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta. This nonlinear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel firehose instability in a high-beta plasma. A closed nonlinear equation for the firehose turbulence is derived and solved. In the nonlinear regime, the instability leads to secular (~t) growth of magnetic fluctuations. The fluctuations develop a k^{-3} spectrum, extending from scales somewhat larger than r...
Energy Technology Data Exchange (ETDEWEB)
Song, Mi-Young; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-Dong, Gunsan-City, Jeollabuk-Do 573-540 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)
2015-03-15
The electron-neutral collision effects on the Compton scattering process are investigated in warm collisional plasmas. The Compton scattering cross section in warm collisional plasmas is obtained by the Salpeter structure factor with the fluctuation-dissipation theorem and the plasma dielectric function as a function of the electron-neutral collision frequency, Debye length, and wave number. It is shown that the influence of electron-neutral collision strongly suppresses the Compton scattering cross section in warm collisional plasmas. It is also found that the electron-neutral collision effect on the differential Compton scattering cross section is more significant in forward scattering directions. We show that the differential Compton scattering cross section has a maximum at the scattering angle φ=π/2. In addition, we find that the electron-neutral collision effect on the total Compton scattering cross section increases with increasing Debye length and wave number. The variation of the Compton scattering cross section due to the change of collision frequency and plasma parameters is also discussed.
Bryans, P; Gorczyca, T W; Laming, J M; Mitthumsiri, W; Savin, D W
2006-01-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. This translates directly into the reliability of the collisional ionization equilibrium (CIE) calculations. We make use of state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He up to and including Zn. We also make use of state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H through to Zn. Here we present improved CIE calculations for temperatures from $10^4$ to $10^9$ K using our data and the recommended electron impact ionization data of \\citet{Mazz98a} for elements up to and including Ni and Mazzotta (private communication) for Cu and Zn. DR and RR ...
Three-Dimensional Dust-Acoustic Waves in a Collisional Dusty Plasma with Opposite Polarity Particles
Institute of Scientific and Technical Information of China (English)
LIN Mai-Mai; DUAN Wen-Shan
2005-01-01
The dispersion relation is derived for three-dimensional dust-acoustic waves in a current-driven dusty plasmas with both positively and negatively charged dust particles. The dependencies of the frequency and the growth rate on the wave number K, the intensity of magnetic field B, and the inclination angle θ have been numerically shown in this paper. The growth rate is negative for the laboratory dusty plasma, but it is positive for the cosmic dusty plasma.It is found that when the inclination angle θ = π/2, there is no instability. The effect of the electrostatic field E0 has also been studied in this paper.
Long-Lived Vortex Structures in Collisional Pure and Gas-Discharge Nonneutral Electron Plasmas
Kervalishvili, N A
2013-01-01
The analysis of experimental investigations of equilibrium, interaction and dynamics of vortex structures in pure electron and gas-discharge electron nonneutral plasmas during the time much more than the electron-neutral collision time has been carried out. The problem of long confinement of the column of pure electron plasma in Penning-Malmberg trap is considered. The mechanism of stability of long-lived vortex structure in gas-discharge nonneutral electron plasma is investigated. The collapse of electron sheath in gas-discharge nonneutral electron plasma in Penning cell at high pressures of neutral gas is described. The interaction between the stable vortex structure and the annular electron sheath, and the action of vortex structures on the transport of electrons along and across the magnetic field are discussed.
On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions
Energy Technology Data Exchange (ETDEWEB)
Timofeev, A. V., E-mail: Timofeev-AV@nrcki.ru [Kurchatov Institute (Russian Federation)
2015-11-15
During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.
On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions
Timofeev, A. V.
2015-11-01
During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.
Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma
DEFF Research Database (Denmark)
Schröder, C.; Grulke, O.; Klinger, T.;
2004-01-01
In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...
Derouich, M; Barklem, P S
2015-01-01
Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for collisional broadening are usually more readily available. Recent work by Sahal-Br\\'echot and Bommier concluded that despite underlying similarities in the physics of collisional broadening and depolarization processes, relationships between them are not possible to derive purely analytically. We aim to derive accurate numerical relationships between the collisional broadening rates and the collisional depolarization and polarization transfer rates due to hydrogen atom collisions. Such relationships would enable accurate and efficient estimation of collisional data for solar applications. Using earlier results for broadening and depolarization processes based on general (i.e. not specific to a given atom), semi-classical calculations employing interaction potentials...
From dust to planetesimals: an improved model for collisional growth in protoplanetary disks
Garaud, Pascale; Galvagni, Marina; Olczak, Christoph
2012-01-01
Planet formation occurs within the gas and dust rich environments of protoplanetary disks. Observations of these objects show that the growth of primordial sub micron sized particles into larger aggregates occurs at the earliest stages of the disks. However, theoretical models of particle growth that use the Smoluchowski equation to describe collisional coagulation and fragmentation have so far failed to produce large particles while maintaining a significant populations of small grains. This has been generally attributed to the existence of two barriers impeding growth due to bouncing and fragmentation of colliding particles. In this paper, we demonstrate that the importance of these barriers has been artificially inflated through the use of simplified models that do not take into account the stochastic nature of the particle motions within the gas disk. We present a new approach in which the relative velocities between two particles is described by a probability distribution function that models both determ...
Tallents, G. J.
2016-09-01
Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion.
Latyshev, A V
2013-01-01
Formulas for transverse conductance and dielectric permeability in quantum non-degenerate and Maxwellian collisional plasma with arbitrary variable collision frequency in Mermin's approach are deduced. Frequency of collisions of particles depends arbitrarily on a wave vector. The special case of frequency of collisions proportional to the module of a wave vector is considered. The graphic analysis of the real and imaginary parts of dielectric function is made.
Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma
Institute of Scientific and Technical Information of China (English)
XUEJu-Kui
2003-01-01
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.
Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)
2011-11-15
A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.
Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications
Urrutia, J. M.; Stenzel, R. L.
1991-01-01
A strong electromagnetic impulse (about 0.2 microsec) with central frequency in the whistler-wave regime is applied to a large laboratory plasma dominated by Coulomb collisions. Local electron heating at the antenna and transport along B0 create a channel of high conductivity along which the whistler pulse penetrates with little damping. Because of its rapid temporal evolution, this new form of modulational instability does not involve ducting by density gradients which require ion time scales to develop.
Electron-ion collisional effect on Weibel instability in a Kappa distributed unmagnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Kumar Kuri, Deep, E-mail: deepkuri303@gmail.com; Das, Nilakshi, E-mail: ndas@tezu.ernet.in [Department of Physics, Tezpur University, Tezpur, Assam 784 028 (India)
2014-04-15
Weibel instability has been investigated in the presence of electron-ion collisions by using standard Vlasov-Maxwell equations. The presence of suprathermal electrons has been included here by using Kappa distribution for the particles. The growth rate γ of Weibel instability has been calculated for different values of spectral index κ, collision frequency ν{sub ei}, and temperature anisotropy parameter β. A comparative study between plasma obeying Kappa distribution and that obeying Maxwellian distribution shows that the growth of instability is higher for the Maxwellian particles. However, in the presence of collisions, the suprathermal particles result in lower damping of Weibel mode.
Collective instabilities and collisional effects for a 2D model of a beam in a storage ring
Benedetti, C
2007-01-01
We consider a collisional 2D model for a beam in a ring. In the smooth focusing approximation the relaxation time scales according to Landau’s theory, but the p.d.f of momentum jumps has a power law decaying queue. A new hybrid regime is found for the equipartitioning due to the interplay between collisional and collective effects. The moments equations of a small perturbation to the KV distribution are analytically determined and the stability conditions follow from Floquet’s theory.
Energy Technology Data Exchange (ETDEWEB)
Olson, R.E.
1981-10-15
Research on this contract can be divided into two general topics: (1) D/sup -/ formation collision processes, and (2) the determination of scattering cross sections used to diagnose properties of magnetically-confined plasmas. For topic (1) during last year, we completed theoretical calculations on the differential (angular) scattering of H/sup 0/ and D/sup 0/ on Cs, and determined the mechanisms and trends in the electron detachment cross sections for collisions of H/sup -/ and D/sup -/ on He, Ne, and the alkali and heavy alkaline earth atom systems. On topic (2) a major accomplishment was the determination of the electron capture and ionization cross sections for the C/sup 5 +/, N/sup 5 +/, and O/sup 6 +/ + H systems in the energy range from 13 eV/amu to 2.1 MeV/amu.
Kemaneci, Efe; Graef, Wouter; van Dijk, Jan; Kroesen, Gerrit M W
2015-01-01
Collisional and radiative dynamics of a plasma is exposed by so-called Collisional Radiative Models [1] that simplify the chemical kinetics by quasi-steady state assignment on certain types of particles. The assignment is conventionally based on the classification of the plasma species by the ratio of the transport to the local destruction frequencies. We show that the classification is not exact due to the role of the time-dependent local production, and a measure is necessary to confirm the validity of the assignment. The main goal of this study is to evaluate a measure on the quasi-steady state assumptions of these models. Inspired by a chemical reduction technique called Intrinsic Low Dimensional Manifolds [2, 3], an estimate local source is provided at the transport time-scale. This source is a deviation from the quasi-steady state for the particle and its value is assigned as an error of the quasi-steady state assumption. The propagation of this error on the derived quantities is formulated in the Colli...
Energy Technology Data Exchange (ETDEWEB)
Rocca, J.J.; Cortazar, O.D.; Tomasel, F.G.; Szapiro, B.T. (Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States))
1993-10-01
Fast discharges through 1.5-mm-diam capillaries have produced dense Ca and Ti plasma columns with an abundance of Ne-like ions, which are of interest for the development of small-scale, collisionally excited soft-x-ray lasers. Current pulses of 30 ns full width at half maximum and peak currents of less than 70 kA produced plasmas with line emission from ions with charge up to the F-like state. Line emission at the wavelengths of the 3[ital p]-3[ital s] and 3[ital d]-3[ital p] transitions of the Ne-like ions has been observed.
Energy Technology Data Exchange (ETDEWEB)
Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S. [Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur-495009 (C.G.) (India); Chhajlani, R. K. [Retired from School of Studies in Physics, Vikram University, Ujjain-456010 (M.P.) (India)
2016-05-15
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.
Trelles, J P; Vardelle, A; Heberlein, J V R
2013-01-01
Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.
Ganesh, S.; Mishra, M.
2013-10-01
We present a model to explain the bottomonium suppression in Pb+Pb collisions at midrapidity obtained from Large Hadron Collider (LHC) energy, sNN=2.76 TeV. The model consists of two decoupled mechanisms, namely, color screening during bottomonium production followed by gluon induced dissociation along with collisional damping. The quasiparticle model (QPM) is used as equation of state (EOS) for the quark-gluon plasma (QGP) medium. The feed-down from higher Υ states, such as Υ(1P), Υ(2S), and Υ(2P), dilated formation times for bottomonium states, and viscous effect of the QGP medium are other ingredients included in the current formulation. We further assume that the QGP is expanding according to (1+1)-dimensional Bjorken's boost invariant scaling law. The net suppression (in terms of pT integrated survival probability) for bottomonium states at midrapidity is obtained as a function of centrality, and the result is then compared both quantitatively and qualitatively with the recent LHC experimental data in the midrapidity region recently published by the CMS Collaboration. We find that the current model, based on Debye color screening plus gluonic dissociation along with collisional damping, better describes the centrality dependence of bottomonium suppression at LHC energy as compared to the color screening model alone.
Collisional-radiative model of helium microwave discharges at atmospheric pressure
Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.
2011-10-01
This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced
Uniform rovibrational collisional N2 bin model for DSMC, with application to atmospheric entry flows
Torres, E.; Bondar, Ye. A.; Magin, T. E.
2016-11-01
A state-to-state model for internal energy exchange and molecular dissociation allows for high-fidelity DSMC simulations. Elementary reaction cross sections for the N2 (v, J)+ N system were previously extracted from a quantum-chemical database, originally compiled at NASA Ames Research Center. Due to the high computational cost of simulating the full range of inelastic collision processes (approx. 23 million reactions), a coarse-grain model, called the Uniform RoVibrational Collisional (URVC) bin model can be used instead. This allows to reduce the original 9390 rovibrational levels of N2 to 10 energy bins. In the present work, this reduced model is used to simulate a 2D flow configuration, which more closely reproduces the conditions of high-speed entry into Earth's atmosphere. For this purpose, the URVC bin model had to be adapted for integration into the "Rarefied Gas Dynamics Analysis System" (RGDAS), a separate high-performance DSMC code capable of handling complex geometries and parallel computations. RGDAS was developed at the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia for use by the European Space Agency (ESA) and shares many features with the well-known SMILE code developed by the same group. We show that the reduced mechanism developed previously can be implemented in RGDAS, and the results exhibit nonequilibrium effects consistent with those observed in previous 1D-simulations.
Modelling the plasma plume of an assist source in PIAD
Wauer, Jochen; Harhausen, Jens; Foest, Rüdiger; Loffhagen, Detlef
2016-09-01
Plasma ion assisted deposition (PIAD) is a technique commonly used to produce high-precision optical interference coatings. Knowledge regarding plasma properties is most often limited to dedicated scenarios without film deposition. Approaches have been made to gather information on the process plasma in situ to detect drifts which are suspected to cause limits in repeatability of resulting layer properties. Present efforts focus on radiance monitoring of the plasma plume of an Advanced Plasma Source (APSpro, Bühler) by optical emission spectroscopy to provide the basis for an advanced plasma control. In this contribution modelling results of the plume region are presented to interpret these experimental data. In the framework of the collisional radiative model used, 15 excited neutral argon states in the plasma are considered. Results of the species densities show good consistency with the measured optical emission of various argon 2 p - 1 s transitions. This work was funded by BMBF under grant 13N13213.
A new 6-part collisional model of the Main Asteroid Belt
Broz, Miroslav; Cibulkova, H.
2013-10-01
In this work, we constructed a new model for the collisional evolution of the Main Asteroid Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt, and to verify if the number of asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because material characteristics can affect breakups, we created two models - for monolithic asteroids and for rubble-piles (Benavidez et al., 2012). To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (parent body size of the order of 1 km). The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.
Zhu, Jie; Ridley, Aaron J.
2016-01-01
The Joule heating rate has usually been used as an approximate form of the neutral-ion collisional heating rate in the thermospheric energy equation in global thermosphere-ionosphere models. This means that the energy coupling has ignored the energy gained by the ions from collisions with electrons. It was found that the globally averaged thermospheric temperature (Tn) was underestimated in simulations using the Joule heating rate, by about 11% when F10.7=110 solar flux unit (sfu, 1 sfu = 10-22 W m-2 Hz-1) in a quiet geomagnetic condition. The underestimation of Tn was higher at low latitudes than high latitudes, and higher at F region altitudes than at E region altitudes. It was found that adding additional neutral photoelectron heating in a global IT model compensated for the underestimation of Tn using the Joule heating approximation. Adding direct photoelectron heating to the neutrals compensated for the indirect path for the energy that flows from the electrons to the ions then to the neutrals naturally and therefore was an adequate compensation over the dayside. There was a slight dependence of the underestimation of Tn on F10.7, such that larger activity levels resulted in a need for more compensation in direct photoelectron heating to the neutrals to make up for the neglected indirect heating through ions and electrons.
A six-part collisional model of the main asteroid belt
Cibulková, Helena; Benavidez, Paula G
2014-01-01
In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt (inner, middle, 'pristine', outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli et al., 2009), where the results of hydrodynamic (SPH) simulations of Durda et al. (2007) and Benavidez et al. (2012) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the obse...
Modeling of Inelastic Collisions in a Multifluid Plasma: Ionization and Recombination
Le, H P
2016-01-01
A model for ionization and recombination collisions in a multifluid plasma is formulated using the framework introduced in previous work [{Phys. Plasmas} \\textbf{22}, 093512 (2015)]. The exchange source terms for density, momentum and energy are detailed for the case of electron induced ionization and three body recombination collisions with isotropic scattering. The principle of detailed balance is enforced at the microscopic level. We describe how to incorporate the standard collisional-radiative model into the multifluid equations using the current formulation. Numerical solutions of the collisional-radiative rate equations for atomic hydrogen are presented to highlight the impact of the multifluid effect on the kinetics.
Broz, Miroslav; Cibulkova, H.; Rehak, M.
2012-10-01
Modifying the Boulder code (Morbidelli et al. 2009), we construct a new collisional model of the Main Asteroid Belt, which is divided to six parts (inner, middle, outer, pristine zone, Cybele region and high-inclination region) in order to study relations between them and check the number of families observed in each of them. We focus on the so-called "pristine zone" between 2.825 and 2.955 AU - bounded by the 5:2 and 7:3 resonances with Jupiter - because this region is relatively empty and we may thus spot very old/eroded families. We model long-term dynamical and collisional evolution of the Itha family (around the asteroid (918) Itha) and we interpreted it as an old, dispersed and comminutioned cluster, likely dated back to the Late Heavy Bombardment 3.8 Gyr ago. We thus extend our collisional models and include the effects of the LHB too. In the framework of the Nice model, the flux of comets during the LHB is mostly controlled by the original size-freqeuncy distribution of the cometary disk beyond Neptune and a rate at which comets disrupt when they approach the Sun. To this point we provide a related discussion of various cometary disruption laws.
From Dust to Planetesimals: An Improved Model for Collisional Growth in Protoplanetary Disks
Garaud, Pascale; Meru, Farzana; Galvagni, Marina; Olczak, Christoph
2013-02-01
Planet formation occurs within the gas- and dust-rich environments of protoplanetary disks. Observations of these objects show that the growth of primordial submicron-sized particles into larger aggregates occurs at the earliest evolutionary stages of the disks. However, theoretical models of particle growth that use the Smoluchowski equation to describe collisional coagulation and fragmentation have so far failed to produce large particles while maintaining a significant population of small grains. This has generally been attributed to the existence of two barriers impeding growth due to bouncing and fragmentation of colliding particles. In this paper, we demonstrate that the importance of these barriers has been artificially inflated through the use of simplified models that do not take into account the stochastic nature of the particle motions within the gas disk. We present a new approach in which the relative velocities between two particles are described by a probability distribution function that models both deterministic motion (from the vertical settling, radial drift, and azimuthal drift) and stochastic motion (from Brownian motion and turbulence). Taking both into account can give quite different results to what has been considered recently in other studies. We demonstrate the vital effect of two "ingredients" for particle growth: the proper implementation of a velocity distribution function that overcomes the bouncing barrier and, in combination with mass transfer in high-mass-ratio collisions, boosts the growth of larger particles beyond the fragmentation barrier. A robust result of our simulations is the emergence of two particle populations (small and large), potentially explaining simultaneously a number of longstanding problems in protoplanetary disks, including planetesimal formation close to the central star, the presence of millimeter- to centimeter-sized particles far out in the disk, and the persistence of μm-sized grains for millions of
A six-part collisional model of the main asteroid belt
Cibulková, H.; Brož, M.; Benavidez, P. G.
2014-10-01
In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt (inner, middle, “pristine”, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D=1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km).
Alekseeva, L M
2015-01-01
The dynamical coupling between the solar chromospheric plasma and magnetic field is investigated by numerically solving a fully self-consistent, two-dimensional initial-value problem for the nonlinear collisional MHD equations including electric resistivity, thermal conduction, and, in some cases, gas-dynamic viscosity. The processes in the contact zone between two horizontal magnetic fields of opposite polarities are considered. The plasma is assumed to be initially motionless and having a temperature of 50,000 K uniform throughout the plasma volume; the characteristic magnetic field corresponds to a plasma $\\beta\\gtrsim 1$. In a physical-time interval of 17~seconds typically covered by a computational run, the plasma temperature gradually increases by a factor of two to three. Against this background, an impulsive (in 0.1 seconds or less) increase in the current-aligned plasma velocity occurs at the site of the current-layer thinning (sausage-type deformation, or $m=0$ pinch instability). Such a "velocity b...
Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa
2016-10-01
The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).
Mean field and collisional dynamics of interacting fermion-boson systems the Jaynes-Cummings model
Takano-Natti, E R
1996-01-01
A general time-dependent projection technique is applied to the study of the dynamics of quantum correlations in a system consisting of interacting fermionic and bosonic subsystems, described by the Jaynes-Cummings Hamiltonian. The amplitude modulation of the Rabi oscillations which occur for a strong, coherent initial bosonic field is obtained from the spin intrinsic depolarization resulting from collisional corrections to the mean-field approximation.
Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V
2012-12-21
We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.
Multi-Scale Modeling of Plasma Thrusters
Batishchev, Oleg
2004-11-01
Plasma thrusters are characterized with multiple spatial and temporal scales, which are due to the intrinsic physical processes such as gas ionization, wall effects and plasma acceleration. Characteristic times for hot plasma and cold gas are differing by 6-7 orders of magnitude. The typical collisional mean-free-paths vary by 3-5 orders along the devices. These make questionable a true self-consistent modeling of the thrusters. The latter is vital to the understanding of complex physics, non-linear dynamics and optimization of the performance. To overcome this problem we propose the following approach. All processes are divided into two groups: fast and slow. The slow ones include gas evolution with known sources and ionization sink. The ionization rate, transport coefficients, energy sources are defined during "fast step". Both processes are linked through external iterations. Multiple spatial scales are handled using moving adaptive mesh. Development and application of this method to the VASIMR helicon plasma source and other thrusters will be discussed. Supported by NASA.
Energy Technology Data Exchange (ETDEWEB)
Smith, R F; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V N; Rocca, J J; Hunter, J R; Marconi, M C
2004-10-04
We have directly probed the plasma conditions in which the Ni-like Pd transient collisional x-ray laser is generated and propagates by measuring the near-field image and by utilizing picosecond resolution soft x-ray laser interferometry of the preformed Pd plasma gain medium. The electron density and gain region of the plasma have been determined experimentally and are found to be in good agreement with simulations. We observe a strong dependence of the laser pump-gain medium coupling on the laser pump parameters. The most efficient coupling of laser pump energy into the gain region occurs with the formation of lower density gradients in the pre-formed plasma and when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for mid-Z Ni-like schemes). This increases the output intensity by more than an order of magnitude relative to the commonly utilized case where the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). In contrast, the higher intensity heating pulses are observed to be absorbed at higher electron densities and in regions where steep density gradients limit the effective length of the gain medium.
Isotropic inelastic and superelastic collisional rates in a multiterm atom
Belluzzi, L; Bueno, J Trujillo
2013-01-01
The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In th...
Simulation of transient collisional x-ray lasers
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira; Utsumi, Takayuki; Moribayashi, Kengo; Zhidkov, A.; Kawachi, Tetsuya; Kado, Masataka; Hasegawa, Noboru [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan)
2000-03-01
We have developed a collisional radiative model of electron collisional excited x-ray lasers. We calculate the ion abundance and soft x-ray gain for the Ne-like 3s-3p transition and Ni-like 4d-4p transition, in short pulse laser irradiated plasmas. We combine a detailed model using the atomic data calculated by the HULLAC code and the averaged model based on the screened hydrogenic approximation to develop a compact model. Effects of dielectronic recombination channels and radiation trapping of the lower laser level are investigated. The calculation of the transient gain is carried out using the plasma temperature and density obtained from a 1D hydrodynamics code. (author)
Modeling electronegative plasma discharge
Energy Technology Data Exchange (ETDEWEB)
Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)
1995-12-31
Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.
Jutzi, M.; Benz, W.; Toliou, A.; Morbidelli, A.; Brasser, R.
2017-01-01
Context. There is an active debate about whether the properties of comets as observed today are primordial or, alternatively, if they are a result of collisional evolution or other processes. Aims: We investigate the effects of collisions on a comet with a structure like 67P/Churyumov-Gerasimenko (67P). We develop scaling laws for the critical specific impact energies Qreshape required for a significant shape alteration. These are then used in simulations of the combined dynamical and collisional evolution of comets in order to study the survival probability of a primordially formed object with a shape like 67P. Although the focus of this work is on a structure of this kind, the analysis is also performed for more generic bi-lobe shapes, for which we define the critical specific energy Qbil. The simulation outcomes are also analyzed in terms of impact heating and the evolution of the porosity. Methods: The effects of impacts on comet 67P are studied using a state-of-the-art smooth particle hydrodynamics shock physics code. In the 3D simulations, a publicly available shape model of 67P is applied and a range of impact conditions and material properties are investigated. The resulting critical specific impact energy Qreshape (as well as Qbil for generic bi-lobe shapes) defines a minimal projectile size which is used to compute the number of shape-changing collisions in a set of dynamical simulations. These simulations follow the dispersion of the trans-Neptunian disk during the giant planet instability, the formation of a scattered disk, and produce 87 objects that penetrate into the inner solar system with orbits consistent with the observed JFC population. The collisional evolution before the giant planet instability is not considered here. Hence, our study is conservative in its estimation of the number of collisions. Results: We find that in any scenario considered here, comet 67P would have experienced a significant number of shape-changing collisions, if it
Balman, Solen
2016-01-01
We present a reanalysis of XMM-Newton Reflection Grating Spectrometer data of the classical nova V2491 Cyg obtained from two different pointings, 40 d and 50 d after outburst utilizing the SRON software SPEX version 2.05.04. We aim to model absorption components using hot collisionally ionized absorber models along with interstellar absorption (of gas and dust origin separately). We find blackbody temperatures in a range 61-91 eV for the continuum yielding a white dwarf mass of 1.15-1.3 M_sun. We derive two different hot absorber components with blueshifts yielding 2900-3800 km/s for the first (day 40) and 2600-3600 km/s for the second observation 50 days after outburst consistent with ejecta/wind speeds. The two collisionally ionized hot absorption components have temperatures kT_1 =1.0-3.6 keV and kT_2 =0.4-0.87 keV with rms velocities (sigma_v) 872 km/s and 56 km/s. These are consistent with shock temperatures in the X-ray wavelengths. V2491 Cyg shows signature of H-burning with underabundant carbon C/C_su...
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
Plasma Modeling of Electrosurgery
Jensen, Scott; Friedrichs, Daniel; Gilbert, James; Park, Wounjhang; Maksimovic, Dragan
2014-10-01
Electrosurgery is the use of high frequency alternating current (AC) to illicit a clinical response in tissue, such as cutting or cauterization. Power electronics converters have been demonstrated to generate the necessary output voltage and current for electrosurgery. The design goal of the converter is to regulate output power while supplying high frequency AC. The design is complicated by fast current and voltage transients that occur when the current travels through air in the form of an arc. To assist in designing a converter that maintains the desired output power during these transients, we have used the COMSOL Plasma Module to determine the output voltage and current characteristics during an arc. This plasma model, used in conjunction with linear circuit elements, allows the full electrosurgical system to be validated. Two models have been tested with the COMSOL Plasma Module. One is a four-species, four-reaction model based on the local field approximation technique. The second simulates the underlying air chemistry using 30 species, 151 chemical reactions, and a coupled electron energy distribution function. Experimental output voltage and current samples have been collected and compared to both models.
Energy Technology Data Exchange (ETDEWEB)
Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br
2004-07-01
Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)
Akdim, Mohamed Reda
2003-09-01
Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is
Collisional Excitation and De-Excitation of N2 and N2+ in High-Pressure Discharge Plasmas
Kurunczi, P.; Abramzon, N.; Figus, M.; Becker, K.
2003-05-01
Emission spectroscopy using the 2nd positive system of N2 and the 1st negative system of N2+ can be used to determine important plasma parameters such the translational, vibrational, and rotational temperatures of the plasma species. The rotational temperature is perhaps the most frequently determined quantity as its determination may reflect the gas temperature in the plasma and/or provide insight into the reaction kinetics of important plasma species. If the emitting species are in equilibrium with the bulk gas in the plasma, then this temperature can be interpreted as the gas kinetic temperature in the plasma. We determined rotational temperatures for N2 and N2+ in high-pressure (400 Torr) discharges in mixtures in Ne with a trace admixture of N2. Significantly different values were obtained for respectively N2 and N2+. The relation of these rotational temperatures to the gas kinetic temperature and to the reaction kinetics leading to the formation and the decay of the emitting species will be discussed. We also carried out a rotational analysis of the unresolved N2 second positive system emitted by an atmospheric-pressure capillary plasma electrode (CPE) discharge in ambient air. Work supported by the US National Science Foundation.
Ganesh, S
2013-01-01
We present a model to explain the bottomonium suppression in Pb+Pb collisions at mid rapidity obtained from Large Hadron Collider (LHC) energy, $\\sqrt{s_{NN}}=2.76$ TeV. The model consists of two decoupled mechanisms namely, color screening during bottomonium production followed by gluon induced dissociation along with collisional damping. The quasi-particle model (QPM) is used as equation of state (EOS) for the Quark-Gluon Plasma (QGP) medium. The feed-down from higher $\\Upsilon$ states, such as $\\Upsilon(1P)$, $\\Upsilon(2S)$ and $\\Upsilon(2P)$, dilated formation times for bottomonium states and viscous effect of QGP medium are other ingredients included in the current formulation. We further assume that the QGP is expanding according to (1+1)-dimensional Bjorken's boost invariant scaling law. The net suppression (in terms of $p_T$ integrated survival probability) for bottomonium states at mid rapidity is obtained as a function of centrality and the result is then compared both quantitatively and qualitative...
Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)
2016-08-15
Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Hubbard, Alexander
2012-01-01
To understand the earliest stages of planet formation, it is crucial to be able to predict the rate and the outcome of dust grains collisions, be it sticking and growth, bouncing, or fragmentation. The outcome of such collisions depends on the collision speed, so we need a solid understanding of the rate and velocity distribution of turbulence-induced dust grain collisions. The rate of the collisions depends both on the speed of the collisions and the degree of clustering experienced by the dust grains, which is a known outcome of turbulence. We evolve the motion of dust grains in simulated turbulence, an approach that allows a large turbulent inertial range making it possible to investigate the effect of turbulence on meso-scale grains (millimeter and centimeter). We find three populations of dust grains: one highly clustered, cold and collisionless; one warm; and the third "hot". Our results can be fit by a simple formula, and predict both significantly slower typical collisional velocities for a given turb...
Usherwood, James R; Williams, Sarah B; Wilson, Alan M
2007-02-01
Here, we present a simple stiff-limbed passive model of quadrupedal walking, compare mechanics predicted from the model with those observed from forceplate measurements of walking dogs and consider the implications of deviation from model predictions, especially with reference to collision mechanics. The model is based on the geometry of a 4-bar linkage consisting of a stiff hindleg, back, foreleg and the ground between the hind and front feet. It uses empirical morphological and kinematic inputs to determine the fluctuations in potential and kinetic energy, vertical and horizontal forces and energy losses associated with inelastic collisions at each foot placement. Using forceplate measurements to calculate centre of mass motions of walking dogs, we find that (1) dogs may, but are not required to, spend periods of double support (one hind- and one forefoot) agreeing with the passive model; (2) legs are somewhat compliant, and mechanical energy fluctuates during triple support, with mechanical energy being lost directly after hindfoot placement and replaced following forefoot placement. Footfall timings and timing of mechanical energy fluctuations are consistent with strategies to reduce collisional forces, analogous to the suggested role of ankle extension as an efficient powering mechanism in human walking.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Energy Technology Data Exchange (ETDEWEB)
Saxena, Vikrant, E-mail: vikrant.saxena@desy.de [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Ziaja, Beata, E-mail: ziaja@mail.desy.de [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland)
2016-01-15
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.
Acceleration of weakly collisional solar-type winds
Zouganelis, I; Landi, S; Maksimovic, M; Pantellini, F
2005-01-01
One of the basic properties of the solar wind, that is the high speed of the fast wind, is still not satisfactorily explained. This is mainly due to the theoretical difficulty of treating weakly collisional plasmas. The fluid approach implies that the medium is collision dominated and that the particle velocity distributions are close to Maxwellians. However the electron velocity distributions observed in the solar wind depart significantly from Maxwellians. Recent kinetic collisionless models (called exospheric) using velocity distributions with a suprathermal tail have been able to reproduce the high speeds of the fast solar wind. In this letter we present new developments of these models by generalizing them over a large range of corona conditions. We also present new results obtained by numerical simulations that include collisions. Both approaches calculate the heat flux self-consistently without any assumption on the energy transport. We show that both approaches - the exospheric and the collisional one...
Double layers in a modestly collisional electronegative discharge
Sheridan, T E
1999-01-01
The effect of ion-neutral collisions on the structure and ion flux emanating from a steady-state, planar discharge with two negative components is investigated. The positive ion component is modelled as a cold fluid subject to constant-mobility collisions, while the electrons and negative ions obey Boltzmann relations. The model includes the collisionless limit. When the negative ions are sufficiently cold three types of discharge structures are found. For small negative ion concentrations or high collisionality, the discharge is 'stratified', with an electronegative core and an electropositive edge. For the opposite conditions, the discharge is 'uniform' with the negative ion density remaining significant at the edge of the plasma. Between these cases lies the special case of a double-layer-stratified discharge, where quasi-neutrality is violated at the edge of the electronegative core. Double-layer-stratified solutions are robust in that they persist for moderate collisionality. Numerical solutions for fini...
Akdim, M.R. (Mohamed Reda)
2003-01-01
Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a r
Non-LTE modeling of radiatively driven dense plasmas
Scott, H. A.
2017-03-01
There are now several experimental facilities that use strong X-ray fields to produce plasmas with densities ranging from ˜1 to ˜103 g/cm3. Large laser facilities, such as the National Ignition Facility (NIF) and the Omega laser reach high densities with radiatively driven compression, short-pulse lasers such as XFELs produce solid density plasmas on very short timescales, and the Orion laser facility combines these methods. Despite the high densities, these plasmas can be very far from LTE, due to large radiation fields and/or short timescales, and simulations mostly use collisional-radiative (CR) modeling which has been adapted to handle these conditions. These dense plasmas present challenges to CR modeling. Ionization potential depression (IPD) has received much attention recently as researchers work to understand experimental results from LCLS and Orion [1,2]. However, incorporating IPD into a CR model is only one challenge presented by these conditions. Electron degeneracy and the extent of the state space can also play important roles in the plasma energetics and radiative properties, with effects evident in recent observations [3,4]. We discuss the computational issues associated with these phenomena and methods for handling them.
Helicon plasma thruster discharge model
Energy Technology Data Exchange (ETDEWEB)
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)
2014-04-15
By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.
Berrehrah, Hamza; Aichelin, Jörg; Cassing, Wolfgang; Bratkovskaya, Elena
2014-01-01
In this study we evaluate the dynamical collisional energy loss of heavy quarks, their interaction rate as well as the different transport coefficients (drag and diffusion coefficients, $\\hat{q}$, etc). We calculate these different quantities for i) perturbative partons (on-shell particles in the vacuum with fixed and running coupling) and ii) for dynamical quasi-particles (off-shell particles in the QGP medium at finite temperature $T$ with a running coupling in temperature as described by the dynamical quasi-particles model). We use the perturbative elastic $(q(g) Q \\rightarrow q (g) Q)$ cross section for the first case, and the Infrared Enhanced Hard Thermal Loop cross sections for the second. The results obtained in this work demonstrate the effects of a finite parton mass and width on the heavy quark transport properties and provide the basic ingredients for an explicit study of the microscopic dynamics of heavy flavors in the QGP - as formed in relativistic heavy-ion collisions - within transport approa...
Kral, Quentin; Charnoz, Sébastien
2013-01-01
In most current debris disc models, the dynamical and the collisional evolutions are studied separately, with N-body and statistical codes, respectively, because of stringent computational constraints. We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough so as to be applied to any astrophysical cases where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, exozodiacal discs, etc. The code takes its basic architecture from the LIDT3D algorithm developed by Charnoz et al.(2012) for protoplanetary discs, but has been strongly modified and updated in order to handle the very constraining specificities of debris discs physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas, etc. In LIDT-DD, grains of a given size at a given location in a disc are grouped into "super-particles", whose orb...
Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves
Institute of Scientific and Technical Information of China (English)
ZHENG; Jian
2001-01-01
［1］Braginskii,S.I.,Transport processes in a plasma,in Reviews of Plasma Physics,Vol.1,New York:Consultants Bureau,1965,205-311.［2］Ono,M.,Kulsrud,R.M.,Frequency and damping of ion acoustic waves,Phys.Fluids,1975,18(10):1287-1293.［3］Randall,C.J.,Effect of ion collisionality on ion-acoustic waves,Phys.Fluids,1982,25(12):2231-2233.［4］Tracy,M.D.,Williams,E.A.,Estabrook,K.G.et al.,Eigenvalue solution for the ion-collisional effects on ion-acoustic and entropy waves,Phys.Fluids,1993,B5(5):1430.［5］Bell,A.R.,Electron energy transport in ion waves and its relevance to laser produced plasmas,Phys.Fluids,1983,26(1):279-284.［6］Epperlein,E.M.,Short,R.W.,Simon,A.,Damping of ion-acoustic waves in the presence of electron-ion collisions,Phys.Rev.Lett.,1992,69(12):1765-1768.［7］Epperlein,E.M.,Effect of electron collisions on ion-acoustic waves and heat flow,Phys.Plasmas,1994,1(1):109-115.［8］Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Quasihydrodynamic description of ion acoustic waves in a collisional plasmas,Phys.Plasmas,1994,1(8):2419-2429.［9］Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Ion acoustic waves in plasmas with collisional electrons,Phys.Rev.E,1994,50(6):5134-5137.［10］Bychenkov,V.Y.,Rozmus,W.,Tikhonchuk,V.T.et al.,Nonlocal electron transport in a plasma,Phys.Rev.Lett.,1995,75(24):4405-4408.［11］Zhang,Y.Q.et al.,Density fluctuation spectra of a collision-dominated plasma measured by light scattering,Phys.Rev.Lett.,1989,62(16):1848-1851.［12］Hinton,F.L.,Collisional transport in plasma,in Handbook of Plasma Physics,Vol.1,Amsterdam:North-Holland,1983,147-199.［13］Zheng Jian,Yu Changxuan,A numerical approach to the frequencies and damping rates of ion-acoustic waves in ion-collisional plasmas,Chin.Phys.Lett.,1999,16(12):905-907.［14］Hammett,G.W.,Perkins,F.,Fluid moment models for Landau damping with application to the ion-temperature-gradient instability,Phys.Rev.Lett.,1990,64(25):3019-3022.
Wang, Z. B.; Nie, Q. Y.; Li, B. W.; Kong, F. R.
2017-01-01
Sub-atmospheric pressure plasma slabs exhibit the feature of relatively high plasma number density and high collisional frequency between electrons and neutral gases, as well as similar thickness to the electromagnetic (EM) wavelength in communication bands. The propagation characteristics of EM waves in sub-atmospheric pressure plasma slabs are attracting much attention of the researchers due to their applications in the plasma antenna, the blackout effect during reentry, wave energy injection in the plasma, etc. In this paper, a numerical model with a one-dimensional assumption has been established and therefore, it is used for the investigations of the propagation characteristics of the EM waves in plasma slabs. In this model, the EM waves propagating in both sub-wavelength plasma slabs and plasmas with thicker slabs can be studied simultaneously, which is superior to the model with geometrical optics approximation. The influence of EM wave frequencies and collisional frequencies on the amplitude of the transmitted EM waves is discussed in typical plasma profiles. The results will be significant for deep understanding of the propagation behaviors of the EM waves in sub-atmospheric pressure nonuniform plasma slabs, as well as the applications of the interactions between EM waves and the sub-atmospheric pressure plasmas.
Turrini, D.; Svetsov, V.; Consolmagno, G.; Sirono, S.; Pirani, S.
2016-12-01
The survival of asteroid Vesta during the violent early history of the Solar System is a pivotal constraint on theories of planetary formation. Particularly important from this perspective is the amount of olivine excavated from the vestan mantle by impacts, as this constrains both the interior structure of Vesta and the number of major impacts the asteroid suffered during its life. The NASA Dawn mission revealed that olivine is present on Vesta's surface in limited quantities, concentrated in small patches at a handful of sites not associated with the two large impact basins Rheasilvia and Veneneia. The first detections were interpreted as the result of the excavation of endogenous olivine, even if the depth at which the detected olivine originated was a matter of debate. Later works raised instead the possibility that the olivine had an exogenous origin, based on the geologic and spectral features of the deposits. In this work, we quantitatively explore the proposed scenario of a exogenous origin for the detected vestan olivine to investigate whether its presence on Vesta can be explained as a natural outcome of the collisional history of the asteroid over the last one or more billion years. To perform this study we took advantage of the impact contamination model previously developed to study the origin and amount of dark and hydrated materials observed by Dawn on Vesta, a model we updated by performing dedicated hydrocode impact simulations. We show that the exogenous delivery of olivine by the same impacts that shaped the vestan surface can offer a viable explanation for the currently identified olivine-rich sites without violating the constraint posed by the lack of global olivine signatures on Vesta. Our results indicate that no mantle excavation is in principle required to explain the observations of the Dawn mission and support the idea that the vestan crust could be thicker than indicated by simple geochemical models based on the Howardite
Modeling the Europa plasma torus
Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.
1993-12-01
The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.
The OH distribution in cometary atmospheres - A collisional Monte Carlo model for heavy species
Combi, Michael R.; Bos, Brent J.; Smyth, William H.
1993-01-01
The study presents an extension of the cometary atmosphere Monte Carlo particle trajectory model formalism which makes it both physically correct for heavy species and yet computationally reasonable. The derivation accounts for the collision path and scattering redirection of a heavy radical traveling through a fluid coma with a given radial distribution in outflow speed and temperature. The revised model verifies that the earlier fast-H atom approximations used in earlier work are valid, and it is applied to a case where the heavy radical formalism is necessary: the OH distribution. It is found that a steeper variation of water production rate with heliocentric distance is required for a water coma which is consistent with the velocity-resolved observations of Comet P/Halley.
A model study of assisted adiabatic transfer of population in the presence of collisional dephasing
Energy Technology Data Exchange (ETDEWEB)
Masuda, Shumpei, E-mail: shumpei.masuda@aalto.fi [QCD Labs, Department of Applied Physics, Aalto University, Aalto 00076 (Finland); Rice, Stuart A., E-mail: s-rice@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)
2015-06-28
Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] and (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.
New Models of Water Delivery To Earth: The Effects of Ice Longevity and Collisional Water Transport
Maindl, Thomas I.; Haghighipour, Nader
2016-10-01
It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. Modern simulations of the formation of terrestrial planets show this process with high resolution. However, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during the dynamical evolution of these bodies. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. We have developed a more accurate model in which the sublimation of ice during the process of the scattering of icy asteroids and planetary embryos into the accretion zone of Earth is taken into account. Our model includes two different modes of handling ice sublimation, one for sub-surface water and one for deeper ice. We also estimate water loss and retention during collisions which depends on the physical and dynamical parameters of the impacts. The results of our simulations put stringent constraints on the initial water distribution in the protoplanetary disk, the location of snowline, and the contribution of water from the primordial nebula to the final water budget of Earth. In this poster, we will present the results of our new simulations and discuss their implications for models of solar system formation and dynamics.
Shlyaptsev, Vyacheslav N.; Gerusov, Alexey V.; Vinogradov, Alexander V.; Rocca, Jorge J. G.; Cortazar, O. D.; Tomasel, Fernando G.; Szapiro, Benito T.
1994-02-01
In this paper we report results of a model of a fast capillary discharge (FCD) and discuss them in comparison with experiments. The overall good coincidence between theory and experiment and the observation of stable reproducible compression are beneficial properties of FCD which open the possibility for achieving X-ray laser action in a compact discharge device. The required discharge parameters for lasing in different atomic elements have been calculated.
Asteroid age distributions determined by space weathering and collisional evolution models
Willman, Mark; 10.1016/j.icarus.2010.02.017
2010-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface \\citep{bib.bot05a,bib.nes05} is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model \\citep[e.g.][]{bib.wil10,bib.jed04,bib.wil08,bib.mar06}. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and $u,g,r,i,z$ filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The $u,g,r,i,z$ filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the `dual $\\tau$' space weathering model of \\citet{bib.wil10}. We fit the size-age distribution to the enhanced dual $\\tau$ model and found characteristic w...
Energy Technology Data Exchange (ETDEWEB)
Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
Asteroid age distributions determined by space weathering and collisional evolution models
Willman, Mark; Jedicke, Robert
2011-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.
Spectral - Lagrangian methods for Collisional Models of Non - Equilibrium Statistical States
Gamba, Irene M
2007-01-01
We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann Transport Equation for Variable Hard Potential (VHP) collision kernels with conservative or non-conservative binary interactions.The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computing is reduced to a separate integral over the unit sphere $S^2$. In addition, the conservation of moments is enforced by Lagrangian constraints. The resulting scheme is very versatile and adjusts in a very simple manner, to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic model of slowing down process. Our simulations are benchmarked with the available exact self-similar solutions, exact moment equations and analytical estimates for homogeneous Boltzmann equation for both elastic and inelastic VHP interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the num...
Modeling ion interpenetration, stagnation, and thermalization in colliding plasmas
Energy Technology Data Exchange (ETDEWEB)
Jones, M.E.; Winske, D.; Goldman, S.R.; Kopp, R.A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rogatchev, V.G.; Belkov, S.A.; Gasparyan, P.D.; Dolgoleva, G.V.; Zhidkov, N.V.; Ivanov, N.V.; Kochubej, Y.K.; Nasyrov, G.F.; Pavlovskii, V.A.; Smirnov, V.V.; Romanov, Y.A. [All Russian Scientific Research Institute of Experimental Physics, Sarov (Arzamas 16), Nizhniy Novgorod Region, 607200 (Russia)
1996-03-01
Ion interpenetration, stagnation, and energization processes are studied in colliding laser-produced plasma configurations relevant to Trident [R. G. Watt, Rev. Sci. Instrum. {bold 64}, 1770 (1993)] experiments using four different numerical methods: one-dimensional Monte Carlo and Lagrangian multifluid codes, and one- and two-dimensional hybrid (particle ions, fluid electrons) and single-fluid Lagrangian codes. Results from the four methodologies are compared for plasmas generated with gold and deuterated polyethylene (CD{sub 2}) targets. Overall, the various codes give similar results concerning the initial expansion of the plasmas and their collisional interaction, the degree of stagnation, stagnation time, and amount of ion thermalization for gold targets, while multispecies techniques indicate a much softer stagnation for CD{sub 2} plasmas than the single-fluid model. Variations in the results of the calculations due to somewhat different initializations and parameters, as well as to different physics in the codes, are discussed. {copyright} {ital 1996 American Institute of Physics.}
Surface-wave capillary plasmas in helium: modeling and experiment
Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.
2012-10-01
In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(nexcimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.
Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon
2013-06-01
7) For the radiative transitions, data recommended by Wiese et al. [30] is used. The transition probabilities Amn (s -1...Atoms and Molecules, Published in the 20th Century: Argon, Rep. NIFS-DATA-72, National Institute for Fusion Science (Jpn), 2003. [30] W. L. Wiese , J
Modelling the Plasma Jet in Multi-Arc Plasma Spraying
Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.
2016-08-01
Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.
MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.
2010-01-01
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD parad
Collisional Effects on Nonlinear Ion Drag Force for Small Grains
Hutchinson, I H
2013-01-01
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Dependence of intermittent density fluctuations on collisionality in TJ-K
Energy Technology Data Exchange (ETDEWEB)
Reuther, Kyle; Garland, Stephen; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnikund Plasmatechnologie, Universitaet Stuttgart (Germany); Manz, Peter [Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany)
2016-07-01
Particle and heat transport losses due to edge turbulence are well known phenomena commonly seen in toroidal magnetic confinement devices. Furthermore in the scrape-off layer (SOL), turbulent density fluctuations are often observed to be intermittent and dominate particle transport to the vessel walls. In the adiabatic limit (small collisionality), of the two-field Hasegawa-Wakatani model, simulated turbulent density fluctuations are observed to couple to potential fluctuations and exhibit Gaussian behavior. However, in the hydrodynamic limit (large collisionality) the density and potential decouple. As a result, the density becomes passively advected, evolves towards the vorticity, and exhibits intermittent behavior. The relationship between collisionality and intermittency is investigated experimentally at the stellarator TJ-K. To vary the plasma collisionality, which is related to electron density and temperature, parameters such as gas type, neutral gas pressure, magnetic field, and heating power are varied. Radial profiles of plasma density, temperature, floating potential, and vorticity are recorded via a scanning 7-tip Langmuir probe array. First results are presented.
Energy Technology Data Exchange (ETDEWEB)
Blantocas, Gene Q. [West Visayas State Univ., Lapaz, Iloilo City (Philippines); Ramos, Henry J. [Univ. of the Phillippines, College of Science, National Inst. of Physics, Deliman Quezon City (Philippines); Wada, Motoi [Doshisha Univ., Dept. of Engineering, Kyoto (Japan)
2003-07-01
An E x B probe was used to extract He{sup +} ions from a magnetized steady sheet plasma. Plasma parameters T{sub e}, n{sub e} and extracted He{sup +} ion current were analyzed vis-a-vis a modified Saha population density equation of the collisional-radiative model. Numerical calculations show that at low discharge currents and in the hot electron region of the sheet plasma, relative densities of He{sup +} ions show some degree of correlation with ion current profiles established experimentally using the E x B probe. Both experimental and computational results indicate a division of the plasma into two distinct regions each with different formation mechanisms of He{sup +} ions. (author)
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Chhiber, R; Usmanov, AV; Matthaeus, WH [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Goldstein, ML [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2016-04-10
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Mason, Caroline F.; Mason, Rodney J.; Faehl, R. J.; Kirkpatrick, R. C.
2011-10-01
The implicit simulation code ePLAS has been applied to plasma jets generated with mini-rail guns for plasma production and compression aimed at use with PLX. The rails are typically planar, 2.5 cm apart and arranged to transport an initial 1 cm or wider vertical plasma fill some 10 cm into a void. The driving magnetic field is 3.2 T. The plasma singly ionized argon at 1017 cm-3. We use ePLAS in both its traditional implicit/hybrid form where it is restricted by an electron Courant time step, and in a new super-hybrid form that extracts the main electron moments from the E&B-field solutions. This provides numerical stability at ion Courant limits, for at least a 10 times larger time step, thus probing microsecond jet dynamics with computational economy. We examine possible field penetration at the cathode and anode gun electrodes. Cathode erosion and EMHD B - Field penetration are possible at lower jet densities. We examine jet transport beyond the gun, modeling possible ionization with either analytic or tabular EOSs. We study the merger of jets with ions represented as either fluids or particles. Work supported by the USDOE under SBIR GRANT DE-SC0004207.
Monopoli, Bruno; Bistacchi, Andrea; Bertolo, Davide; Dal Piaz, Giovanni; Gouffon, Yves; Massironi, Matteo; Sartori, Mario; Vittorio Dal Piaz, Giorgio
2016-04-01
We know since the beginning of the 20th century, thanks to mapping and structural studies by the Italian Regio Servizio Geologico (Franchi et al., 1908) and Argand's work (1909; 1911; 1916), that the Austroalpine-Penninic collisional wedge of the NW Alps is spectacularly exposed across the Aosta Valley and Valais ranges (Italy and Switzerland). In the 150th anniversary of the first ascent to Ruskin's "most noble cliff in Europe" - the Cervino/Matterhorn (Whymper, July 14th 1865), first described in a geological profile by Giordano (1869) and in a detailed map by Gerlach (1869; 1871), we have seen the conclusion of very detailed mapping projects carried out in the last years over the two regions, with collaborative efforts across the Italy-Switzerland border, constellated by 4000 m-high peaks. These projects have pictured with an unprecedented detail (up to 1:10.000 scale) the geology of this complex region, resulting from pre-Alpine events, Alpine subduction- and collision-related ductile deformations, and finally late-Alpine brittle deformations from the Oligocene to the Present. Based on this dataset, we use up-to-date technology and software to undertake a 3D modelling study aimed at: i) reconstructing the 3D geometry of the principal tectonic units, ii) detecting and unravelling problems and incongruences in the 2D geometrical models, iii) modelling the kinematics of the Oligocene and Miocene brittle fault network using 2D and 3D balancing and palinspastic restoration techniques. In this contribution we mainly discuss the prerequisites of the project. Common geomodelling paradigms (mainly developed for the hydrocarbon industry) cannot be applied in this project due to (i) the little scale, (ii) the source of the data - fieldwork, and (iii) the polyphase ductile and brittle deformations in the metamorphic nappe stack. Our goals at the moment are to model the post-metamorphic fault network and the boundaries of the principal tectonic units, which will be
Vlasov-Fokker-Planck modeling of magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)
2016-08-01
Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full scale kinetic simulations of a magnetized hohlraum [Joglekar 2016] and the discovery of a new magnetic reconnection mechanism [Joglekar 2014] as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.
Turrini, D; Consolmagno, G; Sirono, S; Pirani, S
2016-01-01
The survival of asteroid Vesta during the violent early history of the Solar System is a pivotal constraint on theories of planetary formation. Particularly important from this perspective is the amount of olivine excavated from the vestan mantle by impacts, as this constrains both the interior structure of Vesta and the number of major impacts the asteroid suffered during its life. The NASA Dawn mission revealed that olivine is present on Vesta's surface in limited quantities, concentrated in small patches at a handful of sites and interpreted as the result of the excavation of endogenous olivine. Later works raised the possibility that the olivine had an exogenous origin, based on the geologic and spectral features of the deposits. In this work we quantitatively explore the proposed scenario of a exogenous origin for the detected olivine to investigate whether its presence on Vesta can be explained as a natural outcome of the collisional history of the asteroid. We took advantage of the impact contamination...
Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A
2009-10-02
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
Modeling the Lunar plasma wake
Holmstrom, M
2013-01-01
Bodies that lack a significant atmosphere and internal magnetic fields, such as the Moon and asteroids, can to a first approximation be considered passive absorbers of the solar wind. The solar wind ions and electrons directly impact the surface of these bodies due to the lack of atmosphere, and the interplanetary magnetic field passes through the obstacle relatively undisturbed because the bodies are assumed to be non-conductive. Since the solar wind is absorbed by the body, a wake is created behind the object. This wake is gradually filled by solar wind plasma downstream of the body, through thermal expansion and the resulting ambipolar electric field, along the magnetic field lines. Here we study this plasma expansion into a vacuum using a hybrid plasma solver. In the hybrid approximation, ions are treated as particles, and electrons as a massless fluid. We also derive corresponding one- and two-dimensional model problems that account for the absorbing obstacle. It is found that the absorbing obstacle crea...
Transition from Collisionless to Collisional MRI
Energy Technology Data Exchange (ETDEWEB)
Prateek Sharma; Gregory W. Hammett; Eliot Quataert
2003-07-24
Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.
Radiation Belt and Plasma Model Requirements
Barth, Janet L.
2005-01-01
Contents include the following: Radiation belt and plasma model environment. Environment hazards for systems and humans. Need for new models. How models are used. Model requirements. How can space weather community help?
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Energy Technology Data Exchange (ETDEWEB)
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-27
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Energy Technology Data Exchange (ETDEWEB)
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-28
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma
ELM control with RMP: plasma response models and the role of edge peeling response
Liu, Yueqiang; Kirk, A; Li, Li; Loarte, A; Ryan, D A; Sun, Youwen; Suttrop, W; Yang, Xu; Zhou, Lina
2016-01-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
ELM control with RMP: plasma response models and the role of edge peeling response
Liu, Yueqiang; Ham, C. J.; Kirk, A.; Li, Li; Loarte, A.; Ryan, D. A.; Sun, Youwen; Suttrop, W.; Yang, Xu; Zhou, Lina
2016-11-01
Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the literature, and are briefly reviewed in this work. Despite their simplicity, linear response models can provide alternative criteria, than the vacuum field based criteria, for guiding the choice of the coil configurations to achieve the best control of ELMs. The role of the edge peeling response to the RMP fields is illustrated as a key indicator for the ELM mitigation in low collisionality plasmas, in various tokamak devices.
Model of strong stationary vortex turbulence in space plasmas
Directory of Open Access Journals (Sweden)
G. D. Aburjania
2009-01-01
Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k^{−8/3} is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.
ITER plasma safety interface models and assessments
Energy Technology Data Exchange (ETDEWEB)
Uckan, N.A. [Oak Ridge National Lab., TN (United States); Bartels, H-W. [ITER San Diego Joint Work Site, La Jolla, CA (United States); Honda, T. [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Putvinski, S. [ITER San Diego Joint Work Site, La Jolla, CA (United States); Amano, T. [National Inst. for Fusion Science, Nagoya (Japan); Boucher, D.; Post, D.; Wesley, J. [ITER San Diego Joint Work Site, La Jolla, CA (United States)
1996-12-31
Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered.
Beltrami States for Plasma Dynamics Models
Shivamoggi, B. K.
2007-01-01
The various plasma models - incompressible magnetohydrodynamic (MHD) model, compressible MHD model, incompressible Hall MHD model, compressible Hall MHD model, electron MHD model, compressible Hall MHD with electron inertia model - notwithstanding the diversity of the underlying physics, are shown to exhibit some common features in the Beltrami states like certain robustness with respect to the plasma compressibility effects (albeit in the barotropy assumption) and the {\\it Bernoulli} conditi...
Plasma Polarization Spectroscopy and collision cross sections
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, Takashi; Nakai, Manabu [Dept. of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto Univ. (Japan)
2000-01-01
In Plasma Polarization Spectroscopy (PPS), we observe the polarized spectral lines emitted from a plasma. For berylliumlike oxygen lines from a tokamak plasma the polarization feature is interpreted as due to the anisotropic velocity distribution of electrons which excite the ions. In this interpretation in terms of the population-alignment collisional-radiative (PACR) model various collision processes are involved concerning the population and the alignment, e.g., transfer of the alignment, and the coherence by collisional excitation and production of an alignment from a population by elastic collisions. These latter processes are little known so far. (author)
Collisional Aggregation due to Turbulence
Pumir, Alain
2015-01-01
Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars, and also to play a role in the dynamics of sand storms. In these processes, collisions are favoured by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles, and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modelling these processes. These advances lead to a semi-quantitative understanding on the influence of turbulence on collision rates, and point to deficiencies in the current understanding of rainfall and planet formation.
Experimental validation of a filament transport model in turbulent magnetized plasmas
Carralero, D; Aho-Mantila, L; Birkenmeier, G; Brix, M; Groth, M; Müller, H W; Stroth, U; Vianello, N; Wolfrum, E; Contributors, JET
2015-01-01
In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices.
Collisional evolution of eccentric planetesimal swarms
Wyatt, M C; Payne, M J; Churcher, L J
2009-01-01
Models for the steady state collisional evolution of low eccentricity planetesimal belts identify debris disks with hot dust at 1AU, like eta Corvi and HD69830, as anomalous since collisional processing should have removed most of the planetesimal mass over their >1 Gyr lifetimes. This paper looks at the effect of large planetesimal eccentricities (e>>0.3) on their collisional lifetime and the amount of mass that can remain at late times M_{late}. For an axisymmetric planetesimal disk with common pericentres and eccentricities e, we find that M_{late} \\propto e^{-5/3}(1+e)^{4/3}(1-e)^{-3}. For a scattered disk-like population (i.e., common pericentres), in the absence of dynamical evolution, the mass evolution at late times would be as if only planetesimals with the largest eccentricity were present. Despite the increased remaining mass, higher eccentricities do not increase the hot emission from the collisional cascade until e>0.99, partly because most collisions occur near pericentre thus increasing the dus...
Simplifying plasma chemistry via ILDM
Rehman, T.; Kemaneci, E.; Graef, W.; van Dijk, J.
2016-02-01
A plasma fluid model containing a large number of chemical species and reactions yields a high computational load. One of the methods to overcome this difficulty is to apply Chemical Reduction Techniques as used in combustion engineering. The chemical reduction technique that we study here is ILDM (Intrinsic Lower Dimensional Manifold). The ILDM method is used to simplify an argon plasma model and then a comparison is made with a CRM (Collisional Radiative Model).
Ševecek, Pavel; Broz, Miroslav; Nesvorny, David; Durda, Daniel D.; Asphaug, Erik; Walsh, Kevin J.; Richardson, Derek C.
2016-10-01
Detailed models of asteroid collisions can yield important constrains for the evolution of the Main Asteroid Belt, but the respective parameter space is large and often unexplored. We thus performed a new set of simulations of asteroidal breakups, i.e. fragmentations of intact targets, subsequent gravitational reaccumulation and formation of small asteroid families, focusing on parent bodies with diameters D = 10 km.Simulations were performed with a smoothed-particle hydrodynamics (SPH) code (Benz & Asphaug 1994), combined with an efficient N-body integrator (Richardson et al. 2000). We assumed a number of projectile sizes, impact velocities and impact angles. The rheology used in the physical model does not include friction nor crushing; this allows for a direct comparison to results of Durda et al. (2007). Resulting size-frequency distributions are significantly different from scaled-down simulations with D = 100 km monolithic targets, although they may be even more different for pre-shattered targets.We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions in N-body simulations of small asteroid families. Finally, we discuss various uncertainties related to SPH simulations.
Supersonic induction plasma jet modeling
Energy Technology Data Exchange (ETDEWEB)
Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I
2001-06-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-01
Laser-generated interpenetrating plasma jets are widely used in the studies of collisionless interaction of counter-streaming plasmas in conjunction with possible formation of collisionless shocks. In a number of experiments of this type the plasma is formed on plastic targets made of CH or CD. The study of the DD neutron production from the interaction between two CD jets on the one hand and between a CD jet and a CH jet could serve as a qualitative indicator of the collisionless shock formation. The purpose of this memo is a discussion of the effect of collisions on the neutron generation in the interpenetrating CH and CD jets. First, the kinematics of the large-deflection collisions of the deuterons and carbon are discussed. Then the scattering angles are related with the corresponding Rutherford cross-section. After that expression for the number of the backscattered deuterons is provided, and their contribution to the neutron yield is evaluated. The results may be of some significance to the kinetic codes benchmarking and developing the neutron diagnostic.
Self-consistent modeling of radio-frequency plasma generation in stellarators
Moiseenko, V. E.; Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.
2013-11-01
A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell's equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell's equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell's equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell's equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.
FLYCHK Collisional-Radiative Code
SRD 160 FLYCHK Collisional-Radiative Code (Web, free access) FLYCHK provides a capability to generate atomic level populations and charge state distributions for low-Z to mid-Z elements under NLTE conditions.
Collisional Simulations of Neptune's Ring Arcs
Hänninen, J.; Porco, C.
1997-03-01
The currently accepted model for Neptune arc confinement relies on the radial and azimuthal confining perturbations due to the nearby satellite, Galatea. This model calls for arc particle orbits exhibiting a negative eccentricity gradient and crossing at quadrature, a configuration that paradoxically leads to collisions energetic enough to disrupt arc confinement. We confirm with numerical collisional N-body simulations that the confinement mechanism relying on a 42:43 corotation-inclination resonance and a 42:43 outer Lindblad resonance with Galatea is indeed capable of confining a large population of 10-m-size and bigger particles over short time scales. Moreover, we find that an 84:86 outer vertical resonance, also due to Galatea, falling within 20 m of the arcs' radial position, effectively reduces the collision frequency and relative collisional velocities and consequently stabilizes the arcs over long time scales against the disruptive effects of collisions.
Energy Technology Data Exchange (ETDEWEB)
Bott-Suzuki, Simon
2014-11-05
We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.
Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.
2017-06-01
In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
A reduced model for relativistic electron beam transport in solids and dense plasmas
Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.
2014-07-01
A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.
Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma
Peigney, Benjamin-Edouard; Tikhonchuk, Vladimir
2014-01-01
We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.
Sarwar, M. Adnan; Mirza, Arshad M.
2007-03-01
A simple derivation of the electrostatic potential and energy loss of N×M test charge projectiles traveling through dusty plasma has been presented. The effect of dust-charge fluctuations, dust neutral collisions, and self-gravitation on the shielded potential and energy loss of charge projectiles has been investigated both analytically as well as numerically. An interference contribution of these projectiles to the shielded potential and energy loss has been observed, which depends upon their relative orientation and separation distance. A comparison has been made for correlated and uncorrelated motion of the two projectiles. The amplitude of the shielded potential is enhanced with the increase of dust Jeans frequency for separation less than the effective Debye length. The dust-charge fluctuations produce a potential well for a slow charge relaxation rate and energy is gained, not lost, by the test charge projectiles. However, a fast charge relaxation rate with a fixed value of Jeans frequency enhances the energy loss. The dust neutral collisions are also found to enhance the energy loss for the test charge velocities greater than the dust acoustic speeds. The present investigation might be useful to explain the coagulation of dust particles such as those in molecular clouds, the interstellar medium, comet tails, planetary rings, etc.
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-08
Part 1 of this note considered the kinematics of large-angle scattering (LAS) of the deuterons on the counter-streaming carbon ions, with both flows having the same velocity V. Due to a large mass ratio m_{C}/m_{D}, the backscattered deuterons have high velocity of up to (24/7)V. This significantly increases the cross-section for the neutron production in the collisions between the back-scattered and incoming deuterons and may provide significant contribution to the total neutron yield, despite the smallness of a large-angle Coulomb cross-section. This effect becomes particularly important when only one of the colliding streams is made of CD, whereas the other stream is made of CH. Part 1 evaluated the neutron yield produced by this mechanism and have found that its relative role increases for higher plasma densities and lower velocities. Part 2 discusses signatures of this effect which can be used to identify it experimentally and also discusses in some more detail its spatio-temporal characteristics. It goes without saying that a complete quantitative assessment should be based on numerical simulations accounting for the large-angle scattering.
Saxena, Vikrant
2016-01-01
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundreds femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasma. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case: expanding spherical Ar nanoplasma are obtained. With this model we complete the two-step approach to simul...
Global model including multistep ionizations in helium plasmas
Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook
2016-12-01
Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.
Qualitative model of a plasma photoelectric converter
Gorbunov, N. A.; Flamant, G.
2009-01-01
A converter of focused optical radiation into electric current is considered on the basis of the photovoltaic effect in plasmas. The converter model is based on analysis of asymmetric spatial distributions of charge particle number density and ambipolar potential in the photoplasma produced by external optical radiation focused in a heat pipe filled with a mixture of alkali vapor and a heavy inert gas. Energy balance in the plasma photoelectric converter is analyzed. The conditions in which the external radiation energy is effectively absorbed in the converter are indicated. The plasma parameters for which the energy of absorbed optical radiation is mainly spent on sustaining the ambipolar field in the plasma are determined. It is shown that the plasma photoelectric converter makes it possible to attain a high conversion efficiency for focused solar radiation.
Plasma density perturbation caused by probes at low gas pressure
Sternberg, Natalia; Godyak, Valery
2017-09-01
An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.
Protoplanetary Accretion by Collisional Fusion
Wettlaufer, J S
2009-01-01
The formation of a solar system is believed to have followed a multi-stage process around a protostar. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag; there is a ``bottleneck'' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Thus, successful planetary accretion requires rapid planetesimal growth to km scale. A commonly accepted picture is that for collisional velocities $V_c$ above a certain threshold collisional velocity, ${V_{th}} \\sim$ 0.1-10 cm s$^{-1}$, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all collisions the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt explicitly with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter--p...
Theoretical modeling of electromagnetically imploded plasma liners
Energy Technology Data Exchange (ETDEWEB)
Roderick, N.F.; Kohn, B.J.; McCullough, W.F.; Beason, C.W.; Lupo, J.A.; Letterio, J.D. (Air Force Weapons Lab., Kirtland AFB, NM (USA)); Kloc, D.A. (Air Force Academy, CO (USA)); Hussey, T.W. (Sandia National Labs., Albuquerque, NM (USA))
1983-05-01
The generation of high-energy-density plasmas by the electromagnetic implosion of cylindrical foils is explored analytically and through numerical simulation. Theoretical investigations have been performed for a variety of foil initial conditions for both capacitive and inductive pulsed power systems. The development of the theoretical modeling techniques is presented, covering both circuit models and plasma load models. Results from a series of configurations are given, showing the development of modelling techniques used to study the dynamics of the plasma implosion process and the role of instabilities. Interaction between analytic techniques and detailed numerical simulation has led to improvement in all theoretical modeling techniques presently used to study the implosion process. Comparisons of implosion times, shell structure, instability growth rates, and thermalization times have shown good agreement between analytic/heuristic techniques and more detailed two dimensional magnetohydrodynamic simulations. These in turn have provided excellent agreement with experimental results for both capacitor and inductor pulse power systems.
Phase Transition in the Simplest Plasma Model
Iosilevskiy, Igor
2009-01-01
We have investigated the phase transition of the gas-liquid type, with an upper critical point, in a variant of the One Component Plasma model (OCP) that has a uniform but compressible compensating background. We have calculated the parameters of the critical and triple points, spinodals, and two-phase coexistence curves (binodals). We have analyzed the connection of this simplest plasma phase transition with anomalies in the spatial charge profiles of equilibrium non-uniform plasma in the local-density approximations of Thomas-Fermi or Poisson-Boltzmann-type.
Jovian Plasma Modeling for Mission Design
Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin
2015-01-01
The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and
Modeling the Enceladus plume--plasma interaction
Fleshman, B L; Bagenal, F
2010-01-01
We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.
A model for transonic plasma flow
Energy Technology Data Exchange (ETDEWEB)
Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-02-15
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Turbulence modelling of thermal plasma flows
Shigeta, Masaya
2016-12-01
This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.
Missing Mass in Collisional Debris from Galaxies
Bournaud, F; Brinks, E; Boquien, M; Amram, P; Lisenfeld, U; Koribalski, B S; Walter, F; Charmandaris, V
2007-01-01
Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, they should be free of non-baryonic Dark Matter. Analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a significant part of the so-called missing baryons.
Modeling the heating and atomic kinetics of a photoionized neon plasma experiment
Lockard, Tom E.
Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found
Modeling of laser produced plasma and z-pinch x-ray lasers
Energy Technology Data Exchange (ETDEWEB)
Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N
1999-02-07
In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.
Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas
Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.
2017-02-01
The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.
State-to-state modeling of non equilibrium low-temperature atomic plasmas
Bultel, Arnaud; Morel, Vincent; Annaloro, Julien; Druguet, Marie-Claude
2017-03-01
The most relevant approach leading to a thorough understanding of the behavior of non equilibrium atomic plasmas is to elaborate state-to-state models in which the mass conservation equation is applied directly to atoms or ions on their excited states. The present communication reports the elaboration of such models and the results obtained. Two situations close to each other are considered. First, the plasmas produced behind shock fronts obtained in ground test facilities (shock tubes) or during planetary atmospheric entries of spacecrafts are discussed. We focused our attention on the nitrogen case for which a complete implementation of the CoRaM-N2 collisional-radiative model has been performed in a steady one-dimensional computation code based on the Rankine-Hugoniot assumptions. Second, the plasmas produced by the interaction between an ultra short laser pulse and a tungsten sample are discussed in the framework of the elaboration of the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In the present case, tungsten has been chosen in the purpose of validating an in situ experimental method able to provide the elemental composition of the divertor wall of a tokamak like WEST or ITER undergoing high energetic deuterium and tritium nuclei fluxes.
Fluxon Modeling of Low-Beta Plasmas
DeForest, C E; Forest, Craig E. De; Kankelborg, Charles C.
2006-01-01
We have developed a new, quasi-Lagrangian approach for numerical modeling of magnetohydrodynamics in low to moderate $\\beta$ plasmas such as the solar corona. We introduce the concept of a ``fluxon'', a discretized field line. Fluxon models represent the magnetic field as a skeleton of such discrete field lines, and interpolate field values from the geometry of the skeleton where needed, reversing the usual direction of the field line transform. The fluxon skeleton forms the grid for a collection of 1-D Eulerian models of plasma along individual flux tubes. Fluxon models have no numerical resistivity, because they preserve topology explicitly. Our prototype code, \\emph{FLUX}, is currently able to find 3-D nonlinear force-free field solutions with a specified field topology, and work is ongoing to validate and extend the code to full magnetohydrodynamics. FLUX has significant scaling advantages over conventional models: for ``magnetic carpet'' models, with photospheric line-tied boundary conditions, FLUX simul...
Modeling TeV Class Plasma Afterburners
Huang Cheng Kun; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Zhou, Miaomiao
2005-01-01
Plasma wakefield acceleration can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerator. In the recent E164X experiment, substantial energy gain of about 3Gev has been observed. Thus, a plasma afterburner, which has been proposed to double the incoming beam energy for a future linear collider, is now of great interest. In an afterburner, a particle beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the beam. This wakefield can then be used to accelerate part of the drive beam or a trailing beam. Several issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are critical to the afterburner concept. We investigate the nonlinear beam-plasma interaction in such scenario using the 3D computer modeling code QuickPIC. We will report the latest simulation results of both 50 GeV and 1 TeV plasma afterburner stages for electrons including the beam-...
A collisionless plasma thruster plume expansion model
Merino, Mario; Cichocki, Filippo; Ahedo, Eduardo
2015-06-01
A two-fluid model of the unmagnetized, collisionless far region expansion of the plasma plume for gridded ion thrusters and Hall effect thrusters is presented. The model is integrated into two semi-analytical solutions valid in the hypersonic case. These solutions are discussed and compared against the results from the (exact) method of characteristics; the relative errors in density and velocity increase slowly axially and radially and are of the order of 10-2-10-3 in the cases studied. The plasma density, ion flux and ambipolar electric field are investigated. A sensitivity analysis of the problem parameters and initial conditions is carried out in order to characterize the far plume divergence angle in the range of interest for space electric propulsion. A qualitative discussion of the physics of the secondary plasma plume is also provided.
Damage modelling in plasma facing components
Energy Technology Data Exchange (ETDEWEB)
Martin, E. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)], E-mail: martin@lcts.u-bordeaux1.fr; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Schlosser, J.; Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, St. Paul Lez Durance (France)
2009-04-30
The plasma facing components of controlled fusion devices are submitted to high heat fluxes in operating conditions (from 10 to 20 MW/m{sup 2}). These components are made of a carbon/carbon composite tile bonded to a copper alloy heat sink. Due to the thermal expansion mismatch between the composite and the copper alloy, significant stresses may develop during fabrication and under heat load inducing damage in the composite material as well as at the copper/composite interface. The present study describes a modelling approach aimed at predicting damage development in plasma facing components. For this purpose, damage laws related to the non-linear behaviour of both the composite material and the copper/composite joint have been identified. These constitutive laws were then introduced in a numerical model representative of a plasma facing component. Results show the development of damage within the assembly submitted to a heat load.
Benchmark of the Local Drift-kinetic Models for Neoclassical Transport Simulation in Helical Plasmas
Huang, B; Kanno, R; Sugama, H; Matsuoka, S
2016-01-01
The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are ZOW, ZMD, DKES-like, and global, as classified in [Matsuoka et al., Physics of Plasmas 22, 072511 (2015)]. The magnetic geometries of HSX, LHD, and W7-X are employed in the benchmarks. It is found that the assumption of $\\boldsymbol E \\times \\boldsymbol B$ incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models, when $\\boldsymbol E \\times \\boldsymbol B$ is sufficiently large compared to the magnetic drift velocities. On the other hand, when $\\boldsymbol E \\times \\boldsymbol B$ and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at $E_r \\simeq 0$. In low collisionality plasmas, in particular, the tangential drift effect works w...
Rognlien, Thomas; Rensink, Marvin
2016-10-01
Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Geophysical Plasmas and Atmospheric Modeling.
1982-01-01
will be submitted to the Journal of the Atmospheric Sciences. 32 - .- I. LIMITATIONS ON STRATOSPHERIC DYNAMICS We have performed an investigation of...Amplitudes" which will be submitted to the Journal of the Atmospheric Sciences. 1i 33 A& J. GENERAL CIRCULATION MODEL STUDIES Comparison computer runs...In tis case, as clearly shov.i by Petvia-mensona. I ths cseas ceary sou byPetia- cavities requires a local theory going beyond the limitshvilli,’ the
Modeling non local thermodynamic equilibrium plasma using the Flexible Atomic Code data
Han, Bo; Salzmann, David; Zhao, Gang
2015-01-01
We present a new code, RCF("Radiative-Collisional code based on FAC"), which is used to simulate steady-state plasmas under non local thermodynamic equilibrium condition, especially photoinization dominated plasmas. RCF takes almost all of the radiative and collisional atomic processes into rate equation to interpret the plasmas systematically. The Flexible Atomic Code (FAC) supplies all the atomic data RCF needed, which insures calculating completeness and consistency of atomic data. With four input parameters relating to the radiation source and target plasma, RCF calculates the population of levels and charge states, as well as potentially emission spectrum. In preliminary application, RCF successfully reproduces the results of a photoionization experiment with reliable atomic data. The effects of the most important atomic processes on the charge state distribution are also discussed.
Progress and records in the study of endogenetic mineralization during collisional orogenesis
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
To develop and perfect the theory of plate tectonics and regional metallogeny,metallogenesis during collisional orogenesis should be thoroughly studied and will attract increasing attention of more and more scientists.This paper presents the main aspects of research and discussions on metallogenesis during collisional orogenesis after the development of plate tectonics,and accordingly divides the study history into two stages,i.e.the junior stage during 1971-1990 and the senior stage after 1990.Beginning with the negation of mineralization in the collision regime by Guild (1971),the focus of study was put on whether there occurred any mineralization during collisional orogenesis at the junior stage.At the senior stage,which is initiated by the advance of metallogenic and petrogenic model for collisional orogenesis,scientists begin to pay their attention to the geodynamic mechanism of metallogenesis,spatial and temporal distribution of ore deposits,ore-forming fluidization,relationship between petrogenesis and mineralization in collisional orogenesis,etc.Abundance of typical collisional orogens such as Himalayan,China has best natural conditions to study collisional metallogenesis.Great progress in the study of metallogenesis during collisional orogenesis has been made by Chinese geologists.Therefore,we hope that the Chinese geologists and Chinese governments at various levels to pay more attention to the study of collisional metallogenesis.Some urgent problems are suggested to be solved so as to bring about breakthroughs in the aspects concerned.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogério; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-01-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional proc...
Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures
Energy Technology Data Exchange (ETDEWEB)
Adam B. Sefkow and Samuel A. Cohen
2009-04-09
Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.
Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models
Directory of Open Access Journals (Sweden)
Chloe Berenguer
2012-01-01
Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.
Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls
Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.
2017-06-01
The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum
Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas
Mancini, Roberto
2017-06-01
In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Modeling of plasma devices for pulsed power
Kunc, Joseph A.; Gundersen, Martin A.
1984-07-01
This letter considers quantitative models of microscopic processes in plasmas formed in gas phase devices for pulsed power. Although models have been developed for devices such as lasers, there are others, such as switches, where these processes have been treated only phenomenologically. Further, transport data must be adjusted to include the effects of high electron density. It is shown that it is necessary to use a microscopic model to correctly describe the device behavior. Examples presented include the effect of Coulomb collisions on conductivity in various gases, and the ionization processes in a hydrogen thyratron.
Jutzi, M; Toliou, A; Morbidelli, A; Brasser, R
2016-01-01
There is an active debate about whether the properties of comets as observed today are primordial or, alternatively, if they are a result of collisional evolution or other processes. We investigate the effects of collisions on a comet with a structure like 67P/C-G. We develop scaling laws for the critical specific impact energies required for a significant shape alteration. These are then used in simulations of the combined dynamical and collisional evolution of comets in order to study the survival probability of a primordially formed object with a shape like 67P/C-G. The effects of impacts on comet 67P/C-G are studied using a SPH shock physics code. The resulting critical specific impact energy defines a minimal projectile size which is used to compute the number of shape-changing collisions in a set of dynamical simulations. These simulations follow the dispersion of the trans-Neptunian disk during the giant planet instability, the formation of a scattered disk, and produce 87 objects that penetrate into t...
Intense sediment transport: Collisional to turbulent suspension
Berzi, Diego; Fraccarollo, Luigi
2016-02-01
A recent simple analytical approach to the problem of steady, uniform transport of sediment by a turbulent shearing fluid dominated by interparticle collisions is extended to the case in which the mean turbulent lift may partially or totally support the weight of the sediment. We treat the granular-fluid mixture as a continuum and make use of constitutive relations of kinetic theory of granular gases to model the particle phase and a simple mixing-length approach for the fluid. We focus on pressure-driven flows over horizontal, erodible beds and divide the flow itself into layers, each dominated by different physical mechanisms. This permits a crude analytical integration of the governing equations and to obtain analytical expressions for the distribution of particle concentration and velocity. The predictions of the theory are compared with existing laboratory measurements on the flow of glass spheres and sand particles in water. We also show how to build a regime map to distinguish between collisional, turbulent-collisional, and fully turbulent suspensions.
Collisional Features in Saturn's F Ring
Attree, Nicholas Oliver; Murray, Carl; Cooper, Nicholas; Williams, Gareth
2016-10-01
Saturn's highly dynamic F ring contains a population of small (radius ~ 1 km) moonlets embedded within its core or on nearby orbits. These objects interact, both gravitationally and collisionally, with the ring producing a range of features, some of which are unique to it. Here we present a brief overview of F ring collisional processes, investigated using a combination of Cassini imaging, simulations and orbital dynamics. Collisions produce linear debris clouds, known as 'jets' and 'mini-jets', which evolve, due to differential orbital motion, over periods ranging from hours to months. Mini-jet-forming collisions occur daily in the F ring whilst larger, more dramatic, events are rarer but produce jets that persist for many months, 'wrapping around' the ring to form almost parallel strands. Measuring jet properties, such as formation rates and relative orbits, allows us to infer a local population of order hundreds of objects colliding at relative velocities of a few metres per second. N-body modelling of the collisions shows good agreement with observations when two aggregates are allowed to impact and partially fragment (as opposed to a solid moonlet encountering dust), implying massive objects both in the core and nearby. Multiple, repeated collisions by the same, or fragments of the same, object are also important in explaining some jet morphology, showing that many objects survive the collisions. The F ring represents a natural laboratory for observing low-velocity collisions between icy objects as well as the ongoing aggregation and accretion that most-likely forms them.
Modeling Plasmas with Strong Anisotropy, Neutral Fluid Effects, and Open Boundaries
Meier, Eric T.
Three computational plasma science topics are addressed in this research: the challenge of modeling strongly anisotropic thermal conduction, capturing neutral fluid effects in collisional plasmas, and modeling open boundaries in dissipative plasmas. The research efforts on these three topics contribute to a common objective: the improvement and extension of existing magnetohydrodynamic modeling capability. Modeling magnetically confined fusion-related plasmas is the focus of the research, but broader relevance is recognized and discussed. Code development is central to this work, and has been carried out within the flexible physics framework of the highly parallel HiFi implicit spectral element code. In magnetic plasma confinement, heat conduction perpendicular to the magnetic field is extremely slow compared to conduction parallel to the field. The anisotropy in heat conduction can be many orders of magnitude, and the inaccuracy of low-order representations can allow parallel heat transport to "leak" into the perpendicular direction, resulting in numerical perpendicular transport. If the computational grid is aligned to the magnetic field, this numerical error can be eliminated, even for low-order representations. However, grid alignment is possible only in idealized problems. In realistic applications, magnetic topology is chaotic. A general approach for accurately modeling the extreme anisotropy of fusion plasmas is to use high-order representations which do not require grid alignment for sufficient resolution. This research provides a comprehensive assessment of spectral element representation of anisotropy, in terms of dependence of accuracy on grid alignment, polynomial degree, and grid cell size, and gives results for two- and three-dimensional cases. Truncating large physical domains to concentrate computational resources is often necessary or desirable in simulating natural and man-made plasmas. A novel open boundary condition (BC) treatment for such
Modeling Detached Plasmas in DIII-D
Porter, Gary D.; Rognlien, T. D.; Rensink, M. E.; DIII-D Team
1996-11-01
The ITER divertor design relies on operation of the machine with a detached divertor plasma as a means of reducing the divertor heat load to manageable levels. This operating mode has been seen on all of the world's diverted tokamaks, and is characterized by very low plate temperatures and ion currents. Experimental results on DIII-D have shown the plate electron temperature is between 1 and 2 eV. We describe the results of modeling these detached plasmas with the UEDGE code in this paper. Plasma detachment can be achieved in a variety of ways in the code as well as in experiment. Simulations indicate the detachment process occurs in two steps: a thermal collapse in which the plate temperature drops to 1 to 2 eV, followed by a decrease in the plate ion current. When the low temperature region extends off the plate, parallel momentum of the plasma is reduced by ion/neutral interactions. The plate ion current decreases when the parallel momentum is reduced sufficiently to permit volume recombination processes to compete with ion flow to the plate.
Kinetic model of stimulated emission created by resonance pumping of aluminum laser-induced plasma
Gornushkin, I. B.; Kazakov, A. Ya.
2017-06-01
Stimulated emission observed experimentally in an aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong 3s23p-3s24s transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the population inversion and lasing at wavelengths of 2100 n m and 396.1 nm. The population inversion for lasing at 2100 n m is created by depopulation of the ground 3s23p state and population of the 3s25s state via the absorption of the resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped 3s25s state to the excited 3s24s state via cascade transitions driven optically and by collisions. In particular, efficient are the mixing transitions between neighboring states separated by small gaps on the order of k T at plasma temperatures of 5000-10 000 K. The model predicts that the population inversion and corresponding gain may reach high values even at very moderate pump energy of several μJ per pulse. The efficiency of lasing at 2100 n m and 396.1 nm is estimated to be ˜3% and 0.05%, correspondingly with respect to the pump laser intensity. The gain for lasing at 396.1 nm can reach as high as ˜40 cm-1. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experimental data.
ELECTRON HEAT FLUX IN THE SOLAR WIND: ARE WE OBSERVING THE COLLISIONAL LIMIT IN THE 1 AU DATA?
Energy Technology Data Exchange (ETDEWEB)
Landi, S. [Dipartimento di Fisica e Astronomia Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, L. [The Blackett Laboratory, Imperial College London Prince Consort Road, London SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot 5, place J. Janssen, F-92195 Meudon Cedex (France)
2014-07-20
Using statistically significant data at 1 AU, it has recently been shown (Bale et al.) that in the solar wind, when the Knudsen number K {sub T} (the ratio between the electron mean free path and the electron temperature scale height) drops below about 0.3, the electron heat flux q intensity rapidly approaches the classical collisional Spitzer-Härm limit. Using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we observe that the heat flux strength does indeed approach the collisional value for Knudsen numbers smaller than about 0.3 in very good agreement with the observations. However, closer inspection of the heat flux properties, such as its variation with the heliocentric distance and its dependence on the plasma parameters, shows that for Knudsen numbers between 0.02 and 0.3 the heat flux is not conveniently described by the Spitzer-Härm formula. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity approaches the collisional limit when the Knudsen drops below ∼0.3, the collisional limit is not a generally valid closure for a Knudsen larger than 0.01. Moreover, the good agreement between the heat flux from our model and the heat flux from solar wind measurements in the high-Knudsen number regime seems to indicate that the heat flux at 1 AU is not constrained by electromagnetic instabilities as both wave-particle and wave-wave interactions are neglected in our calculations.
Optimal electric potential profile in a collisional magnetized thruster
Fruchtman, Amnon; Makrinich, Gennady
2016-10-01
A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.
Collisional Energy Loss of Non Asymptotic Jets in a QGP
Adil, A; Horowitz, W A; Wicks, S
2006-01-01
We calculate the collisional energy loss suffered by a heavy (charm) quark created at a finite time within a Quark Gluon Plasma (QGP) in the classical linear response formalism. We pay close attention to the problem of formulating a conserved current and accounting for binding and radiative energy loss effects. We find that the finite time correction is on the order of a Debye length as expected and the overall energy loss is similar in magnitude to the energy loss suffered by a charge created in the asymptotic past. This result has significant implications for the relative contribution to energy loss from collisional and radiative sources and will have ramifications for the ``single electron puzzle'' at RHIC as well as other experimental observables.
Collisional effects on Rayleigh-Taylor-induced magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Manuel, M. J.-E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Flaig, M.; Plewa, T. [Florida State University, Tallahassee, Florida 32306 (United States); Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2015-05-15
Magnetic-field generation from the Rayleigh-Taylor (RT) instability was predicted more than 30 years ago, though experimental measurements of this phenomenon have only occurred in the past few years. These pioneering observations demonstrated that collisional effects are important to B-field evolution. To produce fields of a measurable strength, high-intensity lasers irradiate solid targets to generate the nonaligned temperature and density gradients required for B-field generation. The ablation process naturally generates an unstable system where RT-induced magnetic fields form. Field strengths inferred from monoenergetic-proton radiographs indicate that in the ablation region diffusive effects caused by finite plasma resistivity are not negligible. Results from the first proof-of-existence experiments are reviewed and the role of collisional effects on B-field evolution is discussed in detail.
Oikonomou, V K; Park, Miok
2014-01-01
We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential $F(R)$ gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and non-collisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and non-collisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the result...
Meneghini, Francesca; Marroni, Michele; Pandolfi, Luca
2017-04-01
Orogenic processes are widely demonstrated to be strongly controlled by inherited structures. The paleogeography of the converging margins, and the tectonic processes responsible for their configuration, will influence the location of subduction initiation, the distribution of deformation between upper and lower plate, the shape of the accretionary prism and of the subsequent orogeny, through controlling the development of single or doubly-vergent orogens, and, as a corollary, the modality of exhumation of metamorphosed units. The "alpine age" collisional belts of the Mediterranean area are characterized by tangled architectures derived from the overlapping of several deformation events related to a multiphase, long history that comprises not only the collision of continental margins, but that can be regarded as an heritage of both the rifting-related configuration of the continental margins, and the subduction-related structures. The Northern Apennines is a segment of these collisional belts that originated by the Late Cretaceous-Middle Eocene closure of the northern branch of the western Tethys, and the subsequent Late Eocene-Early Oligocene continental collision between the Europe and Adria plates. Due to a different configuration of the paired Adria and Europe continental margins, inherited from a rifting phase dominated by asymmetric, simple-shear kinematics, the Northern Apennines expose a complex groups of units, referred to as Ligurian Units, that record the incorporation into the subduction factory of either fragments of the Ligure-Piemontese oceanic domain (i.e. Internal Ligurian Units), and various portions of the thinned Adria margin (i.e. External Ligurian Units), describable as an Ocean-Continent Transition Zone (OCTZ). The structural relationships between these groups of Units are crucial for the definition of the pre-collisional evolution of the belt and have been the subject of big debates in the literature, together with the location and
Collisional properties of weakly bound heteronuclear dimers
Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.
2008-01-01
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating
Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-symmetric Stellarators
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2008-11-01
Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, previously calculated radial particle fluxes for the low-collisionality ``ν'' and ``1/ν'' regimes [1] are unified into a single particle flux (or toroidal viscous force). Provided pitch-angle scattering dominates over collisional energy exchange, the energy component of phase space can be decoupled into independent regions (E >Ec. for ν regime, E Callen, Phys. Fluids 19, 667 (1976).
Energy Technology Data Exchange (ETDEWEB)
Galasso, G., E-mail: germano.galasso@gmail.com [Vienna University of Technology, Institute of Mechanics and Mechatronics, Getreidemarkt 9, 1060 Vienna (Austria); KAI Kompetenzzentrum GmbH, Europastrasse 8, 9524 Villach (Austria); Kaltenbacher, M. [Vienna University of Technology, Institute of Mechanics and Mechatronics, Getreidemarkt 9, 1060 Vienna (Austria); Tomaselli, A. [Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia (Italy); Scarpa, D. [INFN Legnaro National Laboratories, viale dell' Università 2, 35020 Legnaro (Italy)
2015-03-28
In semiconductor industry, pulsed nanosecond lasers are widely applied for the separation of silicon wafers. Here, the high intensities employed activate a cascade of complex multi-physical and multi-phase mechanisms, which finally result in the formation of a laser induced plasma, shielding the target from the incoming laser beam. Such induced plasma plume, by preventing the laser to effectively reach the target, reduces the overall efficiency and controllability of the ablation process. Modelling can be a useful tool in the optimization of industrial laser applications, allowing a deeper understanding of the way the laser energy distributes between target and induced plasma. Nevertheless, the highly multi-physical character of laser ablation poses serious challenges on the implementation of the various mechanisms underlying the process within a common modelling framework. A novel strategy is here proposed in order to simulate in a simplified, yet physically consistent way, a typical industrial application as laser ablation of silicon wafers. Reasonable agreement with experimental findings is obtained. Three fundamental mechanisms have been identified as the main factors influencing the accuracy of the numerical predictions: the transition from evaporative to volumetric mass removal occurring at critical temperature, the collisional and radiative processes underlying the initial plasma formation stage and the increased impact of the liquid ejection mechanism when a sub-millimeter laser footprint is used.
Analysis of Collisional Cross Sections of Rydberg nS and nD States of Ultracold Caesium Atoms
Feng, Zhigang; Miao, Jingyuan; Zhao, Kejia; Li, Difei; Yang, Zhijun; Wu, Fan; Wu, Zhaochun; Zhao, Jianming; Jia, Suotang
2016-05-01
We present a simple analytical formula derived from an existing theoretical model and a detailed theoretical investigation of effects of the van der Waals interaction and dipole-dipole interaction on collisional cross sections as functions of various parameters. We analyze the main mechanism leading to large collisional cross sections on the basis of our previous experimental results using the present formula and also analyze the effects of some other factors on collisional cross sections.
Time-dependent Integrated Predictive Modeling of ITER Plasmas
Institute of Scientific and Technical Information of China (English)
R.V. Budny
2007-01-01
@@ Introduction Modeling burning plasmas is important for speeding progress toward practical Tokamak energy production. Examples of issues that can be elucidated by modelinginclude requirements for heating, fueling, torque, and current drive systems, design of diagnostics, and estimates of the plasma performance (e.g., fusion power production) in various plasma scenarios. The modeling should be time-dependent to demonstrate that burning plasmas can be created, maintained (controlled), and terminated successfully. The modeling also should be integrated to treat self-consistently the nonlinearities and strong coupling between the plasma, heating, current drive, confinement, and control systems.
Damping of electron center-of-mass oscillation in ultracold plasmas
Energy Technology Data Exchange (ETDEWEB)
Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)
2016-05-15
Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.
Modeling of low pressure plasma sources for microelectronics fabrication
Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid
2017-10-01
Chemically reactive plasmas operating in the 1 mTorr–10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E × B drift.
Modelling of new generation plasma optical devices
Directory of Open Access Journals (Sweden)
Litovko Irina V.
2016-06-01
Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.
THE COLLISIONAL EVOLUTION OF DEBRIS DISKS
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Andras; Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Balog, Zoltan, E-mail: agaspar@as.arizona.edu, E-mail: grieke@as.arizona.edu, E-mail: balog@mpia.de [Max-Plank Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)
2013-05-01
We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration
A kinetic model of plasma turbulence
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature
Spectra of neutral carbon for plasma diagnostics
Energy Technology Data Exchange (ETDEWEB)
Wang, J.G.; Kato, M.; Kato, T.
2000-10-01
Recently, carbon pellet experiments have been performed on W-7AS and a few CI lines have been observed in the situation of the pellet cloud from the cold dense plasma to hot ambient plasma. In so large varied conditions, the collisional radiative (CR) model is needed to study the spectra. In this article, a CR model including 79 states with n {<=} 6 and l {<=} 4 is developed, and then the line spectra and line intensity ratios are evaluated in the ionizing and recombining plasma, respective. (author)
Implementation of a plasma-neutral model in NIMROD
Taheri, S.; Shumlak, U.; King, J. R.
2016-10-01
Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.
Kinetic modelling of runaway electron avalanches in tokamak plasmas
Nilsson, E; Peysson, Y; Granetz, R S; Saint-Laurent, F; Vlainic, M
2015-01-01
Runaway electrons (REs) can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force due to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate REs mainly through knock-on collisions, where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of REs. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3-D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. A bounce-averaged knock-on source term is derived. The generation of REs from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a s...
Plasma Processes : A self-consistent kinetic modeling of a 1-D, bounded, plasma in equilibrium
Indian Academy of Sciences (India)
Monojoy Goswami; H Ramachandran
2000-11-01
A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ion-neutral collision mean free path and the size of the device. Coulomb collisions are neglected in favour of collisions with neutrals, and the particle source is modeled as a uniform Maxwellian. Electrons are treated as an inertialess but collisional ﬂuid. The ion distribution function for the trapped and the transiting orbits is obtained. Interesting ﬁndings include the anomalous heating of ions as they approach the presheath, the development of strongly non-Maxwellian features near the last mfp, and strong modiﬁcations of the sheath criterion.
Energy Technology Data Exchange (ETDEWEB)
Misguich, J.H
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.
Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR
Energy Technology Data Exchange (ETDEWEB)
Redi, M.H.; Zarnstorff, M.C.; White, R.B.; Budny, R.V.; Janos, A.C.; Owens, D.K.; Schivell, J.F.; Scott, S.D.; Zweben, S.J.
1995-07-01
Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20--30% reduction in alpha particle heating is predicted for q{sub a} = 6--14, R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion.
Asymptotic-Preserving methods and multiscale models for plasma physics
Degond, Pierre
2016-01-01
The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokio, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 816-8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2001-03-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is placed on understanding of effects on turbulence characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Analysis of the transient collisional x-ray lasers
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira; Utsumi, Takayuki; Moribayashi, Kengo; Zhidkov, Alexei; Kawachi, Tetsuya; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Daido, Hiroyuki [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment
2001-10-01
The spatial and temporal evolution of the gain of a transient collisional x-ray lasers had been investigated using a plasma hydrodynamics code coupled with a detailed atomic kinetics code. The calculated gain of a Ni-like Ag laser pumped by two 100ps laser pulses agrees qualitatively with the experiment. Calculations for a thin foil target irradiated by two 2ps laser pulses shows that a high gain (>50/cm) can be obtained by adjusting the temporal interval between the two pump pulses. (author)
Modeling Quark Gluon Plasma Using CHIMERA
Abelev, Betty
2011-09-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.
Modeling Quark Gluon Plasma Using CHIMERA
Abelev, Betty B I
2011-01-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (T$_{\\mathrm{init}}$), presence or absence of initial flow, viscosity over entropy density ($\\eta$/s) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. $\\chi^2$/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP wi...
Influence of collisional dephasing processes on superfluorescence
Maki, Jeffery J.; Malcuit, Michelle S.; Raymer, Michael G.; Boyd, Robert W.; Drummond, Peter D.
1989-11-01
We present a quantum-mechanical treatment of the influence of collisional dephasing processes on the statistical properties of superfluorescence (SF). The theory, which treats nonlinear propagation effects as well as quantum noise, shows how the nature of the cooperative emission process changes from that of SF to that of amplified spontaneous emission as the collisional dephasing rate is varied. The predictions of how the SF delay time varies with the collisional dephasing rate are in good agreement with the results of a recent experiment [M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. W. Boyd, Phys. Rev. Lett. 59, 1189 (1987)].
A New Global Core Plasma Model of the Plasmasphere
Gallagher, D. L.; Comfort, R. H.; Craven, P. D.
2014-01-01
The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented.
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
Characterization of a plasma photonic crystal using the multi-fluid plasma model
Thomas, Whitney; Shumlak, Uri; Miller, Sean
2016-10-01
Plasma photonic crystals have great potential to expand the capabilities of current microwave filtering and switching technologies by providing high speed control of energy band-gap/pass characteristics. While there has been considerable research into dielectric, semiconductor, metallic, and even liquid crystal based radiation manipulation, using plasmas is a relatively new field. Concurrently, processing power has reached levels where realistic, computationally expensive, multi-fluid plasma simulations are now possible. Unlike single-fluid magnetohydrodynamic (MHD) models, multi-fluid plasma models capture the electron fluid response to electromagnetic waves, a key process responsible for reflecting radiation. In this study, a 5-moment multi-fluid plasma model is implemented in University of Washington's WARPXM computational plasma physics code to examine the energy band-gap characteristics of an array of plasma-filled rods. This configuration permits the thorough analysis of the effect that plasma temperature, density, and array configuration have on energy transmission, absorption, and reflection. Furthermore, high-resolution simulations of the plasma columns gives a detailed window into plasma-radiation interactions. This work is supported by a Grant from the United States Air Force Office of Scientific Research.
Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape
Energy Technology Data Exchange (ETDEWEB)
Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hagen, E. C. [National Security Technologies, Las Vegas, NV 89030 (United States); Rose, D. V.; Welch, D. R. [Voss Scientific LLC, Albuquerque NM 87108 (United States)
2014-12-15
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.
Thebault, Philippe
2011-01-01
Debris discs are traditionally studied using two distinct types of numerical models: statistical particle-in-a-box codes to study their collisional and size distribution evolution, and dynamical N-body models to study their spatial structure. The absence of collisions from N-body codes is in particular a major shortcoming, as collisional processes are expected to significantly alter the results obtained from pure N-body runs. We present a new numerical model, to study the spatial structure of perturbed debris discs at dynamical and collisional steady-state. We focus on the competing effects between gravitational perturbations by a massive body (planet or star), collisional production of small grains, and radiation pressure placing these grains in possibly dynamically unstable regions. We consider a disc of parent bodies at dynamical steady-state, from which small radiation-pressure-affected grains are released in a series of runs, each corresponding to a different orbital position of the perturber, where part...
A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres
Munafò, Alessandro; Mansour, Nagi N.; Panesi, Marco
2017-04-01
The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α, β, and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.
Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow
Agarwal, Pulkit
Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self
Pickup ion-mediated plasma physics of the outer heliosphere and very local interstellar medium
Zank, G. P.
2016-12-01
Observations of plasma and turbulence in the outer heliosphere (the distant supersonic solar wind and the subsonic solar wind beyond the heliospheric termination shock) made by the Voyager Interstellar Mission and the energetic neutral atom observations made by the IBEX spacecraft have revealed that the underlying plasma in the outer heliosphere and very local interstellar medium (VLISM) comprises distinct thermal proton and electron and suprathermal pickup ion (PUI) populations. Estimates of the appropriate collisional frequencies show that the multi-component plasma is not collisionally equilibrated in either the outer heliosphere or VLISM. Furthermore, suprathermal PUIs in these regions form a thermodynamically dominant component. We review briefly a subset of the observations that led to the realization that the solar wind-VLISM interaction region is described by a non-equilibrated multi-component plasma and summarizes the derivation of suitable plasma models that describe a PUI-mediated plasma.
Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor
Takizuka, T.
2017-03-01
Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.
Koechl, F.; Loarte, A.; Parail, V.; Belo, P.; Brix, M.; Corrigan, G.; Harting, D.; Koskela, T.; Kukushkin, A. S.; Polevoi, A. R.; Romanelli, M.; Saibene, G.; Sartori, R.; Eich, T.; Contributors, JET
2017-08-01
The dynamics for the transition from L-mode to a stationary high Q DT H-mode regime in ITER is expected to be qualitatively different to present experiments. Differences may be caused by a low fuelling efficiency of recycling neutrals, that influence the post transition plasma density evolution on the one hand. On the other hand, the effect of the plasma density evolution itself both on the alpha heating power and the edge power flow required to sustain the H-mode confinement itself needs to be considered. This paper presents results of modelling studies of the transition to stationary high Q DT H-mode regime in ITER with the JINTRAC suite of codes, which include optimisation of the plasma density evolution to ensure a robust achievement of high Q DT regimes in ITER on the one hand and the avoidance of tungsten accumulation in this transient phase on the other hand. As a first step, the JINTRAC integrated models have been validated in fully predictive simulations (excluding core momentum transport which is prescribed) against core, pedestal and divertor plasma measurements in JET C-wall experiments for the transition from L-mode to stationary H-mode in partially ITER relevant conditions (highest achievable current and power, H 98,y ~ 1.0, low collisionality, comparable evolution in P net/P L-H, but different ρ *, T i/T e, Mach number and plasma composition compared to ITER expectations). The selection of transport models (core: NCLASS + Bohm/gyroBohm in L-mode/GLF23 in H-mode) was determined by a trade-off between model complexity and efficiency. Good agreement between code predictions and measured plasma parameters is obtained if anomalous heat and particle transport in the edge transport barrier are assumed to be reduced at different rates with increasing edge power flow normalised to the H-mode threshold; in particular the increase in edge plasma density is dominated by this edge transport reduction as the calculated neutral influx across the
Atomic processes in optically thin plasmas
Kaastra, Jelle S.; Gu, Liyi; Mao, Junjie; Mehdipour, Missagh; Raassen, Ton; Urdampilleta, Igone
2016-10-01
The Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution we give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas, where improvements have to be made that are important for the analysis of astrophysical plasmas. We present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further we discuss the development of models for photo-ionised plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.
Fedele, Lorenzo; Seghedi, Ioan; Chung, Sun-Lin; Laiena, Fabio; Lin, Te-Hsien; Morra, Vincenzo; Lustrino, Michele
2016-12-01
Post-collisional magmatism in the Late Miocene Rodna-Bârgău subvolcanic district (East Carpathians) gave rise to a wide variety of rock compositions, allowing recognition of four groups of calcalkaline rocks with distinctive petrography, mineral chemistry, whole-rock geochemistry and Sr-Nd-Hf isotope features. New U-Pb zircon datings, together with literature data, indicate that the emplacement of the four rock groups was basically contemporaneous in the 11.5-8 Ma time span. The low potassium group (LKG) includes the most abundant lithotypes of the area, ranging from basaltic andesite to dacite, characterized by K-poor tschermakitic amphibole, weak enrichment in LILE and LREE, relatively low 87Sr/86Sr, coupled with relatively high 143Nd/144Nd and 176Hf/177Hf. The high potassium group (HKG) includes amphibole-bearing microgabbro, amphibole andesite and amphibole- and biotite dacite, with K-richer magnesio-hastingsite to hastingsite amphibole, more marked enrichments in incompatible elements, higher 87Sr/86Sr and lower 143Nd/144Nd and 176Hf/177Hf. These two main rock groups seem to have originated from similar juxtaposed mantle sources, with the HKG possibly related to slightly more enriched domains (with higher H2O reflected by the higher modal amphibole) with respect to LKG (with higher plagioclase/amphibole ratios). The evolution of the two rock series involved also open-system processes, taking place mainly in the upper crust for the HKG, in the lower crust for LKG magmas. In addition, limited occurrences of generally younger strongly evolved peraluminous rhyolites and microgranites (Acid group) and sialic-dominated "leucocratic" andesites and dacites (LAD group) were also recognized to the opposite outermost areas of the district. These two latter rock groups were generated by the melting of a basic metamorphic crustal source (respectively in hydrous and anhydrous conditions), favored by the heat released by mantle melts from the adjoining central area. The
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
DEFF Research Database (Denmark)
Madsen, Jens
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...
Modulating toroidal flow stabilization of edge localized modes with plasma density
Cheng, Shikui; Banerjee, Debabrata
2016-01-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high-$n$ edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high-$n$ modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high-$n$ modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in recent EAST experiments.
Spinodal Instabilities of Baryon-Rich Quark-gluon Plasma in the PNJL Model
Li, Feng
2016-01-01
Using the Polyakov-Nambu-Jona-Lasinia (PNJL) model, we study the spinodal instability of a baryon-rich quark-gluon plasma in the linear response theory. We find that the spinodal unstable region in the temperature and density plane shrinks with increasing wave number of the unstable mode and is also reduced if the effect of Polyakov loop is not included. In the small wave number or long wavelength limit, the spinodal boundaries in both cases of with and without the Polyakov loop coincide with those determined from the isothermal spinodal instability in the thermodynamic approach. Also, the vector interactions among quarks is found to suppress unstable modes of all wave numbers. Moreover, the growth rate of unstable modes initially increases with the wave number but is reduced when the wave number becomes large. Including the collisional effect from quark scattering via the linearized Boltzmann equation, we further find that it decreases the growth rate of unstable modes of all wave numbers. Relevance of these...
Modelling of the dual frequency capacitive sheath in the intermediate pressure range
Energy Technology Data Exchange (ETDEWEB)
Boyle, P C [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Robiche, J [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, Palaiseau 91 128 Cedex (France); Turner, M M [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)
2004-05-21
The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared.
Collisional processes and size distribution in spatially extended debris discs
Thebault, Philippe
2007-01-01
We present a new multi-annulus code for the study of collisionally evolving extended debris discs. We first aim to confirm results obtained for a single-annulus system, namely that the size distribution in "real" debris discs always departs from the theoretical collisional equilibrium $dN\\proptoR^{-3.5}dR$ power law, especially in the crucial size range of observable particles (<1cm), where it displays a characteristic wavy pattern. We also aim at studying how debris discs density distributions, scattered light luminosity profiles, and SEDs are affected by the coupled effect of collisions and radial mixing due to radiation pressure affected small grains. The size distribution evolution is modeled from micron-sized grains to 50km-sized bodies. The model takes into account the crucial influence of radiation pressure-affected small grains. We consider the collisional evolution of a fiducial a=120AU radius disc with an initial surface density in $\\Sigma(a)\\propto a^{\\alpha}$. We show that the system's radial e...
Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mao Ming; Bogaerts, Annemie, E-mail: annemie.bogaerts@ua.ac.be [Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, B-2610 Wilrijk-Antwerp (Belgium)
2011-01-01
A hybrid model, called the hybrid plasma equipment model (HPEM), is used to describe the plasma chemistry in an inductively coupled plasma, operating in a gas mixture of C{sub 2}H{sub 2} with either H{sub 2} or NH{sub 3}, as typically used for carbon nanotube (CNT) growth. Two-dimensional profiles of power density, electron temperature and density, gas temperature, and densities of some plasma species are plotted and analyzed. Besides, the fluxes of the various plasma species towards the substrate (where the CNTs can be grown), as well as the decomposition rates of the feedstock gases (C{sub 2}H{sub 2}, NH{sub 3} and H{sub 2}), are calculated as a function of the C{sub 2}H{sub 2} fraction in both gas mixtures.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Collisional and collision-less surface heating in intense laser matter interaction
Kemp, Andreas; Divol, Laurent
2015-11-01
We explore the interaction of high-contrast intense sub-100 fs laser pulses with solid density tar- gets, using numerically converged collisional particle-in-cell simulations in one two and three dimen- sions. We observe a competition between two mechanisms that can lead to plasma heating. Inverse bremsstrahlung at solid density on one hand, and electrons scattering off plasma waves on the other, can both heat the skin layer to keV temperatures on a femtosecond time scale, facilitating a heat wave and a source of MeV electrons that penetrate and heat the bulk target. Collision-less effects heat the surface effectively starting at the relativistic intensity threshold, independent of plasma density. Our numerical results show that a high-contrast 1J/100fs laser can drive a solid target into the warm dense matter regime. This system is suitable to ab-initio modeling and experimental probing. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A partially ionized plasma modeling; Un modele de plasma partiellement ionise
Energy Technology Data Exchange (ETDEWEB)
Le Thanh, K.C.; Raviart, P.A
2003-07-01
We propose a model for the partially ionized plasma sheaths near the anode of an anodic spot electric arc where the cathode is considered as an electron emitter. A fluid description takes into account the heating and the ionization of the plasma induced by the electron beam. As physical hypothesis we assume that the condition of charge neutrality is valid. According that the electron mass can be neglected compared to the ion mass, we can assume that ions and atoms have the same velocity and the same temperature. Electrons and heavy particles are then regarded as two separate fluids coexisting in the plasma. Governing equations are then multi-fluid equations with relaxation correction to the local thermodynamic equilibrium (LTE) and heating by Joule effect. Equations are solved by an operator splitting procedure. That is we first discretize the homogeneous conservation laws (i.e. without source terms) by a finite volume method. The second step is to solve the ordinary differential system (i.e, governing equation without transport terms) with an implicit scheme. (authors)
Surface wave and linear operating mode of a plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
Collisional Scaling of the Energy Transfer in Drift-Wave Zonal Flow Turbulence.
Schmid, B; Manz, P; Ramisch, M; Stroth, U
2017-02-03
The collisionality scaling of density and potential coupling together with zonal flow energy transfer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of 128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line with theoretical expectations and is a first experimental verification of the importance of collisionality for large-scale structure formation in magnetically confined toroidal plasmas.
Modeling of plasma jet production from rail and coaxial guns for imploding plasma liner formation*
Mason, R. J.; Faehl, R. J.; Kirikpatrick, R. C.; Witherspoon, D.; Cassibry, J.
2010-11-01
We study the generation of plasma jets for forming imploding plasma liners using an enhanced version of the ePLAS implicit/hybrid model.^1 Typically, the jets are partially ionized D or Ar gases, in initial 3-10 cm long slugs at 10^16-10^18 electron/cm^3, accelerated for microseconds along 15-30 cm rail or coaxial guns with a 1 cm inter-electrode gap and driven by magnetic fields of a few Tesla. We re-examine the B-field penetration mechanisms that can be active in such wall-connected plasmas,^2 including erosion and EMHD influences, which can subsequently impact plasma liner formation and implosion. For the background and emitted plasma components we discuss optimized PIC and fluid modeling techniques, and the use of implicit fields and hybridized electrons to speed simulation. The plasmas are relatively cold (˜3 eV), so results with fixed atomic Z are compared to those from a simple analytic EOS, and allowing radiative heat loss from the plasma. The use of PIC ions is explored to extract large mean-free-path kinetic effects. 1. R. J. Mason and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986) 2. R. Mason, et al., Phys. Fluids B, 5, 1115 (1993). [4pt] *Research supported in part by USDOE Grant DE-SC0004207.
A multi-model plasma simulation of collisionless magnetic reconnection
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2016-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted to plasma energy. A full understanding of this phenomenon, however, is currently incomplete as models developed to date have difficulty explaining the fast reconnection rates often seen in nature, such as in the case of solar flares. Therefore, this behavior represents an area of much research in which various plasma models have been tested in order to understand the proper physics explaining the reconnection process. In this research, the WARPXM code developed at the University of Washington is used to study the problem using a hybrid multi-model simulation employing Hall-MHD and two-fluid plasma models. The simulation is performed on a decomposed domain where different plasma models are solved in different regions, depending on a trade-off between each model's physical accuracy and associated computational expense in each region. The code employs a discontinuous Galerkin (DG) finite element spatial discretization coupled with a Runge-Kutta scheme for time advancement and uses boundary conditions to couple the different plasma models. This work is supported by a Grant from the United States Air Force Office of Scientific Research.
Damage modelling in Plasma Facing Components
Energy Technology Data Exchange (ETDEWEB)
Martin, E.; Camus, G. [Bordeaux-1 Univ. des Sciences et Technologies-3, LCTS, Lab. des Composites Thermostructuraux, CNRS-UMR 5801, 33 - Pessac, (France); Schlosser, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee
2007-07-01
Full text of publication follows: The plasma facing components (PFC) of controlled fusion devices are submitted to high heat fluxes in operating conditions (10 MW/m2 for Tore Supra and up to 20 MW/m{sup 2} for ITER, Cadarache, France). Active cooling is required to maintain a reasonable surface temperature and to avoid critical heat flux and melting of the components. The PFC developed for Tore Supra are made of a carbon/carbon (C/C) composite flat tile bonded to a copper alloy heat sink. Under operating conditions, because of the thermal expansion mismatch existing between the C/C composite and the copper alloy, these components withstand significant stresses which induce damage in the C/C material as well as at the copper/composite interface. Design tools are thus required in order to analyse the initiation and the propagation of damage in thermally loaded PFC. The present study describes a modelling approach aimed at predicting damage in actively cooled PFC. For this purpose, dedicated experimental procedures have been developed and sound constitutive laws taking into account the damage related non linear behaviour of both the C/C material and the Cu-C/C joint have been established. Various tests have first been performed on C/C samples in tension and compression, within the fibre axis and off-axis, as well as in shear using a Iosipescu type device, in order to carefully analyse the non-linear mechanical behaviour of this material. A constitutive law able to handle complex multiaxial loadings, established within a classical thermodynamical framework and using scalar damage variables, was then identified. Tensile and shear tests were also performed on C/C-Cu samples in order to identify a cohesive zone model representative of the damageable behaviour of the joint. These constitutive laws were then introduced in a numerical model representative of a PFC. Obtained results have evidenced the progressive development of damage which takes place in the assembly when
Comets as collisional fragments of a primordial planetesimal disk
Morbidelli, Alessandro
2015-01-01
The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the Solar System, in the context of the so-called "Nice Model". We consider two environments for the collisional evolution: (1) the trans-planetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants, and (2) the dispersing disk during the time that the scattered disk was formed. Simulations have been performed, using different methods in the two cases, to find the number of destructive collisions typically experienced by a comet nucleus of 2km radius. In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4Gy ago, comet-sized planetesimals have a very small chance to survive against destructive colli...
A collisional extension of time-dependent Hartree-Fock
Lacombe, L.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.
2016-12-01
We propose a collisional extension of time-dependent mean-field theories on the basis of a recently proposed stochastic extension of mean-field dynamics (stochastic time-dependent Hartree-Fock, STDHF). The latter theory is unfortunately too involved to envision practical applications in realistic systems in the near future and is thus bound to model systems. It is also hard to explore moderate to low energies with STDHF, because of vanishing transition probabilities that are impossible to sample properly. For such moderately excited situations covering small fluctuations, we compactify sampling by employing the same average mean field for all STDHF trajectories. The new approach, coined average STDHF (ASTDHF), ignores the fluctuations of the mean field but still accounts correctly for the collisional correlations responsible for dissipative features on top of mean-field dynamics. We detail the main features of the new approach in relation to existing equations, in particular quantum kinetic theories. The new theory is directly connected to STDHF, both formally and practically. We thus discuss in detail how the two approaches are related to each other. We apply the new scheme to illustrative examples taking as benchmark STDHF dynamics in 1D. ASTDHF provides results that are in remarkable agreement with the more elaborate STDHF. It makes it a promising approach to deal with dissipative dynamics in finite quantum systems, because of its moderate cost allowing applications in realistic systems and the possibility of exploring any excitation energy range where collisional correlations are expected to play a role.
Progress in plasma liner modeling for MIF
Loverich, John; Hakim, Ammar; Zhou, Sean
2009-11-01
Magnetic confinement fusion and inertial confinement fusion represent the two extremes in terms of density and confinement time in fusion energy research. Both approaches have been studied extensively through the decades pushing technology to the limits. An alternative fusion approach exists between these regimes called magnetized target fusion. In magnetized target fusion longer confinement times are achieved than in ICF through the use of strong magnetic fields, the long confinement time reduces the required plasma density to reach ignition--the approach has advantages over MFE in that it is much more compact and higher density. This work explores computationally a form of magnetized target implosion using a plasma liner. This concept is to be compared with solid liner implosion approach which may not be commercially viable as a reactor due to the ``standoff'' problem, portions of the device are destroyed with each target implosion. We present simulation results of plasma liner formation, jet merging, and plasma jet magnetized target interaction using a fluid plasma code (TxFluids) developed at Tech-X corporation.
Rotation and plasma stability in the Fitzpatrick-Aydemir model
Pustovitov, V. D.
2007-08-01
The rotational stabilization of the resistive wall modes (RWMs) is analyzed within the single-mode cylindrical Fitzpatrick-Aydemir model [R. Fitzpatrick, Phys. Plasmas 9, 3459 (2002)]. Here, the consequences of the Fitzpatrick-Aydemir dispersion relation are derived in terms of the observable growth rate and toroidal rotation frequency of the mode, which allows easy interpretation of the results and comparison with experimental observations. It is shown that this model, developed for the plasma with weak dissipation, predicts the rotational destabilization of RWM in the typical range of the RWM rotation. The model predictions are compared with those obtained in a similar model, but with the Boozer boundary conditions at the plasma surface [A. H. Boozer, Phys. Plasmas 11, 110 (2004)]. Simple experimental tests of the model are proposed.
Alternative modeling methods for plasma-based Rf ion sources
Energy Technology Data Exchange (ETDEWEB)
Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)
2016-02-15
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two
Alternative modeling methods for plasma-based Rf ion sources
Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.
2016-02-01
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models
Collisional quenching of highly rotationally excited HF
Yang, Benhui; Forrey, R C; Stancil, P C; Balakrishnan, N
2015-01-01
Collisional excitation rate coefficients play an important role in the dynamics of energy transfer in the interstellar medium. In particular, accurate rotational excitation rates are needed to interpret microwave and infrared observations of the interstellar gas for nonlocal thermodynamic equilibrium line formation. Theoretical cross sections and rate coefficients for collisional deexcitation of rotationally excited HF in the vibrational ground state are reported. The quantum-mechanical close-coupling approach implemented in the nonreactive scattering code MOLSCAT was applied in the cross section and rate coefficient calculations on an accurate 2D HF-He potential energy surface. Estimates of rate coefficients for H and H$_2$ colliders were obtained from the HF-He collisional data with a reduced-potential scaling approach. The calculation of state-to-state rotational quenching cross sections for HF due to He with initial rotational levels up to $j=20$ were performed for kinetic energies from 10$^{-5}$ to 15000...
Collisional excitation of water by hydrogen atoms
Daniel, F; Dagdigian, P J; Dubernet, M -L; lique, F; forêts, G Pineau des
2014-01-01
We present quantum dynamical calculations that describe the rotational excitation of H$_2$O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm$^{-1}$. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H$_2$O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H$_2$O / He and H$_2$O / H$_2$ collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory.
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
Jafari, M. J.; Jafari Milani, M. R.; Niknam, A. R.
2016-07-01
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).
Time of relaxation in dusty plasma model
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
Modelling of a Multi-Temperature Plasma Composition
Institute of Scientific and Technical Information of China (English)
B. Liani; R.Benallal; Z.Bentalha
2005-01-01
@@ Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamicequilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32 (1999)1711]can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature Te varies in the range 8000*20000 K at atmospheric pressure.
The Quasilinear Premise for the Modeling of Plasma Turbulence
Howes, Gregory G; TenBarge, Jason M
2014-01-01
The quasilinear premise is a hypothesis for the modeling of plasma turbulence in which the turbulent fluctuations are represented by a superposition of randomly-phased linear wave modes, and energy is transferred among these wave modes via nonlinear interactions. We define specifically what constitutes the quasilinear premise, and present a range of theoretical arguments in support of the relevance of linear wave properties even in a strongly turbulent plasma. We review evidence both in support of and in conflict with the quasilinear premise from numerical simulations and measurements of plasma turbulence in the solar wind. Although the question of the validity of the quasilinear premise remains to be settled, we suggest that the evidence largely supports the value of the quasilinear premise in modeling plasma turbulence and that its usefulness may also be judged by the insights gained from such an approach, with the ultimate goal to develop the capability to predict the evolution of any turbulent plasma syst...
Uncertainty and error in complex plasma chemistry models
Turner, Miles M.
2015-06-01
Chemistry models that include dozens of species and hundreds to thousands of reactions are common in low-temperature plasma physics. The rate constants used in such models are uncertain, because they are obtained from some combination of experiments and approximate theories. Since the predictions of these models are a function of the rate constants, these predictions must also be uncertain. However, systematic investigations of the influence of uncertain rate constants on model predictions are rare to non-existent. In this work we examine a particular chemistry model, for helium-oxygen plasmas. This chemistry is of topical interest because of its relevance to biomedical applications of atmospheric pressure plasmas. We trace the primary sources for every rate constant in the model, and hence associate an error bar (or equivalently, an uncertainty) with each. We then use a Monte Carlo procedure to quantify the uncertainty in predicted plasma species densities caused by the uncertainty in the rate constants. Under the conditions investigated, the range of uncertainty in most species densities is a factor of two to five. However, the uncertainty can vary strongly for different species, over time, and with other plasma conditions. There are extreme (pathological) cases where the uncertainty is more than a factor of ten. One should therefore be cautious in drawing any conclusion from plasma chemistry modelling, without first ensuring that the conclusion in question survives an examination of the related uncertainty.
The Martian Plasma Environment: Model Calculations and Observations
Lichtenegger, H. I. M.; Dubinin, E.; Schwingenschuh, K.; Riedler, W.
Based on a modified version of the model of an induced martian magnetosphere developed by Luhmann (1990), the dynamics and spatial distribution of different planetary ion species is examined. Three main regions are identified: A cloud of ions travelling along cycloidal trajectories, a plasma mantle and a plasma sheet. The latter predominantly consists of oxygen ions of ionospheric origin with minor portions of light particles. Comparison of model results with Phobos-2 observations shows reasonable agreement.
Recent progress in plasma modelling at INFN-LNS
Energy Technology Data Exchange (ETDEWEB)
Neri, L., E-mail: neri@lns.infn.it; Castro, G.; Mascali, D.; Celona, L.; Gammino, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Torrisi, G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, Via Graziella, 89100 Reggio Calabria (Italy); Galatà, A. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy)
2016-02-15
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via “cold” approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an “as-a-whole” picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Recent progress in plasma modelling at INFN-LNS
Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Gidon, Dogan; Graves, David B.; Mesbah, Ali
2017-08-01
Atmospheric pressure plasma jets (APPJs) have been identified as a promising tool for plasma medicine. This paper aims to demonstrate the importance of using model-based feedback control strategies for safe, reproducible, and therapeutically effective application of APPJs for dose delivery to a target substrate. Key challenges in model-based control of APPJs arise from: (i) the multivariable, nonlinear nature of system dynamics, (ii) the need for constraining the system operation within an operating region that ensures safe plasma treatment, and (iii) the cumulative, nondecreasing nature of dose metrics. To systematically address these challenges, we propose a model predictive control (MPC) strategy for real-time feedback control of a radio-frequency APPJ in argon. To this end, a lumped-parameter, physics-based model is developed for describing the jet dynamics. Cumulative dose metrics are defined for quantifying the thermal and nonthermal energy effects of the plasma on substrate. The closed-loop performance of the MPC strategy is compared to that of a basic proportional-integral control system. Simulation results indicate that the MPC stategy provides a versatile framework for dose delivery in the presence of disturbances, while the safety and practical constraints of the APPJ operation can be systematically handled. Model-based feedback control strategies can lead to unprecedented opportunities for effective dose delivery in plasma medicine.
Modelling and control of a tokamak plasma; Modelisation et commande d`un plasma de tokamak
Energy Technology Data Exchange (ETDEWEB)
Bremond, S.
1995-10-18
Vertically elongated tokamak plasmas, while attractive as regards Lawson criteria, are intrinsically instable. It is found that the open-loop instability dynamics is characterised by the relative value of two dimensionless parameters: the coefficient of inductive coupling between the vessel and the coils, and the coil damping efficiency on the plasma displacement relative to that of the vessel. Applications to Tore Supra -where the instability is due to the iron core attraction- and DIII-D are given. A counter-effect of the vessel, which temporarily reverses the effect of coil control on the plasma displacement, is seen when the inductive coupling is higher than the damping ratio. Precise control of the plasma boundary is necessary if plasma-wall interaction and/or coupling to heating antennas are to be monitored. A positional drift, of a few mm/s, which had been observed in the Tore Supra tokamak, is explained and corrected. A linear plasma shape response model is then derived from magnetohydrodynamic equilibrium calculation, and proved to be in good agreement with experimental data. An optimal control law is derived, which minimizes an integral quadratic criteria on tracking errors and energy expenditure. This scheme avoids compensating coil currents, and could render local plasma shaping more precise. (authors). 123 refs., 77 figs., 6 tabs., 4 annexes.
RF Plasma modeling of the Linac4 H− ion source
Mattei, S; Hatayama, A; Lettry, J; Kawamura, Y; Yasumoto, M; Schmitzer, C
2013-01-01
This study focuses on the modelling of the ICP RF-plasma in the Linac4 H− ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The use of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.
A solvable blob-model for magnetized plasmas
Pécseli, H. L.; Sortland, D. S.; Garcia, O. E.
2016-11-01
A simple analytically solvable model for blobs in magnetized plasmas is proposed. The model gives results for a scaling of the blob velocity and acceleration with varying plasma parameters. Limiting cases are considered: one where the plasma motion is strictly perpendicular to an externally imposed toroidal magnetic field, and one where the electrons can move along magnetic field lines to compensate partly the collective electric fields. For these limiting cases, the model predicts scaling laws for the dependence of the blob velocities and accelerations with varying plasma density, temperature and magnetic field strength. Also the scaling with the dominant ion mass is derived. The analysis is completed by including the effects of collisions between ions and neutrals.
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, L. [Max Planck Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)
2000-03-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, Louis [EURATOM-IPP Association, Max Planck Institut fuer Plasmaphysik, Garching (Germany)
2001-11-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)
Nonlinear lower hybrid modeling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Modelling of the arc reattachment process in plasma torches
Energy Technology Data Exchange (ETDEWEB)
Trelles, J P; Pfender, E; Heberlein, J V R [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)
2007-09-21
The need to improve plasma spraying processes has motivated the development of computational models capable of describing the arc dynamics inside plasma torches. Although progress has been made in the development of such models, the realistic simulation of the arc reattachment process, a central part of the arc dynamics inside plasma torches, is still an unsolved problem. This study presents a reattachment model capable of mimicking the physical reattachment process as part of a local thermodynamic equilibrium description of the plasma flow. The fluid and electromagnetic equations describing the plasma flow are solved in a fully-coupled approach by a variational multi-scale finite element method, which implicitly accounts for the multi-scale nature of the flow. The effectiveness of our modelling approach is demonstrated by simulations of a commercial plasma spraying torch operating with Ar-He under different operating conditions. The model is able to match the experimentally measured peak frequencies of the voltage signal, arc lengths and anode spot sizes, but produces voltage drops exceeding those measured. This finding, added to the apparent lack of a well-defined cold boundary layer all around the arc, points towards the importance of non-equilibrium effects inside the torch, especially in the anode attachment region.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Energy Technology Data Exchange (ETDEWEB)
Madsen, Jens
2010-09-15
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor
Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds
Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.
2009-12-01
Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.
Cosmological Evolution in f(R,T) theory with Collisional Matter
Baffou, E H; Kpadonou, A V; Rodrigues, M E; Tossa, J
2015-01-01
We study the evolution of the cosmological parameters, namely, the deceleration parameter $q(z)$ and the parameter of effective equation of state in a universe contains, besides the ordinary matter and dark energy, a self-interacting (collisional matter), in the generalized $f(R,T)$ theory of gravity, where $R$ and $T$ are the curvature scalar and the trace of the energy-momentum tensor, respectively. We use the generalized FRW equations the equation of continuity and obtain a differential equation of second order in $H(z)$, and solve it numerically for studying the evolution of the cosmological parameters. Two $f(R,T)$ models are considered and the results with collisional matter are compared with the ones of the $\\Lambda$CDM model, and also with the model where there exists only non-collisional matter. The curves show that the models are acceptable because the values found for $w_{eff}$ are consistent with the observational data.
Plasma formation in diode pumped alkali lasers sustained in Cs
Markosyan, Aram H.; Kushner, Mark J.
2016-11-01
In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.
Modeling of the effects of die scale features on bulk plasma conditions in plasma etching equipment
Energy Technology Data Exchange (ETDEWEB)
Grapperhaus, M.J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States)
1997-12-31
The patterning of the wafer during microelectronics fabrication can have a significant effect on bulk plasma properties as well as producing local pattern dependent etch rates. Sputtering of photoresist, loading effects, and other surface interactions couple the chemistry at the wafer surface to the bulk plasma chemistry. A model has been developed which uses a Monte Carlo simulation to model quasi-steady state die scale surface chemistry in plasma etching reactors. This model is integrated within the Hybrid Plasma Equipment Model (HPEM) which resolves two-dimensional reactor scale plasma conditions. The HPEM consists of an electromagnetics, electron Monte Carlo simulation, and a fluid plasma modules. The surface Monte Carlo simulation is used to modify the flux boundary condition at the wafer surface within the HPEM. Species which react on the surface, or which are created at the surface are tracked on and near the wafer surface.this gives a quasi-steady state surface chemistry reaction mechanism resolved in two dimensions on the die scale. An inductively coupled etching reactor is used to demonstrate the effect of surface chemistry on bulk plasma conditions over a range of pressures from 10 to 100 mtorr, 100`s w of inductively coupled power and 10`s to 100`s V rf applied substrate voltage. Under high etch rate conditions, macroloading effects are shown. As pressure is varied from 10 to 100 mtorr and the effect of local photoresist sputter and redeposit on nearby exposed etch area is shown to increase which leads to different etch rates near the boundaries of etching regions versus unexposed regions.
Fubiani, G.; Garrigues, L.; Hagelaar, G.; Kohen, N.; Boeuf, J. P.
2017-01-01
Negative ion sources for fusion are high densities plasma sources in large discharge volumes. There are many challenges in the modeling of these sources, due to numerical constraints associated with the high plasma density, to the coupling between plasma and neutral transport and chemistry, the presence of a magnetic filter, and the extraction of negative ions. In this paper we present recent results concerning these different aspects. Emphasis is put on the modeling approach and on the methods and approximations. The models are not fully predictive and not complete as would be engineering codes but they are used to identify the basic principles and to better understand the physics of the negative ion sources.
Numerical modeling of deflagration mode in coaxial plasma guns
Sitaraman, Hariswaran; Raja, Laxminarayan
2012-10-01
Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)
Rincon, F; Schekochihin, A A; Valentini, F
2015-01-01
Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...
Plasma transport simulation modeling for helical confinement systems
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, K.; Amano, T.
1991-08-01
New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called `H-mode` of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author).
Collisional transfer of population and orientation in sodium potassium
Wolfe, Christopher Matthew
Collisional spectral satellite lines have been identified in recent optical-optical double resonance (OODR) excitation spectra of the NaK molecule. These satellite lines represent both a transfer of population, and a partial preservation of angular momentum orientation, to a rotational level adjacent to the one directly excited by the pump laser beam. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms (being the most populous species in the vapor by an order of magnitude over the third most populous). Using a fit of this rate equation model to the data, it was found that collisions between NaK and potassium are more likely to transfer population and destroy orientation than argon collisions, and also more likely to transfer population to rotational levels higher in energy than the one being pumped (i.e. a propensity for positive Delta J collisions). Also, collisions between NaK and argon atoms show a propensity toward even-numbered changes in J. In addition to the above study, an analysis of collisional line broadening and velocity-changes in J-changing collisions was performed, showing potassium has a higher line broadening rate coefficient, as well as a smaller velocity change in J-changing collisions, than argon. A program was also written in Fortran 90/95 which solves the density matrix equations of motion in steady state for a coupled system of 3 (or 4) energy levels with their constituent degenerate magnetic sublevels. The solution to these equations yields the populations of each sublevel in steady state, as well as the laser-induced coherences between each sublevel (which are needed to model the polarization spectroscopy lineshape precisely). Development of an appropriate theoretical model for collisional transfer will yield a more rigorous study of the problem than the empirical rate
A quasi-linear gyrokinetic transport model for tokamak plasmas
Casati, Alessandro
2012-01-01
The development of a quasi-linear gyrokinetic transport model for tokamak plasmas, ultimately designed to provide physically comprehensive predictions of the time evolution of the thermodynamic relevant quantities, is a task that requires tight links among theoretical, experimental and numerical studies. The framework of the model here proposed, which operates a reduction of complexity on the nonlinear self-organizing plasma dynamics, allows in fact multiple validations of the current understanding of the tokamak micro-turbulence. The main outcomes of this work stem from the fundamental steps involved by the formulation of such a reduced transport model, namely: (1) the verification of the quasi-linear plasma response against the nonlinearly computed solution, (2) the improvement of the turbulent saturation model through an accurate validation of the nonlinear codes against the turbulence measurements, (3) the integration of the quasi-linear model within an integrated transport solver.
The collisional history of dwarf planet Ceres revealed by Dawn
Marchi, S.; Williams, D. A.; Mest, S. C.; Schenk, P.; O'Brien, D. P.; De Sanctis, M. C.; Ermakov, A.; Castillo, J. C.; Jaumann, R.; Neesemann, A.; Hiesinger, H.; Park, R. S.; Kneissl, T.; Schmedemann, N.; Raymond, C. A.; Russell, C. T.
2015-12-01
Impact craters are a ubiquitous feature of solid surfaces of celestial objects. Craters are oftentimes used to constrain the past evolution of their host objects, as well as to assess their crustal structures. The Dawn spacecraft, currently in orbit around the dwarf planet Ceres, has revealed a surface peppered with impact craters. Two important facts emerge from their global spatial distribution: i) significant longitudinal and latitudinal asymmetries in the crater areal density, ii) and the lack of well-preserved craters larger than 400 km in imaging data. Interestingly, most of the low crater density terrains are found in the vicinity of the three largest, well-preserved impact craters ranging from ~160 to ~290 km in diameter. These low crater areal density terrains expand over a greater distance than observed for large craters on rocky bodies and icy satellites, which typically are confined within one crater radius from the rim. To assess the collisional history of Ceres we developed a Monte Carlo model that tracks the timing, size and number of collisions throughout the history of the solar system. The model shows that Ceres' collisional evolution should have resulted typically in a factor of 10 more craters than observed, with some ~10 craters larger than 400 km expected to have formed over the last 4.5 Gyr ago. While small craters may have reached an equilibrium level, which does not allow then to further increase in number, the lack of evident large craters is a puzzle. A possibility is that the scars of large craters have been obliterated by topography relaxation due to an ice-rich crust. Here we will present an overview of the Ceres' crater spatial distribution and compare it to other siblings (such as the asteroid Vesta), and collisional evolution models. We will also discuss how these results pose important constraints on the internal structure of the dwarf planet in conjunction with surface composition and gravity data acquired by Dawn.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Buoyancy Instabilities in a Weakly Collisional Intracluster Medium
Kunz, Matthew W; Reynolds, Christopher S; Stone, James M
2012-01-01
The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal...
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2016-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
X-ray calculations for a NLTE Ar plasma
Institute of Scientific and Technical Information of China (English)
WU Ze-qing; PANG Jin-qiao; HAN Guo-xing
2004-01-01
A model is developed to calculate emission spectrum of non-local thermodynamic equilibrium(NLTE) plasmas. The Collisional-Radiative model is adopted for non-LTE population calculations. Configuration-averaged rate coefficients that needed in the rate equations are obtained based on the first order perturbation theory. The Hatree-Fock-Slater self-consistent-field method is used to calculate electron wave functions. The present model is applied to the calculation of emissivity from a Ar plasma. The features of the spectra are in good agreement with those calculated by other theoretical models, but the data of the integrated emissivity differ by a factor 2～8.
Analyses of the short pulse laser pumped transient collisional excited X-ray lasers
Energy Technology Data Exchange (ETDEWEB)
Sasaki, A.; Utsumi, T.; Moribayashi, K.; Zhidkov, A.; Kado, M.; Tanaka, M.; Hasegawa, N.; Kawachi, T. [Japan Atomic Energy Research Inst., Osaka (Japan). Advanced Photon Research Center
2001-07-01
The soft X-ray gain of the transient collisional excited (TCE) Ni-like Ag laser is investigated using the plasma hydrodynamics and atomic kinetics codes. The gain is calculated for a plasma produced from two 100ps laser irradiated solid target to show qualitative agreement with the experiment. The calculation shows significant improvement of the gain using a thin foil target pumped by two short laser pulses, because of a better coupling of the pump laser energy into the gain region of the plasma. The codes will provide performance prediction as well as optimization of the experimental studies of the TCE X-ray lasers. (orig.)
Some problems of pulsar physics. [magnetospheric plasma model
Arons, J.
1979-01-01
The theories of particle acceleration along polar field lines are reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The application of these theories and plasma supply to pulsars is discussed, with attention given to the total amount of electron-positron plasma created and its momentum distribution. Various aspects of radiation emission and transport are analyzed, based on a polar current flow model with pair creation, and the phenomenon of marching subpulses is considered. The coronation beaming and the relativistically expanding current sheet models for pulsar emission are also outlined, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.
Modeling Plasma-Particle Interaction in Multi-Arc Plasma Spraying
Bobzin, K.; Öte, M.
2017-01-01
The properties of plasma-sprayed coatings are controlled by the heat, momentum, and mass transfer between individual particles and the plasma jet. The particle behavior in conventional single-arc plasma spraying has been the subject of intensive numerical research, whereas multi-arc plasma spraying has not yet received the same attention. We propose herein a numerical model to serve as a scientific tool to investigate particle behavior in multi-arc plasma spraying. In the Lagrangian description of particles in the model, the mathematical formulations describing the heat, momentum, and mass transfer are of great importance for good predictive power, so such formulations proposed by different authors were compared critically, revealing that different mathematical formulations lead to significantly different results. The accuracy of the different formulations was evaluated based on theoretical considerations, and those found to be more accurate were implemented in the final model. Furthermore, a mathematical formulation is proposed to enable simplified calculation of partial particle melting and resolidification.
Ozone modeling within plasmas for ozone sensor applications
Arshak, Khalil; Forde, Edward; Guiney, Ivor
2007-01-01
peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....
Ozone modeling within plasmas for ozone sensor applications
Arshak, Khalil; Forde, Edward; Guiney, Ivor
2007-01-01
peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....
MOL-D: A Collisional Database and Web Service within the Virtual Atomic and Molecular Data Center
Indian Academy of Sciences (India)
V. Vujčić; D. Jevremović; A. A. Mihajlov; Lj. M. Ignjatović; V. A. Srećković; M. S. Dimitrijević; M. Malović
2015-12-01
MOL-D database is a collection of cross-sections and rate coefficients for specific collisional processes and a web service within the Serbian Virtual Observatory (SerVO) and the Virtual Atomic and Molecular Data Center (VAMDC). This database contains photo-dissociation cross-sections for the individual ro-vibrational states of the diatomic molecular ions and rate coefficients for the atom-Rydberg atom chemiionization and inverse electron–ion–atom chemi-recombination processes. At the moment it contains data for photodissociation crosssections of hydrogen H+2 and helium H+2 molecular ions and the corresponding averaged thermal photodissociation cross-sections. The ro-vibrational energy states and the corresponding dipole matrix elements are provided as well. Hydrogen and helium molecular ion data are important for calculation of solar and stellar atmosphere models and for radiative transport, as well as for kinetics of other astrophysical and laboratory plasma (i.e. early Universe).
Modeling of gas ionization and plasma flow in ablative pulsed plasma thrusters
Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue
2016-12-01
A one-dimensional model to study the gas ionization and plasma flow in ablative pulsed plasma thrusters(APPTs) is established in this paper. The discharge process of the APPT used in the LES-6 satellite is simulated to validate the model. The simulation results for the impulse bit and propellant utilization give values of 29.05 μN s and 9.56%, respectively, which are in good agreement with experimental results. To test the new ionization sub-model, the discharge process of a particular APPT, XPPT-1, is simulated, and a numerical result for the propellant utilization of 62.8% is obtained, which also agrees well with experiment. The gas ionization simulation results indicate that an APPT with a lower average propellant ablation rate and higher average electric field intensity between electrodes should have higher propellant utilization. The plasma density distribution between the electrodes of APPTs can also be obtained using the new model, and the numerical results show that the plasma generation and flow are discontinuous, which is in good agreement with past experimental results of high-speed photography. This model provides a new tool with which to study the physical mechanisms of APPTs and a reference for the design of high-performance APPTs.
Green, B. I.; Vedula, Prakash
2013-07-01
An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework.
There Is No Simple Model of the Plasma Membrane Organization
Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek
2016-01-01
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212
There is no simple model of the plasma membrane organisation
Directory of Open Access Journals (Sweden)
Jorge Bernardino De La Serna
2016-09-01
Full Text Available Ever since technologies enabled the characterisation of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organisation such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasising on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organisation and functionality, leading to a better understanding of this essential cellular structure.
Hybrid accretionary/collisional mechanism of Paleozoic Asian continental growth
Schulmann, Karel; Lexa, Ondrej; Janousek, Vojtech; Pavla, Stipska; Yingde, Jiang; Alexandra, Guy; Min, Sun
2016-04-01
Continental crust is formed above subduction zones by well-known process of "juvenile crust growth". This new crust is in modern Earth assembled into continents by two ways: (i) short-lived collisions of continental blocks with the Eurasian continent along the "Alpine-Himalayan collisional/interior orogens" in the heart of the Pangean continental plates realm; and (ii) long lived lateral accretion of ocean-floor fragments along "circum-Pacific accretionary/peripheral orogens" at the border of the Pacific oceanic plate. This configuration has existed since the late Proterozoic, when the giant accretionary Terra Australis Orogen developed at periphery of an old Palaeo-Pacific ocean together with collisional Caledonian and Variscan orogens. At the same time, the large (ca. 9 millions km2) Central Asian Orogenic Belt (CAOB) developed in the NE part of the Pangea. This orogen reveals features of both peripheral and interior orogens, which implies that the generally accepted "peripheral-accretionary" and "interior- collisional" paradigm is not applicable here. To solve this conundrum a new model of unprecedented Phanerozoic continental growth is proposed. In this model, the CAOB precursor evolved at the interface of old exterior and young interior oceans. Subsequently, the new lithospheric domain was transferred by advancing subduction into the interior of the Pangean mostly continental realm. During this process the oceanic crust was transformed into continental crust and it was only later when this specific lithosphere was incorporated into the Asian continent. If true, this concept represents revolutionary insight into processes of crustal growth explaining the enigma of anchoring hybrid lithosphere inside a continent without its subduction or Tibetan-type thickening.
Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues
Directory of Open Access Journals (Sweden)
Joel Rosato
2014-06-01
Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.
Hermes: Global plasma edge fluid turbulence simulations
Dudson, Ben
2016-01-01
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.
Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The linearized electron Fokker-Planck and cold-ion fluid equations are solved as an eigenvalue problem in the quasineutral limit for ionization state,Z=1,8,and 64 for ion-acoustic and entropy waves.The perturbed electron distribution function is written as a moment expansion of eigenvectors,and is used to compute collisionality-dependence macroscopic quantities in the plasma such as the generalized specific heat ratio,and the electron thermal conductivity.
Collisional Grooming of Debris Disks
Kuchner, Marc J
2009-01-01
Debris disk images show clumps, rings, warps, and other structures, many of which have been interpreted as perturbations from hidden planets. But so far, no models of these structures have properly accounted for collisions between dust grains. We have developed new steady-state 3D models of debris disks that self-consistently incorporate grain-grain collisions. We summarize our algorithm and use it to illustrate how collisions interact with resonant trapping in the presence of a planet.
Kinetic models for the VASIMR thruster helicon plasma source
Batishchev, Oleg; Molvig, Kim
2001-10-01
Helicon gas discharge [1] is widely used by industry because of its remarkable efficiency [2]. High energy and fuel efficiencies make it very attractive for space electrical propulsion applications. For example, helicon plasma source is used in the high specific impulse VASIMR [3] plasma thruster, including experimental prototypes VX-3 and upgraded VX-10 [4] configurations, which operate with hydrogen (deuterium) and helium plasmas. We have developed a set of models for the VASIMR helicon discharge. Firstly, we use zero-dimensional energy and mass balance equations to characterize partially ionized gas condition/composition. Next, we couple it to one-dimensional hybrid model [6] for gas flow in the quartz tube of the helicon. We compare hybrid model results to a purely kinetic simulation of propellant flow in gas feed + helicon source subsystem. Some of the experimental data [3-4] are explained. Lastly, we discuss full-scale kinetic modeling of coupled gas and plasmas [5-6] in the helicon discharge. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev et al, J. Plasma Phys. 61, part II, 347, 1999; [6] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, -14p, 2001.
A new model for plasma transport and chemistry at Saturn
Richardson, John D.
1992-01-01
A model of plasma transport and chemistry is described which calculates the evolution of a plasma population in latitude and radial distance. This model is applied to the magnetosphere of Saturn, where it is used to fit the density profile of the heavy ions assuming both satellite and ring sources of plasma. Use of an extended source region is found to significantly alter the resulting plasma profile. Water ions cannot fit the observed density profile inside L = 6 even with a large ring source. Oxygen ions can fit the density profile throughout the region inside L = 12 given a suitable profile of neutral hydrogen; a suitable profile contains up to 5 H/cu cm outside L = 4 with the number increasing inside this. Preferred values of K are 1-3 x 10 exp -10 R(S)2/s, but any value K less than 10 exp -9 R(S)2/s can be accommodated. The temperature profile is shown to favor models invoking in situ plasma formation and loss as opposed to models where transport is important.
Karmakar, P. K.; Borah, B.
2013-09-01
We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries ( d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.
A High Temperature Liquid Plasma Model of the Sun
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2007-01-01
Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.
Ambient tremors in a collisional orogenic belt
Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei
2014-01-01
Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
Collisional and collisionless expansion of Yukawa balls.
Piel, Alexander; Goree, John A
2013-12-01
The expansion of Yukawa balls is studied by means of molecular dynamics simulations of collisionless and collisional situations. High computation speed was achieved by using the parallel computing power of graphics processing units. When the radius of the Yukawa ball is large compared to the shielding length, the expansion process starts with the blow-off of the outermost layer. A rarefactive wave subsequently propagates radially inward at the speed of longitudinal phonons. This mechanism is fundamentally different from Coulomb explosions, which employ a self-similar expansion of the entire system. In the collisionless limit, the outer layers carry away most of the available energy. The simulations are compared with analytical estimates. In the collisional case, the expansion process can be described by a nonlinear diffusion equation that is a special case of the porous medium equation.
Molecular spectroscopy and collisional excitation. [in astrophysics
Green, S.
1975-01-01
The paper examines the basic principles underlying the molecular transitions responsible for interstellar molecular spectra. The energy levels of molecules are discussed in detail with special attention given to the Born-Oppenheimer approximation, the electronic Hamiltonian, and the parameters of vibrational and rotational energy. The probabilities for radiative and collisional transitions are calculated. A brief review of techniques for molecular spectroscopy is presented along with methods used to determine collision cross sections on both an experimental and a theoretical basis.
Collisionally induced atomic clock shifts and correlations
Energy Technology Data Exchange (ETDEWEB)
Band, Y. B.; Osherov, I. [Departments of Chemistry and Electro-Optics and the Ilse Katz Center for Nano-Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)
2011-07-15
We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.
Introduction to Plasma Physics
Gurnett, Donald A.; Bhattacharjee, Amitava
2017-03-01
Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.
Energy Technology Data Exchange (ETDEWEB)
Kushner, M.J.; Collison, W.Z.; Grapperhaus, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering
1996-12-31
Inductively Coupled Plasma (ICP) reactors are being developed as high plasma density, low gas pressure sources for etching and deposition of semiconductor materials. In this paper, the authors describe a 3-dimensional, time dependent model for ICP reactors whose intent is to provide an infrastructure to investigate asymmetries in plasma etching and deposition tools. The model is a 3-dimensional extension of a previously described 2-dimensional simulation called the Hybrid Plasma Equipment Model (HPEM). HPEM-3D consists of an electromagnetics module (EMM), a Boltzmann-electron energy module (BEM) and a fluid-chemical kinetics simulation (FKS). The inductively coupled electromagnetic fields are produced by the EMM. Results from HPEM-3D will be discussed for reactors using etching (Cl{sub 2}, BCl{sub 3}) and non-etching (Ar, Ar/N{sub 2}) gas mixtures, and which have geometrical asymmetries such as wafer clamps and load-lock bays. The authors show how details in the design of the coil, such as the value of the termination capacitance or number of turns, lead to azimuthal variations in the inductive electric field.
The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data
Kushner, Mark J.
2015-09-01
Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.
Modelling of the plasma-MIG welding temperature field
Institute of Scientific and Technical Information of China (English)
Bai Yan; Gao Hongming; Wu Lin; Shi Lei
2006-01-01
A three-dimensional simulation model for the plasma-MIG welding process, which takes the interaction between the plasma arc and MIG arc into account, is presented and the quasi-steady temperature fields on the workpiece are calculated with the model. The 10 mm-5A06 aluminum alloy is welded and the temperature fields are measured with the thermoelectric couple. The simulation results and measured results show that the biggest deviation of peak temperature between them is below 20 ℃ , which indicates good coincidence between the simulation and measurement.
Verification strategies for fluid-based plasma simulation models
Mahadevan, Shankar
2012-10-01
Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.
Kinetic Theory of Instability-Enhanced Collisional Effects
Baalrud, Scott D.
2009-11-01
A generalization of the Lenard-Balescu collision operator is derived which accounts for the scattering of particles by instability amplified fluctuations that originate from the thermal motion of discrete particles (in contrast to evoking a fluctuation level externally, as is done in quasilinear kinetic theory) [1]. Emphasis is placed on plasmas with convective instabilities. It is shown that an instability-enhanced collective response results which can be the primary mechanism for scattering particles, being orders of magnitude more frequent than conventional Coulomb collisions, even though the fluctuations are in a linear growth phase. The resulting collision operator is shown to obey conservation laws (energy, momentum, and density), Galilean invariance, and the Boltzmann H-theorem. It has the property that Maxwellian is the unique equilibrium distribution function; again in contrast to weak turbulence or quasilinear theories. Instability-enhanced collisional effects can dominate particle scattering and cause strong frictional forces. For example, this theory has been applied to two outstanding problems: Langmuir's paradox [2] and determining Bohm's criterion for plasmas with multiple ion species [3]. Langmuir's paradox is a measurement of anomalous electron scattering rapidly establishing a Maxwellian distribution in gas discharges with low temperature and pressure. This may be explained by instability-enhanced scattering in the plasma-boundary transition region (presheath) where convective ion-acoustic instabilities are excited. Bohm's criterion for multiple ion species is a single condition that the ion fluid speeds must obey at the sheath edge; but it is insufficient to determine the speed of individual species. It is shown that an instability-enhanced collisional friction, due to streaming instabilities in the presheath, determines this criterion.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).[0pt] [2] S.D. Baalrud, J
Faltýnek, J.; Hnilica, J.; Kudrle, V.
2017-01-01
Time resolved electron density in an atmospheric pressure amplitude modulated microwave plasma jet is determined using the microwave interferometry method, refined by numerical modelling of the propagation of non-planar electromagnetic waves in the vicinity of a small diameter, dense collisional plasma filament. The results are compared to those from the Stark broadening of the {{\\text{H}}β} emission line. Both techniques show, both qualitatively and quantitatively, a similar temporal evolution of electron density during one modulation period.
Coronal Loops: Observations and Modeling of Confined Plasma
Directory of Open Access Journals (Sweden)
Fabio Reale
2014-07-01
Full Text Available Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC and impulsive (DC heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.
GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK
Energy Technology Data Exchange (ETDEWEB)
Nesvold, Erika R. [Department of Physics, University of Maryland Baltimore County 1000 Hilltop Circle Baltimore, MD 21250 (United States); Kuchner, Marc J., E-mail: Erika.Nesvold@umbc.edu, E-mail: Marc.Kuchner@nasa.gov [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States)
2015-01-10
We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.
Versatile and Robust Software for Multi-Fluid Plasma Modeling
2013-01-21
models , MHD , Hall MHD , two...described by two-‐fluid or Hall MHD initially evolves to something where only kinetic model is strictly...AFRL-OSR-VA-TR-2013-0153 "Versatile and Robust Software forMulti‐Fluid Plasma Modeling ” John Loverich and Uri Shumlak
The mathematical theory of reduced MHD models for fusion plasmas
Guillard, Hervé
2015-01-01
The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.
Excitation and ionization of hydrogen Rydberg states in a plasma
Energy Technology Data Exchange (ETDEWEB)
Glab, W.; Nayfeh, M.H.
1982-08-01
Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic, which are due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.
Excitation and ionization of hydrogen Rydberg states in a plasma.
Glab, W; Nayfeh, M H
1982-08-01
Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic ionization, which is due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.
Two-component model of the interaction of an interstellar cloud with surrounding hot plasma
Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.
2011-01-01
We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...
Laser-induced quadrupole-quadrupole collisional energy transfer in Xe-Kr
Institute of Scientific and Technical Information of China (English)
Lu Zhen-Zhong; Chen De-Ying; Fan Rong-Wei; Xia Yuan-Qin
2011-01-01
By considering the relative velocity distribution function and multipole expansion interaction Hamiltonian, a three-state model for calculating the cross section of laser-induced quadrupole-quadrupole collisional energy transfer is presented. Calculated results in Xe-Kr system show that in the present system, the laser-induced collision process occurs for ～4 ps, which is much shorter than the dipole-dipole laser-induced collisional energy transfer (LICET) process.The spectrum of laser-induced quadrupole-quadrupole collisional energy transfer in Xe-Kr system has wider tunable range in an order of magnitude than the dipole-dipole LICET spectra. The peak cross section decreases and moves to the quasi-static wing with increasing temperature and the full width at half peak of the profile becomes larger as the system temperature increases.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.
2015-01-01
An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.
Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data
Kushner, Mark J.
2016-05-01
Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.
Bogatu, I. N.; Galkin, S. A.
2016-10-01
The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.
Modeling plasma pressure anisotropy's effect on Saturn's global magnetospheric dynamics
Tilley, M.; Harnett, E. M.; Winglee, R.
2014-12-01
A 3D multi-fluid, multi-scale plasma model with a complete treatment of plasma pressure anisotropy is employed to study global magnetospheric dynamics at Saturn. Cassini has observed anisotropies in the Saturnian magnetosphere, and analyses have showed correlations between anisotropy and plasma convection, ring current structure and intensity, confinement of plasma to the equatorial plane, as well as mass transport to the outer magnetosphere. The energization and transport of plasma within Saturn's magnetosphere is impactful upon the induced magnetic environments and atmospheres of potentially habitable satellites such as Enceladus and Titan. Recent efforts to couple pressure anisotropy with 3D multi-fluid plasma modeling have shown a significant move towards matching observations for simulations of Earth's magnetosphere. Our approach is used to study the effects of plasma pressure anisotropy on global processes of the Saturnian magnetosphere such as identifying the effect of pressure anisotropy on the centrifugal interchange instability. Previous simulation results have not completely replicated all aspects of the structure and formation of the interchange 'fingers' measured by Cassini at Saturn. The related effects of anisotropy, in addition to those mentioned above, include contribution to formation of MHD waves (e.g. reduction of Alfvén wave speed) and formation of firehose and mirror instabilities. An accurate understanding of processes such as the interchange instability is required if a complete picture of mass and energy transport at Saturn is to be realized. The results presented here will detail how the inclusion of a full treatment of pressure anisotropy for idealized solar wind conditions modifies the interchange structure and shape of the tail current sheet. Simulation results are compared to observations made by Cassini.
Kinetic modeling and sensitivity analysis of plasma-assisted combustion
Togai, Kuninori
Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the
Decay rates of the magnetohydrodynamic model for quantum plasmas
Pu, Xueke; Xu, Xiuli
2017-02-01
In this paper, we consider the quantum magnetohydrodynamic model for quantum plasmas. We prove the optimal decay rates for the solution to the constant state in the whole space in the Lp-norm with 2≤ p≤ 6 and its first derivatives in L2-norm. The proof is based on the optimal decay of the linearized equation and nonlinear energy estimates.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
There are significant differences of Nd and Pb isotopic compositions between Mesozoic mafic igneous rocks from the North China Block (NCB) and the South China Block (SCB). Mesozoic mantle-derived igneous rocks from the North China Block have very low εNd values (-15 to -21), and 206Pb/204Pb ratios ( -10 and 206Pb/204Pb > 18.3. The very low εNd values (-16 to -20) and 206Pb/204Pb ratios (< 17.3) of the early Cretaceous mafic-ultramafic intrusions developed in the north part of the Dabie orogen (NDZ) suggest that the deep lithosphere underneath the NDZ belongs to the NCB but not the SCB. Therefore, although the surface suture between the NCB and SCB is located on the north side of the NDZ, the subsurface suture between the NCB and SCB should be located to the south side of the NDZ. This is consistent with the previous suggestion that the subsurface suture in the Sulu terrane east of the Tanlu fault was the south displacement, but contradictory to northward continental subduction of the SCB. A continent-collisional lithospheric- wedging model can interpret the decoupling of the surface and subsurface sutures in the Dabie-Sulu orogen. After slab break-off, the continuing convergence of two continental blocks must increase the compression force acting on the suture zone, which might induce the lithosphere splitting of SCB. Thus, the lower crust and lithospheric mantle on the south margin of the NCB can wedge into the north margin of the lithosphere of the SCB along the Dabie-Sulu collision zone. This process caused the overthrust of the mid-upper continental crust with exhumed ultrahigh pressure metamorphic (UHPM) rocks and underthrust of the deep lithosphere of the SCB. It could be an important mechanism responsible for the second rapid cooling and uplifting of the UHPM rocks and lithospheric delamination as well as the corresponding magmatism in Jurassic in the Dabie orogen. The southward movement of subsurface suture in the Dabie-Sulu orogen may also provide a
Varying and inverting the mass hierarchy in collisional energy loss
Kolevatov, Rodion
2008-01-01
Heavy ion collisions at RHIC and at the LHC give access to the medium-induced suppression patterns of heavy-flavored single inclusive hadron spectra at high transverse momentum. This opens novel opportunities for a detailed characterization of the medium produced in the collision. In this note, we point out that the capacity of a QCD medium to absorb the recoil of a partonic projectile is an independent signature, which may differ for different media at the same density. In particular, while the mass hierarchy (i.e., the projectile mass dependence) of radiative energy loss depends solely on a property of the projectile, the mass hierarchy of collisional energy loss depends significantly on properties of the medium. By varying these properties in a class of models, we find that the mass hierarchy of collisional parton energy loss can be modified considerably and can even be inverted, compared to that of radiative parton energy loss. This may help to disentangle the relative strengths of radiative and collision...
Experimental study of collisional granular flows down an inclined plane
Azanza, Emmanuel; Chevoir, François; Moucheront, Pascal
1999-12-01
The collisional flow of a slightly inelastic granular material down a rough inclined plane is usually described by kinetic theories. We present an experimental study aimed at analysing the assumptions and the quantitative predictions of such theories. A two-dimensional channel coupled to a model granular material and image analysis allow detailed and complete measurement of the kinematics and structure of the flows. We determine the range of inclination and particle flux for which the flow is stationary and uniform. The characteristic profiles of solid fraction, mean velocity and granular temperature are systematically measured. Both the true collisional and the dilute kinetic regimes are examined. We show that a quasi-hydrodynamic description of these regimes seems relevant, and that the pressure and the viscosity terms are in good qualitative agreement with the prediction of the kinetic theory. The profiles are well described by the kinetic theory near the top of the flow, at low solid fraction. Conversely there are large discrepancies near the rough plane, where the material is structured in layers.
Modeling of Carbon Monoxide Removal by Corona Plasma
Institute of Scientific and Technical Information of China (English)
FENG Jingwei; SUN Yabing; ZHAO Dayong; ZHENG Zheng; XU Yuewu; YANG Haifeng; ZHU Hongbiao; ZHOU Xiaoxia
2009-01-01
Modeling of carbon monoxide (CO) removal by a corona plasma was conducted in this study.The purification efficiency of CO was calculated theoretically and the factors affecting the removal of CO were analyzed.The results showed that the main removal mechanisms of CO were direct dissociation by generated high-energy electrons and indirect oxidation by generated hydroxyl radicals.The purification efficiency of CO was dependent on the plasma parameters,indoor air humidity and initial concentration of CO.Good consistency between the theoretical calculation and the experimental results was observed.
Simulation of current generation in a 3-D plasma model
Energy Technology Data Exchange (ETDEWEB)
Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Advanced modeling techniques in application to plasma pulse treatment
Pashchenko, A. F.; Pashchenko, F. F.
2016-06-01
Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.
Modeling of far SOL plasma transport in NSTX
Energy Technology Data Exchange (ETDEWEB)
Sergei Krasheninnikov; Alexander Pigarov
2005-11-02
For better understanding and characterization of non-diffusive transport occurring in the NSTX tokamak edge plasma, we performed extensive simulations of NSTX edge plasmas with the multi-fluid two-dimensional UEDGE code by using realistic model for impurity sputtering sources and hybrid model for anomalous cross-field transport. Our cross-field transport model incorporates the effects of non-diffusive intermittent transport by introducing anomalous convective velocities whose spatial profile is adjusted for each ion charge state to match available experimental data. The research in 2002-2005 financial years was focused on the following areas: (i) development of capabilities for UEDGE simulation of NSTX spectroscopy data (i.e., the 3D real-geometry postprocessor UEDGE tools for comparison between UEDGE and experimental data), (ii) simulation of multi-diagnostic data from NSTX with UEDGE, (iii) study of anomalous cross-field convective transport of impurity ions, (iv) analysis of divertor plasma opacity to resonance radiation, and (v) study the effects of ballooning-like anomalous cross-field transport and spherical-torus magnetic configuration on parallel plasma flows in the SOL.
Overview of modelling activities for Plasma Control Upgrade in JET
Energy Technology Data Exchange (ETDEWEB)
Albanese, R., E-mail: raffaele.albanese@unina.it [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Coccorese, V. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Crisanti, F. [ENEA Fus, EURATOM Assoc, 00040 Frascati (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); De Tommasi, G.; Fresa, R. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Mattei, M.; Maviglia, F. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Piccolo, F. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)
2011-10-15
The JET enhancement project Plasma Control Upgrade (PCU) aimed at increasing the capabilities of the plasma vertical stabilization (VS) system. One of the activities of this project was devoted to the development of simple but sufficiently accurate models of the VS system so as to address the main design choices, use the simulation tools as reliable test-beds, and provide an adequate support to the engineering design and commissioning of the new Enhanced Radial Field Amplifier (ERFA). This paper illustrates some of the main achievements of the modelling activity, which gave rise to a closed loop model of the VS system, including plasma, PF coils and passive structures. In particular the paper deals with the selection of the set of turns to be used in the control coils and with the estimation of the eddy current effects on the VS system. The latter analysis addressed an upgrade of the converter units of ERFA, successfully implemented during its commissioning on plasma in August 2009.
Coal pyrolysis in plasma and thermodynamic analysis for model compound
Energy Technology Data Exchange (ETDEWEB)
Lu, Y.; Pang, X.; Bao, W.; Xie, K. [Shanxi Key Laboratory of Coal Science and Technology, Taiyuan (China)
2001-02-01
On the basis of study on coal and graphite pyrolysis in hydrogen-enriched argon plasma jet reactor, thermodynamic analysis for reactions producing acetylene was carried out by the means of selecting model compounds including various gaseous aliphatic and liquid aromatic hydrocarbons, which were regarded as similar to the primary volatile of coal, and by calculating the changes of Gibbs functions under deferent temperatures. The fact that the reactions of the volatiles releasing from coal play an essential part in acetylene formation from coal in H{sub 2}-Ar plasma was verified. The result that acetylene can be produced easily in high temperature can be deduced from entropy effects by theoretical analysis and experiment. These results are of significance for mechanism investigation of acetylene formation in plasma reactor. 7 refs., 1 fig., 3 tabs.
A Global Modeling Framework for Plasma Kinetics: Development and Applications
Parsey, Guy Morland
The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization
Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments
Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.
1996-01-01
First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current
Collisional blockade in microscopic optical dipole traps.
Schlosser, N; Reymond, G; Grangier, P
2002-07-08
We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.
Collisional evolution of the early asteroid belt
Gil-Hutton, Ricardo; Brunini, Adrián
1999-04-01
We present numerical results obtained by a simulation of the collisional process between asteroids and scattered comets from the Uranus-Neptune zone. This mechanism allows the use of single exponent incremental size distributions for the initial belt reaching a final distribution that matches the observed population very well. Since the cometary bombardment was extremely efficient removing mass from the primordial asteroid belt in a very short time, we always obtained belts with total masses less than 0.001 M ⊕ after ≈ 2×10 7 yrs. This result allows processes with an important initial mass preserving Vestas basaltic crust.
Numerical solution of the Fokker--Planck equations for a multi-species plasma
Energy Technology Data Exchange (ETDEWEB)
Killeen, J.; Mirin, A.A.
1977-03-11
Two numerical models used for studying collisional multispecies plasmas are described. The mathematical model is the Boltzmann kinetic equation with Fokker-Planck collision terms. A one-dimensional code and a two-dimensional code, used for the solution of the time-dependent Fokker-Planck equations for ion and electron distribution functions in velocity space, are described. The required equations and boundary conditions are derived and numerical techniques for their solution are given.
Collisional Cross-Sections with T-Wave Ion Mobility Spectrometry without Experimental Calibration
Mortensen, Daniel N.; Susa, Anna C.; Williams, Evan R.
2017-07-01
A method for relating traveling-wave ion mobility spectrometry (TWIMS) drift times with collisional cross-sections using computational simulations is presented. This method is developed using SIMION modeling of the TWIMS potential wave and equations that describe the velocity of ions in gases induced by electric fields. The accuracy of this method is assessed by comparing the collisional cross-sections of 70 different reference ions obtained using this method with those obtained from static drift tube ion mobility measurements. The cross-sections obtained here with low wave velocities are very similar to those obtained using static drift (average difference = 0.3%) for ions formed from both denaturing and buffered aqueous solutions. In contrast, the cross-sections obtained with high wave velocities are significantly greater, especially for ions formed from buffered aqueous solutions. These higher cross-sections at high wave velocities may result from high-order factors not accounted for in the model presented here or from the protein ions unfolding during TWIMS. Results from this study demonstrate that collisional cross-sections can be obtained from single TWIMS drift time measurements, but that low wave velocities and gentle instrument conditions should be used in order to minimize any uncertainties resulting from high-order effects not accounted for in the present model and from any protein unfolding that might occur. Thus, the method presented here eliminates the need to calibrate TWIMS drift times with collisional cross-sections measured using other ion mobility devices.
PLASMA MODEL-ONE MODEL OF ELECTROMAGNETIC RESPONSE OF MATTER
Institute of Scientific and Technical Information of China (English)
H. Du; J. Gong; C. Sun; A.L. Ji; R.F. Huang; L.S. Wen
2001-01-01
The prerequisite and mode of electromagnetic response of nano metal/dielectric filmsto electromagnetic wave field were suggested. With the carrier density and the re-flectance, transmittance of the film, the plasma frequency and the dependence of ab-sorptance on the frequency of electromagnetic wave field were calculated respectively.The calculated results accorded with the experimental ones, which proved the plasmaresonance is one mode of electromagnetic response.
The Creation of Haumea's Collisional Family
Schlichting, Hilke E
2009-01-01
Recently, the first collisional family was discovered in the Kuiper belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members (\\sim 140 m/s) which is significantly less than the escape velocity from Haumea's surface (\\sim 900 m/s). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, gives naturally rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the famil...
Collisional deactivation of highly vibrationally excited pyrazine
Miller, Laurie A.; Barker, John R.
1996-07-01
The collisional deactivation of vibrationally excited pyrazine (C4N2H4) in the electronic ground state by 19 collider gases was studied using the time-resolved infrared fluorescence (IRF) technique. The pyrazine was photoexcited with a 308 nm laser and its vibrational deactivation was monitored following rapid radiationless transitions to produce vibrationally excited molecules in the electronic ground state. The IRF data were analyzed by a simple approximate inversion method, as well as with full collisional master equation simulations. The average energies transferred in deactivating collisions (d) exhibit a near-linear dependence on vibrational energy at lower energies and less dependence at higher energies. The deactivation of ground state pyrazine was found to be similar to that of ground state benzene [J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem. 12, 305 (1990)], but it is strikingly different from the deactivation of triplet state pyrazine [T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993)].
Pas, van de N.C.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Graaf, de A.A.
2012-01-01
Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was dire
Pas, N.C.A. van de; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de
2012-01-01
Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was
Modeling of Arc Force in Plasma Arc Welding
Institute of Scientific and Technical Information of China (English)
GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui
2008-01-01
A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.
Non-Equilibrium Modeling of Arc Plasma Torches
Trelles, J P; Heberlein, J V R
2013-01-01
A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a DC arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma - cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibr...
Non-equilibrium modelling of arc plasma torches
Energy Technology Data Exchange (ETDEWEB)
Trelles, J P; Heberlein, J V R; Pfender, E [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)
2007-10-07
A two-temperature thermal non-equilibrium model is developed and applied to the three-dimensional and time-dependent simulation of the flow inside a dc arc plasma torch. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The fluid and electromagnetic equations in both models are approximated numerically in a fully-coupled approach by a variational multi-scale finite element method. In contrast to the equilibrium model, the non-equilibrium model did not need a separate reattachment model to produce an arc reattachment process and to limit the magnitude of the total voltage drop and arc length. The non-equilibrium results show large non-equilibrium regions in the plasma-cold-flow interaction region and close to the anode surface. Marked differences in the arc dynamics, especially in the arc reattachment process, and in the magnitudes of the total voltage drop and outlet temperatures and velocities between the models are observed. The non-equilibrium results show improved agreement with experimental observations.
Coulomb Collision for Plasma Simulations: Modelling and Numerical Methods
Geiser, Juergen
2016-09-01
We are motivated to model weakly ionized Plasma applications. The modeling problem is based on an incorporated explicit velocity-dependent small-angle Coulomb collision terms into a Fokker-Planck equation. Such a collision is done with so called test and field particles, which are scattered stochastically based on a Langevin equation. Based on such different model approaches, means the transport part is done with kinetic equations, while the collision part is done via the Langevin equations, we present a splitting of these models. Such a splitting allow us to combine different modeling parts. For the transport part, we can apply particle models and solve them with particle methods, e.g., PIC, while for the collision part, we can apply the explicit Coulomb collision model, e.g., with fast stochastic differential equation solvers. Additional, we also apply multiscale approaches for the different parts of the transport part, e.g., different time-scales of an explicit electric field, and model-order reduction approaches. We present first numerical results for particle simulations with the deterministic-stochastic splitting schemes. Such ideas can be applied to sputtering problems or plasma applications with dominant Coulomb collisions.
A Thermodynamic Model for Argon Plasma Kernel Formation
Directory of Open Access Journals (Sweden)
James Keck
2010-11-01
Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.
Effect of Hydrogen Plasma on Model Corrosion Layers of Bronze
Fojtíková, P.; Sázavská, V.; Mika, F.; Krčma, F.
2016-05-01
Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 × 10 × 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.
QSAR Models for the Prediction of Plasma Protein Binding
Directory of Open Access Journals (Sweden)
Zeshan Amin
2013-02-01
Full Text Available Introduction: The prediction of plasma protein binding (ppb is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure – Activity Relationships (QSAR for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART, Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2015-10-01
effects as plasma impact neutral background – Fairly straightforward to model with existing fluid tools (high enough collisionality for Maxwellian ...model – Plasmas can have very complex phase space configurations and self-induced electromagnetic forces. Fundamental multiscale problem since...Approved for public release; distribution unlimited Kinetic ( non - Maxwellian ) Can implement Boltzmann equation multiple ways: • PIC (high
Multi-field plasma sandpile model in tokamaks and applications
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas
Directory of Open Access Journals (Sweden)
Roberto Celiberto
2017-05-01
Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.
Multi-level molecular modelling for plasma medicine
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.
2016-02-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.
Modeling of high-explosive driven plasma compression opening switches
Greene, A. E.; Lindemuth, I. R.; Goforth, J. H.
The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this model as our starting point. The fuse model assumes that the foil material is homogeneous and is characterized by a single temperature and density. The thickness of the foil is assumed to be much less than the magnetic diffusion skin depth so that the magnetic field varies linearly across the foil. For the present application we assume that the side of the foil away from the channel is fixed in space while the side by the channel is untamped. The foil/plasma will, therefore, cross the channel at the expansion velocity as the foil explodes. Equations for the electrical resistance of the foil, the magnetic fields, the motion of the foil, and the kinetic and internal energies are all solved selfconsistantly. The electrical resistivity, the pressure, and the specific energy of aluminum are taken from the Los Alamos SESAME EOS library. In the case of aluminum we have created a SESAME-style table based on the theory of More and Lee which we have modified to agree with experiment where possible.
Line photon transport in a non-homogeneous plasma using radiative coupling coefficients
Energy Technology Data Exchange (ETDEWEB)
Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)
2006-06-15
We present a steady-state collisional-radiative model for the calculation of level populations in non-homogeneous plasmas with planar geometry. The line photon transport is taken into account following an angle- and frequency-averaged escape probability model. Several models where the same approach has been used can be found in the literature, but the main difference between our model and those ones is that the details of geometry are exactly treated in the definition of coupling coefficients and a local profile is taken into account in each plasma cell. (authors)
LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments
Walker, Kyle M.
2017-06-01
While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.
Collisional Processing of Comet Surfaces: Impact Experiments into Olivine
Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.
2011-01-01
A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.
Modeling of Inelastic Collisions in a Multifluid Plasma: Excitation and Deexcitation
2016-05-31
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Journal Article 3...9, September 2015 PA Case Number: 15342; Clearance Date: 6/24/2015 © 2015 AIP Publishing LLC The US Government is joint author of the work and has...A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data,” Journal of Physics D
Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study
Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie
2015-06-01
A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
Modeling of neutral gas dynamics in high-density plasmas
Canupp, Patrick Wellington
This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact
The Diagnostics Of Hydrogen-Cesium Plasma Using Fully Relativistic Electron Impact Cross Sections
Priti, Priti; Dipti, Dipti; Gangwar, Reetesh; Srivastava, Rajesh
2016-10-01
Electron excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma relevant to the negative ion based neutral beam injectors for the ITER project. The calculated cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. The calculated plasma parameters are compared with the available experimental and theoretical results.
Did the Hilda collisional family form during the late heavy bombardment?
Brož, M; Morbidelli, A; Nesvorný, D; Bottke, W F; 10.1111/j.1365-2966.2011.18587.x
2011-01-01
We model the long-term evolution of the Hilda collisional family located in the 3/2 mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the Yarkovsky/YORP effect and assuming that: (i) impact disruption was isotropic, and (ii) albedo distribution of small asteroids is the same as for large ones, we can estimate the age of the Hilda family to be $4_{-1}^{+0}\\,{\\rm Gyr}$. We also calculate collisional activity in the J3/2 region. Our results indicate that current collisional rates are very low for a 200\\,km parent body such that the number of expected events over Gyrs is much smaller than one. The large age and the low probability of the collisional disruption lead us to the conclusion that the Hilda family might have been created during the Late Heavy Bombardment when the collisions were much more frequent. The Hilda family may thus serve as a test of orbital behavior of planets during the LHB. We tested the influence of the giant-planet migration on the distribution of the ...
Collisional excitation of doubly deuterated ammonia NHD2 by para-H2
Wiesenfeld, Laurent; Faure, Alexandre; Roueff, Evelyne
2010-01-01
Collisional de-excitation rates of partially deuterated molecules are different from the fully hydrogenated species because of lowering of symmetry. We compute the collisional (de)excitation rates of ND2H by ground state para-H2, extending the previous results for He- lium. We describe the changes in the potential energy surface of NH3- H2 involved by the pres- ence of two deuterium nuclei. Cross sections are calculated within the full close-coupling ap- proach and augmented with coupled-state calculations. Collisional rate coefficients are given between 5 and 35 K, a range of temperatures which is relevant to cold interstellar conditions. We find that the collisional rates of ND2H by H2 are about one order of magnitude higher than those obtained with Helium as perturber. These results are essential to radiative transfer modelling and will allow to interpret the millimeter and submillimeter detections of ND2H with better constraints than previously.
INFERNO - A better model of atoms in dense plasmas
Liberman, D. A.
1982-03-01
A self-consistent field model of atoms in dense plasmas has been devised and incorporated in a computer program. In the model there is a uniform positive charge distribution with a hole in it and at the center of the hole an atomic nucleus. There are electrons, in both bound and continuum states, in sufficient number to form an electrically neutral system. The Dirac equation is used so that high Z atoms can be dealt with. A finite temperature is assumed, and a mean field (average atom) approximation is used in statistical averages. Applications have been made to equations of states and to photoabsorption.