WorldWideScience

Sample records for modeling co2 levels

  1. System-level modeling for geological storage of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

  2. CO2 laser modeling

    Science.gov (United States)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  3. Level-lumping method for the modeling of CO2 vibrational kinetics

    Science.gov (United States)

    Berthelot, Antonin; Bogaerts, Annemie; University of Antwerp, Plasmant Team

    2016-09-01

    The conversion of greenhouse gases, especially CO2, into value-added chemicals is gaining a very large interest among the scientific and industrial communities. It is known that the excitation of the asymmetric vibrational mode of CO2 is one of the most important processes to achieve high energy efficiencies, thus making the CO2 kinetics very complex. Due to this complexity, the only models that have been developed so far were zero-dimensional models, considering only the variations over time. These models require strong approximations on the geometry of the reactor. In order to reduce the calculation time and to allow the modeling of complex plasma problems in 2D or 3D geometries, we have simplified the chemistry set of CO2 and developed a lumped-levels model for the vibrational kinetics. It was found that a 3-groups model gives a good agreement with the state-to-state model at pressures of 100mbar and above, at the conditions under study. The important dissociation and recombination mechanisms of CO2 have also been investigated. This lumped-levels model is being implemented in a 2D self-consistent microwave plasma code. This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 606889.

  4. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid

  5. CO2 and sea level

    Science.gov (United States)

    Bell, Peter M.

    There is considerable discussion currently about the potential effects of carbon dioxide build-up in the atmosphere over the next several decades. The sources of information are two Government funded reports, one by the National Research Council (NRC), the other by the Environment Protection Agency (EPA), both were released within the last five months. The reports were described recently as being conservative, although the consequences of the resulting greenhouse effects are deemed inevitable. Atmospheric warming on a global scale of as much as 5°C cannot be avoided, only perhaps delayed by a few years at best (Environ. Sci. Technol, 18, 45A-46A, 1984). The cause is the burning of fossil fuels. Oil will not be too important because its supplies are predictably exhausted on the time scale of 50-100 years. Coal burning is considered as the main source of carbon dioxide. Among the more spectacular results of a global temperature rise over the next 100 years is the expected rise in sea level of a minimum of 70 cm (Oceanus, Winter, 1983/84). If the West Antarctic Ice Sheet breaks up and melts, the rise could be in the several meter range. Sea level rose only 15 cm in the past century.

  6. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    A.V.G. Chizmeshya

    2003-12-19

    DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will

  7. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels

    Science.gov (United States)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert

    2017-04-01

    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2

  8. Climate Sensitivity, Sea Level, and Atmospheric CO2

    CERN Document Server

    Hansen, James; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 {\\pm} 1 {\\deg}C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that...

  9. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    Science.gov (United States)

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  10. The Relationship Between CO2 Levels and CO2 Related Symptoms Reported on the ISS

    Science.gov (United States)

    VanBaalen, M.; Law, J.; Foy, M.; Wear, M. L.; Mason, S.; Mendez, C.; Meyers, V.

    2014-01-01

    Medical Operations, Toxicology, and the Lifetime Surveillance of Astronaut Health collaborated to assess the association of CO2 levels on board the International Space Station and USOS crew reported symptoms inflight, i.e. headache and vision changes. Private Medical Conference (PMC) documents and the weekly Space Medicine Operations Team (SMOT) Notes were used to provide a robust data set of inflight medical events. All events and non-events were documented independent of CO2 levels and other potential contributors. Average (arithmetic mean) and single point maximum ppCO2 was calculated for the 24 hours and 7 days prior to the PMC or SMOT date and time provided by LSAH. Observations falling within the first 7 days of flight (147) were removed from the datasets analyzed to avoid confounding with Space Adaptation Syndrome. The final analysis was based on 1716 observations. For headache, 46 headaches were observed. CO2 level, age at launch, time inflight, and data source were all significantly associated with headache. In particular, for each 1 mmHg increase in CO2, the odds of a crewmember reporting a headache doubled. For vision changes, 29 reports of vision changes were observed. These observations were not found to be statistically associated with CO2 levels as analyzed. While the incidence of headache has was not high (3%), headaches may be an indicator of underlying increases in intracranial pressure, which may result likely from the synergy between CO2-induced cerebral vasodilatation and decreased venous drainage in microgravity. Vision changes were inconsistently reported and as a result did not align appropriately with the CO2 levels. Further analysis is needed. Our results support ongoing efforts to lower the CO2 exposure limits in spacecraft.

  11. Highly dissipative Hénon map behavior in the four-level model of the CO 2 laser with modulated losses

    Science.gov (United States)

    Pando L., C. L.; Acosta, G. A. Luna; Meucci, R.; Ciofini, M.

    1995-02-01

    We show that the four-level model for the CO 2 laser with modulated losses behaves in a qualitatively similar way as the highly dissipative Hénon map. The ubiquity of elements of the universal sequence, their related symbolic dynamics, and the presence of reverse bifurcations of chaotic bands in the model are reminiscent of the logistic map which is the limit of the Hénon map when the Jacobian equals zero. The coexistence of attractors, its dynamics related to contraction of volumes in phase space and the associated return maps can be correlated with those of the highly dissipative Hénon map.

  12. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    performed satisfactorily and predicted the general behavior of the systems, but qCPA used fewer adjustable parameters to achieve similar predictions. It has been demonstrated that qCPA is a promising model which, compared to CPA, systematically improves the predictions of the experimentally determined phase......, accurate predictions of the thermodynamic properties and phase equilibria of mixtures containing CO2 are challenging with classical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is believed to be due to the fact, that CO2 has a large quadrupole moment which the classical models...... do not explicitly account for. In this thesis, in an attempt to obtain a physically more consistent model, the cubicplus association (CPA) EoS is extended to include quadrupolar interactions. The new quadrupolar CPA (qCPA) can be used with the experimental value of the quadrupolemoment...

  13. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing

    Science.gov (United States)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; Saenko, Oleg A.; Stammer, Detlef; Winton, Michael

    2016-11-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the

  14. Climate Sensitivity, Sea Level, and Atmospheric CO2

    OpenAIRE

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{\\deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, bu...

  15. A cross-association model for CO2-methanol and CO2-ethanol mixtures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A cross-association model was proposed for CO2-alcohol mixtures based on the statistical associating fluid theory (SAFT).CO2 was treated as a pseudo-associating molecule and both the self-association between alcohol hydroxyls and the cross-association between CO2 and alcohol hydroxyls were considered.The equilibrium properties from low temperature-pressure to high temperature-pressure were investigated using this model.The calculated p-x and p-p diagrams of CO2-methanol and CO2-ethanol mixtures agreed with the experimental data.The results showed that when the cross-association was taken into account for Helmholtz free energy,the calculated equilibrium properties could be significantly improved,and the error prediction of the three phase equilibria and triple points in low temperature regions could be avoided.

  16. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    L. Ammoura

    2012-10-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI and urban-rural contrasts. Boundary layer heights (BLH at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical

  17. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Science.gov (United States)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in

  18. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?

    Science.gov (United States)

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO218 ]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thünen Institute in Braunschweig, Germany (Manderscheid et al. 2014). D...

  19. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  20. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Science.gov (United States)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without

  1. Low level CO2 effects on pulmonary function in humans

    Science.gov (United States)

    Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)

    1998-01-01

    The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.

  2. Modeling of CO2 absorber using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2006-01-01

    Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2 ab...

  3. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model

    Indian Academy of Sciences (India)

    Srabanti Ballav; Prabir K Patra; Yousuke Sawa; Hidekazu Matsueda; Ahoro Adachi; Shigeru Onogi; Masayuki Takigawa; Utpal K De

    2016-02-01

    Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13°E) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

  4. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  5. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels.

    Science.gov (United States)

    Regan, Matthew D; Turko, Andy J; Heras, Joseph; Andersen, Mads Kuhlmann; Lefevre, Sjannie; Wang, Tobias; Bayley, Mark; Brauner, Colin J; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Nilsson, Göran E

    2016-01-01

    Recent studies suggest that projected rises of aquatic CO2 levels cause acid-base regulatory responses in fishes that lead to altered GABAergic neurotransmission and disrupted behaviour, threatening fitness and population survival. It is thought that changes in Cl(-) and HCO3 (-) gradients across neural membranes interfere with the function of GABA-gated anion channels (GABAA receptors). So far, such alterations have been revealed experimentally by exposing species living in low-CO2 environments, like many oceanic habitats, to high levels of CO2 (hypercapnia). To examine the generality of this phenomenon, we set out to study the opposite situation, hypothesizing that fishes living in typically hypercapnic environments also display behavioural alterations if exposed to low CO2 levels. This would indicate that ion regulation in the fish brain is fine-tuned to the prevailing CO2 conditions. We quantified pH regulatory variables and behavioural responses of Pangasianodon hypophthalmus, a fish native to the hypercapnic Mekong River, acclimated to high-CO2 (3.1 kPa) or low-CO2 (0.04 kPa) water. We found that brain and blood pH was actively regulated and that the low-CO2 fish displayed significantly higher activity levels, which were reduced after treatment with gabazine, a GABAA receptor blocker. This indicates an involvement of the GABAA receptor and altered Cl(-) and HCO3 (-) ion gradients. Indeed, Goldman calculations suggest that low levels of environmental CO2 may cause significant changes in neural ion gradients in P. hypophthalmus. Taken together, the results suggest that brain ion regulation in fishes is fine-tuned to the prevailing ambient CO2 conditions and is prone to disruption if these conditions change.

  6. Arctic microbial community dynamics influenced by elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    K. Schulz

    2012-09-01

    Full Text Available The Arctic Ocean ecosystem is particular vulnerable for ocean acidification (OA related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ∼180 to 1100 μatm in the Kongsfjord off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. The most prominent finding of our study is the profound effect of OA on the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton prospered. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Furthermore, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters.

  7. A simple model of the anthropogenically forced CO2 cycle

    Directory of Open Access Journals (Sweden)

    W. Weber

    2015-10-01

    Full Text Available From basic physical assumptions we derive a simple linear model of the global CO2 cycle without free parameters. It yields excellent agreement with the observations reported by the carbon dioxide information analysis center (CDIAC as time series of atmospheric CO2 growth, of sinks in the ocean and of absorption by the biosphere. The agreement extends from the year 1850 until present (2013. Based on anthropogenic CO2 emission scenarios until 2150, future atmospheric CO2 concentrations are calculated. As the model shows, and depending on the emission scenario, the airborne fraction of CO2 begins to decrease in the year ~ 2050 and becomes negative at the latest in ~ 2130. At the same time the concentration of the atmospheric CO2 will reach a maximum between ~ 500 and ~ 900 ppm. As a consequence, increasing anthropogenic CO2 emissions will make the ocean and the biosphere the main reservoirs of anthropogenic CO2 in the long run. Latest in about 150 years, anthropogenic CO2 emission will no longer increase the CO2 content of the atmosphere.

  8. A simple model of the anthropogenically forced CO2 cycle

    Science.gov (United States)

    Weber, W.; Lüdecke, H.-J.; Weiss, C. O.

    2015-10-01

    From basic physical assumptions we derive a simple linear model of the global CO2 cycle without free parameters. It yields excellent agreement with the observations reported by the carbon dioxide information analysis center (CDIAC) as time series of atmospheric CO2 growth, of sinks in the ocean and of absorption by the biosphere. The agreement extends from the year 1850 until present (2013). Based on anthropogenic CO2 emission scenarios until 2150, future atmospheric CO2 concentrations are calculated. As the model shows, and depending on the emission scenario, the airborne fraction of CO2 begins to decrease in the year ~ 2050 and becomes negative at the latest in ~ 2130. At the same time the concentration of the atmospheric CO2 will reach a maximum between ~ 500 and ~ 900 ppm. As a consequence, increasing anthropogenic CO2 emissions will make the ocean and the biosphere the main reservoirs of anthropogenic CO2 in the long run. Latest in about 150 years, anthropogenic CO2 emission will no longer increase the CO2 content of the atmosphere.

  9. Proteomic response of rice seedling leaves to elevated CO2 levels.

    Science.gov (United States)

    Bokhari, Saleem A; Wan, Xiang-Yuan; Yang, Yi-Wei; Zhou, Lu; Tang, Wan-Li; Liu, Jin-Yuan

    2007-12-01

    Previous investigations of plant responses to higher CO 2 levels were mostly based on physiological measurements and biochemical assays. In this study, a proteomic approach was employed to investigate plant response to higher CO 2 levels using rice as a model. Ten-day-old seedlings were progressively exposed to 760 ppm, 1140 ppm, and 1520 ppm CO 2 concentrations for 24 h each. The net photosynthesis rate ( P n), stomatal conductance ( G s), transpiration rate ( E), and intercellular to ambient CO 2 concentration ratio ( C i/ C a) were measured. P n, G s, and E showed a maximum increase at 1140 ppm CO 2, but further exposure to 1520 ppm for 24 h resulted in down regulation of these. Proteins extracted from leaves were subjected to 2-DE analysis, and 57 spots showing differential expression patterns, as detected by profile analysis, were identified by MALDI-TOF/TOF-MS. Most of the proteins belonged to photosynthesis, carbon metabolism, and energy pathways. Several molecular chaperones and ascorbate peroxidase were also found to respond to higher CO 2 levels. Concomitant with the down regulation of P n and G s, the levels of enzymes of the regeneration phase of the Calvin cycle were decreased. Correlations between the protein profiles and the photosynthetic measurements at the three CO 2 levels were explored.

  10. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study

    Science.gov (United States)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2016-02-01

    We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level

  11. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...

  12. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels.

    Science.gov (United States)

    Verspagen, Jolanda M H; Van de Waal, Dedmer B; Finke, Jan F; Visser, Petra M; Huisman, Jef

    2014-08-01

    Although rising CO2 concentrations are thought to promote the growth and alter the carbon : nutrient stoichiometry of primary producers, several studies have reported conflicting results. To reconcile these contrasting results, we tested the following hypotheses: rising CO2 levels (1) will increase phytoplankton biomass more at high nutrient loads than at low nutrient loads, but (2) will increase their carbon : nutrient stoichiometry more at low than at high nutrient loads. We formulated a mathematical model to predict dynamic changes in phytoplankton population density, elemental stoichiometry and inorganic carbon chemistry in response to rising CO2 . The model was tested in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa. The model predictions and experimental results confirmed the hypotheses. Our findings provide a novel theoretical framework to understand and predict effects of rising CO2 concentrations on primary producers and their nutritional quality as food for herbivores under different nutrient conditions.

  13. MODEL SIMULASI EMISI DAN PENYERAPAN CO2 DI KOTA BOGOR

    Directory of Open Access Journals (Sweden)

    Rizka Permatayakti Rasyidta Nur

    2015-04-01

    Full Text Available Most of the urban pollution is the result of carbon dioxide (CO2 emission from human activities. This research identified CO2 emission and absorption in Bogor, and also the alternatives to solve the emission problem by system model and simulation. CO2 emission and absorption system model was created using software Stella 9.0.2 based on loss-gain emission concept for 30 years prediction. Human activities that contribute to CO2 emission are transportation, industries, energy consumption such as fuel or electricity, house hold waste, and farms, while the decrease factor is green open spaces as CO2 sequester. The alternatives to solve emission problem in Bogor is created based on green city concept by including the environmental aspects in every urban activity. The result of this research, the CO2 emission of Bogor reached 20.027.878 tons and the absorption reached 93.843 tons in 2042. Combined mitigation alternatives in several sectors could reduce CO2 emission by 2.797.667 tons in 2042 and CO2 emission could be neutralized by reforestation in 2036.

  14. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  15. Transient modeling of electrochemically assisted CO2 capture and release

    DEFF Research Database (Denmark)

    Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.

    2017-01-01

    The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...... to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking...

  16. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    Science.gov (United States)

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  17. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    Science.gov (United States)

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  18. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    Energy Technology Data Exchange (ETDEWEB)

    Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  19. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    Directory of Open Access Journals (Sweden)

    K. W. Bowman

    2010-12-01

    Full Text Available The use of global three-dimensional (3-D models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01 CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (~0.19 Pg C yr−1, 3-D spatially-distributed emissions from aviation (~0.16 Pg C yr−1, and 3-D chemical production of CO2 (~1.05 Pg C yr−1. Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May–June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (~3%, while the inclusion of CO2 chemical production (and the surface correction is shown to decrease the latitudinal gradient by about 0.40 ppm (~10% with a complex

  20. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  1. Plant acclimation impacts carbon allocation to isoprene emissions: evidence from past to future CO2 levels

    Science.gov (United States)

    de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert

    2016-04-01

    Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (weeks) via acclimation in photosynthetic biochemistry. In order to understand the effects of CO2-induced climate change on carbon allocation in plants it is therefore important to quantify how isoprene biosynthesis and emissions are effected by both short-term responses and long-term acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. In addition to environmental conditions, this imbalance is determined by the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (V cmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 levels representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. Plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters V cmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling

  2. Simulations of Arctic ozone depletion with current and doubled levels of CO2

    Science.gov (United States)

    Butchart, Neal; Austin, John; Shine, Keith P.

    1994-01-01

    Results from idealized 3-D simulations of a dynamical-radiative-photochemical model of the stratosphere are presented for the Northern Hemisphere winter and spring. For a simulation of a quiescent winter, it is found that with current levels of CO2 only modest polar ozone depletion occurs, consistent with observations. For a second simulation with the same planetary wave amplitudes in the upper troposphere but with doubled CO2, the model predicts a northern hemisphere ozone hole comparable to that observed in Antarctica with almost complete ozone destruction at 20 km. Reasons for the marked difference between the simulations are identified.

  3. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine...... absorber. The influence of the application of different mass transfer correlations on the model's performance is investigated. Analytical expressions for the calculation of the enhancement factor for the second order as well as the pseudo-first-order reaction regime are integrated in the model......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  4. A general model for CO2 regulation: the case of Denmark

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    for the public electricity sector. Permits are then to be devaluated in year 2005 by 20%. A CO2 tax should be correctly set at a $50 level in year 2005 for households, transportation sector and private firms not participating in the CO2 market. This model may guide future energy policies in other countries...

  5. Global Modeling of CO2 Discharges with Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2014-01-01

    Full Text Available We developed a global model aiming to study discharges in CO2 under various conditions, pertaining to a large spectrum of pressure, absorbed energy, and feeding values. Various physical conditions and form factors have been investigated. The model was applied to a case of radiofrequency discharge and to helicon type devices functioning in low and high feed conditions. In general, main charged species were found to be CO2+ for sufficiently low pressure cases and O− for higher pressure ones, followed by CO2+, CO+, and O2+ in the latter case. Dominant reaction is dissociation of CO2 resulting into CO production. Electronegativity, important for radiofrequency discharges, increases with pressure, arriving up to 3 for high flow rates for absorbed power of 250 W, and diminishes with increasing absorbed power. Model results pertaining to radiofrequency type plasma discharges are found in satisfactory agreement with those available from an existing experiment. Application to low and high flow rates feedings cases of helicon thruster allowed for evaluation of thruster functioning conditions pertaining to absorbed powers from 50 W to 1.8 kW. The model allows for a detailed evaluation of the CO2 potential to be used as propellant in electric propulsion devices.

  6. COUPLING NORSOK CO2 CORROSION PREDICTION MODEL WITH PIPELINES THERMAL/HYDRAULIC MODELS TO SIMULATE CO2 CORROSION ALONG PIPELINES

    Directory of Open Access Journals (Sweden)

    MOKHTAR CHE ISMAIL

    2011-12-01

    Full Text Available Pipelines transporting oil and gas are vulnerable to internal corrosion when water forms a part of the transported fluids. The presence of carbon dioxide (CO2 in the fluid accelerates the corrosion rate due to its reaction with water which results in forming carbonic acid, and hence, water pH is reduced. The corrosion rate prediction is an important task needed to manage and control the corrosion. The prediction can be carried on by selecting one of many empirical and mechanistic models that developed for corrosion rate prediction. One of these models is NORSOK model, an empirical model developed by NORSOK Norwegian standard for CO2 corrosion prediction in straight pipes. In this paper NORSOK model has been coupled to thermal and hydraulic models to predict CO2 corrosion rate along pipelines.

  7. Phytoplankton-bacteria coupling under elevated CO2 levels: a stable isotope labelling study

    Directory of Open Access Journals (Sweden)

    J. J. Middelburg

    2010-11-01

    Full Text Available The potential impact of rising carbon dioxide (CO2 on carbon transfer from phytoplankton to bacteria was investigated during the 2005 PeECE III mesocosm study in Bergen, Norway. Sets of mesocosms, in which a phytoplankton bloom was induced by nutrient addition, were incubated under 1× (~350 μatm, 2× (~700 μatm, and 3× present day CO2 (~1050 μatm initial seawater and sustained atmospheric CO2 levels for 3 weeks. 13C labelled bicarbonate was added to all mesocosms to follow the transfer of carbon from dissolved inorganic carbon (DIC into phytoplankton and subsequently heterotrophic bacteria, and settling particles. Isotope ratios of polar-lipid-derived fatty acids (PLFA were used to infer the biomass and production of phytoplankton and bacteria. Phytoplankton PLFA were enriched within one day after label addition, whilst it took another 3 days before bacteria showed substantial enrichment. Group-specific primary production measurements revealed that coccolithophores showed higher primary production than green algae and diatoms. Elevated CO2 had a significant positive effect on post-bloom biomass of green algae, diatoms, and bacteria. A simple model based on measured isotope ratios of phytoplankton and bacteria revealed that CO2 had no significant effect on the carbon transfer efficiency from phytoplankton to bacteria during the bloom. There was no indication of CO2 effects on enhanced settling based on isotope mixing models during the phytoplankton bloom, but this could not be determined in the post-bloom phase. Our results suggest that CO2 effects are most pronounced in the post-bloom phase, under nutrient limitation.

  8. Quantification and modelling of on-road CO2 emissions and its impacts on ambient CO2 concentrations in an Indian coastal city

    Science.gov (United States)

    Madhipatla, K. K.

    2015-12-01

    This paper presents the results of CO2 emission inventory, monitoring of CO2 concentrations and modelling of on road CO2 emissions in an Indian coastal city. Bottom up approach was adopted for quantifying the grid wise on road CO2 emissions of Chennai city at a finer resolution of 1Km x 1Km using the real time traffic data of 56 major roads. In addition, monitoring of ground level CO2 concentrations and vehicular traffic were carried out at a residential site in Chennai to understand the impact of vehicular emissions on the ambient CO2 levels. Further, AERMOD, a US EPA regulatory model, was deployed to find the spatial variation of CO2 concentrations due to the emissions from 38 major corridors of Chennai. Results indicated that a total emission of 0.65 Tg/year of CO2 was emitted by the vehicular traffic from the major roads of Chennai. Cars were identified as the larger emitters of CO2 with a contribution of 25% of the total emissions followed by three wheelers (21%), trucks (16%), buses (15%), two wheelers (13%) and Light Commercial Vehicles (9%). Ground level CO2 concentrations at the study area were in the range 391.52 to 666.37 ppm, with a mean hourly concentration of 448 ± 33.45 ppm. It was observed that the CO2 concentrations were high during the morning and evening peak hours and low during the afternoons and further vehicular emissions were found to have a significant effect on the ambient CO2 concentrations during the morning peak hours (R2=0.78) and afternoons (R2=0.50). But, contrastingly, a weak correlation was observed between the vehicular emissions and CO2 concentrations during the evening peak hours (R2=0.02). In addition, night time CO2 concentrations were observed higher in the weekends corresponding to high vehicular traffic during the late evenings. From the modelling results, it was found that the considered 38 major corridors contribute 0.12 ppm of CO2 per year to the ambient atmosphere.

  9. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    Science.gov (United States)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  10. Effect of CO2 levels on nutrient content of lettuce and radish

    Science.gov (United States)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  11. Effect of CO_2 levels on nutrient content of lettuce and radish

    Science.gov (United States)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  12. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    Directory of Open Access Journals (Sweden)

    H. Schack-Kirchner

    2012-10-01

    Full Text Available CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore-space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1 the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.08 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  13. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing

    Science.gov (United States)

    Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars H.; Köhler, Peter; Morgan, Jason; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian R.

    2017-07-01

    Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ~85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ~5,000-15,000 years.

  14. Conditional Methods in Modeling CO2 Capture from Coal Syngas

    Directory of Open Access Journals (Sweden)

    Dmitry N. Saulov

    2014-03-01

    Full Text Available Gasification of coal or biomass with in-situ CO2 capture is an emerging technology aiming to address the problem of climate change. Development of a CO2 sorbent with desirable properties and understanding the behavior of such a material in carbonation/calcination reactions is an important part of developing the technology. In this paper, we report experimental results describing the carbonation behavior of three synthetic CaO-based sorbents. We also present a physically-based model of the reactive transport processes in sorbent particles, which have complicated pore structures. This modeling is based on the conditional approach (i.e., conditional moment closure (CMC, which has proven to be successful in modeling reactive transport phenomena in porous media. The model predictions are in good agreement with the experimental data.

  15. Identifying Attributes of CO2 Leakage Zones in Shallow Aquifers Using a Parametric Level Set Method

    Science.gov (United States)

    Sun, A. Y.; Islam, A.; Wheeler, M.

    2016-12-01

    Leakage through abandoned wells and geologic faults poses the greatest risk to CO2 storage permanence. For shallow aquifers, secondary CO2 plumes emanating from the leak zones may go undetected for a sustained period of time and has the greatest potential to cause large-scale and long-term environmental impacts. Identification of the attributes of leak zones, including their shape, location, and strength, is required for proper environmental risk assessment. This study applies a parametric level set (PaLS) method to characterize the leakage zone. Level set methods are appealing for tracking topological changes and recovering unknown shapes of objects. However, level set evolution using the conventional level set methods is challenging. In PaLS, the level set function is approximated using a weighted sum of basis functions and the level set evolution problem is replaced by an optimization problem. The efficacy of PaLS is demonstrated through recovering the source zone created by CO2 leakage into a carbonate aquifer. Our results show that PaLS is a robust source identification method that can recover the approximate source locations in the presence of measurement errors, model parameter uncertainty, and inaccurate initial guesses of source flux strengths. The PaLS inversion framework introduced in this work is generic and can be adapted for any reactive transport model by switching the pre- and post-processing routines.

  16. A Microscale Model for Combined CO2 Diffusion and Photosynthesis in Leaves

    Science.gov (United States)

    Ho, Quang Tri; Verboven, Pieter; Yin, Xinyou; Struik, Paul C.; Nicolaï, Bart M.

    2012-01-01

    Transport of CO2 in leaves was investigated by combining a 2-D, microscale CO2 transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO2. The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO2 levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO2 concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO2 diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure. PMID:23144870

  17. Altered Carbon Isotope Discrimination of C3 Plants Under Very High pCO2 Levels

    Science.gov (United States)

    Panetta, R. J.; Schubert, B.; Jahren, H.

    2009-12-01

    Various modeling and proxy-based reconstructions of atmospheric pCO2 levels for the last 120 Ma have estimated RCO2 as high as 12x for the Early Cretaceous, generally decreasing into the Cenozoic, and decreasing further into the Quaternary. Multiple ecological studies to assess the effect of elevated CO2 on plant biomass and δ13C value have been spurred on by recent increases in greenhouse gases, however these studies typically grow plants under only slightly elevated CO2 levels (i.e., the twenty foremost studies published since 1990 involved 550 to 750 ppm pCO2, which equals RCO2 = 1.4 to 1.9x). In order to recreate the highest pCO2 environments of the last 120 Ma, we grew radish (Raphanus sativus L.) in growth chambers that maintained controlled environmental conditions and pCO2 levels ranging from ~5 to 11x that of today’s atmosphere (1791 to 4200 ppm); upon harvest we measured total biomass and stable carbon isotope ratio (δ13Cplant) in both above and below ground plant tissue. Unlike the 1:1 relationship between stable isotopes of atmospheric CO2 (δ13Catm) and δ13Cplant observed at lower pCO2 levels (i.e., RCO2 = 1x to 3x; Jahren et al., 2008), the δ13Cplant of biomass grown at more elevated RCO2 was dependent upon δ13Catm according to the linear relationship: δ13Cplant = 1.9(δ13Cplant) - 12.2 ‰ (r2 = 0.71). Concomitantly, we see a highly significant (p sativus L. from -27.0 to -28.0 ‰ at RCO2 = 5x to 11x, respectively. We will discuss possible mechanisms for changing isotope discrimination at very high pCO2 levels that may not be operative at lower concentrations. For example, we noted a striking reduction in the variability of biomass between plants grown at the same (very high) level of pCO2. This variability (calculated as the standard deviation of the log-transformed biomass data after Poorter and Garnier, 1996) decreased by 37 % (above-ground) and 48 % (below-ground) for plants grown at RCO2 > 5x compared to plants grown at RCO2 = 1x to 3x

  18. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    Science.gov (United States)

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  19. Numerical and analogue modelling of the propagation and dissolution of CO2 into reservoir brines: implications for CO2 sequestration

    Science.gov (United States)

    Daniels, K.; Bickle, M.; Neufeld, J. A.; Waterton, P.; Kampman, N.; Maskell, A.; Chapman, H.

    2013-12-01

    The release of carbon dioxide (CO2) and other greenhouse gases into the atmosphere is recognised as the principal cause of the current changes observed in the Earth's climate. Carbon Capture and Storage (CCS) within reservoirs is seen as a solution to combat these changes through long-term and secure geological storage of CO2. The viability of long-term storage however, is reliant on an accurate knowledge of CO2 trapping mechanisms, as well as an understanding of the effect of the injected supercritical CO2 on the reservoir formations themselves. One prospective stable trapping mechanism is the dissolution of CO2 into ambient reservoir brine. Developing a greater understanding of the flow of CO2 through reservoir rocks and the associated reactions between the host rock formation and the fluid is therefore of great importance to understanding whether a CO2 storage site will succeed. This study examines the enhanced rates of dissolution found during injection into a layered, heterogeneous formation through analogue experiments and numerical modelling. The analogue experiments are designed to approximate an enhanced oil recovery (EOR) setting and show that during fluid propagation, pore-scale viscous fingers grow and retreat. This will provide an increased surface area between the flow and the ambient reservoir fluid which is likely to enhance the dissolution of CO2 in reservoir brines. The numerical simulations provide a useful comparison with the analogue experiments and give constraints on the timescales and magnitude of CO2 dissolution and the resultant fluid-mineral reactions in a heterogeneous reservoir. The study begins to address whether the dissolution of carbonate or silicate minerals can provide the CO2 with a leakage pathway through corroded caprocks and fault seals, or help with pathway sealing.

  20. MODELLING CO2 EMISSIONS IMPACTS ON CROATIAN POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    Robert Pašičko

    2010-01-01

    Full Text Available Today's electrical energy landscape is characterized by new challenges such as deregulation, liberalization of energy markets, increased competition, growing demands on security of supply, price insecurities, and demand to cut CO2 emissions. All mentioned challenges are calling for consideration of various options (like nuclear, coal, gas or renewable scenarios and for better understanding of energy systems modelling in order to optimize proper energy mix. Existing models are not sufficient any more and planners will need to think differently in order to face these challenges. European emission trading scheme (EU ETS started in 2005 and it has great influence on power system short term and long term planning. Croatia is obliged to establish a national scheme for trading of greenhouse gas emission allowances from the year 2010, which will be focused on monitoring and reporting only until accession to EU when it will be linked with EU ETS. Thus, for Croatian power system it is very important to analyze possible impacts of CO2 emissions. Analysis presented in this paper was done by two different models: mathematical model, based on short run marginal costs (SRMC, relevant for fuel switch in existing power plant and merit order change and long run marginal costs (LRMC, relevant for new investment decisions; and electricity market simulation model PLEXOS, which was used for modelling Croatian power system during development of the Croatian energy strategy in 2008. Results of the analysis show important impacts that emission trading has on Croatian power system, such as influence of emission price rise on price of electricity and on emission quantity, and changes in power plants output that appear with emission price rise. Breakeven point after which gas power plant becomes more competitive than coal is 62 €/tCO2 for SRMC and 40 €/tCO2 for LRMC. With CO2 prices above 31 €/tCO2 wind is more competitive than gas or coal, which emphasizes

  1. Mathematical modeling of output power in RF-excited CO2 waveguide lasers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Theoretical analysis model has been established for CO2 laser to describe the process of dynamic emission in the electrooptically Q-switched laser .The electron excitation and the energy-transfer of vibration level and the rotational relaxation of rotational levels are described. The comparison between this model and a set of coupled rat equations model are discussed.

  2. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  3. A statistical analysis of three ensembles of crop model responses totemperature and CO2concentration

    DEFF Research Database (Denmark)

    Makowski, D; Asseng, S; Ewert, F.

    2015-01-01

    levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical......Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data...... in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration...

  4. Mathematical modeling as a tool to assess microbial community responses to CO2 injection

    Science.gov (United States)

    Vilcaez, J.

    2014-12-01

    The issue of subsurface microbial community responses to the injection of CO2 has great importance not only from a risk assessment point of view but also from the perspective of CO2 recycling to CH4. In this sense, the objective of this study is to develop mathematical models to make a quantitative description of the responses of subsurface indigenous microbial communities to the injection of CO2. For this end, TOUGHREACTV1.2 reactive transport simulator with its module ECO2N is used as the modeling framework. The targeted microbial community is composed of fermentative bacteria (Organic matter → Acetate & H2), acetotrophic methanogens (Acetate → Methane & CO2), acetotrophic Sulfate Reducing Bacteria (SRB) (Acetate → H2S & CO2), hydrogenotrophic methanogens (H2 & CO2 → CH4), and hydrogenotrophic SRB (H2 → H2S). Due to the multiple hydrogeological, geochemical and microbiological factors intervening in both the response of subsurface microbial communities to the injection of CO2 and the chemical and physical fate of CO2 itself, at this stage simulations have been performed in batch mode. That means numerical simulations aimed to track changes in CO2 saturation levels, pH, and concentrations of mineral and aqueous phase species over time at selected initial conditions. Numerical simulation results indicate that the activity of microbes associated with methanogenic processes in geological storage sites of CO2 is governed by the level of CO2 saturation in the pore space as well as by the presence of pH buffering minerals such as calcite. With calcite in the mineral phase attenuating drops in pH below inhibitory levels, for instance it is shown that acetotrophic and hydrogenotrophic SRB outcompete acetotrophic and hydrogenotrophic methanogens for acetate and H2, respectively. During the initial stages of the reaction when the pH level is lowest, the higher tolerance of hydrogenotrophic methanogens to acidic pH levels is reflected by a preferential formation of

  5. Antarctic contribution to global sea level in a high CO2 world

    Science.gov (United States)

    Golledge, Nicholas R.; Levy, Richard H.; Naish, Timothy R.; McKay, Robert M.; Gasson, Edward G. W.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2016-04-01

    In 2014 atmospheric CO2 levels exceeded 400 ppm for the first time since the early Pliocene (3.5-5 Ma). Although the rise in global mean surface temperatures that will accompany continued increases in CO2 is hard to predict, proxy evidence from the early Pliocene suggest that these CO2 concentrations, together with higher-than-present summer insolation, were associated with circum-Antarctic seas 2-4° C warmer than present and air temperatures 6-10° C warmer. Large sectors of the present-day Antarctic ice sheet rest on bedrock below sea level, and as such these areas are more sensitive to environmental forcings than ice grounded above sea level because the geometry of their submarine beds allows for runaway retreat in response to relatively small initial perturbations (Thomas & Bentley, 1978; Mengel & Levermann, 2014). Here we present an ice-sheet model ensemble that explores the consequences of a range of air and ocean warming scenarios representative of a higher-than-present CO2 world. Using circum-Antarctic palaeoenvironmental proxy data to constrain the range of likely conditions adjacent to the continent we calculate probability densities of likely sea-level equivalent ice-sheet volume changes relative to present, together with their associated uncertainties, for a range of timeframes. We find that multi-metre sea-level contributions are likely within centuries, increasing to over ten metres within subsequent millennia. Our results are consistent with empirically-based sea-level reconstructions for the Pliocene, and in addition offer new insights into basin-specific responses within the Antarctic continent.

  6. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    Science.gov (United States)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  7. Experimental versus modelled water use in mature Norway spruce (Picea abies exposed to elevated CO2

    Directory of Open Access Journals (Sweden)

    Sebastian eLeuzinger

    2012-10-01

    Full Text Available Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behaviour is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of global dynamic vegetation models (DGVMs. Here, we provide first results from a free air CO2 enrichment (FACE experiment with naturally growing, mature (35 m Picea abies (L. (Norway spruce and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential and soil moisture in five 35-40 m tall CO2-treated (550 ppm trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9 and 18 % (at concentrations of 550-700ppm atmospheric CO2, the combined evidence from various methods characterising water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modelled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could mitigate the first-order stomatal response.

  8. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  9. A Neural Network Model for Forecasting CO2 Emission

    Directory of Open Access Journals (Sweden)

    C. Gallo

    2014-06-01

    Full Text Available Air pollution is today a serious problem, caused mainly by human activity. Classical methods are not considered able to efficiently model complex phenomena as meteorology and air pollution because, usually, they make approximations or too rigid schematisations. Our purpose is a more flexible architecture (artificial neural network model to implement a short-term CO2 emission forecasting tool applied to the cereal sector in Apulia region – in Southern Italy - to determine how the introduction of cultural methods with less environmental impact acts on a possible pollution reduction.

  10. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-02-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America, which the joint inversion suggests was a weak sink of −0.17 ± 0.20 Pg C in 2006. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion yields −1.13 ± 0.21 Pg C for the global ocean, −2.77 ± 0.20 Pg C for the global land biosphere and −3.90 ± 0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean, global land and total global fluxes are shown to be in the range of other inversion results for 2006. To achieve these results, a latitude dependent bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for

  11. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-06-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields −1.13±0.21 Pg C for the global ocean, −2.77±0.20 Pg C for the global land biosphere and −3.90±0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.

  12. Statistical Modelling of CO2 Emissions in Malaysia and Thailand

    Directory of Open Access Journals (Sweden)

    Tay Sze Hui

    2012-01-01

    Full Text Available Carbon dioxide (CO2 emissions is an environmental problem which leads to Earth’s greenhouse effect. Much concerns with carbon dioxide emissions centered around the growing threat of global warming and climate  change. This paper, however, presents a simple model development using multiple regression with interactions for estimating carbon dioxide emissions in Malaysia and Thailand. Five indicators over the period 1971-2006, namely  energy use, GDP per capita, population density, combustible renewables and waste, and CO2 intensity are used in the analysis. Progressive model selections using forward selection, backward elimination and stepwise regression are used to remove insignificant variables, with possible interactions. Model selection techniques are compared against the performance of eight criteria model selection process. Global test, Coefficient test, Wald test and Goodnessof-fit test are carried out to ensure that the best regression model is selected for further analysis. A numerical illustration is included to enhance the understanding of the whole process in obtaining the final best model.

  13. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.

    Science.gov (United States)

    Cherubini, Francesco; Guest, Geoffrey; Strømman, Anders H

    2013-11-15

    Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).

  14. Modeling some long-term implications of CO2 fertilization for global forests and forest industries

    Institute of Scientific and Technical Information of China (English)

    Joseph; Buongiorno

    2016-01-01

    Background:This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the global forest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2]. Methods:Forest productivity was increased in the Global Forest Products Model (GFPM) in proportion to the rising [CO2] projected in the IPCC scenario A1B, A2, and B2. Projections of the forest area and forest stock and of the production, consumption, prices, and trade of products ranging from fuelwood to paper and paperboard were obtained with the GFPM for each scenario, with and without CO2 fertilization beginning in 2011 and up to 2065. Results:CO2 fertilization increased wood supply, leading to lower wood prices which in turn induced modest lower prices of end products and higher global consumption. However, production and value added in industries decreased in some regions due to the relative competitive advantages and to the varying regional effects of CO2 fertilization. Conclusion:The main effect of CO2 fertilization was to raise the level of the world forest stock in 2065 by 9 to 10%for scenarios A2 and B2 and by 20%for scenario A1B. The rise in forest stock induced by fertilization was in part counteracted by its stimulation of the wood supply which resulted in lower wood prices and increased harvests.

  15. Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti.

    Science.gov (United States)

    Majeed, Shahid; Hill, Sharon Rose; Ignell, Rickard

    2014-02-15

    Mosquitoes rely on carbon dioxide (CO2) to detect and orient towards their blood hosts. However, the variable and rapid fluctuations of atmospheric CO2 concentrations may have an impact on the host-seeking behaviour of mosquitoes. In this study, we analysed the effect of transient elevated background levels of CO2 on the host-seeking behaviour and the physiological characteristics of the CO2-sensitive olfactory receptor neurones (ORNs) in female yellow fever mosquitoes, Aedes aegypti. We show that the take-off and source contact behaviour of A. aegypti is impeded at elevated background levels of CO2 as a result of masking of the stimulus signal. The mechanism underlying this masking during take-off behaviour is one of sensory constraint. We show that the net response of the CO2-ORNs regulates this CO2-related behaviour. Since these neurones themselves are not habituated or fatigued by the transient elevation of background CO2, we propose that habituation of second-order neurones in response to the elevated CO2-ORN activity could be one mechanism by which the net response is transduced by the olfactory system. The findings from this study may help to predict future shifts in mosquito-host interactions and consequently to predict vectorial capacity in the light of climate change.

  16. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  17. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply.

  18. CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model

    Science.gov (United States)

    Wang, Weizong; Berthelot, Antonin; Kolev, Stanimir; Tu, Xin; Bogaerts, Annemie

    2016-12-01

    CO2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO2 plasma chemistry set, including the CO2 vibrational kinetics up to the dissociation limit. The model solves a set of time-dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO2 conversion in the literature. Additionally, the dissociation of CO2 through collisions with O atoms has the largest contribution to CO2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO2 vibrational kinetics.

  19. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis.

    Science.gov (United States)

    Ho, Quang Tri; Berghuijs, Herman N C; Watté, Rodrigo; Verboven, Pieter; Herremans, Els; Yin, Xinyou; Retta, Moges A; Aernouts, Ben; Saeys, Wouter; Helfen, Lukas; Farquhar, Graham D; Struik, Paul C; Nicolaï, Bart M

    2016-01-01

    We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model confirms that scaling of photosynthetic capacity with absorbed light would improve efficiency of CO2 fixation in the leaf, especially at low light intensity.

  20. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels

    NARCIS (Netherlands)

    Verspagen, J.M.H.; Van de Waal, D.B.; Finke, J.F; Visser, P.M.; Huisman, J.

    2014-01-01

    Although rising CO2 concentrations are thought to promote the growth and alter the carbon : nutrient stoichiometry of primary producers, several studies have reported conflicting results. To reconcile these contrasting results, we tested the following hypotheses: rising CO2 levels (1) will increase

  1. Modeling CO2 air dispersion from gas driven lake eruptions

    Science.gov (United States)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  2. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake

    DEFF Research Database (Denmark)

    Tonetta, Denise; Staehr, Peter Anton; Petrucio, Mauricio Mello

    2017-01-01

    We investigated the implications of low rainfall and reduced water level for changes in nutrients and chlorophyll-a in a subtropical lake, and how these changes affected levels and atmospheric fluxes of CO2. Based on nine consecutive years of monthly monitoring of pH, alkalinity, oxygen, and temp......We investigated the implications of low rainfall and reduced water level for changes in nutrients and chlorophyll-a in a subtropical lake, and how these changes affected levels and atmospheric fluxes of CO2. Based on nine consecutive years of monthly monitoring of pH, alkalinity, oxygen......, and temperature, we calculated the pCO(2) and CO2 flux and related these to environmental drivers. Variations in annual rainfall, with extreme low levels along 2012-2014 caused the water level to decrease up to 1 m. Low water levels were associated with higher concentrations of chlorophyll-a and organic carbon...

  3. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    CERN Document Server

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  4. Growth response of Spirulina platensis PCC9108 to elevated CO2 levels and flue gas

    Directory of Open Access Journals (Sweden)

    Seyedmahdi Hoseini

    2014-01-01

    Full Text Available Introduction: Because their ability to capture CO2, photosynthetical microorganisms have some advantages to CO2 mitigation from high CO2 streams such as flue gases and they can use CO2 as carbon source. Recently, experts have made efforts to exploit microorganisms intended for recovering CO2 from power plants. Materials and methods: To achieve this purpose, we studied the growth response of the cyanobacterium Spirulina platensis PCC9108 under different concentrations of carbon dioxide (ranging from 0.036% to 10% and flue gas in a bench-scale system. Preparation of different concentrations of CO2 and injection into Erlenmeyer flasks was performed by a system including air compressor, CO2 capsule, pressure gauge and flow meter. Results: The main goal of studying this paper is a survey of organism's potential to grow by generated CO2 from flue gas of power plant. It already had the potential and highest biomass production recorded at 8% CO2 (v/v. Also we proved that S.platensis PCC9108 can be grown under flue gas, although biomass production decreased fairly. Total lipid content of algae interestingly enhanced with elevated CO2 levels from ambient air to 4% and 6% which ranged from 14.5 to 15.8 and 16 dry weight (wt. % respectively. In contrast, total protein content illustrated no difference between all treatment and its value was about 46 wt.%. Discussion and conclusion: The results of present study suggested that understudied S.platensis PCC9108 is appropriate for mitigating CO2 because of its carbon fixation ability. Also due to its high protein content, this cyanobacterium is a good candidate to produce SCP (single cell protein.

  5. Modeling post-combustion CO2 capture with amine solvents

    OpenAIRE

    Léonard, Grégoire; Heyen, Georges

    2010-01-01

    In order to avoid the emission of large amounts of greenhouse gas, CO2 capture in fossil fuel power plants and subsequent underground CO2 sequestration is studied. The capture occurs by reactive CO2 absorption into chemical solvent systems at moderate temperature (~50°C) followed by solvent regeneration at higher temperature (~120°C). So far, the most employed solvent for acid gas capture is monoethanolamine (MEA). One main drawback of this technology is the high energy consumption necessary ...

  6. CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study

    Science.gov (United States)

    Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing

    2016-07-01

    Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.

  7. Characteristics of ground level CO2 concentrations over contrasting land uses in a tropical urban environment

    Science.gov (United States)

    Kishore Kumar, M.; Shiva Nagendra, S. M.

    2015-08-01

    Indian cities feature high human population density, heterogeneous traffic, mixed land-use patterns and mostly tropical meteorological conditions. Characteristics of ambient CO2 concentrations under these distinctive features are very specific and the related studies are limited. This paper presents the characteristics of ground level CO2 concentrations at three contrasting land uses (residential, commercial and industrial) in a tropical urban area of India. The CO2 concentrations were monitored in Chennai city for 31 days at each land use during June-September, 2013. Emissions of CO2 from all the major anthropogenic sources present at the three study sites were also quantified. Results indicated that the daily average CO2 concentrations were high at commercial (467 ± 35.15 ppm) and industrial (464 ± 31.68 ppm) sites than at residential site (448 ± 33.45 ppm). The quantified CO2 emissions were also showed high levels at commercial (1190 tons/day) and industrial sites (8886 tons/day) than at residential site (90 tons/day). On a diurnal scale, CO2 concentrations were low during afternoons and high during the late evenings and early morning hours at all the three types of land use sites. At the urban residential site, the domestic sector had a strong impact on the day time CO2 concentrations, while soil and plant respiration phenomena had a greater control over the night time CO2 concentrations. Further, the CO2 concentrations were high during the stagnation and stable meteorological conditions than the ventilation and unstable conditions.

  8. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to

  9. Modeling forest C and N allocation responses to free-air CO2 enrichment

    Science.gov (United States)

    Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke

    2015-04-01

    Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed

  10. Expired CO2 levels indicate degree of lung aeration at birth.

    Directory of Open Access Journals (Sweden)

    Stuart B Hooper

    Full Text Available As neonatal resuscitation critically depends upon lung aeration at birth, knowledge of the progression of this process is required to guide ongoing care. We investigated whether expired CO2 (ECO2 levels indicate the degree of lung aeration immediately after birth in two animal models and in preterm infants. Lambs were delivered by caesarean section and ventilated from birth. In lambs, ECO2 levels were significantly (p10 mmHg 28 (median (21-36 seconds before the heart rate increased above 100 beats per minute. These data demonstrate that ECO2 levels can indicate the relative degree of lung aeration after birth and can be used to clinically assess ventilation in the immediate newborn period.

  11. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation.

    Science.gov (United States)

    Bao, Huiming; Lyons, J R; Zhou, Chuanming

    2008-05-22

    Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation.

  12. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.

    Science.gov (United States)

    Blombach, Bastian; Buchholz, Jens; Busche, Tobias; Kalinowski, Jörn; Takors, Ralf

    2013-12-01

    We investigated the growth kinetics and transcriptional responses of Corynebacterium glutamicum in environments with low (pCO2CO2/HCO3(-) levels compared to standard conditions. When cultivated at high CO2/HCO3(-)-levels, C. glutamicum showed increased (63%) biomass to substrate yields during the initial growth phase. Other kinetic parameters such as growth rate (μ), specific glucose consumption rate (qS), and selected enzymatic activities of anaplerotic reactions, the pentose phosphate pathway and the tricarboxylic acid cycle were similar to standard conditions. However, microarray hybridization disclosed a complex transcriptional response involving 117 differentially expressed genes. Among those, 60 genes were assigned to the complete DtxR/RipA regulon controlling iron homeostasis in C. glutamicum. Impaired growth of a ΔdtxR mutant at high CO2/HCO3(-) levels validated the relevance of this master regulator to cope with excessive CO2/HCO3(-) availability. At low CO2/HCO3(-) levels, C. glutamicum grew in a bi-level manner with three distinct growth phases. Differential analyses revealed approximately doubled activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase accompanied by the formation of L-alanine and L-valine during the lowest μ occurring in mid-phase of the cultivation. DNA microarray analysis revealed more than 100 differentially expressed genes in growth phase II compared to phase I including almost all thiamin pyrophosphate (TPP) biosynthesis genes, which were significantly up regulated. Concluding, we hypothesize that C. glutamicum counteracts the lack of CO2/HCO3(-) by triggering TPP biosynthesis for increasing the activities of TPP-dependent enzymes involved in CO2 formation.

  13. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    Science.gov (United States)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  14. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    Science.gov (United States)

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T S; Janssens, Ivan A; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including "all" papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.

  15. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    Science.gov (United States)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  16. Modeling of CO2 Solubility in Aqueous Potassium Lysinate Solutions at Post-Combustion CO2 Capture Conditions

    Science.gov (United States)

    Bian, Y.; Shen, S.

    2017-05-01

    Aqueous potassium lysinate (LysK) has been proposed as an alternative to aqueous alkanolamines for CO2 capture due to fast kinetics and large absorption capacity. However, thermodynamic modeling for aqueous LysK system has not been available yet. In this work, a modified Kent-Eisenberg model with correlated equilibrium constants was developed to interpret the vapor-liquid equilibrium (VLE) data at postcombustion capture conditions. The predictions from the developed model are in good agreement with the experimental results with AAD within 19 %.

  17. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  18. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels

    Science.gov (United States)

    Hu, Jin-Jin; Xing, Yao-Wu; Turkington, Roy; Jacques, Frédéric M. B.; Su, Tao; Huang, Yong-Jiang; Zhou, Zhe-Kun

    2015-01-01

    Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives. Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China. Key Results In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180–240 ppm in the late Pliocene, which is consistent with most other previous estimates. Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are

  19. Evaluation of moisture effect on low-level CO2 adsorption by ion-exchanged zeolite.

    Science.gov (United States)

    Lee, Kyung-Mi; Lim, Yun-Hee; Jo, Young-Min

    2012-01-01

    To enhance the capture of low-level indoor CO2, a commercial zeolite (13X) was modified with alkali and alkaline earth metals using an ion-exchange method. Although the calcium-impregnated sorbent (zeo-Ca) showed the largest adsorption capacity, with a strong binding force for carbon dioxide, its regeneration by heat treatment was very difficult. Moisture in the gas flow caused significant decreases in CO2 adsorption capability as well as in the lifetime of the adsorbents. As for the regeneration gas, the test showed that nitrogen would hinder the CO2 adsorption more significantly than helium gas. Water vapour and nitrogen gas molecules are apt to competitively occupy the available sites of the adsorbent over the CO2 molecules.

  20. Stochastic Modeling of CO2 Migrations and Chemical Reactions in Deep Saline Formations

    Science.gov (United States)

    Ni, C.; Lee, I.; Lin, C.

    2013-12-01

    Carbon capture and storage (CCS) has been recognized the feasible technology that can significant reduce the anthropogenic CO2 emissions from large point sources. The CO2 injection in geological formations is one of the options to permanently store the captured CO2. Based on this concept a large number of target formations have been identified and intensively investigated with different types of techniques such as the hydrogeophysical experiments or numerical simulations. The numerical simulations of CO2 migrations in saline formations recently gather much attention because a number of models are available for this purpose and there are potential sites existing in many countries. The lower part of Cholan Formation (CF) near Changhua Coastal Industrial Park (CCIP) in west central Taiwan was identified the largest potential site for CO2 sequestration. The top elevations of the KF in this area varies from 1300 to 1700m below the sea level. Laboratory experiment showed that the permeability of CF is 10-14 to 10-12 m2. Over the years the offshore seismic survey and limited onshore borehole logs have provided information for the simulation of CO2 migration in the CF although the original investigations might not focus on the purpose of CO2 sequestration. In this study we modify the TOUGHREACT model to consider the small-scale heterogeneity in target formation and the cap rock of upper CF. A Monte Carlo Simulation (MCS) approach based on the TOUGHREACT model is employed to quantify the effect of small-scale heterogeneity on the CO2 migrations and hydrochemical reactions in the CF. We assume that the small-scale variability of permeability in KF can be described with a known Gaussian distribution. Therefore, the Gaussian type random field generator such as Sequential Gaussian Simulation (SGSIM) in Geostatistical Software Library (GSLIB) can be used to provide the random permeability realizations for the MCS. A variety of statistical parameters such as the variances and

  1. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica.

    Science.gov (United States)

    Dickinson, Gary H; Ivanina, Anna V; Matoo, Omera B; Pörtner, Hans O; Lannig, Gisela; Bock, Christian; Beniash, Elia; Sokolova, Inna M

    2012-01-01

    Rising levels of atmospheric CO(2) lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO(2) levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO(2) (P(CO2)) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric P(CO2) (∼400 μatm, normocapnia) or P(CO2) projected by moderate IPCC scenarios for the year 2100 (∼700-800 μatm, hypercapnia). Exposure of the juvenile oysters to elevated P(CO2) and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and P(CO2), suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high P(CO2). Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated P(CO2) and

  2. An anti-herbivore defense mutualism under elevated CO2 levels

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S.; Lincoln, D.E. (Winthrop Univ., Rock Hill, SC (United States))

    1994-06-01

    Previous studies have shown that insects typically consume more when fed leaf tissue grown under CO2 enrichment, but with few negative effects on growth. On the other hand, Lepidopteran larvae fed tissue infected with Balansiae fungal endophytes (which produce toxic alkaloids) typically eat less but suffer negative effects on growth and survival. This study was carried out to see how these two factors would interact to affect consumption and growth of Fall Armyworm larvae (Spodoptera frugiperda). Infected and uninfected ramets of a single genotype of tall fescue (Festuca arundinacea) were grown under CO2 concentrations of 400 and 700 ul/L. Larvae had increased relative growth in the high CO2 treatment, but decreased growth when fed infected tissue. Relative consumption of leaf tissue was greater in the high CO2 treatment, but was not effected by infection. CO2 level, infection, and their interaction all significantly reduced the efficiency of conversion of food ingested (ECI). It appears that tall fescue may not be as well defended against herbivores under CO2 enrichment, although insects may still avoid and be negatively effected by endophyte infected plants.

  3. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    Directory of Open Access Journals (Sweden)

    B. Martínez-Crego

    2014-04-01

    Full Text Available Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the effects of CO2 enrichment and its interaction with eutrophication, scale-up from changes in primary producers at the individual- (biochemistry or population-level (production, reproduction, and/or abundance to higher levels of community (macroalgae abundance, herbivory, and global metabolism and ecosystem organization (detritus release and carbon sink capacity. The responses of Zostera noltii seagrass meadows growing in low- and high- nutrient field conditions were compared. In both meadows, the effect of elevated CO2 levels was mediated by epiphyte proliferation (mostly the cyanobacterium Microcoleus spp., but not through changes in plant biochemistry or population-level traits. In the low-nutrient meadow, epiphyte proliferation suppressed the CO2 benefits on Z. noltii leaf production and led to increased detritus and decreased organic matter in sediment. Faster and stronger responses to nutrients than to CO2 were observed. Nutrient addition enhanced the nutritional quality of Z. noltii (high N, low C : N and phenolics and the loss of leaves and shoots, while promoted the proliferation of pennate diatoms and purple bacteria. These changes led to a reduced sediment organic matter, but had no significant effects on herbivory nor on community metabolism. Interestingly, the interaction with CO2 attenuated eutrophication effects. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing was observed, with no response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex, being mediated by epiphyte proliferation rather than by effects on plant

  4. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance

    Science.gov (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura

    2017-09-01

    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  5. Energy from CO2 using capacitive electrodes – A model for energy extraction cycles

    NARCIS (Netherlands)

    Paz-García, J.M.; Dykstra, J.E.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    A model is presented for the process of harvesting electrical energy from CO2 emissions using capacitive cells. The principle consists of controlling the mixing process of a concentrated CO2 gas stream with a dilute CO2 gas stream (as, for example, exhaust gas and air), thereby converting part of th

  6. The seasonal cycle amplitude of total column CO2: factors behind the model-observation mismatch

    NARCIS (Netherlands)

    Basu, S.; Houweling, S.; Peters, W.; Sweeney, C.; Machida, T.; Maksyutov, S.; Patra, P. K.; Saito, R.; Chevallier, F.; Niwa, Y.; Matsueda, H.; Sawa, Y.

    2011-01-01

    CO2 surface fluxes that are statistically consistent with surface layer measurements of CO2, when propagated forward in time by atmospheric transport models, underestimate the seasonal cycle amplitude of total column CO2 in the northern temperate latitudes by 1–2 ppm. In this paper we verify the sys

  7. Energy from CO2 using capacitive electrodes – A model for energy extraction cycles

    NARCIS (Netherlands)

    Paz-García, J.M.; Dykstra, J.E.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    A model is presented for the process of harvesting electrical energy from CO2 emissions using capacitive cells. The principle consists of controlling the mixing process of a concentrated CO2 gas stream with a dilute CO2 gas stream (as, for example, exhaust gas and air), thereby converting part of

  8. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal M.

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  9. Photosynthesis and antioxidant defense system of Gynura Bicolor DC grown at different elevated CO2 levels

    Science.gov (United States)

    Wang, Minjuan; Liu, Hong; Fu, Yuming

    Atmospheric carbon dioxide concentration [CO _{2}] will increase in the future and will affect global climate and ecosystem productivity. However, this is not clearly an area that requires further study on the most appropriate [CO _{2}] selection for plant growth and quality in a closed, controlled environment. The aim of this study was to determine the variation of photosynthetic characteristics and antioxidant status under five CO _{2} concentration (400, 800, 1200, 2000 and 3000 umol mol (-1) ) on the leaf of Gynura bicolor DC. Here the results show that net photosynthetic rate(Pn), Chl content, edible biomass(EB), leaf blade width(LBW), root weight(RW), fructose(Fru) and sucrose(Suc) of Gynura bicolor DC increased under elevated [CO _{2}] of 800 umol mol (-1) , 1200 umol mol (-1) and 2000 umol mol (-1) . On the contrary, photosynthesis and biomass production declined significantly at 3000 umol mol (-1) CO _{2}, While Lipid peroxidation (LPO), malondialdehyde (MDA) and hydrogen peroxide (H _{2}O _{2}) achieved the highest levels. Furthermore, the contents of glutathione (GSH), vitamin C (VC), and vitamin E (VE), and total antioxidant capacity (T-AOC), the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) reached the highest level at 2000 umol mol ({-1) }CO _{2}. Results imply that a significant increase in growth and antioxidant defense system of Gynura bicolor DC occurred under 800-2000 umol mol (-1) of CO _{2} concentration provided a theoretical basis for the application for plants selection in Bioregeneration Life Support System (BLSS) and a closed controlled environment.

  10. Relationship between urbanization and CO2 emissions depends on income level and policy.

    Science.gov (United States)

    Ponce de Leon Barido, Diego; Marshall, Julian D

    2014-04-01

    We investigate empirically how national-level CO2 emissions are affected by urbanization and environmental policy. We use statistical modeling to explore panel data on annual CO2 emissions from 80 countries for the period 1983-2005. Random- and fixed-effects models indicate that, on the global average, the urbanization-emission elasticity value is 0.95 (i.e., a 1% increase in urbanization correlates with a 0.95% increase in emissions). Several regions display a statistically significant, positive elasticity for fixed- and random-effects models: lower-income Europe, India and the Sub-Continent, Latin America, and Africa. Using two proxies for environmental policy/outcomes (ratification status for the Kyoto Protocol; the Yale Environmental Performance Index), we find that in countries with stronger environmental policy/outcomes, urbanization has a more beneficial (or, a less negative) impact on emissions. Specifically, elasticity values are -1.1 (0.21) for higher-income (lower-income) countries with strong environmental policy, versus 0.65 (1.3) for higher-income (lower-income) countries with weak environmental policies. Our finding that the urbanization-emissions elasticity may depend on the strength of a country's environmental policy, not just marginal increases in income, is in contrast to the idea of universal urban scaling laws that can ignore local context. Most global population growth in the coming decades is expected to occur in urban areas of lower-income countries, which underscores the importance of these findings.

  11. Testing Yasso07 and CENTURY soil C models with boreal forest soil C stocks and CO2 efflux measurements

    Science.gov (United States)

    Tupek, Boris; Peltoniemi, Mikko; Launiainen, Samuli; Kulmala, Liisa; Penttilä, Timo; Lehtonen, Aleksi

    2017-04-01

    Soil C models need further development, especially in terms of factors influencing spatial variability of soil C stocks and soil C stock changes. In this study we tested the estimates of soil C stocks and C stock changes of two widely used soil C models (Yasso07 and CENTURY) against measurements of the boreal forest soil C stock and CO2 efflux at four forest sites in Finland. In addition we evaluated the effects of using coarse versus detailed meteorological, soil, and plant litter input data on modeled monthly CO2 estimates. We found out that CO2 estimates of both models showed similar seasonal CO2 efflux pattern as the upscaled monthly measurements regardless of the fact whether the models used soil properties as input data. Winter and early summer CO2 fluxes agreed somewhat better between estimates and measurements than summer CO2 peaks and autumn CO2 levels, which were underestimated by models. Both models also underestimated equilibrium soil carbon (SOC) stocks, although SOC of CENTURY were larger than SOCs of Yasso07. CENTURY was more sensitive to variation in meteorological input data than Yasso07 and also to functional form of temperature response to decomposition. In conclusion, for modeling boreal forest soil C Yasso07 would benefit from including soil properties in the model structure, while Century would benefit from reformulation of temperature and moisture functions.

  12. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia.

    Science.gov (United States)

    Powell, Karin; Ethun, Kelly; Taylor, Douglas K

    2016-09-21

    Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.

  13. Future climate CO2 levels mitigate stress in plants: increased defense or decreased challenge?

    Directory of Open Access Journals (Sweden)

    Hamada eAbdelgawad

    2016-05-01

    Full Text Available AbstractElevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect, and is observed to mitigate abiotic stress impact. Although the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis. A systematic literature analysis, including ‘all’ papers (Web of Science (WoS-cited, addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers, confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g. for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase. In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g. ascorbate peroxidase, catalase, ascorbate, or even decreased (28%, e.g. glutathione peroxidase. Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g. photorespiration, are therefore likely to play important roles in elevated CO2 (relaxation hypothesis. Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.

  14. Enhanced volcanic CO2 degassing at oceanic hotspots and mid-ocean ridges in response to falling sea level

    Science.gov (United States)

    Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars; Köhler, Peter; Morgan, Jason; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian

    2016-04-01

    Evidence from paleo-climate proxy data as well as results from geodynamical and biogeochemical modelling point to complex interactions between sea level variations, pressure-release melting of oceanic mantle, associated volcanic degassing, and atmospheric CO2 concentrations. Ice core data shows that the orbital component in global temperature records gradually declined between ˜85,000-70,000 yr BP, while atmospheric CO2 - instead of continuing its long-term correlation with Antarctic temperatures - remained relatively stable for several thousand years. Based on 2-D and 3-D geodynamical models we show that the massive (60-100 m) sea level drop during this period of Earth history led to a significant increase in magma and possibly CO2 fluxes along mid-ocean ridges (MOR) and especially oceanic hotspot volcanoes. We assess the MOR magma and CO2 fluxes using 2-D thermo-mechanical models that solve for wet melting of the mantle and the partitioning of highly incompatible carbon dioxide into the melt. These models have been run at various MOR opening rates, and we integrate these results with the global distribution of spreading rates to compute baseline fluxes as well as enhanced fluxes during the sea level fall. Furthermore we conducted more than 120 3-D simulations of rising and melting mantle plumes to construct a four-dimensional parameter space that covers a wide range of plume buoyancy fluxes, plume excess temperatures, lithosphere thicknesses and plate speeds. Using published data on 43 oceanic hotspots and locating them in the parameter space we derive a global hotspot-melting model that predicts magma and CO2 fluxes before and during the sea level drop. We find that, during a 80 m sea level drop over 10 kyr, global degassing at MOR and oceanic hotspots increases by 26 % and 36 %, respectively. Biogeochemical carbon cycle modelling further shows that the combined predicted increase in volcanic emissions along the global mid-ocean ridge system and at oceanic

  15. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    Science.gov (United States)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  16. A new approach to model CW CO$_2$ laser using rate equations

    Indian Academy of Sciences (India)

    UTPAL NUNDY; SUNIL DAGA; MANOJ KUMAR

    2016-12-01

    Two popular methods to analyse the operation of CW CO$_2$ lasers use the temperature model and the rate equation model. Among the two, the latter model directly calculates the population densities in the various vibrational levels connected with the lasing action, and provides a clearer illustration of the processes involved. Rate equation models used earlier grouped a number of vibration levels together, on the basis of normal modes of vibrations of CO$_2$. However, such grouping has an inherent disadvantage as it requires that theselevels be in thermal equilibrium. Here we report a new approach for modelling CW CO$_2$ lasers wherein the relevant vibration levels are identified and independently treated. They are connected with each other through theprocesses of excitation, relaxation and radiative transitions. We use the universally accepted rate coefficients to describe these processes. The other distinguishing feature of our model is the methodology adopted for carryingout the calculations. For instance, the CW case being a steady state, all the rate equations are thus equated to zero. In the prior works, researchers derived analytical expressions for the vibration level population densities, thatbecomes quite a tedious task with increasing number of levels. Grouping of the vibration levels helped in restricting the number of equations and this facilitated the derivation of these analytical expressions. We show that insteady state, these rate equations form a set of linear algebric equations. Instead of deriving analytical expressions, these can be elegantly solved using the matrix method. The population inversion calculated in this manner alongwith the relaxation rate of the upper laser level determines the output power of the laser. We have applied the model to an experimental CW laser reported in literature. Our results match the experimentally reported power.

  17. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  18. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    Science.gov (United States)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  19. Fast cloud adjustment to increasing CO2 in a superparameterized climate model

    Science.gov (United States)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.; Khairoutdinov, Marat

    2012-05-01

    Two-year simulation experiments with a superparameterized climate model, SP-CAM, are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous quadrupling of CO2 concentration with SST held fixed at present-day values. The greenhouse effect of the CO2 perturbation quickly warms the tropical land surfaces by an average of 0.5 K. This shifts rising motion, surface precipitation, and cloud cover at all levels from the ocean to the land, with only small net tropical-mean cloud changes. There is a widespread average reduction of about 80 m in the depth of the trade inversion capping the marine boundary layer (MBL) over the cooler subtropical oceans. One apparent contributing factor is CO2-enhanced downwelling longwave radiation, which reduces boundary-layer radiative cooling, a primary driver of turbulent entrainment through the trade inversion. A second contributor is a slight CO2-induced heating of the free troposphere above the MBL, which strengthens the trade inversion and also inhibits entrainment. There is a corresponding downward displacement of MBL clouds with a very slight decrease in mean cloud cover and albedo. Two-dimensional cloud-resolving model (CRM) simulations of this MBL response are run to steady state using composite SP-CAM simulated thermodynamic and wind profiles from a representative cool subtropical ocean regime, for the control and 4xCO2 cases. Simulations with a CRM grid resolution equal to that of SP-CAM are compared with much finer resolution simulations. The coarse-resolution simulations maintain a cloud fraction and albedo comparable to SP-CAM, but the fine-resolution simulations have a much smaller cloud fraction. Nevertheless, both CRM configurations simulate a reduction in inversion height comparable to SP-CAM. The changes in low cloud cover and albedo in the CRM simulations are small, but both simulations predict a slight reduction in low cloud albedo as in SP-CAM.

  20. Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping

    Science.gov (United States)

    Zeng, Jiye; Matsunaga, Tsuneo; Saigusa, Nobuko; Shirai, Tomoko; Nakaoka, Shin-ichiro; Tan, Zheng-Hong

    2017-04-01

    Reconstructing surface ocean CO2 from scarce measurements plays an important role in estimating oceanic CO2 uptake. There are varying degrees of differences among the 14 models included in the Surface Ocean CO2 Mapping (SOCOM) inter-comparison initiative, in which five models used neural networks. This investigation evaluates two neural networks used in SOCOM, self-organizing maps and feedforward neural networks, and introduces a machine learning model called a support vector machine for ocean CO2 mapping. The technique note provides a practical guide to selecting the models.

  1. Numerical modelling of particle-laden sonic CO2 jets with experimental validation

    Science.gov (United States)

    Wareing, C. J.; Fairweather, M.; Peakall, J.; Keevil, G.; Falle, S. A. E. G.; Woolley, R. M.

    2013-10-01

    The characteristics of the particle distribution, evolution and movement in a sonic jet release of carbon dioxide (CO2) from a high pressure reservoir are investigated. The motivation is to numerically model the sonic jet with particles, using the hitherto unknown initial particle distribution measured herein, and hence understand and numerically reproduce the experimentally observedparticle behaviour downstream of the Mach shock, including turbulence characteristics and level of agglomeration. We employ a Reynolds-averaged Navier-Stokes scheme with adaptive mesh refinement (AMR), combined with a Lagrangian particle tracker and particle distribution function. The model is seeded at the nozzle with the experimentally measured particle distribution and exploited to reproduce the observed characteristics of the jet. These releases are designed to be representative of a sonic CO2 release into the atmosphere and so provide data to help interpret how accidental or operational releases from the transport aspect of a carbon capture and storage chain might behave.

  2. Modelling distribution of evaporating CO2 in parallel minichannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2010-01-01

    -known empirical correlations for calculating frictional pressure drop and heat transfer coefficients. An investigation of different correlations for boiling two-phase flow shows that the choice of correlation is insignificant regarding the overall results. It is shown that non-uniform airflow leads...... to maldistribution of the refrigerant and considerable capacity reduction of the evaporator. Uneven inlet ualities to the different channels show only minor effects on the refrigerant distribution and evaporator capacity as long as the channels are vertically oriented with CO2 flowing upwards. For horizontal...

  3. A model for estimating CO2 solubility in aqueous alkanolamines

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2005-01-01

    Partial pressures of carbon dioxide (CO2) over aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) have been correlated using a simple approach where only one chemical equilibrium reaction is taken into account and assuming ideal gas and ideal liquid...... properties. The approach combines the Henry's law constant and the chemical reaction equilibrium constant for the formation of carbamate for primary and secondary alkanolamines (MEA, DEA) or bicarbonate for tertiary alkanolamines(MDEA), resulting in an explicit expression for calculating the partial pressure...

  4. Numerical modeling of cold magmatic CO2 flux measurements for the exploration of hidden geothermal systems

    Science.gov (United States)

    Peiffer, Loïc.; Wanner, Christoph; Pan, Lehua

    2015-10-01

    The most accepted conceptual model to explain surface degassing of cold magmatic CO2 in volcanic-geothermal systems involves the presence of a gas reservoir. In this study, numerical simulations using the TOUGH2-ECO2N V2.0 package are performed to get quantitative insights into how cold CO2 soil flux measurements are related to reservoir and fluid properties. Although the modeling is based on flux data measured at a specific geothermal site, the Acoculco caldera (Mexico), some general insights have been gained. Both the CO2 fluxes at the surface and the depth at which CO2 exsolves are highly sensitive to the dissolved CO2 content of the deep fluid. If CO2 mainly exsolves above the reservoir within a fracture zone, the surface CO2 fluxes are not sensitive to the reservoir size but depend on the CO2 dissolved content and the rock permeability. For gas exsolution below the top of the reservoir, surface CO2 fluxes also depend on the gas saturation of the deep fluid as well as the reservoir size. The absence of thermal anomalies at the surface is mainly a consequence of the low enthalpy of CO2. The heat carried by CO2 is efficiently cooled down by heat conduction and to a certain extent by isoenthalpic volume expansion depending on the temperature gradient. Thermal anomalies occur at higher CO2 fluxes (>37,000 g m-2 d-1) when the heat flux of the rising CO2 is not balanced anymore. Finally, specific results are obtained for the Acoculco area (reservoir depth, CO2 dissolved content, and gas saturation state).

  5. Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model

    Directory of Open Access Journals (Sweden)

    Kwangu Kang

    2015-03-01

    Full Text Available In this study, a techno–economic model was used to calculate the costs of CO2 transport and specify the major equipment required for transport in order to demonstrate and implement CO2 sequestration in the offshore sediments of South Korea. First, three different carbon capture and storage demonstration scenarios were set up involving the use of three CO2 capture plants and one offshore storage site. Each transport scenario considered both the pipeline transport and ship transport options. The temperature and pressure conditions of CO2 in each transport stage were determined from engineering and economic viewpoints, and the corresponding specifications and equipment costs were calculated. The transport costs for a 1 MtCO2/year transport rate were estimated to be US$33/tCO2 and US$28/tCO2 for a pipeline transport of ~530 km and ship transport of ~724 km, respectively. Through the economies of scale effect, the pipeline and ship transport costs for a transport rate of 3 MtCO2/year were reduced to approximately US$21/tCO2 and US$23/tCO2, respectively. A CO2 hub terminal did not significantly reduce the cost because of the short distance from the hub to the storage site and the small number of captured sources.

  6. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress

    Institute of Scientific and Technical Information of China (English)

    Yan JIA; Shi-rong TANG; Xue-hai JU; Li-na SHU; Shu-xing TU; Ren-wei FENG; Lorenzino GIUSTI

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multifiorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1 000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2.Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation.

  7. A New Material Balance Equation Model for Analyzing Dynamic Performance of CO2 Flooding

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Implementing a CO2 flooding scheme successfully requires the capacity to get accurate information of reservoir dynamic performance and fluids injected. Despite some numerical simulation studies, the complicated drive mechanisms and actual reservoir performance have not been fully understood. There is a strong need to develop models from different perspectives to complement current simulators and provide valuable insights into the reservoir performance during CO2 flooding.The aim of this study is to develop a model by using an improved material balance equation (MBE) to analyze quickly the performance of CO2 flooding. After matching the historical field data the proposed model can be used to evaluate,monitor and predict the overall reservoir dynamic performance during CO2 flooding. In order to account accurately for the complex displacement process involving compositional effect and multiphase flow, the PVT properties and flowability of reservoir fluids are incorporated in the model. This study investigates the effects of a number of factors,such as reservoir pressure, the amount of CO2 injected, the CO2 partition ratios in reservoir fluids, the possibility of the existence of a free CO2 gas cap, the proporfon of reservoir fluids contacted with CO2, the starting time of CO2 flooding,oil swelling, and oil flowability improvement by mixing with CO2. The model was used to analyze the CO2 flooding project in Weyburn oil field, Saskatchewan, Canada. This study shows that the proposed model is an effective complementary tool to analyze and monitor the overall reservoir performance during CO2 flooding.

  8. Phase Equilibria of Water/CO2 and Water/n-Alkane Mixtures from Polarizable Models.

    Science.gov (United States)

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-02-16

    Phase equilibria of water/CO2 and water/n-alkane mixtures over a range of temperatures and pressures were obtained from Monte Carlo simulations in the Gibbs ensemble. Three sets of Drude-type polarizable models for water, namely the BK3, GCP, and HBP models, were combined with a polarizable Gaussian charge CO2 (PGC) model to represent the water/CO2 mixture. The HBP water model describes hydrogen bonds between water and CO2 explicitly. All models underestimate CO2 solubility in water if standard combining rules are used for the dispersion interactions between water and CO2. With the dispersion parameters optimized to phase compositions, the BK3 and GCP models were able to represent the CO2 solubility in water, however, the water composition in CO2-rich phase is systematically underestimated. Accurate representation of compositions for both water- and CO2-rich phases cannot be achieved even after optimizing the cross interaction parameters. By contrast, accurate compositions for both water- and CO2-rich phases were obtained with hydrogen bonding parameters determined from the second virial coefficient for water/CO2. Phase equilibria of water/n-alkane mixtures were also studied using the HBP water and an exponenial-6 united-atom n-alkanes model. The dispersion interactions between water and n-alkanes were optimized to Henry's constants of methane and ethane in water. The HBP water and united-atom n-alkane models underestimate water content in the n-alkane-rich phase; this underestimation is likely due to the neglect of electrostatic and induction energies in the united-atom model.

  9. Amine modeling for CO2 capture: internals selection.

    Science.gov (United States)

    Karpe, Prakash; Aichele, Clint P

    2013-04-16

    Traditionally, trays have been the mass-transfer device of choice in amine absorption units. However, the need to process large volumes of flue gas to capture CO2 and the resultant high costs of multiple trains of large trayed columns have prompted process licensors and vendors to investigate alternative mass-transfer devices. These alternatives include third-generation random packings and structured packings. Nevertheless, clear-cut guidelines for selection of packings for amine units are lacking. This paper provides well-defined guidelines and a consistent framework for the choice of mass-transfer devices for amine absorbers and regenerators. This work emphasizes the role played by the flow parameter, a measure of column liquid loading and pressure, in the type of packing selected. In addition, this paper demonstrates the significant economic advantage of packings over trays in terms of capital costs (CAPEX) and operating costs (OPEX).

  10. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  11. Modeling approaches to describe H2O and CO2 exchange in mare ecosystems

    Science.gov (United States)

    Olchev, A.; Novenko, E.; Volkova, E.

    2012-04-01

    biological processes at various hierarchical levels of forest and mire ecosystems: from a single leaf to a tree and an entire ecosystem. The models consist of the several closely coupled sub-models describing: transfer of direct and diffuse solar radiation; turbulent exchange of sensible heat, H2O and CO2 within and above a vegetation cover; transpiration, photosynthesis and respiration of vegetation and soil; heat and moisture transfer in different soil layers. The models were validated and applied to describe the H2O and CO2 exchange processes in various mare ecosystems with different relief position, type of water and mineral supply as well as vegetation composition. Selected mares are located in different parts of the Tula region (both in forest and forest-steppe zones) and characterized by different microclimatic conditions. The study was supported by grants (11-04-97538-r_center_a, 11-04-01622-a and 11-05-00557-a) of the Russian Foundation for Basic Research (RFBR) and by grant of Government of Russian Federation N 11.G34.31.0079.

  12. Atmospheric CO2 content in the last 120,000 years: The phosphate-extraction model.

    Science.gov (United States)

    Keir, R. S.; Berger, W. H.

    1983-07-01

    Broecker [1982] has proposed that during the retreat of the Wisconsin ice sheets, atmospheric CO2 increased because of the extraction of phosphorus from the ocean as sea level rose. Using a time-dependent box-model, we examine the consequences of the phosphate extraction hypothesis over the last 120,000 years, assuming that δ18O change in core V28-238 is analogous to sea level variation. The model takes into account the total CO2 and alkalinity balance in the deep sea and in an `upper' reservoir consisting of the surface ocean and atmosphere, which are assumed to be in equilibrium. Dissolution of deep-sea calcium carbonate sediment is assumed to respond to the supply of particulate carbonate from the `upper' box and to the dissolved carbonate-ion concentration of the deep sea. Assuming 1015 mole of phosphorus and 1017 mole of carbon were extracted during deglaciation, the predicted increase in pCO2 is 54 ppm. Variation of pCO2 follows the ice-volume forcing function with a 1000 yr lag, which is the input residence time of water in the deep sea. The accumulation (supply minus dissolution) of CaCO3 and the percent preservation (accumulation over supply) follow the derivative of the ice-volume function. Both are similar to the solution index and percent fragments of core V28-238. In addition, unusually good preservation is predicted during deglaciation due to carbon extraction. If phosphorus but not carbon is assumed to be extracted, the accumulation of CaCO3 varies little, remaining near a value equivalent to the river input.

  13. MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions

    Directory of Open Access Journals (Sweden)

    B. E. Medlyn

    2012-07-01

    Full Text Available Process-based models (PBMs of vegetation function can be used to interpret and integrate experimental results. Water limitation to plant carbon uptake is a highly uncertain process in the context of environmental change, and many experiments have been carried out that study drought limitations to vegetation function at spatial scales from seedlings to entire canopies. What is lacking in the synthesis of these experiments is a quantitative tool incorporating a detailed mechanistic representation of the water balance that can be used to integrate and analyse experimental results at scales of both the whole-plant and the forest canopy. To fill this gap, we developed an individual tree-based model (MAESPA, largely based on combining the well-known MAESTRA and SPA ecosystem models. The model includes a hydraulically-based model of stomatal conductance, root water uptake routines, drainage, infiltration, runoff and canopy interception, as well as detailed radiation interception and leaf physiology routines from the MAESTRA model. The model can be applied both to single plants of arbitrary size and shape, as well as stands of trees. The utility of this model is demonstrated by studying the interaction between elevated [CO2] (eCa and drought. Based on theory, this interaction is generally expected to be positive, so that plants growing in eCa should be less susceptible to drought. Experimental results, however, are varied. We apply the model to a previously published experiment on droughted cherry, and show that changes in plant parameters due to long-term growth at eCa (acclimation may strongly affect the outcome of Ca × drought experiments. We discuss potential applications of MAESPA and some of the key uncertainties in process representation.

  14. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  15. CO2-level Dependent Effects of Ocean Acidification on Squid, Doryteuthis pealeii, Early Life History

    KAUST Repository

    Zakroff, Casey J.

    2013-12-01

    Ocean acidification is predicted to lead to global oceanic decreases in pH of up to 0.3 units within the next 100 years. However, those levels are already being reached currently in coastal regions due to natural CO2 variability. Squid are a vital component of the pelagic ecosystem, holding a unique niche as a highly active predatory invertebrate and major prey stock for upper trophic levels. This study examined the effects of a range of ocean acidification regimes on the early life history of a coastal squid species, the Atlantic longfin squid, Doryteuthis pealeii. Eggs were raised in a flow-through ocean acidification system at CO2 levels ranging from ambient (400ppm) to 2200ppm. Time to hatching, hatching efficiency, and hatchling mantle lengths, yolk sac sizes, and statoliths were all examined to elucidate stress effects. Delays in hatching time of at least a day were seen at exposures above 1300ppm in all trials under controlled conditions. Mantle lengths were significantly reduced at exposures above 1300 ppm. Yolk sac sizes varied between CO2 treatments, but no distinct pattern emerged. Statoliths were increasingly porous and malformed as CO2 exposures increased, and were significantly reduced in surface area at exposures above 1300ppm. Doryteuthis pealeii appears to be able to withstand acidosis stress without major effects up to 1300ppm, but is strongly impacted past that threshold. Since yolk consumption did not vary among treatments, it appears that during its early life stages, D. pealeii reallocates its available energy budget away from somatic growth and system development in order to mitigate the stress of acidosis.

  16. A SIMULATION OF CO2 UPTAKE IN A THREE DIMENSIONAL OCEAN CARBON CYCLE MODEL

    Institute of Scientific and Technical Information of China (English)

    金心; 石广玉

    2001-01-01

    A three-dimensional ocean carbon cycle model which is a general circulation model couple.d with simple biogeochemical processes is used to simulate CO2 uptake by the ocean. The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model (MOM2). The ocean chemistry and a simple ocean biota model are included. Principal variables are .total CO2, alkalinity and phosphate. The vertical profile of POC flux observed by sediment traps is adopted, the rain ratio, a ratio of production rate of calcite against that of POC, and the bio-production efficiency should be 0. 06 and 2 per year, separately. The uptake of anthropogenicCO2 by the ocean is studied. Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2. 05× 10 15g (Pg) per year. The regional distributions of global oceanic CO2 are discussed.

  17. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    Science.gov (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  18. Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer

    Science.gov (United States)

    Abidoye, L. K.; Bello, A. A.

    2017-01-01

    The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noticed that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.

  19. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  20. Changes in polyphenols and expression levels of related genes in 'Duke' blueberries stored under high CO2 levels.

    Science.gov (United States)

    Harb, Jamil; Saleh, Omar; Kittemann, Dominikus; Neuwald, Daniel Alexandre; Hoffmann, Thomas; Reski, Ralf; Schwab, Wilfried

    2014-07-30

    Blueberries are highly perishable fruits, and consequently, storage under high CO2 and low O2 levels is recommended to preserve the highly appreciated polyphenols. However, high CO2 levels might be detrimental for certain cultivars. The aim of this study was to investigate the impact of storage conditions on various quality parameters, including polyphenol composition in 'Duke' berries. Results show that storage under 18 kPa CO2, coupled with 3 kPa O2, resulted in accelerated softening of berries, which was accompanied by lower levels compared to other conditions of hexosides and arabinosides of malvidin, petunidin, cyanidine, and delphinidin. However, this storage condition had no negative impact on chlorogenic acid levels. Expression data of key polyphenol-biosynthesis genes showed higher expression levels of all investigated genes at harvest time compared to all storage conditions. Of particular importance is the expression level of chalcone synthase (VcCHS), which is severely affected by storage at 18 kPa CO2.

  1. Microseismic monitoring and velocity model building at the Longyearbyen CO2-Lab, Svalbard

    Science.gov (United States)

    Oye, V.; Zhao, P.; Lecomte, I.; Braathen, A.; Olaussen, S.

    2012-04-01

    The Longyearbyen CO2 storage lab project addresses the problem to turn Svalbard into a CO2 neutral community. The project has now confirmed that an injective reservoir (800-1000 m depth) and a sealing cap rock section exist around Longyearbyen, and will proceed towards demonstration and monitoring studies of sub surface CO2 storage over time. The progressive construction of the Longyearbyen CO2 storage lab is currently addressing detailed properties and geometry of the reservoir. Liquids other than CO2 have been used in this initial phase (water, brine, gel). The reservoir below Longyearbyen is considered physically open, and, therefore, will likely experience drift of the injected CO2 towards the Northeast, through gradual mixing and expulsion of saline groundwater. This offers a unique opportunity for studying the behavior of CO2 in subsurface saline aquifers. Four wells have been drilled so far and several new monitoring wells are planned for this purpose. In this study, we try to use induced seismicity to monitor the injection fluid in the test site. A precise estimation of the location and magnitude of the microearthquake will be important to investigate the link between the injection and the sudden stress release as a microearthquake. In August 2010 a fluid injection experiment was carried out at the CO2 lab. In parallel, a microseismic monitoring network was deployed close to the injection well. The network consists of a 5-level string of 3-component geophones in a vertical observation well, with 50m distance between the instruments and a maximum depth of 294 meters. In addition, three shallow boreholes of 12 m depth have been drilled at about 500 m distance to the injection well. These additional surface stations are intended to provide more accurate locations for microearthquakes that are large enough to be recorded at the surface. Approximately 17 hours after the 5-days water injection test (from 20th to 25th August, 2010), a relatively strong

  2. Discrete element modeling of indentation tests to investigate mechanisms of CO2-related chemomechanical rock alteration

    Science.gov (United States)

    Sun, Zhuang; Espinoza, D. Nicolas; Balhoff, Matthew T.

    2016-11-01

    During CO2 injection into geological formations, petrophysical and geomechanical properties of host formations can be altered due to mineral dissolution and precipitation. Field and laboratory results have shown that sandstone and siltstone can be altered by CO2-water mixtures, but few quantitative studies have been performed to fully investigate underlying mechanisms. Based on the hypothesis that CO2-water mixtures alter the integrity of rock structure by attacking cements rather than grains, we attempt to explain the degradation of cementation due to long-term contact with CO2 and water and mechanisms for changes in rock mechanical properties. Many sandstones, including calcite-cemented quartzitic sandstone, chlorite-cemented quartzitic sandstone, and hematite-cemented quartzitic sandstone, contain interparticle cements that are more readily affected by CO2-water mixtures than grains. A model that couples the discrete element method and the bonded-particle model is used to perform simulations of indentation tests on synthetic rocks with crystal and random packings. The model is verified against the analytical cavity expansion model and validated against laboratory indentation tests on Entrada sandstone with and without CO2 alteration. Sensitivity analysis is performed for cementation microscopic parameters including stiffness, size, axial, and shear strength. The simulation results indicate that the CO2-related degradation of mechanical properties in bleached Entrada sandstone can be attributed to the reduction of cement size rather than cement strength. Our study indicates that it is possible to describe the CO2-related rock alteration through particle-scale mechanisms.

  3. Mathematical modelling of gain-switched RF-excited CO2 waveguide laser

    Institute of Scientific and Technical Information of China (English)

    Hussain Badran; Tian Zhao-Shuo; Wang Qi

    2004-01-01

    The detailed mathematical models for the evolution of light pulses in RF-excited CO2 waveguide lasers are derived.Explicit expressions for the pulse characteristics in RF-excited CO2 waveguide lasers are obtained. The effects of losses and unsaturated gain on output power are calculated.

  4. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  5. Regional assimilation of CO2 and δ13C surface data to assess terrestrial biosphere models under drought stress

    Science.gov (United States)

    van der Velde, I. R.; Miller, J. B.; Alden, C. B.; Andrews, A. E.; Schaefer, K. M.; Peters, W.; Tans, P. P.; Vaughn, B. H.; White, J. W. C.

    2016-12-01

    Observed atmospheric carbon dioxide (CO2) and the ratios of its stable isotopologue 13CO2/12CO2 (δ13C) contain unique signals of large-scale drought stress that affect the biosphere. When plants experience physiological stress due to heat and drought at leaf level they respond by closing their stomata. This is a safety mechanism that prevents excessive water loss at the expense of carbon uptake, and it changes the overall water-use efficiency. During photosynthesis, 12CO2 is preferentially assimilated over 13CO2, leaving the atmosphere enriched in 13CO2. Water stress slightly changes the ratio of 13CO2 and 12CO2 molecules being removed from the atmosphere, i.e., a reduction of canopy isotope discrimination (Δ), and its changes are evident in atmospheric δ13C.To improve our understanding of the coupled vegetation-atmosphere system we are developing an ensemble Kalman filter assimilation of high precision measurements of CO2 and δ13C from air samples collected over North America. It uses footprints provided by WRF-STILT that allows for efficient atmospheric transport simulations on a much higher horizontal resolution than with a global Eulerian transport model. To force consistency with atmospheric CO2 and δ13C observations we will optimize regional net terrestrial CO2 exchange (NEE) and Δ from a terrestrial biosphere model. We will carefully evaluate the sensitivity of the optimized parameters to uncertainties in the terrestrial biosphere fluxes, observations, time/space aggregation methods, and boundary conditions. Our main questions are: (i) what signal-to-noise in the data, as interpreted by the model, is large enough to robustly estimate Δ and NEE? and (ii) how do the optimized NEE and Δ that are based on the atmospheric constraint compare with the predicted NEE and Δ that are based on biophysical parameterizations? Our ability to accurately predict the responses of the terrestrial biosphere to changing humidity and soil moisture regimes is currently

  6. Modeling CO 2 ice clouds with a Mars Global Climate Model

    Science.gov (United States)

    Audouard, Joachim; Määttänen, Anni; Listowski, Constantino; Millour, Ehouarn; Forget, Francois; Spiga, Aymeric

    2016-10-01

    Since the first claimed detection of CO2 ice clouds by the Mariner campaign (Herr and Pimentel, 1970), more recent observations and modelling works have put new constraints concerning their altitude, region, time and mechanisms of formation (Clancy and Sandor, 1998; Montmessin et al., 2007; Colaprete et al., 2008; Määttänen et al., 2010; Vincendon et al., 2011; Spiga et al. 2012; Listowski et al. 2014). CO2 clouds are observed at the poles at low altitudes (LMD, Forget et al., 1999). It covers CO2 microphysics, growth, evolution and dynamics with a methodology inspired from the water ice clouds scheme recently included in the LMD GCM (Navarro et al., 2014).Two main factors control the formation and evolution of CO2 clouds in the Martian atmosphere: sufficient supersaturation of CO2 is needed and condensation nuclei must be available. Topography-induced gravity-waves (GW) are expected to propagate to the upper atmosphere where they produce cold pockets of supersaturated CO2 (Spiga et al., 2012), thus allowing the formation of clouds provided enough condensation nuclei are present. Such supersaturations have been observed by various instruments, in situ (Schofield et al., 1997) and from orbit (Montmessin et al., 2006, 2011; Forget et al., 2009).Using a GW-induced temperature profile and the 1-D version of the GCM, we simulate the formation of CO2 clouds in the mesosphere and investigate the sensitivity of our microphysics scheme. First results and steps towards the integration in the 3-D GCM will be presented and discussed at the conference.This work is funded by the Laboratory of Excellence ESEP.

  7. Method for Calculating CO2 Emissions from the Power Sector at the Provincial Level in China

    Institute of Scientific and Technical Information of China (English)

    MA Cui-Mei; GE Quan-Sheng

    2014-01-01

    Based on the detailed origins of each province’s electricity consumption, a new method for calculating CO2 emissions from the power sector at the provincial level in China is proposed. With this so-called consumer responsibility method, the emissions embodied in imported electricity are calculated with source-specific emission factors. Using the new method, we estimate CO2 emissions in 2005 and 2010. Compared with those derived from the producer responsibility method, the power exporters’ emissions decreased sharply. The emissions from the power sector in Inner Mongolia, the largest power exporter of China, decreased by 109 Mt in 2010. The value is equivalent to those from Shaanxi’s power production and Canada’s power and heat production. In contrast, the importers’ emissions increased substantially. The emissions from the power sector in Hebei, the largest power importer of China, increased by 74 Mt. Emissions of Beijing, increased by 60 Mt (320%), in 2010. Thus, we suggest that the Chinese government should take the emissions, as calculated from the consumption perspective, into account when formulating and assessing local CO2 emission reduction targets.

  8. CO2 Absorption in a Lab-Scale Fixed Solid Bed Reactor: Modelling and Experimental Tests

    Directory of Open Access Journals (Sweden)

    Roberto Gabbrielli

    2004-09-01

    Full Text Available The CO2 absorption in a lab-scale fixed solid bed reactor filled with different solid sorbents has been studied under different operative conditions regarding temperature (20-200°C and input gas composition (N2, O2, CO2, H2O at 1bar pressure. The gas leaving the reactor has been analysed to measure the CO2 and O2 concentrations and, consequently, to evaluate the overall CO2 removal efficiency. In order to study the influence of solid sorbent type (i.e. CaO, coal bottom ash, limestone and blast furnace slag and of mass and heat transfer processes on CO2 removal efficiency, a one-dimensional time dependent mathematical model of the reactor, which may be considered a Plug Flow Reactor, has been developed. The quality of the model has been confirmed using the experimental results.

  9. Pore-scaling Modeling of Physical Property Changes During CO2 Injection into Sandstone

    Science.gov (United States)

    Keehm, Y.; Yoo, G.

    2009-12-01

    Carbon dioxide is a green-house gas and is believed to be an important factor in global warming and climate change. Many countries around the world are working on reducing and sequestrating CO2 to follow international regulations. One of promising area for CO2 sequestration is the storage in geological formation. To accurately determine the performance of geological injection and storage, quantification and monitoring of the physical property changes are essential. In this paper, we are presenting a new approach for the monitoring of CO2 sequestration in sandstone using pore-scale simulation techniques. The method consists of three steps: 1) acquisition of high-resolution pore microstructures by X-ray micro-tomography; 2) CO2 injection simulation using lattice-Boltzmann (LB) two-phase flow simulation; and 3) FEM property simulations (electrical and elastic) at different CO2 saturations during the injection. We use three different sandstone samples: sand-pack, Berea sandstone, and B2 sandstone from offshore of Korea. The porosity of the sand-pack is 42% and that of two sandstone samples is around 17%. The digital pore structures were obtained by X-ray micro-tomography with a spatial resolution of 2 micron. The LB two-phase flow simulation is then conducted by injecting CO2 into fully water-saturated samples and gives a realistic movement of CO2 in the pore structure. At each CO2 saturation, electrical and elastic properties are determined by pore-scale FEM simulation techniques. The electrical conductivity decreases almost linearly as CO2 saturations increases; however, the P-wave velocity decrease more rapidly at the low CO2 saturation (up to 30%), than at higher saturation. S-wave velocity does not show any significant changes. The higher porosity rock shows more sensitivity to saturation changes. The modeling shows that we can have quantitative relations between physical properties and CO2 saturation, which can be used to determine injection performance and

  10. Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature

    Directory of Open Access Journals (Sweden)

    Senthil Chinnasamy

    2009-02-01

    Full Text Available The growth response of Chlorella vulgaris was studied under varying concentrations of carbon dioxide (ranging from 0.036 to 20% and temperature (30, 40 and 50oC. The highest chlorophyll concentration (11 µg mL-1 and biomass (210 µg mL-1, which were 60 and 20 times more than that of C. vulgaris at ambient CO2 (0.036%, were recorded at 6% CO2 level. At 16% CO2 level, the concentrations of chlorophyll and biomass values were comparable to those at ambient CO2 but further increases in the CO2 level decreased both of them. Results showed that the optimum temperature for biomass production was 30oC under elevated CO2 (6%. Although increases in temperature above 30oC resulted in concomitant decrease in growth response, their adverse effects were significantly subdued at elevated CO2. There were also differential responses of the alga, assessed in terms of NaH14CO3 uptake and carbonic anhydrase activity, to increases in temperature at elevated CO2. The results indicated that Chlorella vulgaris grew better at elevated CO2 level at 30oC, albeit with lesser efficiencies at higher temperatures.

  11. High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals

    Directory of Open Access Journals (Sweden)

    T. Koch

    2010-01-01

    Full Text Available Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error component of representation error in column and near-surface CO2 during day- and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.

  12. Regional modelling of water and CO2-fluxes with a one-dimensional SVAT model

    Science.gov (United States)

    Kuhnert, M.; Köstner, B.

    2009-04-01

    Climate change affects site conditions for vegetation and may affect changes in the distribution of plant species. Investigations of these effects are difficult, because other influences on plant performance like land use and management also need to be considered. Carbon gain can be used as a sensitive indicator for changes in the vitality of the considered vegetation types that are affected by different climate and weather patterns. The objective of the presented study is the quantification of net photosynthesis rate, respiration and transpiration of different vegetation types on the regional scale. The study regions are the Weißeritz catchment in the Ore Mountains and the region Torgau-Oschatz in the Elbe basin both located in Saxony (East Germany) but significantly differing in elevation and site conditions. The carbon and water fluxes are simulated by an ecophysiological based Soil-Vegetation-Atmosphere-Transfer model for three periods (1996-2006, 2015-2025 and 2035-2045). The considered vegetation types are forest and grassland. The used model SVAT-CN is a multi-layer model, which enables the calculation of hourly carbon gain by coupling micrometerological data with ecophysiological processes. The calculations are based on the equations of Farquhar and Ball for net photosynthesis rate and stomata conductivity, respectively. It is a one-dimensional model which also considers soil water processes. The soil is coupled with the vegetation by one factor that depends on the matric potential and steers the calculation of the stomata conductivity. The equations of the soil water processes are based on a combination of bucket model and Richard's equation. Simulations are based on measured weather data (Dept. of Meteorology at Technische Universität Dresden and LfL Sachsen) with varying levels of atmospheric CO2 concentrations up to 580 ppm. Further, climate projections (ECHAM5-OM, IPCC emission scenario A1B), with downscaling to a 18x18km grid by the regional climate

  13. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling

    Science.gov (United States)

    Tubiello, F. N.; Mahato, T.; Morton, T.; Druitt, J. W.; Volk, T.; Marino, B. D.

    1999-01-01

    Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.

  14. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic.

    Science.gov (United States)

    Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D

    2017-09-06

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (Vc,max.25 and Jmax.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower than commonly used values. When scaled to 25°C, Vc,max.25 and Jmax.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.

  15. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison

    NARCIS (Netherlands)

    Peylin, P.; Houweling, S.; Krol, M.C.|info:eu-repo/dai/nl/078760410; Karstens, U.; Pieterse, G.|info:eu-repo/dai/nl/304840858; Ciais, P.; Heimann, M.

    2011-01-01

    Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel

  16. 城市化对CO2排放影响的差异研究%Research on Different Impacts of Urbanization on CO2 Emissions in Provinces with Different Income Level

    Institute of Scientific and Technical Information of China (English)

    张鸿武; 王珂英; 项本武

    2013-01-01

    基于1995-2010年中国29省的面板数据,运用STIRPAT模型研究了城市化对低、中、高收入组省份CO2排放的影响.研究结果表明:人口数量的增加会导致CO2排放量的增加;各省人均实际收入和CO2排放量之间存在倒U形关系;随着人均实际收入的上升,城市化对低、中、高收入省份CO2排放量的影响是不同的:对低收入组而言,城市化和CO2排放量之间呈U形变化关系,对中等收入组而言,城市化水平的上升会带来CO2排放量的单调增加;而对高收入组来说,城市化和CO2排放量之间存在倒U形变化关系.说明城市化水平的上升对居民能源消费结构和技术进步的影响存在差异,且这种差异性与居民收入水平高低和经济发展阶段是密切相关的.因此,建议在推进城市化的过程中,针对不同收入组提出不同的政策侧重点,以优化能源结构,提高能源配置效率,实现节能减排的目标.%Based on 1995 -2010 panel data of China's 29 provinces, this paper examines the influence of urbanization on CO2 emissions in low-, middle-and high-income provinces by using STIRPAT model. The results suggest that increase of population will lead to the increase of CO2 emissions, and there is an inverted U-shaped relationship between per capita real income and CO2 emissions; while with the rise of per capita real income, the impact of urbanization on CO2 emissions is different in low-, middle-and high-income provinces. For low-income provinces, there is a U-shaped relationship between urbanization and CO2 emissions; for middle-income provinces, the rise in the level of urbanization will increase CO2 emissions monotonously; for high-income provinces, there is an inverted U-shaped relationship between urbanization and CO2 emissions. These findings imply that the impacts of urbanization on the structure of residential energy consumption and technological progress are different, and this difference is closely

  17. Fast Cloud Adjustment to Increasing CO2 in a Superparameterized Climate Model

    Directory of Open Access Journals (Sweden)

    Marat Khairoutdinov

    2012-05-01

    Full Text Available Two-year simulation experiments with a superparameterized climate model, SP-CAM, are performed to understand the fast tropical (30S-30N cloud response to an instantaneous quadrupling of CO2 concentration with SST held fixed at present-day values.The greenhouse effect of the CO2 perturbation quickly warms the tropical land surfaces by an average of 0.5 K. This shifts rising motion, surface precipitation, and cloud cover at all levels from the ocean to the land, with only small net tropical-mean cloud changes. There is a widespread average reduction of about 80 m in the depth of the trade inversion capping the marine boundary layer (MBL over the cooler subtropical oceans.One apparent contributing factor is CO2-enhanced downwelling longwave radiation, which reduces boundary-layer radiative cooling, a primary driver of turbulent entrainment through the trade inversion. A second contributor is a slight CO2-induced heating of the free troposphere above the MBL, which strengthens the trade inversion and also inhibits entrainment. There is a corresponding downward displacement of MBL clouds with a very slight decrease in mean cloud cover and albedo.Two-dimensional cloud-resolving model (CRM simulations of this MBL response are run to steady state using composite SP-CAM simulated thermodynamic and wind profiles from a representative cool subtropical ocean regime, for the control and 4xCO2 cases. Simulations with a CRM grid resolution equal to that of SP-CAM are compared with much finer resolution simulations. The coarse-resolution simulations maintain a cloud fraction and albedo comparable to SP-CAM, but the fine-resolution simulations have a much smaller cloud fraction. Nevertheless, both CRM configurations simulate a reduction in inversion height comparable to SP-CAM. The changes in low cloud cover and albedo in the CRM simulations are small, but both simulations predict a slight reduction in low cloud albedo as in SP-CAM.

  18. The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble

    Directory of Open Access Journals (Sweden)

    P. R. Halloran

    2014-10-01

    vary rapidly. Given the importance of this sink and its apparent variability, it is critical that we understand the mechanisms behind its operation. Here we explore subpolar North Atlantic CO2 uptake across a large ensemble of Earth System Model simulations, and find that models show a peak in sink strength around the middle of the century after which CO2 uptake begins to decline. We identify different drivers of change on interannual and multidecadal timescales. Short-term variability appears to be driven by fluctuations in regional seawater temperature and alkalinity, whereas the longer-term evolution throughout the coming century is largely occurring through a counterintuitive response to rising atmospheric CO2 concentrations. At high atmospheric CO2 concentrations the contrasting Ravelle factors between the subtropical and subpolar gyres, combined with the transport of surface waters from the subtropical to subpolar gyre, means that the subpolar CO2 uptake capacity is largely satisfied from its southern boundary rather than through air–sea CO2 flux. Our findings indicate that: (i we can explain the mechanisms of subpolar North Atlantic CO2 uptake variability across a broad range of Earth System Models, (ii a focus on understanding the mechanisms behind contemporary variability may not directly tell us about how the sink will change in the future, (iii to identify long-term change in the North Atlantic CO2 sink we should focus observational resources on monitoring subtropical as well as the subpolar seawater CO2, (iv recent observations of a weakening subpolar North Atlantic CO2 sink suggests that the sink strength is already in long-term decline.

  19. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

    Science.gov (United States)

    Miller, S. M.; Hayek, M. N.; Andrews, A. E.; Fung, I.; Liu, J.

    2015-03-01

    Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2-22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is

  20. A new simulation model and its application in CO2 short-circuiting transfer welding

    Institute of Scientific and Technical Information of China (English)

    胡连海; 李桓; 李俊岳; 杨立军

    2002-01-01

    A new simulation model of CO2 short-circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology properties. In this paper, a new simulating model is developed according to the AWP (adapting welding physics process) waveform control method. Good agreement is shown between the predicted and experimentally determined results. The model will make an important promotion in the development of CO2 arc welding technique.

  1. Soil and biomass carbon pools in model communities of tropical plants under elevated CO2.

    Science.gov (United States)

    Arnone, J A; Körner, Ch

    1995-09-01

    The experimental data presented here relate to the question of whether terrestrial ecosystems will sequester more C in their soils, litter and biomass as atmospheric CO2 concentrations rise. Similar to our previous study with relatively fertile growth conditions (Körner and Arnone 1992), we constructed four rather nutrient-limited model communities of moist tropical plant species in greenhouses (approximately 7 m(2) each). Plant communities were composed of seven species (77 individuals per community) representing major taxonomic groups and various life forms found in the moist tropics. Two ecosystems were exposed to 340 μl CO2 l(-1) and two to 610 μl l(-1) for 530 days of humid tropical growth conditions. In order to permit precise determination of C deposition in the soil, plant communities were initially established in C-free unwashed quartz sand. Soils were then amended with known amounts of organic matter (containing C and nutrients). Mineral nutrients were also supplied over the course of the experiment as timed-release full-balance fertilizer pellets. Soils represented by far the largest repositories for fixed C in all ecosystems. Almost 5 times more C (ca. 80% of net C fixation) was sequestered in the soil than in the biomass, but this did not differ between CO2 treatments. In addition, at the whole-ecosystem level we found a remarkably small and statistically non-significant increase in C sequestration (+4%; the sum of C accretion in the soil, biomass, litter and necromass). Total community biomass more than quadrupled during the experiment, but at harvest was, on average, only 8% greater (i.e. 6% per year; n.s.) under elevated CO2, mainly due to increased root biomass (+15%, P=0.12). Time courses of leaf area index of all ecosystems suggested that canopy expansion was approaching steady state by the time systems were harvested. Net primary productivity (NPP) of all ecosystems-i.e. annual accumulation of biomass, necromass, and leaf litter (but not

  2. CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection

    Science.gov (United States)

    gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi

    2014-05-01

    The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to

  3. Multi-scale modeling of CO2 dispersion leaked from seafloor off the Japanese coast.

    Science.gov (United States)

    Kano, Yuki; Sato, Toru; Kita, Jun; Hirabayashi, Shinichiro; Tabeta, Shigeru

    2010-02-01

    A numerical simulation was conducted to predict the change of pCO(2) in the ocean caused by CO(2) leaked from an underground aquifer, in which CO(2) is purposefully stored. The target space of the present model was the ocean above the seafloor. The behavior of CO(2) bubbles, their dissolution, and the advection-diffusion of dissolved CO(2) were numerically simulated. Here, two cases for the leakage rate were studied: an extreme case, 94,600 t/y, which assumed that a large fault accidentally connects the CO(2) reservoir and the seafloor; and a reasonable case, 3800 t/y, based on the seepage rate of an existing EOR site. In the extreme case, the calculated increase in DeltapCO(2) experienced by floating organisms was less than 300 ppm, while that for immobile organisms directly over the fault surface periodically exceeded 1000 ppm, if momentarily. In the reasonable case, the calculated DeltapCO(2) and pH were within the range of natural fluctuation. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    Science.gov (United States)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  5. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  6. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

    Science.gov (United States)

    Pan, Y.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Pitelka, L.F.; Hibbard, K.; Pierce, L.L.; Running, S.W.; Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Borchers, J.; Neilson, R.; Fisher, H.H.; Kittel, T.G.F.; Rossenbloom, N.A.; Fox, S.; Haxeltine, A.; Prentice, I.C.; Sitch, S.; Janetos, A.; McKeown, R.; Nemani, R.; Painter, T.; Rizzo, B.; Smith, T.; Woodward, F.I.

    1998-01-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In

  7. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    Directory of Open Access Journals (Sweden)

    Y. Carotenuto

    2008-08-01

    Full Text Available Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3–9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a, showed the highest instantaneous grow rates (k=0.37–0.99 d−1 and increased from ca. 2–3 to 6–12 μg l−1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l−1 (corresponding to 1.9 and 10.8 μmol C l−1, peaking on day 13–15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12–43% of the standing stock d−1 only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20–65% of the standing stock per day.

  8. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels

    Science.gov (United States)

    Suffrian, K.; Simonelli, P.; Nejstgaard, J. C.; Putzeys, S.; Carotenuto, Y.; Antia, A. N.

    2008-08-01

    Microzooplankton grazing and algae growth responses to increasing pCO2 levels (350, 700 and 1050 μatm) were investigated in nitrate and phosphate fertilized mesocosms during the PeECE III experiment 2005. Grazing and growth rates were estimated by the dilution technique combined with taxon specific HPLC pigment analysis. Microzooplankton composition was determined by light microscopy. Despite a range of up to 3 times the present CO2 levels, there were no clear differences in any measured parameter between the different CO2 treatments. During days 3 9 of the experiment the algae community standing stock, measured as chlorophyll a (Chl-a), showed the highest instantaneous grow rates (k=0.37 0.99 d-1) and increased from ca. 2 3 to 6 12 μg l-1, in all mesocosms. Afterwards the phytoplankton standing stock decreased in all mesocosms until the end of the experiment. The microzooplankton standing stock, that was mainly constituted by dinoflagellates and ciliates, varied between 23 and 130 μg C l-1 (corresponding to 1.9 and 10.8 μmol C l-1), peaking on day 13 15, apparently responding to the phytoplankton development. Instantaneous Chl-a growth rates were generally higher than the grazing rates, indicating only a limited overall effect of microzooplankton grazing on the most dominant phytoplankton. Diatoms and prymnesiophytes were significantly grazed (12 43% of the standing stock d-1) only in the pre-bloom phase when they were in low numbers, and in the post-bloom phase when they were already affected by low nutrients and/or viral lysis. The cyanobacteria populations appeared more affected by microzooplankton grazing which generally removed 20 65% of the standing stock per day.

  9. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography

    DEFF Research Database (Denmark)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten

    2015-01-01

    -European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire...... model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models......Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub...

  10. Modeling pCO2 variability in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Z. Xue

    2014-08-01

    Full Text Available A three-dimensional coupled physical–biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM. The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004–2010 was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr−1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.

  11. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  12. Application of conifer needles in the reconstruction of Holocene CO2 levels

    NARCIS (Netherlands)

    Kouwenberg, L.L.R.

    1973-01-01

    To clarify the nature of the link between CO2 and climate on relatively short time-scales, precise, high-resolution reconstructions of the pre-industrial evolution of atmospheric CO2 are required. Adjustment of stomatal frequency to changes in atmospheric CO2 allows plants of many species to retain

  13. Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2015-04-01

    The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However

  14. Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    Directory of Open Access Journals (Sweden)

    G. Turi

    2013-08-01

    Full Text Available We quantify the CO2 source/sink nature of the California Current System (CalCS and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2 in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-ecosystem-biogeochemical ocean model on the basis of the Regional Oceanic Modeling System (ROMS. The model-simulated pCO2 agrees very well with in situ observations over the entire domain with virtually no bias, but the model overestimates pCO2 in the nearshore 100 km, and underestimates the observed temporal variability. In the annual mean, the entire CalCS within 800 km of the coast and from ~ 33° N to 46° N is essentially neutral with regard to atmospheric CO2. The model simulates an integrated uptake flux of −0.9 Tg C yr–1, corresponding to a very small average flux density of −0.05 mol C m–2 yr–1, with an uncertainty of the order of ±0.20 mol C m–2 yr–1. This near zero flux is a consequence of an almost complete regional compensation between the strong outgassing in the nearshore region (first 100 km, with flux densities of more than 3 mol C m–2 yr–1 and a weaker, but more widespread uptake flux in the offshore region with an average flux density of −0.17 mol C m–2 yr–1. This pattern is primarily a result of the interaction between upwelling in the nearshore that brings waters with high concentrations of dissolved inorganic carbon (DIC to the surface, and an intense biological drawdown of this DIC, driven by the nutrients that are upwelled together with the DIC. The biological drawdown occurs too slowly to prevent the escape of a substantial amount of CO2 into the atmosphere, but this is compensated by the biological generation of undersaturated conditions offshore of 100 km, permitting the CalCS to take up most of the escaped CO2. Thus, the biological pump over the entire CalCS is essentially 100

  15. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    Science.gov (United States)

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  16. Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools

    Science.gov (United States)

    Krapivin, Vladimir F.; Varotsos, Costas A.

    2016-12-01

    An advanced mathematical model of the radiation forcing on the ocean surface is proposed for the assessment of the CO2 fluxes between atmosphere and ocean boundary in the upwelling zones. Two types of the upwelling are considered: coastal and local in the open ocean that are closely associated with changes in solar irradiance. The proposed model takes into account the maximal number of the carbon fluxes in the upwelling ecosystem considering that in the latter the only original source of energy and matter for all forms of life is the energy of the solar radiation. The vertical structure of the upwelling zone is represented by four levels: the upper mixed layer above the thermocline, the intermediate photic layer below the thermocline, the deep ocean and the near-bottom layer. Peruvian upwelling and typical local upwelling of tropical pelagic region are considered as examples for the model calculations.

  17. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    Science.gov (United States)

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  18. Modeling of CO2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory

    Science.gov (United States)

    Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2016-03-01

    Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.

  19. A cell-based model for the photoacclimation and CO(2)-acclimation of the photosynthetic apparatus.

    Science.gov (United States)

    Papadakis, I A; Kotzabasis, K; Lika, K

    2005-06-30

    We have developed a mathematical model based on the underlying mechanisms concerning the responses of the photosynthetic apparatus of a microalga cell which grows under constant incident light intensity and ambient CO(2) concentration. Photosynthesis involves light and carbon-fixation reactions which are mutually dependent and affect each other, but existing models for photosynthesis don't account for both reactions at once. Our modeling approach allows us to derive distinct equations for the rates of oxygen production, NADPH production, carbon dioxide fixation, carbohydrate production, and rejected energy, which are generally different. The production rates of the photosynthesis products are hyperbolic functions of light and CO(2) concentration. The model predicts that in the absence of photoinhibition, CO(2)-inhibition, photorespiration, and chlororespiration, a cell acclimated to high light and/or CO(2) concentration has higher photosynthetic capacity and lower photosynthetic efficiency than does a cell acclimated to low conditions. This results in crossing between the two curves which represent the oxygen production rates and carbon fixation rates in low and high conditions. Finally, in the absence of photoinhibition and CO(2)-inhibition, the model predicts the carbohydrate production rate in terms of both light intensity and CO(2) concentration.

  20. Modeling atmospheric CO2 concentration profiles and fluxes above sloping terrain at a boreal site

    Directory of Open Access Journals (Sweden)

    T. Aalto

    2006-01-01

    Full Text Available CO2 fluxes and concentrations were simulated in the planetary boundary layer above subarctic hilly terrain using a three dimensional model. The model solves the transport equations in the local scale and includes a vegetation sub-model. A WMO/GAW background concentration measurement site and an ecosystem flux measurement site are located inside the modeled region at a hilltop and above a mixed boreal forest, respectively. According to model results, the concentration measurement at the hill site was representative for continental background. However, this was not the case for the whole model domain. Concentration at few meters above active vegetation represented mainly local variation. Local variation became inseparable from the regional signal at about 60-100 m above ground. Flow over hills changed profiles of environmental variables and height of inversion layer, however CO2 profiles were more affected by upwind land use than topography. The hill site was above boundary layer during night and inside boundary layer during daytime. The CO2 input from model lateral boundaries dominated in both cases. Daily variation in the CO2 assimilation rate was clearly seen in the CO2 profiles. Concentration difference between the hill site and the forest site was about 5ppm during afternoon according to both model and measurements. The average modeled flux to the whole model region was about 40% of measured and modeled local flux at the forest site.

  1. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  2. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  3. Investigating Mars South Residual CO2 Cap with a Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Dequaire, J.; Hollingsworth, J. L.; Haberle, R. M.

    2016-01-01

    The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere may control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. The goal of the current work is to further evaluate Colaprete et al.'s hypothesis by investigating model-predicted seasonally varying snowfall patterns in the southern polar region and the atmospheric circulation components that control them.

  4. The fertilization and development of the sea urchin Stronglyocentrotus nudus under near-future level of pCO2

    Science.gov (United States)

    Park, Y.; Kang, S.; Lee, J.; Choi, S.; Hwang, J.; Inaba, K.; Shiba, K.

    2011-12-01

    We examined the effects of pCO2 on the fertilization success rate and development of the sea urchin Stronglyocentrotus nudus, one of abundant and common organisms found in Korean coastal waters. We exposed sperms of S. nudus to seawater of different pCO2 levels ranging from 380 ppmv to 6000 ppmv, and found that the fertilization rate of the sea urchin was lowered drastically even at pCO2 level of about 500 ppmv, which we could reach as early as 2050s. When the egg of S. nudus was exposed to seawater of high pCO2, the fertilization success rate did not change, and we could conclude that the sperm is responsible for this unprecedented low fertilization success rate. This low rate, however, was not due to the motility of the sperms since the motility was rather insensitive to pCO2 within the range of our investigation. We further examined the effect of CO2 on the development using eggs fertilized under 380 ppmv. The eggs were divided into three groups. The first group was exposed to CO2 treated water until plutes stage, and the second one was exposed during hatching stage (from fertilization to hatching) and then returned to the water with the water treated at 380 ppmv. The third group was exposed to CO2 treated sea water after hatching. Under 550 ppmv the development rate was not affected by pCO2. At 750 ppmv the development rate was decreased, but the one exposed during the hatching stage was influenced less. As pCO2 becomes higher, the development rate becomes lower, but the one exposed during the hatching stage was affected less. This result shows that pCO2 has stronger effect on the fertilization stage than during development stage.

  5. Research on Model and Related Parameters of Supercritical CO2 Injection into Depleted Reservoir

    Science.gov (United States)

    Ma, Pinghua; He, Jun

    2017-07-01

    On the basis of the research on CO2 geological storage and enhanced oil recovery(EOR) technology, a random porosity distribution model which conforms to logarithmic normal distribution was adopted in order to describe the heterogeneous characteristics of pore structure. On this basis, the two-phase flow model of CO2-formation water was established to describe the displacement process. Through the simulation of CO2 injection into depleted reservoir, it confirmed that injection point pressure was associated with the temperature and depth of the formation except heterogeneity. But the saturation distribution was greatly influenced by formation heterogeneity and depth. Thus, the space utilization of the injection layer reduced gradually with the depth increasing. The related research is important for CO2 storage, migration and evolution in depleted reservoir.

  6. Sensing arterial CO(2) levels: a role for medullary P2X receptors.

    Science.gov (United States)

    Spyer, K M; Thomas, T

    2000-07-01

    ATP has been shown to act as an excitatory neurotransmitter in the central nervous system. In this review, evidence is presented to indicate that when ATP is micro-injected into the ventrolateral medulla (VLM) of the rat, changes in respiratory activity are elicited. These effects, and accompanying changes in heart rate and blood pressure are mediated by P2X purinoreceptors. Immunocytochemistry indicates a prevalence of P2X(2) and P2X(6) purinoreceptors in this region of the medulla. The P2 purinoceptor antagonists, suramin and PPADS blunt the respiratory responses to changes in arterial CO(2) levels when micro-injected into the VLM. This effect is shown electrophysiologically to be mediated by purinoreceptors located primarily on respiratory neurones of the VLM including the Bötzinger complex. As the effects of agonist activation of P2X(2) purinoceptors expressed in HEK293 cells and Xenopus oocytes are potentiated by lowering pH, these data imply that the central respiratory response to CO(2) depends in part on the pH sensitivity of purinoreceptors located on inspiratory neurones. The implications for respiratory activity and control are discussed.

  7. Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach

    Science.gov (United States)

    Hui, Dafeng; Luo, Yiqi

    2004-12-01

    Soil surface CO2 efflux is an important component of the carbon cycle in terrestrial ecosystems. However, our understanding of mechanistic controls of soil CO2 production and transport is greatly limited. A multilayer process-based soil CO2 efflux model (PATCIS) was used to evaluate soil CO2 production and transport in the Duke Forest. CO2 production in the soil is the sum of root respiration and soil microbial respiration, and CO2 transport in the soil mainly simulates gaseous diffusion. Simulated soil CO2 efflux in the Duke Forest ranged from 5 g CO2 m-2 d-1 in the winter to 25 g CO2 m-2 d-1 in summer. Annual soil CO2 efflux was 997 and 1211 g C m-2 yr-1 in 1997 and 1998, respectively. These simulations were consistent with the observed soil CO2 efflux. Simulated root respiration contributed 53% to total soil respiration. Soil temperature had the dominant influence on soil CO2 production and CO2 efflux while soil moisture only regulated soil CO2 efflux in the summer when soil moisture was very low. Soil CO2 efflux was sensitive to the specific fine root respiratory rate and live fine root biomass. Elevated CO2 increased annual soil CO2 efflux by 26% in 1997 and 18% in 1998, due mainly to the enhanced live fine root biomass and litterfall. On a daily to yearly basis, CO2 production is almost identical to CO2 efflux, suggesting that CO2 transport is not a critical process regulating daily and long-term soil surface CO2 effluxes in the Duke Forest. We also developed a statistical model of soil CO2 efflux with soil temperature and moisture. Daily soil CO2 efflux estimation by the statistical model showed a similar pattern to the simulated soil CO2 efflux, but the total annual CO2 efflux was slightly lower. While the statistical model is simple, yet powerful, in simulating seasonal dynamics of soil CO2 efflux, the process-based model has the potential to advance our mechanistic understanding of soil CO2 efflux variations in the current and future worlds.

  8. Effect of increased pCO2 level on early shell development in great scallop (Pecten maximus Lamarck larvae

    Directory of Open Access Journals (Sweden)

    S. Andersen

    2013-10-01

    Full Text Available As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA. Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck, at pCO2 levels of 469 (ambient, 807, 1164, and 1599 μatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO2 level the first 12 h was observed in the elevated pCO2 groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO2 level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO2 group. Shell length and height were reduced by 8 and 15%, respectively, when pCO2 increased from ambient to 1599 μatm. Development of normal hinges was negatively affected by elevated pCO2 levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO2 levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO2 levels within the range of what is projected towards year 2250, although the initial drop in pCO2 level may have overestimated the effect of the highest pCO2 levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the

  9. Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2

    Science.gov (United States)

    Polavarapu, Saroja M.; Neish, Michael; Tanguay, Monique; Girard, Claude; de Grandpré, Jean; Semeniuk, Kirill; Gravel, Sylvie; Ren, Shuzhan; Roche, Sébastien; Chan, Douglas; Strong, Kimberly

    2016-09-01

    A new model for greenhouse gas transport has been developed based on Environment and Climate Change Canada's operational weather and environmental prediction models. When provided with realistic posterior fluxes for CO2, the CO2 simulations compare well to NOAA's CarbonTracker fields and to near-surface continuous measurements, columns from the Total Carbon Column Observing Network (TCCON) and NOAA aircraft profiles. This coupled meteorological and tracer transport model is used to study the predictability of CO2. Predictability concerns the quantification of model forecast errors and thus of transport model errors. CO2 predictions are used to compute model-data mismatches when solving flux inversion problems and the quality of such predictions is a major concern. Here, the loss of meteorological predictability due to uncertain meteorological initial conditions is shown to impact CO2 predictability. The predictability of CO2 is shorter than that of the temperature field and increases near the surface and in the lower stratosphere. When broken down into spatial scales, CO2 predictability at the very largest scales is mainly due to surface fluxes but there is also some sensitivity to the land and ocean surface forcing of meteorological fields. The predictability due to the land and ocean surface is most evident in boreal summer when biospheric uptake produces large spatial gradients in the CO2 field. This is a newly identified source of uncertainty in CO2 predictions but it is expected to be much less significant than uncertainties in fluxes. However, it serves as an upper limit for the more important source of transport error and loss of predictability, which is due to uncertain meteorological analyses. By isolating this component of transport error, it is demonstrated that CO2 can only be defined on large spatial scales due to the presence of meteorological uncertainty. Thus, for a given model, there is a spatial scale below which fluxes cannot be inferred simply

  10. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01

    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  11. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    Science.gov (United States)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  12. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus

    Directory of Open Access Journals (Sweden)

    Blake L. Spady

    2014-10-01

    Full Text Available Carbon dioxide (CO2 levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.

  13. European source and sink areas of CO2 retrieved from Lagrangian transport model interpretation of combined O2 and CO2 measurements at the high alpine research station Jungfraujoch

    Directory of Open Access Journals (Sweden)

    D. Brunner

    2011-08-01

    Full Text Available The University of Bern monitors carbon dioxide (CO2 and oxygen (O2 at the High Altitude Research Station Jungfraujoch since the year 2000 by means of flasks sampling and since 2005 using a continuous in situ measurement system. This study investigates the transport of CO2 and O2 towards Jungfraujoch using backward Lagrangian Particle Dispersion Model (LPDM simulations and utilizes CO2 and O2 signatures to classify air masses. By investigating the simulated transport patterns associated with distinct CO2 concentrations it is possible to decipher different source and sink areas over Europe. The highest CO2 concentrations, for example, were observed in winter during pollution episodes when air was transported from Northeastern Europe towards the Alps, or during south Foehn events with rapid uplift of polluted air from Northern Italy, as demonstrated in two case studies. To study the importance of air-sea exchange for variations in O2 concentrations at Jungfraujoch the correlation between CO2 and APO (Atmospheric Potential Oxygen deviations from a seasonally varying background was analyzed. Anomalously high APO concentrations were clearly associated with air masses originating from the Atlantic Ocean, whereas low APO concentrations were found in air masses advected either from the east from the Eurasian continent in summer, or from the Eastern Mediterranean in winter. Those air masses with low APO in summer were also strongly depleted in CO2 suggesting a combination of CO2 uptake by vegetation and O2 uptake by dry summer soils. Other subsets of points in the APO-CO2 scatter plot investigated with respect to air mass origin included CO2 and APO background values and points with regular APO but anomalous CO2 concentrations. Background values were associated with free tropospheric air masses with little contact with the boundary layer during the last few days, while high or low CO2 concentrations reflect the various levels of influence of anthropogenic

  14. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  15. Experimental and modeling study of NO emission under high CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental and numerical study of the NOx formation and reduction process in a designed coal combustion furnace under both traditional air atmosphere and O2/CO2 atmosphere was conducted, in an attempt to explore the chemistry mechanism of the experimentally observed NOx suppression under high CO2 concentration atmospheres. A simplified ‘chemically oriented’ approach, computational fluid dynamics (CFD)-chemical kinetics modeling method, was validated and used to model the experimental process. The high CO2 concentration’s chemical effect on NO reduction has been studied, and the differences in NOx reaction behaviors between O2/CO2 atmosphere and air atmosphere were analyzed by detailed chemical kinetic model. On the basis of investigations through elementary chemical reactions, it can be concluded that high CO2 concentration plays an important role on NOx conversion process during oxy-fuel combustion. Moreover, the dominant reaction steps and the most important reactions for NO conversion under different atmospheres were discussed. Under O2/CO2 atmosphere, the main active sequence for NO reaction includes: NO→N→N2, and the main active path for NO reaction under air atmosphere is through N2→N→NO.

  16. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-03-07

    As stricter regulations on CO2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q(2)LOO =0.63 for CO2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO2 absorption properties.

  17. Relative Linkages of Canopy-Level CO2 Fluxes with the Climatic and Environmental Variables for US Deciduous Forests

    Science.gov (United States)

    Ishtiaq, Khandker S.; Abdul-Aziz, Omar I.

    2015-04-01

    We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The `radiation-energy' component had the strongest linkage with CO2 fluxes, whereas the `aerodynamic' and `temperature-hydrology' components were low to moderately linked with the carbon fluxes. On average, the `radiation-energy' component showed 5 and 8 times stronger carbon flux linkages than that of the `temperature-hydrology' and `aerodynamic' components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy ( R 2 = 0.55-0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44-0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data.

  18. Biocompatibility of supercritical CO2-treated titanium implants in a rat model.

    Science.gov (United States)

    Hill, C M; Kang, Q K; Wahl, C; Jimenez, A; Laberge, M; Drews, M; Matthews, M A; An, Y H

    2006-04-01

    Supercritical phase CO2 is a promising method for sterilizing implantable devices and tissue grafts. The goal of this study is to evaluate the biocompatibility of titanium implants sterilized by supercritical phase CO2 in a rat subcutaneous implantation model. At 5 weeks post implantation titanium implants sterilized by supercritical phase CO2 produce a soft tissue reaction that is comparable to other methods of sterilization (steam autoclave, ultraviolet light radiation, ethylene oxide gas, and radio-frequency glow-discharge), as indicated by the thickness and density of the foreign body capsule, although there were some differences on the capillary density. Overall the soft tissue response to the implants was similar among all methods of sterilization, indicating supercritical phase CO2 treatment did not compromise the biocompatibility of the titanium implant.

  19. Modelling of Seismic and Resistivity Responses during the Injection of CO2 in Sandstone Reservoir

    Science.gov (United States)

    Omar, Muhamad Nizarul Idhafi Bin; Almanna Lubis, Luluan; Nur Arif Zanuri, Muhammad; Ghosh, Deva P.; Irawan, Sonny; Regassa Jufar, Shiferaw

    2016-07-01

    Enhanced oil recovery plays vital role in production phase in a producing oil field. Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease and require recovery method so called enhanced oil recovery (EOR) to recover the hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide (CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and pressure differences are established to make sure the technique works in recovering hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 performance by seismic and resistivity model, enabling geoscientists and reservoir engineers to monitor production behaviour as respect to CO2 injection.

  20. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    Science.gov (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  1. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    Science.gov (United States)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  2. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  3. Uptake and Storage of Anthropogenic CO2 in the Pacific Ocean Estimated Using Two Modeling Approaches

    Institute of Scientific and Technical Information of China (English)

    LI Yangchun; XU Yongfu

    2012-01-01

    A basin-wide ocean general circulation model (OGCM) of the Pacific Ocean is employed to estimate the uptake and storage of anthropogenic CO2 using two different simulation approaches.The simulation (named BIO) makes use of a carbon model with biological processes and full thermodynamic equations to calculate surface water partial pressure of CO2,whereas the other simulation (named PTB) makes use of a perturbation approach to calculate surface water partial pressure of anthropogenie CO2.The results from the two simulations agree well with the estimates based on observation data in most important aspects of the vertical distribution as well as the total inventory of anthropogenic carbon.The storage of anthropogenic carbon from BIO is closer to the observation-based estimate than that from PTB.The Revelle factor in 1994 obtained in BIO is generally larger than that obtained in PTB in the whole Pacific,except for the subtropical South Pacific.This,to large extent,leads to the difference in the surface anthropogenic CO2 concentration between the two runs.The relative difference in the annual uptake between the two runs is almost constant during the integration processes after 1850.This is probably not caused by dissolved inorganic carbon (DIC),but rather by a factor independent of time.In both runs,the rate of change in anthropogenic CO2 fluxes with time is consistent with the rate of change in the growth rate of atmospheric partial pressure of CO2.

  4. AFSC/RACE/FBEP/Hurst: Effects of elevated CO2 levels on eggs and larvae of a North Pacific flatfish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is from a laboratory study that examined the growth responses of northern rock sole eggs and larvae across a range of CO2 levels to evaluate the...

  5. Coupled Reactive Transport Modeling of CO2 Injection in Mt. Simon Sandstone Formation, Midwest USA

    Science.gov (United States)

    Liu, F.; Lu, P.; Zhu, C.; Xiao, Y.

    2009-12-01

    CO2 sequestration in deep geological formations is one of the promising options for CO2 emission reduction. While several large scale CO2 injections in saline aquifers have shown to be successful for the short-term, there is still a lack of fundamental understanding on key issues such as CO2 storage capacity, injectivity, and security over multiple spatial and temporal scales that need to be addressed. To advance these understandings, we applied multi-phase coupled reactive mass transport modeling to investigate the fate of injected CO2 and reservoir responses to the injection into Mt. Simon Formation. We developed both 1-D and 2-D reactive transport models in a radial region of 10,000 m surrounding a CO2 injection well to represent the Mt. Simon sandstone formation, which is a major regional deep saline reservoir in the Midwest, USA. Supercritical CO2 is injected into the formation for 100 years, and the modeling continues till 10,000 years to monitor both short-term and long-term behavior of injected CO2 and the associated rock-fluid interactions. CO2 co-injection with H2S and SO2 is also simulated to represent the flue gases from coal gasification and combustion in the Illinois Basin. The injection of CO2 results in acidified zones (pH ~3 and 5) adjacent to the wellbore, causing progressive water-rock interactions in the surrounding region. In accordance with the extensive dissolution of authigenic K-feldspar, sequential precipitations of secondary carbonates and clay minerals are predicted in this zone. The vertical profiles of CO2 show fingering pattern from the top of the reservoir to the bottom due to the density variation of CO2-impregnated brine, which facilitate convection induced mixing and solubility trapping. Most of the injected CO2 remains within a radial distance of 2500 m at the end of 10,000 years and is sequestered and immobilized by solubility and residual trapping. Mineral trapping via secondary carbonates, including calcite, magnesite

  6. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  7. Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?

    Science.gov (United States)

    Middleton, Beth A.; McKee, Karen L.

    2012-01-01

    Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l-1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.

  8. A numerical evaluation of prediction accuracy of CO2 absorber model for various reaction rate coefficients

    Directory of Open Access Journals (Sweden)

    Shim S.M.

    2012-01-01

    Full Text Available The performance of the CO2 absorber column using mono-ethanolamine (MEA solution as chemical solvent are predicted by a One-Dimensional (1-D rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO2-H2O system are considered to predict the equilibrium pressure of CO2 in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO2 absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO2 loading and the CO2 removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO2 absorber column using MEA solution. [Acknowledgement. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF, funded by the Ministry of Education, Science and Technology (2011-0017220].

  9. Practical enhancement factor model based on GM for multiple parallel reactions: Piperazine (PZ) CO2 capture

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Fosbøl, Philip Loldrup

    2017-01-01

    Reactive absorption is a key process for gas separation and purification and it is the main technology for CO2 capture. Thus, reliable and simple mathematical models for mass transfer rate calculation are essential. Models which apply to parallel interacting and non-interacting reactions, for all......, desorption and pinch conditions.In this work, we apply the GM model to multiple parallel reactions. We deduce the model for piperazine (PZ) CO2 capture and we validate it against wetted-wall column measurements using 2, 5 and 8 molal PZ for temperatures between 40 °C and 100 °C and CO2 loadings between 0.......23 and 0.41 mol CO2/2 mol PZ. We show that overall second order kinetics describes well the reaction between CO2 and PZ accounting for the carbamate and bicarbamate reactions. Here we prove the GM model for piperazine and MEA but we expect that this practical approach is applicable for various amines...

  10. Modelling the electrical resistivity response to CO2 plumes generated in a laboratory, cylindrical sandbox

    Science.gov (United States)

    Kremer, T.; Maineult, A. J.; Binley, A.; Vieira, C.; Zamora, M.

    2012-12-01

    CO2 capture and storage into deep geological formations is one of the main solutions proposed to reduce the concentration of anthropic CO2 in the atmosphere. The monitoring of injection sites is a crucial issue to assess for the long term viability of CO2 storage. With the intention of detecting potential leakages, we are investigating the possibility of using electrical resistivity tomography (ERT) techniques to detect CO2 transfers in the shallow sub-surface. ERT measurements were performed during a CO2 injection in a cylindrical tank filled with Fontainebleau sand and saturated with water. Several measurements protocols were tested. The inversion of the resistances measured with the software R3T (Binley and Kemna (2005)) clearly showed that the CO2 injection induces significant changes in the resistivity distribution of the medium, and that ERT has a promising potential for the detection and survey of CO2 transfers through unconsolidated saturated media. We modeled this experiment using Matlab by building a 3D cellular automaton that describes the CO2 spreading, following the geometric and stochastic approach described by Selker et al. (2007). The CO2 circulation is described as independents, circular and continuous gas channels whose horizontal spread depends on a Gaussian probability law. From the channel distribution we define the corresponding gas concentration distribution and calculate the resistivity of the medium by applying Archie's law for unsaturated conditions. The forward modelling was performed with the software R3T to convert the resistivity distribution into resistances values, each corresponding to one of the electrode arrays used in the experimental measurements. Modelled and measured resistances show a good correlation, except for the electrode arrays located at the top or the bottom of the tank. We improved the precision of the model by considering the effects due to CO2 dissolution in the water which increases the conductivity of the

  11. Uncertainty in measurements of the CO2 compensation point and its impact on models of photosynthesis

    Science.gov (United States)

    Rates of carbon dioxide assimilation through photosynthesis are readily modeled through the Farquhar, von Caemmerer and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 carbon assimilation. As models of CO2 assimilation are used more broadly for simula...

  12. The South Residual CO 2 Cap on Mars: Investigations with a Mars Global Climate Model

    Science.gov (United States)

    Kahre, Melinda A.; Dequaire, Julie; Hollingsworth, Jeffery L.; Haberle, Robert

    2016-10-01

    The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere could control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. Our current work builds on these initial investigations with a version of the NASA Ames Mars Global Climate Model (GCM) that includes a sophisticated CO2 cloud microphysical scheme. Processes of cloud nucleation, growth, sedimentation, and radiative effects are accounted for. Simulated results thus far agree well with the Colaprete et al. study—the zonally asymmetric nature of the atmospheric circulation produces enhanced snowfall over the residual cap hemisphere throughout much of the winter season. However, the predicted snowfall patterns vary significantly with season throughout the cap growth and recession phases. We will present a detailed analysis of the seasonal evolution of the predicted atmospheric circulation and snowfall patterns to more fully evaluate the hypothesis that the atmosphere controls the placement of the south residual cap.

  13. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  14. Energy from CO2 using capacitive electrodes - a model for energy extraction cycles.

    Science.gov (United States)

    Paz-Garcia, J M; Dykstra, J E; Biesheuvel, P M; Hamelers, H V M

    2015-03-15

    A model is presented for the process of harvesting electrical energy from CO2 emissions using capacitive cells. The principle consists of controlling the mixing process of a concentrated CO2 gas stream with a dilute CO2 gas stream (as, for example, exhaust gas and air), thereby converting part of the released mixing energy into electrical energy. The model describes the transient reactive transport of CO2 gas absorbed in water or in monoethanolamine (MEA) solutions, under the assumption of local chemical equilibrium. The model combines the selective transport of ions through ion-exchange membranes, the accumulation of charge in the porous carbon electrodes and the coupling between the ionic current and the produced electrical current and power. We demonstrate that the model can be used to calculate the energy that can be extracted by mixing concentrated and dilute CO2 containing gas streams. Our calculation results for the process using MEA solutions have various counterintuitive features, including: 1. When dynamic equilibrium is reached in the cyclical process, the electrical charge in the anode is negative both during charging and discharging; 2. Placing an anion-exchange membrane (AEM) in the system is not required, the energy per cycle is just as large with or without an AEM. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands

    NARCIS (Netherlands)

    Tolk, L. F.; Peters, W.; Meesters, A. G. C. A.; Groenendijk, M.; Vermeulen, A. T.; Steeneveld, G. J.; Dolman, A. J.

    2009-01-01

    We simulated meteorology and atmospheric CO2 transport over the Netherlands with the mesoscale model RAMS-Leaf3 coupled to the biospheric CO2 flux model 5PM. The results were compared with meteorological and CO2 observations, with emphasis on the tall tower of Cabauw. An analysis of the coupled exch

  16. Modeling pCO2 variability in the Gulf of Mexico

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Fennel, Katja; Cai, Wei-Jun; Lohrenz, Steven; Huang, Wei-Jen; Tian, Hanqin; Ren, Wei; Zang, Zhengchen

    2016-08-01

    A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of sea surface pCO2 in the Gulf of Mexico (GoM). The model was driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A 7-year model hindcast (2004-2010) was performed and validated against ship measurements. Model results revealed clear seasonality in surface pCO2 and were used to estimate carbon budgets in the Gulf. Based on the average of model simulations, the GoM was a net CO2 sink with a flux of 1.11 ± 0.84 × 1012 mol C yr-1, which, together with the enormous fluvial inorganic carbon input, was comparable to the inorganic carbon export through the Loop Current. Two model sensitivity experiments were performed: one without biological sources and sinks and the other using river input from the 1904-1910 period as simulated by the Dynamic Land Ecosystem Model (DLEM). It was found that biological uptake was the primary driver making GoM an overall CO2 sink and that the carbon flux in the northern GoM was very susceptible to changes in river forcing. Large uncertainties in model simulations warrant further process-based investigations.

  17. Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study.

    Science.gov (United States)

    van de Haar, Adam; Trapp, Carsten; Wellner, Kai; de Kler, Robert; Schmitz, Gerhard; Colonna, Piero

    2017-02-22

    The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant.

  18. Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section

    Science.gov (United States)

    Bogaerts, Annemie; Wang, Weizong; Berthelot, Antonin; Guerra, Vasco

    2016-10-01

    Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy

  19. Phase equilibrium modeling of gas hydrate systems for CO2 capture

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2012-01-01

    Two thermodynamic models capable of describing dissociation pressures of mixed gas clathrate hydrates formed from ternary mixtures of CO2, N2 and liquid water, are presented. Both of the models utilize the Cubic-Plus-Association (CPA) equation of state (EOS) for the thermodynamic description of t...

  20. Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations

    Directory of Open Access Journals (Sweden)

    J. Noilhan

    2008-12-01

    Full Text Available We study the characteristics of a statistical ensemble of mesoscale simulations in order to estimate the model error in the simulation of CO2 concentrations. The ensemble consists of ten members and the reference simulation using the operationnal short range forecast PEARP, perturbed by Singular Vector (SV technic. We then used this ensemble of simulations as the initial and boundary conditions for the meso scale model simulations, here the atmospheric transport model Méso-NH, transporting CO2 fluxes from the ISBA-A-gs land surface model. The final ensemble represents the model dependence to the boundary conditions, conserving the physical properties of the dynamical schemes. First, the variance of our ensemble is estimated over the domain, with associated spatial and temporal correlations. Second, we extract the signal from noisy horizontal correlations, due to the limited size ensemble, using diffusion equation modelling. Finally, we compute the diagonal and non-diagonal terms of the observation error covariance matrix and introduced it into our CO2 flux matrix inversion over 18 days of the 2005 intensive campaign CERES over the South West of France. On the horizontal plane, variance of the ensemble follows the discontinuities of the mesoscale structures during the day, but remain locally driven during the night. On the vertical, surface layer variance shows large correlations with the upper levels in the boundary layer (>0.6, down to 0.4 with the low free troposphere. Large temporal correlations were found during the afternoon (>0.5 for several hours, reduced during the night. Diffusion equation model extracted relevant error covariance signals on the horizontal space, and shows reduced correlations over mountain area and during the night over the continent. The posterior error reduction on the inverted CO2 fluxes accounting for the model error correlations illustrates finally the predominance of the temporal over the spatial correlations

  1. Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection

    Science.gov (United States)

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.; González-Díaz, D.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carríon, J. V.; Cebrían, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Ferrario, P.; Ferreira, A. L.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2017-10-01

    Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm /√{m} to 2.5 mm /√{m}, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.

  2. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities.

    Science.gov (United States)

    Du, Wenchao; Gardea-Torresdey, Jorge L; Xie, Yuwei; Yin, Ying; Zhu, Jianguo; Zhang, Xiaowei; Ji, Rong; Gu, Kaihua; Peralta-Videa, Jose R; Guo, Hongyan

    2017-02-01

    Evidence suggests that CO2 modifies the behavior of nanomaterials. Thus, in a few decades, plants might be exposed to additional stress if atmospheric levels of CO2 and the environmental burden of nanomaterials increase at the current pace. Here, we used a full-size free-air CO2 enrichment (FACE) system in farm fields to investigate the effect of elevated CO2 levels on phytotoxicity and microbial toxicity of nTiO2 (0, 50, and 200mgkg(-1)) in a paddy soil system. Results show that nTiO2 did not induce visible signs of toxicity in rice plants cultivated at the ambient CO2 level (370μmolmol(-1)), but under the high CO2 concentration (570μmolmol(-1)) nTiO2 significantly reduced rice biomass by 17.9% and 22.1% at 50mgkg(-1) and 200mgkg(-1), respectively, and grain yield by 20.8% and 44.1% at 50mgkg(-1) and 200mgkg(-1), respectively. In addition, at the high CO2 concentration, nTiO2 at 200mgkg(-1) increased accumulation of Ca, Mg, Mn, P, Zn, and Ti by 22.5%, 16.8%, 29.1%, 7.4%, 15.7% and 8.6%, respectively, but reduced fat and total sugar by 11.2% and 25.5%, respectively, in grains. Such conditions also changed the functional composition of soil microbial communities, alerting specific phyla of bacteria and the diversity and richness of protista. Overall, this study suggests that increases in CO2 levels would modify the effects of nTiO2 on the nutritional quality of crops and function of soil microbial communities, with unknown implications for future economics and human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Science.gov (United States)

    Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H.

    2013-01-01

    Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about

  4. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-03-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE, and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  5. Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Science.gov (United States)

    Ogle, Kiona; Ryan, Edmund; Dijkstra, Feike A.; Pendall, Elise

    2016-12-01

    Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in "missing" f values. We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based) models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates (wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by 33% relative to the nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical approaches to estimating f, and we provide example code for the models.

  6. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Science.gov (United States)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  7. Optimized CO2-flue gas separation model for a coal fired power plant

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Muhammad Mohsin, Morten C. Melaaen

    2013-01-01

    Full Text Available The detailed description of the CO2 removal process using mono-ethylamine (MEA as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  8. Optimized CO2-flue gas separation model for a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Mohsin, Muhammad [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The detailed description of the CO2 removal process using mono-ethylamine (MEA) as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  9. EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet

    Science.gov (United States)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-01

    The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .

  10. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able to reduce the gap between the field and lab rates by about two orders of magnitude at elevated temperatures of 200-300 oC. Currently, we are using Si isotopes as a new tool to unravel the coupled reactions in ambient temperature laboratory experiments. These new experimental data, together with coupled reactive mass transport modeling

  11. Regulating plant/insect interactions using CO2 enrichment in model ecosystems

    Science.gov (United States)

    Grodzinski, B.; Schmidt, J. M.; Watts, B.; Taylor, J.; Bates, S.; Dixon, M. A.; Staines, H.

    1999-01-01

    The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of ``direct'' and ``indirect'' effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed ``directly'' by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected ``indirectly'' by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.

  12. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications - Part I. Validation

    OpenAIRE

    Wareing, CJ; Fairweather, M.; Falle, SAEG; Woolley, RM

    2015-01-01

    Carbon dioxide (CO2) capture and storage presents a short-term option for significantly reducing the amount of CO2 released into the atmosphere and mitigating the effects of climate change. To this end, National Grid initiated the COOLTRANS research programme to consider the pipeline transportation of high pressure dense phase CO2, including the development and application of a mathematical model for predicting the sonic near-field dispersion of pure CO2 following the venting or failure of su...

  13. Correlation of Amine Swingbed On-Orbit CO2 Performance with a Hardware Independent Predictive Model

    Science.gov (United States)

    Papale, William; Sweterlitsch, Jeffery

    2015-01-01

    The Amine Swingbed Payload is an experimental system deployed on the International Space Station (ISS) that includes a two-bed, vacuum regenerated, amine-based carbon dioxide (CO2) removal subsystem as the principal item under investigation. The aminebased subsystem, also described previously in various publications as CAMRAS 3, was originally designed, fabricated and tested by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) and delivered to NASA in November 2008. The CAMRAS 3 unit was subsequently designed into a flight payload experiment in 2010 and 2011, with flight test integration activities accomplished on-orbit between January 2012 and March 2013. Payload activation was accomplished in May 2013 followed by a 1000 hour experimental period. The experimental nature of the Payload and the interaction with the dynamic ISS environment present unique scientific and engineering challenges, in particular to the verification and validation of the expected Payload CO2 removal performance. A modeling and simulation approach that incorporates principles of chemical reaction engineering has been developed for the amine-based system to predict the dynamic cabin CO2 partial pressure with given inputs of sorbent bed size, process air flow, operating temperature, half-cycle time, CO2 generation rate, cabin volume and the magnitude of vacuum available. Simulation runs using the model to predict ambient CO2 concentrations show good correlation to on-orbit performance measurements and ISS dynamic concentrations for the assumed operating conditions. The dynamic predictive modelling could benefit operational planning to help ensure ISS CO2 concentrations are maintained below prescribed limits and for the Orion vehicle to simulate various operating conditions, scenarios and transients.

  14. Model of gas composition and plasma properties in sealed cw CO2 lasers

    Science.gov (United States)

    Byron, Stanley R.; Apter, Henri

    1992-02-01

    A comprehensive set of gas-phase reactions is described that accounts for the observed CO2 decomposition in sealed cw CO2 lasers that are free of H2O vapor. The model includes reactions among the species CO2, CO, O, O2, and O3, the electron Boltzmann equation to determine dissociation and ionization rates, and the negative ions O-, O2-, CO3-, and CO4-, which affect the reduced field E/N through their influence on ambipolar diffusion and ion neutralization. The CO2 formation mechanism is O+O2+M→k2O3+M, k2=4.2×10-34 cm6/s at 300 K, e-+O3→k3O-+O2, k3=1×10-8 cm3/s, O-+CO→k4CO2+e-, k4=7×10-10 cm3/s. The value for k3 is about 5 times larger than expected on the basis of electron-beam and drift tube measurements in room-temperature ozone and is attributed to electronic and/or vibrational excitation of ozone.

  15. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  16. Modeling of adsorption of CO2 in the deformed pores of MIL-53(Al).

    Science.gov (United States)

    Dundar, Ege; Chanut, Nicolas; Formalik, Filip; Boulet, Pascal; Llewellyn, Philip L; Kuchta, Bogdan

    2017-04-01

    Molecular simulations were performed to predict CO2 adsorption in flexible metal-organic frameworks (MOFs). A generic force field was fitted to our experimental data to describe the non-bonded (electrostatic and van der Waals) interactions between CO2 molecules and the large pore (lp) and narrow pore (np) forms of the MIL-53(Al) framework. With the new validated force field, it is possible to predict CO2 uptake and enthalpy of adsorption at various applied external pressures that will modify the structure's pore configuration and allow us to have more control over the adsorption/desorption process. A sensitivity analysis of MOF adsorption properties to the variation of the force field parameters was also intensively studied. It was shown that relatively small variations of the adsorbate gas model can improve the quality of the numerical predictions of the experimental data. However, the variations must be kept small enough to not modify the properties of the gas itself.

  17. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...... source types. Here the model setup and the used parameterizations will be described. The model is validated by comparing the results with atmospheric measurements from four monitoring stations in or close to the northern part of the North Atlantic. Some preliminary model results will be shown and shortly...... includes simple parameterizations of the main sinks and sources for atmospheric CO2. One of the objectives of the project is to study and maybe quantify the relative importance of the various sinks and source types and areas for this region. In order to do so the model has been run with differentiated...

  18. Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison

    Directory of Open Access Journals (Sweden)

    F. Delage

    2011-07-01

    Full Text Available Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2 emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission inventories with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40 % and ~80 % for the seasonal and diurnal cycles, peak-to-peak and annual country totals differ by 10 % on average and up to 40 % for some countries (i.e., the Netherlands. These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN and smaller diurnal cycles in summer (−1 ppm at HUN than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN than in summer (~5 ppm. The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly std-dev's amount to ~1.2 (0.8 ppm and ~0.4 (0.3 ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio over Europe, using two inverse modeling approaches, are relatively small (less that 5 % while changes in annual Fbio (up to ~0.15 % GtC yr−1 are only

  19. Consistent phase-change modeling for CO2-based heat mining operation

    DEFF Research Database (Denmark)

    Singh, Ashok Kumar; Veje, Christian

    2017-01-01

    –gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper...

  20. Evaluation and selection of sensing materials for carbon dioxide (CO2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work

  1. Evaluation and selection of sensing materials for carbon dioxide (CO 2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work

  2. Evaluation and selection of sensing materials for carbon dioxide (CO 2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work inc

  3. Evaluation and selection of sensing materials for carbon dioxide (CO2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work inc

  4. Effects of free-air CO2 enrichment on adventitious root development of rice under low and normal soil nitrogen levels

    Directory of Open Access Journals (Sweden)

    Chengming Sun

    2014-08-01

    Full Text Available Free air CO2 enrichment (FACE and nitrogen (N have marked effects on rice root growth, and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou 63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol− 1 higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low (LN, 125 kg ha− 1 and normal (NN, 250 kg ha− 1. The results showed a significant increase in both adventitious root number (ARN and adventitious root length (ARL under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application. The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.

  5. Effects of free-air CO2 enrichment on adventitious root development of rice under low and normal soil nitrogen levels

    Institute of Scientific and Technical Information of China (English)

    Chengming; Sun; Lijian; Wang; Tao; Liu; Doudou; Guo; Yingying; Chen; Wei; Wu; Yulong; Wang; Jianguo; Zhu

    2014-01-01

    Free air CO2 enrichment(FACE) and nitrogen(N) have marked effects on rice root growth,and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol-1higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low(LN, 125 kg ha-1) and normal(NN, 250 kg ha-1). The results showed a significant increase in both adventitious root number(ARN) and adventitious root length(ARL) under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application.The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.

  6. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  7. Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand

    Science.gov (United States)

    Steinkamp, Kay; Mikaloff Fletcher, Sara E.; Brailsford, Gordon; Smale, Dan; Moore, Stuart; Keller, Elizabeth D.; Baisden, W. Troy; Mukai, Hitoshi; Stephens, Britton B.

    2017-01-01

    A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.

  8. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise

    Science.gov (United States)

    Cherry, J.A.; McKee, K.L.; Grace, J.B.

    2009-01-01

    1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and

  9. A vertically integrated model with vertical dynamics for CO2 storage

    Science.gov (United States)

    Guo, Bo; Bandilla, Karl W.; Doster, Florian; Keilegavlen, Eirik; Celia, Michael A.

    2014-08-01

    Conventional vertically integrated models for CO2 storage usually adopt a vertical equilibrium (VE) assumption, which states that due to strong buoyancy, CO2 and brine segregate quickly, so that the fluids can be assumed to have essentially hydrostatic pressure distributions in the vertical direction. However, the VE assumption is inappropriate when the time scale of fluid segregation is not small relative to the simulation time. By casting the vertically integrated equations into a multiscale framework, a new vertically integrated model can be developed that relaxes the VE assumption, thereby allowing vertical dynamics to be modeled explicitly. The model maintains much of the computational efficiency of vertical integration while allowing a much wider range of problems to be modeled. Numerical tests of the new model, using injection scenarios with typical parameter sets, show excellent behavior of the new approach for homogeneous geologic formations.

  10. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    Science.gov (United States)

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental

  11. Net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire: field measurements and model simulations

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Zatsarinnaya, Dina; Novenko, Elena

    2014-05-01

    The spatial and temporal variability of net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia (54.06N, 37.59E, 260 m a.s.l.) was described using results of field measurements and simulations with Mixfor-3D model. The area of the mire is about 1.2 ha and it is surrounded by a broadleaved forest stand. It is a typical peat mire according to water and mineral supply as well as to vegetation composition. The vegetation of the peripheral parts of the mire is typical eutrophic whereas the vegetation in its central part is represented by meso-oligothrophic plant communities. To describe the spatial variability of NEE and ET within the mire a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2 and H2O analyzer LI-840A (Li-Cor, USA) was used. The measurements were provided along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and from May 2013 to October 2013. The chamber method was used for measurements of NEE and ET fluxes because of small size of the mire, a very uniform surrounding forest stand and the mosaic mire vegetation. All these factors promote very heterogeneous exchange conditions within the mire and make it difficult to apply, for example, an eddy covariance method that is widely used for flux measurements in the field. The results of the field measurements showed a significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation, air temperature and ground water level. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere (up to 6.8±4.2 µmol m-2 s-1 in June) whereas its peripheral part, due to strong shading by the surrounding forest, was mainly a source of

  12. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    Directory of Open Access Journals (Sweden)

    M. Saito

    2014-08-01

    Full Text Available This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO2 concentrations, above-ground biomass (AGB, and net primary productivity (NPP in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model.

  13. Reactive transport modeling of CO2 injection in the Farnsworth, Texas hydrocarbon field

    Science.gov (United States)

    Ahmmed, B.; Appold, M. S.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2014-12-01

    The Farnsworth hydrocarbon field in northern Texas has been an experimental site for CO2 sequestration and enhanced oil recovery for the U.S. Department of Energy-sponsored Southwest Partnership (SWP) since April, 2013. CO2 is to be injected into the Pennsylvanian Morrow Sandstone at a rate of 200,000 tonnes per year for at least five years. The Morrow is a quartz-rich sandstone that lies at a depth of about 2400 m. Pore water in the Morrow has a total dissolved solids content of about 3600 mg/L dominated by Na, Cl, bicarbonate, and Ca. A reactive solute transport model was constructed for a 1700 × 1700 × 95 m volume using the TOUGHREACT software and the ECO2N equation of state for aqueous brine and CO2. Simulations were carried out to 100 years. The results showed immiscible CO2 gas to be concentrated in a lateral plume extending radially from the well screen, its ascent impeded by vigorous lateral groundwater flow in the more permeable upper Morrow. CO2 was much more widespread in aqueous solution, lowering pH throughout much of the model volume after 100 years, to a minimum of about 4.7. The low reactivity of the Morrow Sandstone due to its quartz-rich matrix and dilute pore fluid resulted in little mineral precipitation or dissolution, with net volume changes for any mineral no higher than order 10-4. The simulations predicted net dissolution of albite, calcite, and chlorite, and net precipitation of dawsonite, illite, and magnesite. The Morrow matrix was predicted to undergo slight net dissolution overall, resulting in porosity increases of up to 0.01%, suggesting that the Morrow would be resistant to significant changes in hydraulic properties as a result of the proposed amount of CO2 injection. For the 100 year simulation times calculated thus far, only a small fraction of the injected CO2 would be sequestered as carbonate minerals, with most of the injected CO2 dissolved in the aqueous phase.

  14. Projected near-future levels of temperature and pCO2 reduce coral fertilization success.

    Directory of Open Access Journals (Sweden)

    Rebecca Albright

    Full Text Available Increases in atmospheric carbon dioxide (pCO2 are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C and pCO2 (+400 µatm projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2 and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.

  15. Use of a vehicle-modelling tool for predicting CO 2 emissions in the framework of European regulations for light goods vehicles

    Science.gov (United States)

    Fontaras, Georgios; Kouridis, Hariton; Samaras, Zissis; Elst, Daniel; Gense, Raymond

    The reduction of CO 2 emissions and fuel consumption from road transportation constitutes an important pillar of the EU commitment for implementing the Kyoto Protocol. Efforts to monitor and limit CO 2 emissions from vehicles can effectively be supported by the use of vehicle modelling tools. This paper presents the application of such a tool for predicting CO 2 emissions of vehicles under different operating conditions and shows how the results from simulations can be used for supporting policy analysis and design aiming at further reductions of the CO 2 emissions. For this purpose, the case of light duty goods (N1 category) vehicle CO 2 emissions control measures adopted by the EU is analysed. In order to understand how certain design and operating aspects affect fuel consumption, a number of N1 vehicles were simulated with ADVISOR for various operating conditions and the numerical results were validated against chassis dynamometer tests. The model was then employed for analysing and evaluating the new EU legislative framework that addresses CO 2 emissions from this vehicle class. The results of this analysis have shown the weaknesses of the current regulations and revealed new potential in CO 2 emissions control. Finally the TREMOVE model was used for simulating a possible scenario for reducing CO 2 emissions at fleet level.

  16. Why CO2 cools the middle atmosphere - a consolidating model perspective

    Science.gov (United States)

    Goessling, Helge F.; Bathiany, Sebastian

    2016-08-01

    Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.

  17. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  18. Analysis of GHG Emission Reduction in South Korea Using a CO2 Transportation Network Optimization Model

    Directory of Open Access Journals (Sweden)

    Suk Ho Jin

    2017-07-01

    Full Text Available Korea’s national carbon capture and storage (CCS master plan aims to commercialize CCS projects by 2030. Furthermore, the Korean government is forced to reduce emissions from various sectors, including industries and power generation, by 219 million tons by 2030. This study analyzes a few scenarios of Korean CCS projects with a CO2 pipeline transportation network optimization model for minimizing the total facility cost and pipeline cost. Our scenarios are based on the “2030 asic roadmap for reducing greenhouse gases” established by the government. The results for each scenario demonstrate that the effective design and implementation of CO2 pipeline network enables the lowering of CO2 units cost. These suggest that CO2 transportation networks, which connect the capture and sequestration parts, will be more important in the future and can be used to substitute and supplement the emission reduction target in case the execution of other reduction options faces uncertainty. Our mathematical model and scenario designs will be helpful for various countries which plan to introduce CCS technology.

  19. Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.; Gondle, Raj K.; Wells, Arthur W.; Strazisar, Brian R.

    2012-07-01

    Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injected CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical

  20. Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model

    Science.gov (United States)

    Prakash, Shashi; Kumar, Nitish; Kumar, Subrata

    2016-09-01

    CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.

  1. Applicability of aquifer impact models to support decisions at CO2 sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Elizabeth; Bacon, Diana; Carroll, Susan; Mansoor, Kayyum; Sun, Yunwei; Zheng, Liange; Harp, Dylan; Dai, Zhenxue

    2016-09-01

    The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites (www.netldoe.gov/nrap). This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al., 2014, Dai et al., 2014, Keating et al., 2015). The ROMs reproduce the ensemble behavior of large numbers of simulations and are well-suited to applications that consider a large number of scenarios to understand parameter sensitivity and uncertainty on the risk of CO2 leakage to groundwater quality. In this paper, we seek to demonstrate applicability of ROM-based ensemble analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical four examples where applying ROMs, in ensemble mode, could support decisions in the early stages in a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable.

  2. Modeling of CO2 solubility in pyridinium-based ionic liquids using UNIQUAC

    Science.gov (United States)

    Yunus, Normawati M.; Shaharun, Maizatul S.; Mutalib, M. I. Abdul; Murugesan, T.

    2016-11-01

    Reliable predictive methods for estimating experimental results over wide range of operating conditions are useful and highly desirable. In this paper, the solubility of CO2 in 1-butylpyridinium bis(trifluoromethylsulfonyl)imide, [C4py][Tf2N] and 1-dodecylpyridinium bis(trifluoromethylsulfonyl)imide, [C12py][Tf2N] ionic liquids have been measured experimentally via gravimetric method using Magnetic Suspension Balance instrument at 298.15K and in the pressures range up to approximately 30 bar. The solubility data was fitted using an activity coefficient model i.e UNIQUAC model. The interaction parameters of the model were estimated. The predicted CO2 solubility data by the model shows good agreement with the experimental data.

  3. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    Science.gov (United States)

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application

  4. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level

    Science.gov (United States)

    Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.

    2012-01-01

    Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.

  5. Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations

    Directory of Open Access Journals (Sweden)

    J. Noilhan

    2009-06-01

    variance shows large correlations with the upper levels in the boundary layer (> 0.6, dropping to 0.4 with the lower levels of the free troposphere. Large temporal correlations were found during the afternoon (> 0.5 for several hours, reduced during the night. The diffusion equation model extracted relevant error covariance signals horizontally, with reduced correlations over mountain areas and during the night over the continent. The posterior error reduction on the inverted CO2 fluxes accounting for the model error correlations illustrates the predominance of the temporal over the spatial correlations when using tower-based CO2 concentration observations.

  6. Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric pCO2 and seawater composition over the last 130 000 years

    Science.gov (United States)

    Wallmann, K.; Schneider, B.; Sarnthein, M.

    2015-06-01

    We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks

  7. Phytoplankton-bacteria coupling under elevated CO2 levels: a stable isotope labelling study

    NARCIS (Netherlands)

    De Kluijver, A.; Soetaert, K.E.R.; Schulz, K.G.; Riebesell, U.; Bellerby, R.G.J.; Middelburg, J.J.

    2010-01-01

    The potential impact of rising carbon dioxide (CO2) on carbon transfer from phytoplankton to bacteria was investigated during the 2005 PeECE III mesocosm study in Bergen, Norway. Sets of mesocosms, in which a phytoplankton bloom was induced by nutrient addition, were incubated under 1× (~350 μatm),

  8. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    NARCIS (Netherlands)

    van der Meer, D.G.; Zeebe, R.; van Hinsbergen, D.J.J.; Sluijs, A.; Spakman, W.; Torsvik, T.H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean rid

  9. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model varian

  10. A multi-scale model for CO2 sequestration enhanced coalbed methane recovery

    Institute of Scientific and Technical Information of China (English)

    G.X.WANG; X.R.WEI; V.RUDOLPH; C.T.WEI; Y.QIN

    2009-01-01

    This paper presents a multi-scale model to simulate the multicomponent gas diffusion and flow in bulk coals for CO2 sequestration enhanced coalbed methane recovery. The model is developed based on a bi-dispersed structure model by assuming that coal con-sists of microporous micro-particles, meso/macro-pores and open microfractures. The bi-disperse diffusion theory and the Maxwell-Stefan approach were incorporated in the model, providing an improved simulation of the CH4-CO2/CH4-N2 counter diffusion dynamics. In the model,the counter diffusion process is numerically coupled with the flow of the mixture gases occurring within macro-pores or fractures in coal so as to account for the interaction between diffusion and flow in gas transport through coals.The model was validated by both experimental data from literature and our CO2 flush tests, and shows an excellent agreement with the experiments. The results reveal that the gas diffusivities, in particular the micro-pore diffusivities are strongly concentration-dependent.

  11. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure

    Science.gov (United States)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin

    2017-04-01

    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  12. An empirical model simulating long-term diurnal CO2 flux for diverse vegetation types

    Directory of Open Access Journals (Sweden)

    A. D. Richardson

    2008-10-01

    Full Text Available We present an empirical model for the estimation of diurnal variability in net ecosystem CO2 exchange (NEE. The model is based on the use of a nonrectangular hyperbola for photosynthetic response of canopy and was constructed by using a dataset obtained from the AmeriFlux network and containing continuous eddy covariance CO2 flux from 26 ecosystems over seven biomes. The model uses simplified empirical expression of seasonal variability in biome-specific physiological parameters with air temperature, vapor pressure deficit, and precipitation. The physiological parameters of maximum CO2 uptake rate by the canopy and ecosystem respiration had biome-specific responses to environmental variables. The estimated physiological parameters had reasonable magnitudes and seasonal variation and gave reasonable timing of the beginning and end of the growing season over various biomes, but they were less satisfactory for disturbed grassland and savanna than for forests. Comparison with observational data revealed that the diurnal cycle of NEE was generally well predicted all year round by the model. The model gave satisfactory results even for tundra, which had very small amplitudes of NEE variability. These results suggest that this model with biome-specific parameters will be applicable to numerous terrestrial biomes, particularly forest ones.

  13. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    Science.gov (United States)

    Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui

    2016-07-01

    Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * → CO* + O*; (II) CO2* + H* → COOH* + * → CO* + OH*; (III) CO2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The Csbnd O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst

  14. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the thermohaline circulation (THC) because of the increased CO2 in the atmosphere play an important role in future climate regimes.In this article, a new climate model developed at the Max-Planck Institute for Meteorology is used to study the variation in THC strength, the changes of North Atlantic deep-water (NADW) formation, and the regional responses of the THC in the North Atlantic to increasing atmospheric CO2.From 2000 to 2100, under increased CO2 scenarios (B1, A1B, and A2), the strength of THC decreases by 4 Sv (106 m3/s), 5.1 Sv, and 5.2 Sv, respectively, equivalent to a reduction of 20%, 25%, and 25.1% of the present THC strength.The analyses show that the oceanic deep convective activity significantly strengthens in the Greenland-Iceland-Norway(GIN) Seas owing to saltier (denser) upper oceans, whereas weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming.The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through the Faro-Bank (FB) Channel.Under the scenario A1B, the deep-water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with increasing CO2.

  15. The correlation and level of agreement between end-tidal and blood gas pCO2 in children with respiratory distress: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Alexander Jamin L

    2009-03-01

    Full Text Available Abstract Background To investigate the correlation and level of agreement between end-tidal carbon dioxide (EtCO2 and blood gas pCO2 in non-intubated children with moderate to severe respiratory distress. Methods Retrospective study of patients admitted to an intermediate care unit (InCU at a tertiary care center over a 20-month period with moderate to severe respiratory distress secondary to asthma, bronchiolitis, or pneumonia. Patients with venous pCO2 (vpCO2 and EtCO2 measurements within 10 minutes of each other were eligible for inclusion. Patients with cardiac disease, chronic pulmonary disease, poor tissue perfusion, or metabolic abnormalities were excluded. Results Eighty EtCO2-vpCO2 paired values were available from 62 patients. The mean ± SD for EtCO2 and vpCO2 was 35.7 ± 10.1 mmHg and 39.4 ± 10.9 mmHg respectively. EtCO2 and vpCO2 values were highly correlated (r = 0.90, p SD between EtCO2 and vpCO2 was -3.68 ± 4.70 mmHg. The 95% level of agreement ranged from -12.88 to +5.53 mmHg. EtCO2 was found to be more accurate when vpCO2 was 35 mmHg or lower. Conclusion EtCO2 is correlated highly with vpCO2 in non-intubated pediatric patients with moderate to severe respiratory distress across respiratory illnesses. Although the level of agreement between the two methods precludes the overall replacement of blood gas evaluation, EtCO2 monitoring remains a useful, continuous, non-invasive measure in the management of non-intubated children with moderate to severe respiratory distress.

  16. Regional CO2 flux estimates from estuarine environments: a reactive-transport modeling approach

    Science.gov (United States)

    Goossens, Nicolas; Laruelle, Goulven G.; Arndt, Sandra; Regnier, Pierre

    2013-04-01

    Estuaries are key components of the land-ocean continuum and play an important role in the global carbon cycle. Large amounts of terrestrial carbon are channelled through estuaries before reaching the ocean. During estuarine transit, numerous biogeochemical processes transform the carbon flux, resulting in a significant CO2 evasion flux to the atmosphere. The global estuarine CO2 outgassing is evaluated at 0.25±0.25 PgC yr-1. Yet, these estimates rely on the extrapolation of local measurements and the scarcity of such measurements conducts to large uncertainties. Furthermore, the global quantification is biased towards anthropogenically impacted estuarine systems located in industrialized countries. Here we provide a first assessment of the estuarine carbon budget and, in particular, CO2 evasion fluxes using a generic and effective reactive-transport model (RTM) approach that is applicable at the regional scale. The new approach is based on the mutual dependency between estuarine geometry and hydrodynamics and uses idealized estuarine geometries. Global river databases (GLORICH) and watershed model outputs (GlobalNEWS) are used to quantify input fluxes for the generic estuarine model. The new modeling approach provides not only a quantification of the estuarine carbon budget, but also allows disentangling the relative contributions of biogeochemical and physical processes to estuarine CO2 emissions. Preliminary results are presented for the North Eastern coast of the US. Model results are consistent with observations and indicate that the net heterotrophy of these systems is the major contributor to estuarine CO2 fluxes (>50%), followed by outgassing of supersaturated riverine waters and nitrification. Results also highlight the strong seasonality in the biogeochemical dynamics. In addition, significant heterogeneity is observed across different estuaries due to spatial heterogeneities in climate forcing, estuarine geometry or riverine input fluxes. The proposed

  17. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  18. Assessing the determinism of the seasonal variations of trunk CO2 efflux by combining field-isotopic composition monitoring and process-based modeling

    Science.gov (United States)

    Ngao, J.; Berveiller, D.; Eglin, T.; Bazot, S.; Pontailler, J.; Damesin, C.

    2008-12-01

    Trunk CO2 efflux is a major component of total CO2 forest ecosystem efflux but its determinism is still poorly understood. This CO2 flux could originate from different carbon sources (respiration of newly assimilates or reserves; xylem sap flow dissolved CO2). These potential CO2 sources of the ecosystem vary at a diurnal and seasonal time scale. They follow distinct metabolic pathways within the tree and could potentially differ in terms of stable C isotopes composition (δ13C). During this last decade, new techniques such as tunable diode laser absorption spectroscopy (TDLAS) has enabled to track both the δ13C and rate of CO2 fluxes at a high temporal frequency compared to conventional isotope ratio mass spectroscopy and chamber-based techniques. In this context, our objective is to examine the diurnal and day-to-day variations of δ13C trunk CO2 efflux and to test if they are driven by climate, xylem sap flow and photosynthetic activity. A TDLAS (TGA100A, Campbell Sci., UT) was installed in early July 2008 in a mature oak (Quercus petraea, L.) stand of the Barbeau forest (France, Carboeurope site). It has been connected to three opened trunk chambers placed at breast height. Before each chamber measurement, which occurred every six minutes, the analyzer was calibrated with four calibration gas bottles with known CO2 concentration (in air) and δ13C values. Concurrently to trunk CO2 efflux rate and δ13C, xylem sap flow rate, air and trunk temperatures, and vapor pressure deficit above canopy were recorded. Data for the summer and fall seasons will be presented and discussed. Preliminary results showed that in summer both trunk CO2 efflux rate and CO2 followed the time evolution but at a different level among trees. The mean hourly averages of CO2 of trunk CO2 efflux values ranged from -29.6‰ to - 23.2‰, and hourly means of CO2 efflux were positively and linearly linked to trunk temperature. The diurnal variations of δ13C of CO2 efflux are less obvious that

  19. A data-model synthesis to explain variability in calcification observed during a CO2 perturbation mesocosm experiment

    Science.gov (United States)

    Krishna, Shubham; Schartau, Markus

    2017-04-01

    The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi was investigated in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our model approach, cellular calcite formation is sensitive to variations in CO2 at the organism level. We investigate the temporal changes and variability in observations, with a focus on resolving observed differences in total alkalinity and particulate inorganic carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium, and low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification. Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.

  20. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    Science.gov (United States)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P.; Moore, J. C.; Smith, B.; Sueyoshi, T.

    2015-07-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960-2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960-1969 vs. 2000-2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements

  1. Assessment of model estimates of land–atmosphere CO2 exchange across Northern Eurasia

    Directory of Open Access Journals (Sweden)

    M. A. Rawlins

    2015-02-01

    Full Text Available A warming climate is altering land–atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land–atmosphere carbon dioxide (CO2 dynamics through analysis of net ecosystem productivity (NEP and its component fluxes of gross primary productivity (GPP and ecosystem respiration (ER and soil carbon residence time, simulated by a set of land surface models (LSMs over a region spanning the drainage basin of northern Eurasia. The retrospective simulations were conducted over the 1960–2009 record and at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote sensing data. The site-based comparisons show the timing of peak GPP to be well simulated. Modest overestimates in model GPP and ER are also found, which are relatively higher for two boreal forest validation sites than the two tundra sites. Across the suite of model simulations, NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340% of the respective model means, over the analysis period. For the multimodel average the increase is 135% of the mean from the first to last ten years of record (1960–1969 vs 2000–2009, with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30% from the first to last ten years, contributing to soil carbon storage gains, while model mean residence time for soil organic carbon decreased by 10% (−5 to −16%. This suggests that inputs to the soil carbon pool exceeded losses, resulting in a net gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation

  2. Assessment of model estimates of land-atmosphere CO2 exchange across northern Eurasia

    Science.gov (United States)

    Rawlins, M.A.; McGuire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D.P.; Miller, P.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model

  3. Temperature field modeling during multi-modes CO 2 laser irradiation of human enamel

    Science.gov (United States)

    Mihai, Oane; Scarlat, Florea; Mihailescu, Ion N.

    2007-04-01

    We examine the temperature fields of human enamel [Yu D, Fox JL, Hsu J, Lynn Powell G, Higuchi WI. Computer simulation of surface temperature profiles during CO 2 laser irradiation of human enamel. Opt Eng 1993; 32(2)] during multi-modes CO 2 laser irradiation. For this we use the integral transform method as well as direct and inverse Laplace transform [Oane M, Sporea D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys Technol 2001; 42(1): 31-40; Oane M, Sporea D. Study of heat transfer in IR optical components during CO 2 laser irradiation. Proc SPIE 2001; 4430: 898-904; Oane M. Mathematical modeling of the thermal field distributions in solids under multiple laser irradiations. Proc SPIE 2003; 5227: 329-34; Oane M, Apostol I, Timcu A. Temperature field modeling in laser heated metals for laser cleaning of surfaces. Proc SPIE 2003; 5227: 323-8]. The enamel block is modeled as homogeneous cylinder in three dimensions. Results indicate that (i) the thermal field depends on multi-modes structure; (ii) heat transfer coefficient plays an important role in temperature distribution.

  4. Quantification of Transport Model Error Impacts on CO2 Inversions Using NASA's GEOS-5 GCM

    Science.gov (United States)

    Ott, L.; Pawson, S.; Weir, B.

    2014-12-01

    Remote sensing observations of CO2 offer the opportunity to reduce uncertainty in global carbon flux estimates. However, a number of studies have shown that inversion flux estimates are strongly influenced by errors in model transport. We will present results from modeling studies designed to quantify how such errors influence simulations of surface and column CO2 mixing ratios. These studies were conducted using the Goddard Earth Observing System, version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM) and the implementation of a suite of tracers associated with errors in boundary layer, convective, and large scale transport. Unlike traditional tagged tracers which are emitted by a certain process or region, error tracers are emitted as air parcels are transported through the atmosphere. The magnitude of error tracer emissions is based on previously published ensembles of AGCM simulations with perturbations to subgrid convective and boundary layer transport, and on comparisons of several reanalysis products to estimate errors in large scale wind fields. Transport error tracers are simulated with several different e-folding lifetimes (e.g. 1, 4, 10, and 30 day) to examine differences between transient and persistent model errors. This quantification of transport error is then used in an illustrative Bayesian synthesis inversion to demonstrate how transport errors influence surface CO2 mixing ratios and how this translates into inferred biosphere flux error.

  5. New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    Science.gov (United States)

    Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.

    2012-01-01

    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.

  6. CO2 capture in amine solutions: modelling and simulations with non-empirical methods

    Science.gov (United States)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-12-01

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.

  7. CO2 capture in amine solutions: modelling and simulations with non-empirical methods.

    Science.gov (United States)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-12-21

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.

  8. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  9. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  10. Modeling the contribution of abiotic exchange to CO2 flux in alkaline soils of arid areas

    Institute of Scientific and Technical Information of China (English)

    WenFeng WANG; Xi CHEN; GePing LUO; LongHui LI

    2014-01-01

    Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux (Fc). However, both the overall contribution of abiotic CO2 exchange and its drivers remain unknown. Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas. An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region, China. Soil pH, soil temperature at 0-5 cm (Ts), soil volumetric water content at 0-5 cm (θs) and air temperature at 10 cm above the soil surface (Tas) were simultaneously analyzed. Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas-10)/10+r7q7(pH-7)+λTas+µθs+e which represents Fc as a sum of biotic and abiotic components. This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.

  11. Modeling the convective stability of CO2 sequestration by a discontinuous and unstably stratified density profile

    Science.gov (United States)

    Wanstall, Taber; Hadji, Layachi

    2016-11-01

    The convective stability associated with carbon sequestration is modeled by adopting an unstably stratified basic profile having a step function density with top heavy carbon saturated layer overlying a lighter carbon free layer. The model takes into account the anisotropy in both permeability and carbon dioxide diffusion, and chemical reactions between the CO2 rich brine and host mineralogy. We carry out a linear stability analysis to derive the instability threshold parameters for a variety of CO2 boundary conditions. We solve for the minimum thickness of the carbon-rich layer at which convection sets in and quantify how its value is influenced by diffusion, anisotropy, permeability, reaction and type of boundary conditions. The discontinuity leads to convective concentration contours that have the shape of an asymmetric lens which we quantify by deriving and making use of the CO2 flux expressions at the interface. The linear problem is extended to the nonlinear regime, the analysis of which leads to the determination of a uniformly valid super critical steady solution.

  12. Monitoring Atmospheric CO2 andδ13C(CO2)Background Levels at Shangdianzi Station in Beijing,China%北京上甸子站大气CO2及δ13 C(CO2)本底变化

    Institute of Scientific and Technical Information of China (English)

    夏玲君; 周凌晞; 刘立新; 张根

    2016-01-01

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together withδ13C(CO2) values during 2009 and 2013. The“representative data” of CO2 andδ13C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385. 6 × 10 -6 in 2007 to 398. 1 × 10 -6 in 2013, with an average growth rate of 2. 0 × 10 -6 a-1 , while theδ13C values decreased from -8. 38‰in 2009 to -8. 52‰in 2013, with a mean growth rate of -0. 03‰•a-1 . The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 andδ13C seasonal variations were 23. 9 × 10 -6 and 1. 03‰, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The δs value for heating season Ⅰ( Jan. 01-Mar. 14) was -21. 30‰, while -25. 39‰ for heating season Ⅱ( Nov. 15-Dec. 31 ) , and for vegetative season ( Mar. 15-Nov. 14 ) the δbio value was estimated to be -21. 28‰, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.%基于北京上甸子站( SDZ)2007~2013年大气CO2及2009~2013年大气δ13C( CO2)瓶采样观测资料,筛分获得混合均匀且未受局地污染影响、具代表性的大气CO2及δ13C( CO2)本底数据.2007~2013年SDZ站大气CO2年均本底浓度变化范围为385.6×10-6~398.1×10-6,年均增长率为2.0×10-6 a-1;2009~2013年其大气δ13C( CO2)年均本底值变化范围为-8.38‰~-8.52‰,年均增长率为-0.03‰•a-1. SDZ站2007~2013年的7~9月月均浓度最低水平均出现在2008年,且2007~2008年增长率仅为0.3×10-6 a-1,推测主要源于2008年奥运期间北京及其周边省市节能减排措施

  13. Dispersion of light and heavy pollutants in urban scale models: CO(2) laser photoacoustic studies.

    Science.gov (United States)

    Zelinger, Z; Strizík, M; Kubát, P; Civis, S; Grigorová, E; Janecková, R; Zavila, O; Nevrlý, V; Herecová, L; Bailleux, S; Horká, V; Ferus, M; Skrínský, J; Kozubková, M; Drábková, S; Janour, Z

    2009-04-01

    The distribution of pollutants in two urban scale models (point emission source and street canyon with extensive transport) was investigated by means of CO(2) laser photoacoustic spectroscopy in the region of the atmospheric window (9-10 mum). The experimental results of physical modeling are in a good agreement with the numerical calculations performed in the frame of computational fluid dynamic (CFD) modeling. Methanol, ethanol, and ozone (examples of light pollutants), as well as sulfur hexafluoride and 1,2 dichlorethane (examples of heavy pollutants), were selected on the basis of their high resolution spectra acquired by Fourier transform and laser diode spectroscopy.

  14. Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks

    NARCIS (Netherlands)

    Knoope, M. M. J.; Guijt, W.; Ramirez, A.; Faaij, A. P. C.

    2014-01-01

    In this study, a new cost model is developed for CO2 pipeline transport, which starts with the physical properties of CO2 transport and includes different kinds of steel grades and up-to-date material and construction costs. This pipeline cost model is used for a new developed tool to determine the

  15. Quantitative Analysis of Paleoatmospheric CO2 Level Based on Stomatal Characters of Fossil Ginkgo from Jurassic to Cretaceous in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A better theoretical and practical understanding of the linkage between paleo-CO2 and climate during geological history is important to enhance the sustainable development of modern human society. Development in plant physiology since the 1980s has led to the realization that fossil plants can serve as a proxy for paleoatmosphere and paleobiosphere. As a relict gymnosperm with evolutionary stasis, Ginkgo is well suited for paleoenvironmental reconstruction. This paper analyzes fossil Ginkgo species from integrated strata in the north of China using anatomic data of plant physiology. Using stomatal parameters, a trend for the paleo-CO2 level during the Early-Middle Jurassic and the Early Cretaceous was obtained, which is consistent with the estimates by GEOCARB.The trend is also similar to that of Mean Global Surface Temperature in geological time. Compared with three other atmospheric CO2 concentration parameters, the trend of paleo-CO2 level based on the stomatal parameter of the fossil Ginkgo specimens from three contiguous strata is more exact.

  16. Activity Based Carboning (ABCO2). Automatic calculation of CO2 emission at consignment level; Activity Based Carboning (ABCO2). Automatische berekening van de CO2-uitstoot op zending niveau

    Energy Technology Data Exchange (ETDEWEB)

    Den Boer, L.C.

    2012-11-15

    In a collaborative effort with the CAPE group, CE Delft has developed ABCO2: a tool for calculating the carbon emissions of logistics operations at the level of individual consignments. The tool can be used during order make-up to indicate the CO2 emissions of available alternatives. To this end the user defines a network, providing details on vehicle fleet, logistic characteristics and transhipment locations. By filling in order data over an extended period, the effect of opting for a different modality or bundling shipments can be quantified. CE Delft helped develop the calculation methodology for the tool and provided the emission indices used in the model, in which relevant existing standards have also been incorporated [Dutch] Samen met CAPE groep heeft CE Delft de tool ABCO2 ontwikkeld. Met deze tool is het mogelijk om op orderniveau de emissies van logistieke activiteiten te berekenen. De tool wordt gebruikt tijdens het orderproces, en geeft bij het aanmaken van een order de CO2 uitstoot van verschillende alternatieven weer. De gebruiker richt zelf een netwerk in, en detailleert dit door een wagenpark, logistieke karakteristieken, en locaties voor overslag te definiëren. Met ordergegevens over langere tijd kan ook het effect van keuzes voor een andere modaliteit, of het bundelen van zendingen gekwantificeerd worden. CE Delft heeft meegeholpen om de rekenmethodiek van de tool te ontwikkelen en heeft emissiekentallen aangeleverd, die in het model zijn opgenomen. Bij de ontwikkeling van het model is rekening gehouden met de beschikbare standaarden hiervoor.

  17. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect

    Directory of Open Access Journals (Sweden)

    A. Granier

    2005-02-01

    Full Text Available A modelling study is performed in order to quantify the relative effect of allowing for the physiological properties of an undergrowth grass sward on total canopy water and carbon fluxes of the Le-Bray forest (Les-Landes, South-western France. The Le-Bray forest consists of maritime pine and an herbaceous undergrowth (purple moor-grass, which is characterised by a low stomatal control of transpiration, in contrast to maritime pine. A CO2-responsive land surface model is used that includes responses of woody and herbaceous species to water stress. An attempt is made to represent the properties of the undergrowth vegetation in the land surface model Interactions between Soil, Biosphere, and Atmosphere, CO2-responsive, ISBA-A-gs. The new adjustment allows for a fairly different environmental response between the forest canopy and the understory in a simple manner. The model's simulations are compared with long term (1997 and 1998 micro-meteorological measurements over the Le-Bray site. The fluxes of energy, water and CO2, are simulated with and without the improved representation of the undergrowth vegetation, and the two simulations are compared with the observations. Accounting for the undergrowth permits one to improve the model's scores. A simple sensitivity experiment shows the behaviour of the model in response to climate change conditions, and the understory effect on the water balance and carbon storage of the forest. Accounting for the distinct characteristics of the undergrowth has a substantial and positive effect on the model accuracy and leads to a different response to climate change scenarios.

  18. Zero-Offset VSP Monitoring of CO2 Storage: Impedance Inversion and Wedge Modelling at the Ketzin Pilot Site

    Directory of Open Access Journals (Sweden)

    Julia Götz

    2014-01-01

    Full Text Available At the CO2 storage pilot site near the town of Ketzin (35 km west of Berlin, Germany the sandstone reservoir at 630 m–650 m depth is thin and heterogeneous. The time-lapse analysis of zero-offset VSP measurements shows that CO2-induced amplitude changes can be observed on near-well corridor stacks. Further, we investigate whether CO2-induced amplitude changes in the monitoring data can be used to derive geometrical and petrophysical parameters governing the migration of CO2 within a brine saturated sandstone aquifer. 2D seismic-elastic modelling is done to test the processing workflow and to perform a wedge modelling study for estimation of the vertical expansion of the CO2 plume. When using the NRMS error as a measure for the similarity between the modelled and recorded repeat traces, the best match is achieved for a plume thickness of 6-7 m within the reservoir sandstone of 8 m thickness. With band limited impedance inversion a velocity reduction at the top of the reservoir of 30%, influenced by casing reverberations as well as CO2 injection, is found. The relation of seismic amplitude to CO2 saturated layer thickness and CO2-induced changes in P-wave velocities are important parameters for the quantification of the injected CO2 volume.

  19. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research.

    Science.gov (United States)

    Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E

    2015-01-01

    Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.

  20. Response of the Atlantic Thermohaline Circulation to Increased Atmospheric CO2 in a Coupled Model.

    Science.gov (United States)

    Hu, Aixue; Meehl, Gerald A.; Washington, Warren M.; Dai, Aiguo

    2004-11-01

    Changes in the thermohaline circulation (THC) due to increased CO2 are important in future climate regimes. Using a coupled climate model, the Parallel Climate Model (PCM), regional responses of the THC in the North Atlantic to increased CO2 and the underlying physical processes are studied here. The Atlantic THC shows a 20-yr cycle in the control run, qualitatively agreeing with other modeling results. Compared with the control run, the simulated maximum of the Atlantic THC weakens by about 5 Sv (1 Sv 106 m3 s-1) or 14% in an ensemble of transient experiments with a 1% CO2 increase per year at the time of CO2 doubling. The weakening of the THC is accompanied by reduced poleward heat transport in the midlatitude North Atlantic. Analyses show that oceanic deep convective activity strengthens significantly in the Greenland Iceland Norway (GIN) Seas owing to a saltier (denser) upper ocean, but weakens in the Labrador Sea due to a fresher (lighter) upper ocean and in the south of the Denmark Strait region (SDSR) because of surface warming. The saltiness of the GIN Seas are mainly caused by an increased salty North Atlantic inflow, and reduced sea ice volume fluxes from the Arctic into this region. The warmer SDSR is induced by a reduced heat loss to the atmosphere, and a reduced sea ice flux into this region, resulting in less heat being used to melt ice. Thus, sea ice related salinity effects appear to be more important in the GIN Seas, but sea ice melt-related thermal effects seem to be more important in the SDSR region. On the other hand, the fresher Labrador Sea is mainly attributed to increased precipitation. These regional changes produce the overall weakening of the THC in the Labrador Sea and SDSR, and more vigorous ocean overturning in the GIN Seas. The northward heat transport south of 60°N is reduced with increased CO2, but increased north of 60°N due to the increased flow of North Atlantic water across this latitude.

  1. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils.

    Science.gov (United States)

    Kaufman, Alan J; Xiao, Shuhai

    2003-09-18

    Solar luminosity on the early Earth was significantly lower than today. Therefore, solar luminosity models suggest that, in the atmosphere of the early Earth, the concentration of greenhouse gases such as carbon dioxide and methane must have been much higher. However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion microprobe analyses of the carbon isotopes in individual organic-walled microfossils extracted from a Proterozoic ( approximately 1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope fractionation in these large, morphologically complex microfossils suggest elevated levels of carbon dioxide in the ancient atmosphere--between 10 and 200 times the present atmospheric level. Our results indicate that carbon dioxide was an important greenhouse gas during periods of lower solar luminosity, probably dominating over methane after the atmosphere and hydrosphere became pervasively oxygenated between 2 and 2.2 gigayears ago.

  2. Hollow Fiber Membrane Contactors for CO2 Capture: Modeling and Up-Scaling to CO2 Capture for an 800 MWe Coal Power Station

    Directory of Open Access Journals (Sweden)

    Kimball Erin

    2014-11-01

    Full Text Available A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM with the more conventional structured packing columns as the absorber in amine-based CO2 capture systems for power plants. In order to simulate the operation of industrial scale HFMM systems, a two-dimensional model was developed and validated based on results of a laboratory scale HFMM. After successful experiments and validation of the model, a pilot scale HFMM was constructed and simulated with the same model. The results of the simulations, from both sizes of HFMM, were used to assess the feasibility of further up-scaling to a HFMM system to capture the CO2 from an 800 MWe power plant. The system requirements – membrane fiber length, total contact surface area, and module volume – were determined from simulations and used for an economic comparison with structured packing columns. Results showed that a significant cost reduction of at least 50% is required to make HFMM competitive with structured packing columns. Several factors for the design of industrial scale HFMM require further investigation, such as the optimal aspect ratio (module length/diameter, membrane lifetime, and casing material and shape, in addition to the need to reduce the overall cost. However, HFMM were also shown to have the advantages of having a higher contact surface area per unit volume and modular scale-up, key factors for applications requiring limited footprints or flexibility in configuration.

  3. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    Phase equilibrium for CO2–NaCl brine is of general interest to many scientific disciplines and technical areas. The system is particularly important to CO2 sequestration in deep saline aquifers and CO2 enhanced oil recovery, two techniques discussed intensively in recent years due to the concerns...

  4. A data driven model for the impact of IFT and density variations on CO2 storage capacity in geologic formations

    Science.gov (United States)

    Nomeli, Mohammad A.; Riaz, Amir

    2017-09-01

    Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.

  5. Impact Of Three-Phase Relative Permeability and Hysteresis Models On Forecasts of Storage Associated with CO2-EOR

    Science.gov (United States)

    Jia, W.; Pan, F.; McPherson, B. J. O. L.

    2015-12-01

    Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.

  6. The role of convective model choice in calculating the climate impact of doubling CO2

    Science.gov (United States)

    Lindzen, R. S.; Hou, A. Y.; Farrell, B. F.

    1982-01-01

    The role of the parameterization of vertical convection in calculating the climate impact of doubling CO2 is assessed using both one-dimensional radiative-convective vertical models and in the latitude-dependent Hadley-baroclinic model of Lindzen and Farrell (1980). Both the conventional 6.5 K/km and the moist-adiabat adjustments are compared with a physically-based, cumulus-type parameterization. The model with parameterized cumulus convection has much less sensitivity than the 6.5 K/km adjustment model at low latitudes, a result that can be to some extent imitiated by the moist-adiabat adjustment model. However, when averaged over the globe, the use of the cumulus-type parameterization in a climate model reduces sensitivity only approximately 34% relative to models using 6.5 K/km convective adjustment. Interestingly, the use of the cumulus-type parameterization appears to eliminate the possibility of a runaway greenhouse.

  7. A Numerical Modeling Study of Effect of Heterogeneity on Capillary Trapping of Geologically Sequestrated CO2

    Science.gov (United States)

    Cihan, A.; Birkholzer, J. T.; Zhou, Q.; Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.

    2011-12-01

    Heterogeneities at multiple scales influence migration and trapping of geologically sequestrated CO2 during injection and post-injection periods. Understanding of small-scale processes is crucial to device upscaling methodologies for incorporating them into macroscopic-scale models. The upscaled models are in turn used to get insights into the complex field-scale processes involved in the migration of supercritical CO2. Theoretical research based on numerical model analysis presented in this study focuses on capillary entrapment in homogeneous and heterogeneous small-scale and intermediate-scale laboratory experiments with surrogate fluids, presented in a companion presentation (Treviso et al., 2011). An improved understanding of pore-scale and larger scale processes on capillary entrapment may be achieved by combining pore-scale and macroscopic-scale modeling approaches. Capillarity controlled entrapped non-wetting phase saturation in macroscopic-scale models is generally either provided as an input parameter after laboratory scale measurements or estimated empirically. A particle trajectory modeling approach with pore-scale physics included is used to gain insights to development of physically-based models for the capillary entrapment in homogeneous and heterogeneous systems. The particle trajectory modeling generates functional relationships between phase saturation, entrapped phase saturation, hydraulic properties of the medium, and velocity of injected phase, which eventually are planned to be used for developing macroscopic scale models of capillary entrapment. The predictions of entrapped fluid saturation from the particle trajectory model are verified with measurements from the small scale experimental test systems. Macroscopic two-phase flow modeling approach with existing and modified constitutive models is tested by comparisons with both small-scale and intermediate-scale experimental results. T2VOC module based on TOUGH2 is used to simulate two

  8. A new approach for evaluating the impact of fluvial type heterogeneity in CO2 storage reservoir modeling

    Science.gov (United States)

    Issautier, Benoît; Viseur, Sophie; Audigane, Pascal; Chiaberge, Christophe; Le Nindre, Yves-Michel

    2016-09-01

    In this sensitivity analysis on a 3D model of a heterogeneous fluvial reservoir, two scenario orders have been considered. The first one focuses on the first-order heterogeneity (i.e. a fluvial belt with a 100% sand content), and the other one on the second-order heterogeneity accounting for the internal sedimentary fill within the fluvial belt (oxbow lakes). CO2 injections were simulated using THOUGH2, and the dynamic simulations show large variations of reservoir performances. The first-order heterogeneity generates a large spectrum of storage capacities ranging from 30 to 50 Mt, to be related to the natural connectivity variability between fluvial belts induced by the avulsion process. Considering second-order heterogeneity reduces the storage capacities by 30%, highlighting the importance of representing such objects in complex heterogeneous systems. Moreover, it increases the dissolution process, increasing by the way the storage efficiency. The CO2 plume extension and geometry is also estimated to be strongly dependent on the level of heterogeneity. Finally, trapping into poorly connected fluvial point bars affects strongly the storage capacity of the mobile CO2 as well as the pressure field.

  9. Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study

    Directory of Open Access Journals (Sweden)

    A. M. Michalak

    2010-07-01

    Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic

  10. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data

  11. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    Science.gov (United States)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  12. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    Science.gov (United States)

    Landry, Jean-Sébastien; Matthews, H Damon

    2016-12-19

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2 .

  13. Supercritical CO2 recovery of caffeine from green coffee oil: new experimental solubility data and modeling

    OpenAIRE

    Azevedo, Álvaro Bandeira Antunes de; Kieckbusch,Theo Guenter; Tashima,Alexandre Keiji; Mohamed,Rahoma Sadeg; Mazzafera,Paulo; Melo, Silvio Alexandre Beisl Vieira de

    2008-01-01

    p. 1319-1323. The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson1 equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder2 with two (PR-MH, two parameters...

  14. Effects of Elevated Atmospheric CO2 on Primary Metabolite Levels in Arabidopsis thaliana Col-0 Leaves: An Examination of Metabolome Data.

    Science.gov (United States)

    Noguchi, Ko; Watanabe, Chihiro K; Terashima, Ichiro

    2015-11-01

    Elevated atmospheric CO(2) concentrations ([CO(2)]) affect primary metabolite levels because CO(2) is a direct substrate for photosynthesis. In several studies, the responses of primary metabolite levels have been examined using Arabidopsis thaliana leaves, but these results have not been comprehensively discussed. Here, we examined metabolome data for A. thaliana accession Col-0 leaves that were grown at elevated [CO(2)] with sufficient nitrogen (N) nutrition. At elevated [CO(2)], starch, monosaccharides and several major amino acids accumulated in leaves. The degree of accumulation depended on whether the rooting medium contained NH(4) (+) or only NO(3) (-). Because low N conditions induce an increase in carbohydrates similar to that of elevated [CO(2)], we compared the responses of primary metabolite levels between elevated [CO(2)] and low N conditions. Levels of the tricarboxylic acid (TCA) cycle-associated organic acids and major amino acids decreased with low N, but not with elevated [CO(2)]. Even at elevated [CO(2)], the low N induced the decreases in the levels of organic acids and major amino acids. A small sink size also affects the primary metabolite response patterns in leaves under elevated [CO(2)] conditions. Thus, care is necessary when interpreting primary metabolite changes in leaves of field-grown plants.

  15. A model study of the seasonal and long term North Atlantic surface pCO2 variability

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-10-01

    Full Text Available A coupled biogeochemical-physical ocean model is used to study the long term variations of surface pCO2 in the North Atlantic Ocean. The model agrees well with recent underway pCO2 observations from the Surface Ocean CO2 Atlas (SOCAT database in various locations in the North Atlantic. The distinct seasonal cycles observed at different parts of the North Atlantic are well reproduced by the model. In most regions except the subpolar domain, the recent observed trends in pCO2 and air–sea carbon fluxes are also simulated by the model. Over a long period between 1960–2008, the primary mode of surface pCO2 variability is dominated by the increasing trend associated with the invasion of anthropogenic CO2 into the ocean. We show that, to first order, the ocean surface circulation and air–sea heat flux patterns can explain the spatial variability of this dominant increasing trend. Regions with strong surface mass transport and negative air–sea heat flux have the tendency to maintain lower surface pCO2. Regions of surface convergence and mean positive air–sea heat flux such as the subtropical gyre and the western subpolar gyre have faster increase in pCO2 over a long term period. The North Atlantic Oscillation (NAO plays a major role in controlling the variability occurring at interannual to decadal time scales. The NAO predominantly influences surface pCO2 in the North Atlantic by changing the physical properties of the North Atlantic water masses, particularly by perturbing the temperature and dissolved inorganic carbon in the surface ocean. We show that present underway observations are valuable for both calibrating the model, as well as for improving our understanding of the regionally heterogeneous variability of surface pCO2. In addition, they can be important for detecting any long term change in the regional carbon cycle due to ongoing climate change.

  16. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration

    OpenAIRE

    Gregory, J; Dixon, K; Stouffer, R.; Weaver, A.; E. Driesschaert; Eby, M.; Fichefet, T.; Hasumi, H.; Hu, A.; J. Jungclaus; Kamenkovich, I.; A. Levermann; Montoya, M.; Murakami, S.; Nawrath , S.

    2005-01-01

    As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, desp...

  17. Model calibration on cement experiments at realistic CO2 storage conditions

    NARCIS (Netherlands)

    Wasch, L.J.; Koenen, M.; Wollenweber, J.; Heege, J.H. ter; Tambach, T.J.

    2013-01-01

    Large scale implementation of CO2 storage can significantly reduce emission of greenhouse gasses into the atmosphere. However, safe and long-term containment of CO2 in storage reservoirs must be ensured. Wellbores in the subsurface present possible leakage pathways for CO2 to the surface and hence w

  18. A hybrid model of the CO2 geochemical cycle and its application to large impact events

    Science.gov (United States)

    Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.

    1986-01-01

    The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.

  19. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Science.gov (United States)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  20. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    Indian Academy of Sciences (India)

    Tonkeswar Das; Ananya Saikia; Banashree Mahanta; Rahul Choudhury; Binoy K Saikia

    2016-10-01

    Coal gasification with CO$_2$ has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO$_2$ mitigation policies through simultaneous CO$_2$ sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals fromthe north-eastern region (NER) of India in a CO$_2$ atmosphere using thermogravimetric analysis (TGADTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO$_2$ gasification process of the coals. Multivariate nonlinear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO$_2$ mainly occurs in the temperature range of 800◦–1400◦C and a maximum of at around 1100◦C. The reaction mechanisms responsible for CO$_2$ gasification of the coals were observed to be of the ‘nth order with autocatalysis (CnB)’ and ‘nth order (Fn) mechanism’. The activation energy of the CO$_2$ gasification was found to be in the range 129.07–146.81 kJ mol$^{−1}$.

  1. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  2. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  3. Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to doubled CO2 and associated climate change

    Science.gov (United States)

    Qiu, Linjing; Liu, Xiaodong

    2016-04-01

    Increases in the atmospheric CO2 concentration affect both the global climate and plant metabolism, particularly for high-altitude ecosystems. Because of the limitations of field experiments, it is difficult to evaluate the responses of vegetation to CO2 increases and separate the effects of CO2 and associated climate change using direct observations at a regional scale. Here, we used the Community Earth System Model (CESM, version 1.0.4) to examine these effects. Initiated from bare ground, we simulated the vegetation composition and productivity under two CO2 concentrations (367 and 734 ppm) and associated climate conditions to separate the comparative contributions of doubled CO2 and CO2-induced climate change to the vegetation dynamics on the Tibetan Plateau (TP). The results revealed whether the individual effect of doubled CO2 and its induced climate change or their combined effects caused a decrease in the foliage projective cover (FPC) of C3 arctic grass on the TP. Both doubled CO2 and climate change had a positive effect on the FPC of the temperate and tropical tree plant functional types (PFTs) on the TP, but doubled CO2 led to FPC decreases of C4 grass and broadleaf deciduous shrubs, whereas the climate change resulted in FPC decrease in C3 non-arctic grass and boreal needleleaf evergreen trees. Although the combination of the doubled CO2 and associated climate change increased the area-averaged leaf area index (LAI), the effect of doubled CO2 on the LAI increase (95 %) was larger than the effect of CO2-induced climate change (5 %). Similarly, the simulated gross primary productivity (GPP) and net primary productivity (NPP) were primarily sensitive to the doubled CO2, compared with the CO2-induced climate change, which alone increased the regional GPP and NPP by 251.22 and 87.79 g C m-2 year-1, respectively. Regionally, the vegetation response was most noticeable in the south-eastern TP. Although both doubled CO2 and associated climate change had a

  4. CO{sub 2}MPARE. CO2 Model for Operational Programme Assessment in EU Regions. User Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Hekkenberg, M. [ECN Policy Studies, Amsterdam (Netherlands); Vincent-Genod, C. [Energies Demain, Montreuil Sous Bois (France); Regina, P. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Keppo, I. [University College London UCL, London (United Kingdom); Papagianni, S. [Centre for Renewable Energy Sources and Saving CRES, Pikermi Attiki (Greece); Harnych, J. [ENVIROS, Prague (Czech Republic)

    2013-03-15

    The CO2MPARE model supports national and regional authorities in making balanced decisions for their investment portfolio under their regional development programmes, in particular under their Operational Programmes of EU Regional Policy. This document is a tutorial for users of the CO2MPARE model and provides step by step guidance on the different functionalities of the model for both basic and expert users.

  5. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  6. Seismicity induced by CO2 injection: lesson learned from coupled hydro-mechanical modeling

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny; Urpi, Luca; Cappa, Frederic; Jeanne, Pierre; Vilarrasa, Victor

    2017-04-01

    Overpressure caused by the direct injection of CO2 into a deep sedimentary system may produce changes in the state of stress, as well as, have an impact on the sealing capabilities of the targeted system. The importance of geomechanics including the potential for reactivating faults associated with large-scale geologic carbon sequestration operations has recently become more widely recognized. In this context, here we review and summarize some recent modeling efforts, aimed at understanding the possible seismicity induced by CO2 storage and its relation to potential leakage to shallow groundwater aquifer during active injection. The simulations were conducted using TOUGH-FLAC, a simulator for coupled multiphase flow and geomechanical modeling. We carried out both quasi-static and dynamic simulations, with an explicit representation of a fault. In the case of quasi-static modeling, a strain softening Mohr-Coulomb model was used to model a slip-weakening fault slip behavior, enabling modeling of sudden slip that was interpreted as a seismic event, with a moment magnitude evaluated using formulas from seismology. In the case of dynamic modeling, we simulate the fault behavior as strain-softening or rate-dependent, analyzing the frequency behavior at surface and the possible effects of friction properties on slip. This work aims at studying the fault responses during carbon dioxide injection, focusing on the short-term (5 years) integrity of the storage repository, and hence, on the potential leakage towards shallow groundwater aquifers. We account for stress/strain-dependent permeability and study both the fault reactivation and the leakage through the fault zone. We analyze several scenarios related to the injected amount of CO2 (and hence related to potential overpressure) involving both minor and major faults, and study induced seismicity and leakage for different stress/strain permeability coupling functions, as well as increasing the complexity of the system in

  7. New Linear Partitioning Models based on Experimental Water – Supercritical CO2 Partitioning Data of Selected Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Burant, Aniela S.; Thompson, Christopher J.; Lowry, Gregory; Karamalidis, Athanasios

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.

  8. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    Science.gov (United States)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  9. Atmospheric CO2 concentration impacts on maize yield performance under dry conditions: do crop model simulate it right ?

    Science.gov (United States)

    Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan

    2017-04-01

    In most regions of the world, maize yields are at risk of be reduced due to rising temperatures and reduced water availability. Rising temperature tends to reduce the length of the growth cycle and the amount of intercepted solar energy. Water deficits reduce the leaf area expansion, photosynthesis and sometimes, with an even more pronounced impact, severely reduce the efficiency of kernel set. In maize, the major consequence of atmospheric CO2 concentration ([CO2]) is the stomatal closure-induced reduction of leaf transpiration rate, which tends to mitigate those negative impacts. Indeed FACE studies report significant positive responses to CO2 of maize yields (and other C4 crops) under dry conditions only. Given the projections by climatologists (typically doubling of [CO2] by the end of this century) projected impacts must take that climate variable into account. However, several studies show a large incertitude in estimating the impact of increasing [CO2] on maize remains using the main crop models. The aim of this work was to compare the simulations of different models using input data from a FACE experiment conducted in Braunschweig during 2 years under limiting and non-limiting water conditions. Twenty modelling groups using different maize models were given the same instructions and input data. Following calibration of cultivar parameters under non-limiting water conditions and under ambient [CO2] treatments of both years, simulations were undertaken for the other treatments: High [ CO2 ] (550 ppm) 2007 and 2008 in both irrigation regimes, and DRY AMBIENT 2007 and 2008. Only under severe water deficits did models simulate an increase in yield for CO2 enrichment, which was associated with higher harvest index and, for those models which simulated it, higher grain number. However, the CO2 enhancement under water deficit simulated by the 20 models was 20 % at most and 10 % on average only, i.e. twice less than observed in that experiment. As in the experiment

  10. Can a reduction of solar irradiance counteract CO2-induced climate change? – Results from four Earth system models

    Directory of Open Access Journals (Sweden)

    M. Lawrence

    2012-01-01

    Full Text Available In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of the GeoMIP and IMPLICC model intercomparison projects. In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged, the meridional temperature gradient is reduced in all models compared to the control simulation. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. It is shown that this reduction is only partly compensated by a reduction in evaporation so that large continental regions are drier in the engineered climate. In comparison to the climate response to a quadrupling of CO2 alone the temperature responses are small in experiment G1. Precipitation responses are, however, of comparable magnitude but in many regions of opposite sign.

  11. Influence of CO2 on melting of model granulite facies assemblages - A model for the genesis of charnockites

    Science.gov (United States)

    Wendlandt, R. F.

    1981-01-01

    A model is described for the melting of a simple granulite assemblage, in the presence of CO2-rich fluid phases, which can occur between 750 and 1000 C at crustal pressures and is therefore within the range estimated for such regional metamorphism as that of the Adirondacks. For melting which occurs at about 750 C in the presence of both H2O and CO2, pressures corresponding to the deep crust are required to generate a melt enriched in pyroxene and feldspar components, while melting the precense of pure CO2 at about 1000 C generates analogous melt compositions at lower pressures. These experimental reactions are in keeping with observations constraining charnockite occurrences: (1) pressure and temperature constraints; (2) mineralogical constraints; and (3) constraints on the compositions of volatiles associated with peak conditions of charnockite formation.

  12. A model of the CO2 exchanges between biosphere and atmosphere in the tundra

    Science.gov (United States)

    Labgaa, Rachid R.; Gautier, Catherine

    1992-01-01

    A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.

  13. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    Science.gov (United States)

    Räisänen, Jouni

    2016-08-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, being especially crucial for the muted warming over the northern North Atlantic and for the seasonal cycle of warming over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to smooth the gradients of temperature change and reduce its land-sea contrast, but they also amplify the seasonal cycle of warming in northern North America and Eurasia. The three most important terms for intermodel differences in warming are the changes in the clear-sky greenhouse effect, clouds, and the net surface energy flux, making the largest contribution to the standard deviation of annual mean temperature change in 34, 29 and 20 % of the world, respectively. Changes in atmospheric energy flux convergence mostly damp intermodel variations of temperature change especially over the oceans. However, the opposite is true for example in Greenland and Antarctica, where the warming appears to be substantially controlled by heat transport from the surrounding sea areas.

  14. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    Science.gov (United States)

    Räisänen, Jouni

    2017-05-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, being especially crucial for the muted warming over the northern North Atlantic and for the seasonal cycle of warming over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to smooth the gradients of temperature change and reduce its land-sea contrast, but they also amplify the seasonal cycle of warming in northern North America and Eurasia. The three most important terms for intermodel differences in warming are the changes in the clear-sky greenhouse effect, clouds, and the net surface energy flux, making the largest contribution to the standard deviation of annual mean temperature change in 34, 29 and 20 % of the world, respectively. Changes in atmospheric energy flux convergence mostly damp intermodel variations of temperature change especially over the oceans. However, the opposite is true for example in Greenland and Antarctica, where the warming appears to be substantially controlled by heat transport from the surrounding sea areas.

  15. Testing the Early Mars H2-CO2 Greenhouse Hypothesis with a 1-D Photochemical Model

    CERN Document Server

    Batalha, Natasha; Ramirez, Ramses; Kasting, James

    2015-01-01

    A recent study by Ramirez et al. (2014) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ~1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere...

  16. Identification of CO2 disposal locations in an ocean general circulation model of the North Pacific

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; AOKI Shigeaki; HARADA Koh

    2009-01-01

    A basin-wide ocean general circulation model of the North Pacific is used to identify which location is more effi-cient for ocean CO2 sequestration in the North Pacific. Four injection depths at each one of fifteen locations are chosen. In terms of effectiveness index (EI) and escape factor (EF), it is clear that the effectiveness increases with increasing latitude at the end of the 50 a injection period. Site-by-site differences in the EI can be over 9% for the 1 000 m injection depth in the western North Pacific at the end of 50 a of continuous injection. The difference is much larger for the 500 m injection. The difference decreases with increasing injection depth. However, the site-by-site difference is small for the injection in the eastern North Pacific. The sequestration is more efficient for the injection in the east than in the west. For the 500 m injection depth, the difference in ef-fectiveness between the west and the east is over 10% at the end of 50 a injection period. The largest concentra-tion of sequestered CO2 increases with increasing injection depth. For the injection in both the western and cen-tral North Pacific, the largest exchange flux always appears to be at about 42°N, 150°E, whereas for the injec-tion in the eastern area the large flux appears to be in the equatorial region (120°W).

  17. CO 2 and H 2O gas exchange of a triticale field: I. Leaf level porometry and upscaling to canopy level

    Science.gov (United States)

    Busch, J.; Lösch, R.; Meixner, F. X.; Ammann, C.

    1996-05-01

    Within the frame of an extended field experiment the CO 2 and H 2O gas exchange between a triticale field and the atmosphere was measured during the period between heading and harvest in the summer of 1995. Diurnal courses of H 2O loss, CO 2 gain and leaf conductance were obtained together with microclimatic parameters for leaves of different insertion levels. Patterns of dependence of leaf gas exchange on microclimatic conditions were determined. Based on the results of porometric measurements and crop structural parameters (LAI) gas exchange was scaled up to canopy level.

  18. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Directory of Open Access Journals (Sweden)

    M. Yousefi, M. Omid, Sh. Rafiee, S.F. Ghaderi

    2013-01-01

    Full Text Available Iran's primary energy consumption (PEC was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO and artificial neural networks (ANNs techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  19. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  20. Particle-in-cell modeling of streamer branching in CO2 gas

    KAUST Repository

    Levko, Dmitry

    2017-07-07

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a two-dimensional particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.

  1. Kinetic study of CO2 reaction with CaO by a modified random pore model

    Directory of Open Access Journals (Sweden)

    Nouri S.M.M.

    2016-03-01

    Full Text Available In this work, a modified random pore model was developed to study the kinetics of the carbonation reaction of CaO. Pore size distributions of the CaO pellets were measured by nitrogen adsorption and mercury porosimetry methods. The experiments were carried out in a thermogravimeter at different isothermal temperatures and CO2 partial pressures. A fractional concentration dependency function showed the best accuracy for predicting the intrinsic rate of reaction. The activation energy was determined as 11 kcal/mole between 550–700°C. The effect of product layer formation was also taken into account by using the variable product layer diffusivity. Also, the model was successfully predicted the natural lime carbonation reaction data extracted from the literature.

  2. Particle-in-cell modeling of streamer branching in CO2 gas

    Science.gov (United States)

    Levko, Dmitry; Pachuilo, Michael; Raja, Laxminarayan L.

    2017-09-01

    The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a 2D particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.

  3. Modeling ground surface uplift during CO2 sequestration: the case of In Salah, Algeria.

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2016-04-01

    Observable ground deformation, common in storage projects, carries useful information on processes occurring at the injection depth. The Krechba gas field at In Salah (Algeria) is one of the best known sites for studying ground surface deformation during geological storage. Being the first industrial-scale on-shore CO2 demonstration project, the site is well known for satellite-based ground-deformation monitoring data of remarkable quality. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 are different, but also indicate the influence of deep fracture zone mechanical responses. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties were determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to the corresponding InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in excellent agreement with observed spatial and temporal variation of ground surface uplift, as well as with measured pressures. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results, although with uncertainty.

  4. Degradation of metaflumizone in soil: impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization.

    Science.gov (United States)

    Chatterjee, Niladri Sekhar; Gupta, Suman; Varghese, Eldho

    2013-01-01

    Soil is a major sink for the bulk of globally used pesticides. Hence, fate of pesticides in soil under the influence of various biotic and abiotic factors becomes important for evaluation of stability and safety. This paper presents the impact of varying moisture, light, temperature, atmospheric CO(2) level, soil type and soil sterilization on degradation of metaflumizone, a newly registered insecticide in India. Degradation of metaflumizone in soil followed the first order reaction kinetics and its half life values varied from ~20 to 150 d. Under anaerobic condition, degradation of metaflumizone was faster (t(½) 33.4 d) compared to aerobic condition (t(½) 50.1 d) and dry soil (t(½) 150.4 d). Under different light exposures, degradation was the fastest under UV light (t(½) 27.3 d) followed by Xenon light (t(½) 43 d) and dark condition (t(½) 50.1 d). Degradation rate of metaflumizone increased with temperature and its half life values ranged from 30.1 to 100.3d. Elevated atmospheric CO(2) level increased the degradation in soil (t(½) 20.1-50.1 d). However, overall degradation rate was the fastest at 550 ppm atmospheric CO(2) level, followed by 750 ppm and ambient level (375 ppm). Degradation of metaflumizone was faster in Oxisol (pH 5.2, Total Organic Carbon 1.2%) compared to Inceptisol (pH 8.15, TOC 0.36%). In sterile soil, only 5% dissipation of initial concentration was observed after 90 d of sampling. Under various conditions, 4-cyanobenzoic acid (0.22-1.86 mg kg(-1)) and 4-trifluoromethoxy aniline (0.21-1.23 mg kg(-1)) were detected as major degradation products.

  5. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  6. A Multi-Objective Unit Commitment Model for Setting Carbon Tax to Reduce CO2 Emission: Thailand's Electricity Generation Case

    Directory of Open Access Journals (Sweden)

    Nuchjarin Intalar

    2015-07-01

    Full Text Available Carbon tax policy is a cost-effective instrument for emission reduction. However, setting the carbon tax is one of the challenging task for policy makers as it will lead to higher price of emission-intensive sources especially the utility price. In a large-scale power generation system, minimizing the operational cost and the environmental impact are conflicting objectives and it is difficult to find the compromise solution. This paper proposes a methodology of finding a feasible carbon tax rate on strategic level using the operational unit commitment model. We present a multi-objective mixed integer linear programming model to solve the unit commitment problem and consider the environmental impacts. The methodology of analyzing of the effect of carbon tax rates on the power generation, operating cost, and CO2 emission is also provided. The trade-off relationship between total operating cost and total CO2 emission is presented in the Pareto-optimal curve to analyze the feasible carbon tax rate that is influencing on electricity operating cost. The significant outcome of this paper is a modeling framework for the policy makers to determine the possible carbon tax that can be imposed on the electricity generation.

  7. Analysis of sensitive CO2 pathways and genes related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    2016-02-01

    Full Text Available The development of microalgae sustainable applications needs better understanding of microalgae biology. Moreover, how cells coordinate their metabolism towards biomass accumulation is not fully understood. In this present study, flux balance analysis (FBA was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii under varied CO2 inputs. The metabolic network model of Chlamydomonas was updated based on the genome annotation data and sensitivity analysis revealed CO2 sensitive reactions. Biological experiments were performed with cells cultivated at 0.04% (air, 2.5%, 5%, 8% and 10% CO2 concentration under controlled conditions and cell growth profiles and biomass content were measured. Pigments, lipids, proteins and starch were further quantified for the reference low (0.04% and high (10% CO2 conditions. The expression level of candidate genes of sensitive reactions was measured and validated by quantitative real time qPCR. The sensitive analysis revealed mitochondrial compartment as the major affected by high CO2 levels and glycolysis/gluconeogenesis, glyoxylate and dicarboxylate metabolism among the affected metabolic pathways. Genes coding for glycerate kinase (GLYK, glycine cleavage system, H-protein (GCSH, NAD-dependent malate dehydrogenase (MDH3, low-CO2 inducible protein A (LCIA, carbonic anhydrase 5 (CAH5, E1 component, alpha subunit (PDC3, dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1 and phosphoglucomutase (GPM2, were defined, among other genes, as sensitive nodes in the metabolic network simulations. These genes were experimentally responsive to the changes in the carbon fluxes in the system. We performed metabolomics analysis using mass spectrometry validating the modulation of carbon dioxide responsive pathways and metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids found in the photorespiration pathway. Our updated metabolic network was compared to

  8. Co-Sequestration Geochemical Modeling: Simple Brine Solution + CO2-O2-SO2

    Science.gov (United States)

    Verba, C.; Kutchko, B. G.; Reed, M. H.

    2012-12-01

    Class H well cement (LaFarge) was exposed to supercritical CO2 to evaluate the impact of brine chemistry on the well cement. Simulated experimental downhole conditions include a pressure of 28.6 MPa and a temperature of 50oC. Brine composition was formulated from the NETL NATCARB database, resulting in a simple solution of 1 M (NaCl, MgCl2, CaCl2). It was determined that the brine chemistry plays a vital role in determining the degree and type of alteration of cement in carbon sequestration conditions. The implications of co-sequestration (CO2/O2/SO2 mixtures) from of oxy-fueled combustion, coal gasification and sour gas have been considered. Geochemical modeling was conducted to understand the interaction between formation brine, cement and co-contaminant gases, using a gas composition of 95.5% CO2, 4% O2, and 1.5% SO2. The modeling results are significant in determining the validity of co-sequestering coal flue gas containing SOx gases or sour hydrocarbon gas which could potentially produce pyrite or other sulfur-bearing species in the cement via mineralization trapping. Thermodynamic components of aqueous species, gases, and minerals were used to calculate the pH and mineral saturation indices using CHIM-XPT. The computed pH of the solution is 4.34. The total sulfate molality within the brine is 0.0095 M. In experimental conditions of 600 mL of brine, 0.0057 moles of sulfate will be converted into 5.7 mL of sulfuric acid. The modeling shows that an excess of 31% O2 forms, indicating that H2S from SO2 disporportionation is oxidized to sulfate, thus no gaseous H2S will form. Remaining SO2 in the experimental headspace has a predicted mole fraction is 10-46. Additional SO2 gas added to the system produces the reaction to precipitate gypsum. Additional gas reactions precipitate gypsum, anhydrite, calcite, and dolomite.

  9. Development of CO2 inversion system based on the adjoint of the global coupled transport model

    Science.gov (United States)

    Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon

    2014-05-01

    limited regions close to the monitoring sites (using the LPDM part), and at coarse resolution for the rest of the globe (using the Eulerian part), minimizing aggregation errors and computation cost. The adjoint of the coupled high-resolution Eulerian-Lagrangian model will be incorporated into the PYVAR CO2 variational inverse system (Chevallier et al., 2005). Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.: Inferring CO2 sources and sinks from satellite observations: method and application to TOVS data, J. Geophys. Res., 110, D24309, doi:10.1029/2005JD006390, 2005.

  10. Greenhouse Gas (CH4, CO2 and N2O) Emission Levels by Wastewater Treatment Plant (WWTP) Ponds in Brazil

    Science.gov (United States)

    Rossete, A. L. M.; Sundefeld Junior, G.; Aparicio, C.; Baldi, G. G.; Montes, C. R.; Piveli, R. P.; Melfi, A. J.

    2015-12-01

    This study measured greenhouse gas emissions (GHG) by Facultative Ponds on Wastewater Treatment Plants. The most studied GHGs include CO2, CH4and N2O. The level of GHG (CO2, CH4 and N2O) emissions by WWTPs in Australian-type stabilization ponds was measured in the city of Lins (22º21'S, 49º50'W), state of São Paulo (SP), Brazil. GHG collection was carried outusing a collection chamber installed at the center of the facultative pond's final third. The effluent's pH and temperature (ET) were registered by probes, and meteorological information regarding air temperature (AT) and solar radiation (SR) were obtained from INMET, Brazil. GHG collection was carried out for 72 consecutive hours in June 2014, on an hourly basis, once every 5 minutes, for the first 30 minutes, and once every 10 minutes from 30 to 50 minutesand subsequently analyzed by gas chromatograph (GC).After three days of data collection, the average AT, SR, ET and pH values were, respectively, 18oC, 2583kJm-2, 23oC and 8.2. Average values for GHG emission levels (CH4, CO2 and N2O) were 79.01; 100.65 and 0.0 mg m-2 h-1, respectively. GHG emission levels were divided into light periods (morning, afternoon and evening)in order to verify the periods with the highest GHG emissions.The highest CH4 emission levels were measured between morning and early afternoon. The maximum CO2 emissions were observed from evening to early morning. N2O emissions were constant and values were close to the ones found in the atmosphere, which shows the emission of N2O by facultative ponds does not contribute to greenhouse gases emissions.The results enabled us to characterize and quantify GHG emission levels per Facultative Pond on Wastewater Treatment Plant. Acknowledgment to FAPESP and SABESP, Brazil.

  11. A Consideration on Service Business Model for Saving Energy and Reduction of CO2 Emissions Using Inverters

    Science.gov (United States)

    Kosaka, Michitaka; Yabutani, Takashi

    This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.

  12. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  13. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    Science.gov (United States)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial

  14. CO_2 isothermal adsorption models of coal in the Haishiwan Coalfield

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since the capacity of CO2 adsorption of coal is a key factor in coal and CO2 outbursts,an experimental study was carried out on CO2 isothermal adsorption with high-pressure volumetry with dry coal samples from the No.2 coal seam in the Haishiwan Coalfield.Four different equations(Langmuir,BET,D-R and D-A) were used to fit the experimental data.We discuss adsorption mechanisms.The results show that the amount of CO2 adsorption increases rapidly under low relative pressure,i.e.,the ratio of equilibrium pressu...

  15. Stable large-scale CO2 storage in defiance of an energy system based on renewable energy - Modelling the impact of varying CO2 injection rates on reservoir behavior

    Science.gov (United States)

    Bannach, Andreas; Hauer, Rene; Martin, Streibel; Stienstra, Gerard; Kühn, Michael

    2015-04-01

    The IPCC Report 2014 strengthens the need for CO2 storage as part of CCS or BECCS to reach ambitious climate goals despite growing energy demand in the future. The further expansion of renewable energy sources is a second major pillar. As it is today in Germany the weather becomes the controlling factor for electricity production by fossil fuelled power plants which lead to significant fluctuations of CO2-emissions which can be traced in injection rates if the CO2 were captured and stored. To analyse the impact of such changing injection rates on a CO2 storage reservoir. two reservoir simulation models are applied: a. An (smaller) reservoir model approved by gas storage activities for decades, to investigate the dynamic effects in the early stage of storage filling (initial aquifer displacement). b. An anticline structure big enough to accommodate a total amount of ≥ 100 Mega tons CO2 to investigate the dynamic effects for the entire operational life time of the storage under particular consideration of very high filling levels (highest aquifer compression). Therefore a reservoir model was generated. The defined yearly injection rate schedule is based on a study performed on behalf of IZ Klima (DNV GL, 2014). According to this study the exclusive consideration of a pool of coal-fired power plants causes the most intensive dynamically changing CO2 emissions and hence accounts for variations of a system which includes industry driven CO2 production. Besides short-term changes (daily & weekly cycles) seasonal influences are also taken into account. Simulation runs cover a variation of injection points (well locations at the top vs. locations at the flank of the structure) and some other largely unknown reservoir parameters as aquifer size and aquifer mobility. Simulation of a 20 year storage operation is followed by a post-operational shut-in phase which covers approximately 500 years to assess possible effects of changing injection rates on the long-term reservoir

  16. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink.

    Science.gov (United States)

    Pugh, T A M; Müller, C; Arneth, A; Haverd, V; Smith, B

    2016-09-20

    Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Process simulation of CO2 capture with aqueous ammonia using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Maribo-Mogensen, Bjørn; van Well, Willy J.M.

    2012-01-01

    The use of aqueous ammonia is a promising option to capture carbon dioxide from power plants thanks to the potential low heat requirement during the carbon dioxide desorption compared to monoethanolamine (MEA) based process. The patented Chilled Ammonia Process developed by Alstom absorbs carbon...... of the process is necessary.In this work, the performance of the carbon dioxide capture process using aqueous ammonia has been analyzed by process simulation. The Extended UNIQUAC thermodynamic model available for the CO2–NH3–H2O system has been implemented in the commercial simulator Aspen Plus®1 by using...... to be in the same range as the values reported recently for advanced amine processes. Assuming that cold cooling water is available, the electricity consumption remains limited. Hence the Chilled Ammonia Process is a promising option for post combustion carbon dioxide capture....

  18. Supercritical CO2 recovery of caffeine from green coffee oil: new experimental solubility data and modeling

    Directory of Open Access Journals (Sweden)

    Álvaro Bandeira Antunes de Azevedo

    2008-01-01

    Full Text Available The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO. The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.

  19. Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model

    Science.gov (United States)

    Washington, Warren M.; Meehl, Gerald A.

    1989-06-01

    A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30° 50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models

  20. Using Carbonyl Sulfide column measurements and a Chemical Transport Model to investigate variability in biospheric CO2 fluxes

    Science.gov (United States)

    Wang, Yuting; Petri, Christof; Palm, Mathias; Warneke, Thorsten; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Campbell, Elliott; Wolf, Adam; Deutscher, Nick; Notholt, Justus

    2015-04-01

    Understanding the CO2 processes on land is of great importance, because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrieval of the atmospheric concentrations of both CO2 and OCS. Here, we investigate co-located and nearly simultaneous measurements of OCS and CO2 measured at 3 sites via FTIR spectrometers. These northern-hemispheric sites span a wide range of latitudes and all have multiple year time-series. The sites include Ny-Alesund (79°N), Bremen (53°N) and Paramaribo (6°N). We compare these measurements to simulations of OCS and CO2 using the GEOS-Chem model. The simulations are driven by different land biospheric fluxes of OCS and CO2 to match the seasonality of the measurements. The simple biosphere model (SiB-COS) are used in the study because it simultaneously calculates the biospheric fluxes of both OCS and CO2. The CO2 simulation with SiB fluxes agrees with the measurements better than a simulation using CASA. Comparison of the OCS simulations with different fluxes indicates that the latitudinal distribution of the OCS fluxes within SiB needs to be adjusted.

  1. Air–sea CO2 fluxes and the controls on ocean surface pCO2 variability in coastal and open-ocean southwestern Atlantic Ocean: a modeling study

    Directory of Open Access Journals (Sweden)

    R. Arruda

    2015-05-01

    Full Text Available We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air–sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelf regions. The role of mixing/stratification in modulating DIC, and therefore surface pCO2 is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI site in the Argentine Basin (42° S, 42° W.

  2. SSESSMENT OF CO2 EMISSION LEVEL IN URB N TR NSPORT OF ...

    African Journals Online (AJOL)

    USER

    2016-11-06

    Nov 6, 2016 ... Department of Urban Environmental Management. E-mail: ... The average emission level of private automobiles in Mekelle city is found to be ... fluctuations in rainfall, flooding, drought, ..... Phase II: National Meteorological.

  3. Influences of changing land use and CO 2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai Valley, Austria

    Science.gov (United States)

    Tenhunen, J.; Geyer, R.; Adiku, S.; Reichstein, M.; Tappeiner, U.; Bahn, M.; Cernusca, A.; Dinh, N. Q.; Kolcun, O.; Lohila, A.; Otieno, D.; Schmidt, M.; Schmitt, M.; Wang, Q.; Wartinger, M.; Wohlfahrt, G.

    2009-05-01

    A process-based spatial simulation model was used to estimate gross primary production, ecosystem respiration, net ecosystem CO 2 exchange and water use by the vegetation in Stubai Valley, Austria at landscape scale. The simulations were run for individual years from early spring to late fall, providing estimates in grasslands for carbon gain, biomass and leaf area development, allocation of photoproducts to the below ground ecosystem compartment, and water use. In the case of evergreen coniferous forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for soil characteristics by generalization from spatial surveys and for climate drivers from observations at monitoring stations along the elevation gradient and from modelling of incident radiation in complex terrain. Validation of the model was carried out at point scale, and was based on comparison of model output at selected locations with observations along elevation gradients in Stubai Valley and Berchtesgaden National Park, Germany as well as with known trends in ecosystem response documented in the literature. The utility of the model for describing long-term changes in carbon and water balances at landscape scale is demonstrated in the context of land use change that occurred between 1861 and 2002 in Stubai Valley. During this period, coniferous forest increased in extent by ca. 11% of the vegetated area of 1861, primarily in the subalpine zone. Managed grassland decreased by 46%, while abandoned grassland and natural alpine mats increased by 14 and 11%, respectively. At point scale, the formulated model predicts higher canopy conductance in 1861 due to lower atmospheric CO 2 concentration which opens stomata. As a result, water use at point scale decreased by ca. 8% in 2002 in the valley bottoms versus 10% at tree line. At landscape level, the decrease in water

  4. Analysis of Sensitive CO2 Pathways and Genes Related to Carbon Uptake and Accumulation in Chlamydomonas reinhardtii through Genomic Scale Modeling and Experimental Validation

    Science.gov (United States)

    Winck, Flavia V.; Melo, David O. Páez; Riaño-Pachón, Diego M.; Martins, Marina C. M.; Caldana, Camila; Barrios, Andrés F. González

    2016-01-01

    The development of microalgae sustainable applications needs better understanding of microalgae biology. Moreover, how cells coordinate their metabolism toward biomass accumulation is not fully understood. In this present study, flux balance analysis (FBA) was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii under varied CO2 inputs. The metabolic network model of Chlamydomonas was updated based on the genome annotation data and sensitivity analysis revealed CO2 sensitive reactions. Biological experiments were performed with cells cultivated at 0.04% (air), 2.5, 5, 8, and 10% CO2 concentration under controlled conditions and cell growth profiles and biomass content were measured. Pigments, lipids, proteins, and starch were further quantified for the reference low (0.04%) and high (10%) CO2 conditions. The expression level of candidate genes of sensitive reactions was measured and validated by quantitative real time PCR. The sensitive analysis revealed mitochondrial compartment as the major affected by changes on the CO2 concentrations and glycolysis/gluconeogenesis, glyoxylate, and dicarboxylate metabolism among the affected metabolic pathways. Genes coding for glycerate kinase (GLYK), glycine cleavage system, H-protein (GCSH), NAD-dependent malate dehydrogenase (MDH3), low-CO2 inducible protein A (LCIA), carbonic anhydrase 5 (CAH5), E1 component, alpha subunit (PDC3), dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1), and phosphoglucomutase (GPM2), were defined, among other genes, as sensitive nodes in the metabolic network simulations. These genes were experimentally responsive to the changes in the carbon fluxes in the system. We performed metabolomics analysis using mass spectrometry validating the modulation of carbon dioxide responsive pathways and metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids found in the photorespiration pathway. Our updated metabolic network was

  5. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    Science.gov (United States)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; Rao, Preeti; Ahmadov, Ravan; Deng, Aijun; Díaz-Isaac, Liza I.; Duren, Riley M.; Fischer, Marc L.; Gerbig, Christoph; Gurney, Kevin R.; Huang, Jianhua; Jeong, Seongeun; Li, Zhijin; Miller, Charles E.; O'Keeffe, Darragh; Patarasuk, Risa; Sander, Stanley P.; Song, Yang; Wong, Kam W.; Yung, Yuk L.

    2016-07-01

    Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ˜ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May-June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a

  6. Joint NASA-ESA-DARA Study. Part three: characterization of sleep under ambient CO2-levels of 0.7% and 1.2%.

    Science.gov (United States)

    Gundel, A; Parisi, R A; Strobel, R; Weihrauch, M R

    1998-05-01

    An experiment was conducted to study sleep quality and sleep architecture in volunteers living in a closed system under elevated ambient CO2 levels of 0.7% and 1.2%. In a closed system, human life is possible only if the CO2 level is permanently adjusted. For the Russian space station MIR, for example, the CO2 levels of the present study are actual upper limits for the adjustment. Sleep architecture was found to be altered in astronauts on the orbiting MIR station. Sleep quantity and quality were reduced. The latency to the first REM sleep was shorter in space and slow wave sleep was redistributed from the first to the second sleep cycle. The elevated CO2 concentration in the atmosphere on MIR may be one of the reasons for those observations regarding sleep in space. Thus, this experiment was also conducted in order to clarify the interpretation of data obtained from astronauts on MIR. In this study sleep polygraphies could be recorded in 4 subjects who lived for 23 d under 0.7% and then for the same period of time under 1.2% CO2. Findings suggest that these levels of ambient CO2 do not reduce sleep quality. Sleep architecture, however, was slightly changed and showed that the amount of slow wave sleep increased with the duration of the exposure to CO2. But it can be excluded that findings on MIR were caused by elevated CO2-levels.

  7. A poromechanical model for coal seams saturated with binary mixtures of CH4 and CO2

    Science.gov (United States)

    Nikoosokhan, Saeid; Vandamme, Matthieu; Dangla, Patrick

    2014-11-01

    Underground coal bed reservoirs naturally contain methane which can be produced. In parallel of the production of this methane, carbon dioxide can be injected, either to enhance the production of methane, or to have this carbon dioxide stored over geological periods of time. As a prerequisite to any simulation of an Enhanced Coal Bed Methane recovery process (ECBM), we need state equations to model the behavior of the seam when cleats are saturated with a miscible mixture of CH4 and CO2. This paper presents a poromechanical model of coal seams exposed to such binary mixtures filling both the cleats in the seam and the porosity of the coal matrix. This model is an extension of a previous work which dealt with pure fluid. Special care is dedicated to keep the model consistent thermodynamically. The model is fully calibrated with a mix of experimental data and numerical data from molecular simulations. Predicting variations of porosity or permeability requires only calibration based on swelling data. With the calibrated state equations, we predict numerically how porosity, permeability, and adsorbed amounts of fluid vary in a representative volume element of coal seam in isochoric or oedometric conditions, as a function of the pressure and of the composition of the fluid in the cleats.

  8. Modeling the key factors that could influence the diffusion of CO2 from a wellbore blowout in the Ordos Basin, China.

    Science.gov (United States)

    Li, Qi; Shi, Hui; Yang, Duoxing; Wei, Xiaochen

    2016-11-26

    Carbon dioxide (CO2) blowout from a wellbore is regarded as a potential environment risk of a CO2 capture and storage (CCS) project. In this paper, an assumed blowout of a wellbore was examined for China's Shenhua CCS demonstration project. The significant factors that influenced the diffusion of CO2 were identified by using a response surface method with the Box-Behnken experiment design. The numerical simulations showed that the mass emission rate of CO2 from the source and the ambient wind speed have significant influence on the area of interest (the area of high CO2 concentration above 30,000 ppm). There is a strong positive correlation between the mass emission rate and the area of interest, but there is a strong negative correlation between the ambient wind speed and the area of interest. Several other variables have very little influence on the area of interest, e.g., the temperature of CO2, ambient temperature, relative humidity, and stability class values. Due to the weather conditions at the Shenhua CCS demonstration site at the time of the modeled CO2 blowout, the largest diffusion distance of CO2 in the downwind direction did not exceed 200 m along the centerline. When the ambient wind speed is in the range of 0.1-2.0 m/s and the mass emission rate is in the range of 60-120 kg/s, the range of the diffusion of CO2 is at the most dangerous level (i.e., almost all Grade Four marks in the risk matrix). Therefore, if the injection of CO2 takes place in a region that has relatively low perennial wind speed, special attention should be paid to the formulation of pre-planned, emergency measures in case there is a leakage accident. The proposed risk matrix that classifies and grades blowout risks can be used as a reference for the development of appropriate regulations. This work may offer some indicators in developing risk profiles and emergency responses for CO2 blowouts.

  9. A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data

    Science.gov (United States)

    Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela

    2017-06-01

    To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another

  10. Numerical modeling of CO2 mineralisation during storage in deep saline aquifers

    NARCIS (Netherlands)

    Ranganathan, P.; Van Hemert, P.; Rudolph, S.J.; Zitha, P.L.J.

    2011-01-01

    Simulations are performed to evaluate the feasibility of a potential site within the Rotliegend sandstone formation in the Dutch subsurface at a depth of around 3000 m for CO2 sequestration using the numerical simulator CMG-GEM. Three CO2 storage trapping mechanisms are studied: (1) mobility trappin

  11. Modeling some long-term implications of CO2 fertilization for global forests and forest industries

    Science.gov (United States)

    Joseph Buongiorno

    2015-01-01

    Background: This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the globalforest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2].Methods:...

  12. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    NARCIS (Netherlands)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-01-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continent

  13. Numerical modeling of CO2 mineralisation during storage in deep saline aquifers

    NARCIS (Netherlands)

    Ranganathan, P.; Van Hemert, P.; Rudolph, S.J.; Zitha, P.L.J.

    2011-01-01

    Simulations are performed to evaluate the feasibility of a potential site within the Rotliegend sandstone formation in the Dutch subsurface at a depth of around 3000 m for CO2 sequestration using the numerical simulator CMG-GEM. Three CO2 storage trapping mechanisms are studied: (1) mobility

  14. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    NARCIS (Netherlands)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-01-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over

  15. Inline monitoring of CO2 absorption processes using simple analytical techniques and multivariate modeling

    NARCIS (Netherlands)

    Ham, L.V. van der; Bakker, D.E.; Geers, L.F.G.; Goetheer, E.L.V.

    2014-01-01

    The solvent and the dissolved CO2 concentrations are two essential properties of CO2 absorption processes. Currently, they are typically monitored using time-consuming offline analytical techniques. Initial development efforts aiming at a cost-effective and reliable inline monitoring system are desc

  16. Multi-Model Projection of July-August Climate Extreme Changes over China under CO2 Doubling. Part II: Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Hongmei; FENG Lei; ZHOU Tianjun

    2011-01-01

    This is the second part of the authors' analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO2 increase experiment (to doubling) (lpctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). The study focuses on the potential changes of July-August temperature extremes over China. The pattern correlation coefficients of the simulated temperature with the observations are 0.6-0.9, which are higher than the results for precipitation. However, most models have cold bias compared to observation, with a larger cold bias over western China (>5℃) than over eastern China (<2℃). The multi-model ensemble (MME)exhibits a significant increase of temperature under the lpctto2x scenario. The amplitude of the MME warming shows a northwest-southeast decreasing gradient. The warming spread among the models (~1℃-2℃) is less than MME warming (~2℃-4℃), indicating a relativelyrobust temperature change under CO2doubling. Further analysis of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1(GFDL-CM2.1) simulations suggests that the warming pattern may be related to heat transport by summer monsoons. The contrast of cloud effects also has contributions. The different vertical structures of warming over northwestern China and southeastern China may be attributed to the different natures of vertical circulations. The deep, moist convection over southeastern China is an effective mechanism for "transporting"the warming upward, leading to more upper-level warming. In northwestern China, the warming is more surface-orientated, possibly due to the shallow, dry convection.

  17. Modelling Geomechanical Impact of CO2 Injection Using Precomputed Response Functions

    CERN Document Server

    Andersen, Odd; Gasda, Sarah E

    2016-01-01

    When injecting CO2 or other fluids into a geological formation, pressure plays an important role both as a driver of flow and as a risk factor for mechanical integrity. The full effect of geomechanics on aquifer flow can only be captured using a coupled flow-geomechanics model. In order to solve this computationally expensive system, various strategies have been put forwards over the years, with some of the best current methods based on sequential splitting. In the present work, we seek to approximate the full geomechanical effect on flow without the need of coupling with a geomechanics solver during simulation, and at a computational cost comparable to that of an uncoupled model. We do this by means of precomputed pressure response functions. At grid model generation time, a geomechanics solver is used to compute the mechanical response of the aquifer for a set of pressure fields. The relevant information from these responses is then stored in a compact form and embedded with the grid model. We test the accu...

  18. Effects of CO2 on P-wave attenuation in porous media with micro-cracks: A synthetic modelling study

    Science.gov (United States)

    Ekanem, A. M.; Li, X. Y.; Chapman, M.; Main, I. G.

    2016-12-01

    The presence of CO2 in hydrocarbon reservoirs can cause significant changes in seismic wave properties. In turn these properties can be used to map CO2 saturation in hydrocarbon reservoirs or aquifers - either from natural sources or by injection from the surface. We present the results of a synthetic modelling study of the effects of supercritical CO2 saturation on P-wave attenuation in a medium consisting of four horizontal layers, including a target aquifer. The target aquifer is modelled fully by an effective medium containing pores saturated with brine and/or CO2 and randomly-aligned microcracks at different densities. The other layers are modelled solely by their bulk seismic velocities and densities. We first compute synthetic seismograms for a reference case where the third layer is completely isotropic with no cracks, no pores and no fluid saturation. We then calculate synthetic seismograms for finite crack densities of 0.01, 0.02 and 0.03 at varying degrees of CO2 saturation in the third layer. The results of our analysis indicate that attenuation is sensitive both to CO2 saturation and the crack density. For a given crack density, attenuation increases gradually with decreasing percentage of CO2 saturation and reaches a maximum at around 10% saturation. The induced attenuation increases with crack density and with offset. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications, including hydrocarbon exploration and production, subsurface storage of CO2 or geothermal energy extraction.

  19. CO2-induced dissolution of low permeability carbonates. Part II: Numerical modeling of experiments

    Science.gov (United States)

    Hao, Yue; Smith, Megan; Sholokhova, Yelena; Carroll, Susan

    2013-12-01

    We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity-permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts. The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more

  20. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-01-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 µatm (1×CO2, 700 µatm (2×CO2 and 1050 µatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly linked to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  1. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: The participatory modeling approach

    Science.gov (United States)

    Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.

  2. WRFv3.2-SPAv2: development and validation of a coupled ecosystem–atmosphere model, scaling from surface fluxes of CO2 and energy to atmospheric profiles

    Directory of Open Access Journals (Sweden)

    T. L. Smallman

    2013-07-01

    Full Text Available The Weather Research and Forecasting meteorological (WRF model has been coupled to the Soil–Plant–Atmosphere (SPA terrestrial ecosystem model, to produce WRF-SPA. SPA generates realistic land–atmosphere exchanges through fully coupled hydrological, carbon and energy cycles. The addition of a~land surface model (SPA capable of modelling biospheric CO2 exchange allows WRF-SPA to be used for investigating the feedbacks between biosphere carbon balance, meteorology, and land use and land cover change. We have extensively validated WRF-SPA using multi-annual observations of air temperature, turbulent fluxes, net radiation and net ecosystem exchange of CO2 at three sites, representing the dominant vegetation types in Scotland (forest, managed grassland and arable agriculture. For example air temperature is well simulated across all sites (forest R2 = 0.92, RMSE = 1.7 °C, bias = 0.88 °C; managed grassland R2 = 0.73, RMSE = 2.7 °C, bias = −0.30 °C; arable agriculture R2 = 0.82, RMSE = 2.2 °C, bias = 0.46 °C; RMSE, root mean square error. WRF-SPA generates more realistic seasonal behaviour at the site level compared to an unmodified version of WRF, such as improved simulation of seasonal transitions in latent heat flux in arable systems. WRF-SPA also generates realistic seasonal CO2 exchanges across all sites. WRF-SPA is also able to realistically model atmospheric profiles of CO2 over Scotland, spanning a 3 yr period (2004–2006, capturing both profile structure, indicating realistic transport, and magnitude (model–data residual 2 exchange. WRF-SPA makes use of CO2 tracer pools and can therefore identify and quantify land surface contributions to the modelled atmospheric CO2 signal at a specified location.

  3. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  4. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    Science.gov (United States)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  5. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models

    Science.gov (United States)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.

    2016-12-01

    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect

  6. Using eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements, and PhenoCams to constrain a process-based biogeochemical model for carbon market-funded wetland restoration

    Science.gov (United States)

    Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.

    2015-12-01

    We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1

  7. Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels

    Science.gov (United States)

    Kanervo, Eira; Lehto, Kirsi; Ståhle, Kurt; Lehto, Harry; Mäenpää, Pirkko

    2005-01-01

    Efficient life support systems are needed to maintain adequate oxygen, water and food for humans in extraterrestrial conditions. On the near-Earth missions, these are supplied by transport from the Earth, and by physical and chemical cleaning and recycling, but on long-term missions to far-away destinations, such as Mars, on-site production of the consumables may be required. Molecular oxygen and organic biomass can be most efficiently produced biologically, i.e. by photosynthesis. The conditions on Mars are distinctly harsh, and they strictly limit the growth and survival of any photosynthetic organisms to artificially maintained containments. For obtaining most economical growth conditions, minimal parameters need to be determined which still allow efficient growth of photosynthetic organisms. In this work we are testing how reduced air pressures (hypobaria) and increased CO2 concentrations, i.e. features typical for Martian conditions, affect the durability, growth and photosynthesis of laboratory strains of cyanobacteria, a group of prokaryotic organisms capable of plant-like photosynthesis. Our preliminary results show that air pressures down to 0.1 atm or CO2 concentrations up to 20% have no harmful effect on the photosynthetic oxygen production or growth rate of the cyanobacterial model species, Synechocystis sp. PCC 6803.

  8. A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations

    Science.gov (United States)

    Seo, Jeongbin; Kang, Sarah M.; Merlis, Timothy M.

    2017-01-01

    In the present-day climate, the mean Intertropical Convergence Zone (ITCZ) is north of the equator. We investigate changes in the ITCZ latitude under global warming, using multiple atmospheric models coupled to an aquaplanet slab ocean. The reference climate, with a warmer north from prescribed ocean heating, is perturbed by doubling CO2. Most models exhibit a northward ITCZ shift, but the shift cannot be accounted for by the response of energy flux equator where the atmospheric energy transport (FA) vanishes. The energetics of the simulated circulation shifts are subtle: changes in the efficiency with which the Hadley circulation transports energy, the total gross moist stability (Δm), dominate over mass flux changes in determining δFA. Even when δFA ≈ 0, the ITCZ can shift significantly due to changes in Δm, which have often been neglected previously. The dependence of ITCZ responses on δΔm calls for improved understanding of the physics determining the tropical Δm.

  9. The difference of level CO2 emissions from the transportation sector between weekdays and weekend days on the City Centre of Pemalang

    Science.gov (United States)

    Sawitri, E.; Hardiman, G.; Buchori, I.

    2017-06-01

    The high growth of human activity potentially increases the number of vehicles and the use of fossil fuels that contribute the increase of CO2 emissions in atmosphere. Controlling CO2 emission that causes greenhouse effect becomes the main agenda of Indonesian Government. The first step control CO2 emissions is by measuring the level of CO2 emissions, especially CO2 emissions from fossil fuel consumption in the transport sector. This research aims to assess the level of CO2 emissions from transportation sector on the main roads in the city centre of Pemalang both in weekdays and weekend days. The methods applied to calculate CO2 emissions using Intergovernmental Panel on Climate Change (IPCC) 2006 method. For this, a survey on the number of vehicles passing through the main roads using hand tally counter is firstly done. The results, CO2 emissions in working day, i.e. 49,006.95 tons/year compared to weekend i.e. 38,865.50 tons/year.

  10. Injeção de CO2 e lâminas de irrigação em tomateiro sob estufa CO2 injection and irrigation levels in greenhouse tomatoes

    Directory of Open Access Journals (Sweden)

    Denis Cesar Cararo

    2002-09-01

    -se os dados a funções quadráticas, foram de 78,82 t.ha-1 e 86,36 t.ha-1, correspondentes à aplicação de 335,2 mm e 333,6 mm de água para as estufas sem e com aplicação de CO2, respectivamente. Para uma faixa de variação do produto físico marginal de 0 a 1, as lâminas economicamente ótimas variaram de 335,2 mm a 322,4 mm em ausência de CO2 e de 333,6 mm a 323,8 mm com utilização do gás.The application of appropriate amounts of water and the usage of associated techniques improve the yield and quality of tomato fruits, assuring better profits to the farmer. We studied the effect of different water depth applications and carbon dioxide (CO2 injection in the irrigation system of a tomato crop, cv. Débora-Plus. An experiment was conducted in Piracicaba, São Paulo State (Brazil, under two greenhouses, using 40; 60; 80; 100; 120 and 140% of the water depth needed by the crop and C0 = 0 g of CO2.L-1 of water and C1 = 7.73 g.L-1 of CO2 concentrations were applied through irrigation water during 1999. The experiment was conducted in completely randomized blocks, with four replications. The CO2 treatments were applied in separate greenhouses. The irrigation was accomplished by using a drip irrigation system, based on reduced evaporimeters and tensiometers. The gas application was accomplished using a commercial cylinder and a Venturi type injector during the period necessary to reach the minimum water level. The application of CO2 through irrigation water increased the yield by 8.2%, raised the weight of small size fruits by 13% and the dry matter content of fruits by 8.5%. However, CO2 injection was ineffective in increasing the number and weight of medium sized fruits. The soil solution analysis indicated that CO2 possibly contributes to the improvement of the nutritional conditions of the tomato crop. The gas injection was economically feasible. The water depth did not have any significant effect on the yield, on total number of fruits, medium fruit weight

  11. FUZZY INFERENCE SYSTEM MODELING FOR BED ACTIVE CARBON RE-GENERATION PROCESS (CO2 GAS FACTORY CASE

    Directory of Open Access Journals (Sweden)

    S. Febriana

    2005-01-01

    Full Text Available Bed active carbon is one of the most important materials that had great impact in determining level of impurities in production of CO2 gas. In this particular factory case, there is unavailability of standard duration time of heating and cooling and steam flow rate for the re-generation process of bed active carbon. The paper discusses the fuzzy inference system for modeling of re-generation process of bed active carbon to find the optimum setting parameter. The fuzzy inference system was build using real historical daily processing data. After validation process, surface plot analysis was performed to find the optimum setting. The result of re-generation parameter setting is 9-10 hours of heating process, 4.66-5.32 hours of cooling process, and 1500-2500 kg/hr of steam flow rate.

  12. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  13. Modeling CO2 air dispersion from gas driven lake eruptions (Invited)

    OpenAIRE

    Chiodini, G.(INFN Sezione di Lecce, Lecce, Italy); COSTA, A.; Rouwet, D; F. Tassi

    2010-01-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a...

  14. Modeling char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Brix, Jacob; Jensen, Peter Arendt; Jensen, Anker Degn

    2011-01-01

    concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char......The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2...

  15. Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir

    Science.gov (United States)

    Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.

    2008-01-01

    As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.

  16. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    Science.gov (United States)

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.

  17. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    Science.gov (United States)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  18. Effects of various anesthetic techniques and PaCO2 levels on cerebral oxygen balance in neurosurgical patients

    Institute of Scientific and Technical Information of China (English)

    陈绍洋; 王强; 熊利泽; 胡胜; 曾祥龙

    2003-01-01

    Objective: To assess the effects of various anesthetic techniques and PaCO2 levels on cerebral oxygen supply/consumption balance during craniotomy for removal of tumors, and to explore an anesthetic technique for neurosurgery and an appropriate degree of PaCO2 during neuroanesthesia. Methods: One hundred and fourteen patients with supratentorial tumors for elective craniotomy, ASA grade Ⅰ-Ⅱ, were randomly allocated to six groups. Patients were anesthetized with continuous intravenous infusion of 2% procaine 1.0 mg*kg-1*min-1 in Group Ⅰ, inhalation of 1.0%-1.5% isoflurane in Group Ⅱ, and infusion of 2% procaine 0.5 mg*kg-1*min-1 combined with inhalation of 0.5%-0.7% isoflurane in Group Ⅲ during the period of study. The end-tidal pressure of CO2 (PET CO2 )was maintained at 4.0 kPa in these 3 groups. In Group Ⅳ, Ⅴ and Ⅵ, the anesthetic technique was the same as that in Group Ⅰ but the PETCO2 was adjusted to 3.5, 4.0 and 4.5 kPa respectively for 60 min during which the study was performed. The radial arterial and retrograde jugular venous blood samples were obtained at the onset and the end of this study for determining jugular venous bulb oxygen saturation (SjvO2), arteriovenous oxygen content difference (AVDO2) and cerebral extraction of oxygen (CEO2). Results: In Group Ⅰ and Ⅲ SjvO2, AVDO2 and CEO2 remained stable. Although SjvO2 kept constant, AVDO2 and CEO2 decreased significantly (P<0.05) in Group Ⅱ. Moreover, AVDO2 and CEO2 in Group Ⅱ were significantly lower than those of Group Ⅲ (P<0.05). In Group Ⅳ, 60 min after hyperventilation, SjvO2 and jugular venous oxygen content(CjvO2) decreased markedly (P<0.01) while CEO2 increased significantly (P<0.01). In addition, SjvO2, CjvO2 and CEO2 in Group Ⅳ were significantly different from the corresponding parameters in Group Ⅴ and Group Ⅵ (P<0.05). In view of sustained excessive hyperventilation, SjvO2 was less than 50% in 37.5% patients of Group Ⅳ. Conclusion: Anesthesia with

  19. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autot