Sample records for modeling candle flame

  1. Candle Flames in Microgravity Video (United States)


    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  2. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker (United States)

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea


    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  3. FTIR Study of Comustion Species in Several Regions of a Candle Flame (United States)

    White, Allen R.


    The complex chemical structure of the fuel in a candle flame, parafin, is broken down into smaller hydrocarbons in the dark region just above the candle wick during combustion. This creates fuel-rich, fuel-lean, hydrocarbon reaction, and combustion product regions in the flame during combustion that are spectroscopically rich, particularly in the infrared. IR emissions were measured for each reaction region via collection optics focused into an FTIR and used to identify IR active species present in that region and, when possible, temperature of the sampling region. The results of the measurements are useful for combustion reaction modeling as well as for future validation of mass spectroscopy sampling systems.

  4. A Double Candle-Flame-Shaped Solar Flare Observed by SDO and STEREO (United States)

    Gou, T.; Liu, R.; Wang, Y.; Liu, K.; Zhuang, B.; Zhang, Q.; Liu, J.


    We investigate an M1.4 flare occurring on 2011 January 28 near the northwest solar limb. The flare loop system exhibits a double candle-flame configuration in SDO/AIA's hot passbands, sharing a much larger cusp-shaped structure. The results of DEM analysis show that each candle flame has a similar temperature distribution as the famous Tsuneta flare. STEREO-A provides us a view from directly above the flare, and in SECCHI/EUVI 195 Å the post-flare loops are observed to propagate eastward. We performed a 3D reconstruction of the pos-flare loops with AIA and EUVI data. With the aid of the squashing factor Q based on a potential extrapolation of the photospheric field, we recognized that the footpoints of the post-flare loops were slipping along high-Q lines on the photosphere, and the reconstructed loops share similarity with the filed lines that are traced starting from the high-Q lines. The heights of the loops increase as they slip horizontally eastward, giving the loop-top a velocity of about 10 km/s. An extremely large EUV late phase in Fe XVI 33.5 nm observed by SDO/EVE is suggested to be related to the slipping magnetic reconnection occurring in the quasi-separatrix layers (QSLs) whose photosheric footprints are featured by the high-Q lines.

  5. Comparison of cosmological models using standard rulers and candles


    Li, Xiaolei; Cao, Shuo; Zheng, Xiaogang; Li, Song; Biesiada, Marek


    In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under assumption of spatial flatness of the Universe. As standard rulers, we used a data set comprising 118 galactic-scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Supernovae Ia served asstandard candles. Unlike in the most of previous statistica...

  6. Discerning dark energy models with high redshift standard candles (United States)

    Andersen, P.; Hjorth, J.


    Following the success of type Ia supernovae in constraining cosmologies at lower redshift (z ≲ 2), effort has been spent determining if a similarly useful standardizable candle can be found at higher redshift. In this work, we determine the largest possible magnitude discrepancy between a constant dark energy ΛCDM cosmology and a cosmology in which the equation of state w(z) of dark energy is a function of redshift for high redshift standard candles (z ≳ 2). We discuss a number of popular parametrizations of w(z) with two free parameters, wzCDM cosmologies, including the Chevallier-Polarski-Linder and generalization thereof, nCPL, as well as the Jassal-Bagla-Padmanabhan parametrization. For each of these parametrizations, we calculate and find the extrema of Δμ, the difference between the distance modulus of a wzCDM cosmology and a fiducial ΛCDM cosmology as a function of redshift, given 68 per cent likelihood constraints on the parameters P = (Ωm, 0, w0, wa). The parameters are constrained using cosmic microwave background, baryon acoustic oscillations and type Ia supernovae data using CosmoMC. We find that none of the tested cosmologies can deviate more than 0.05 mag from the fiducial ΛCDM cosmology at high redshift, implying that high redshift standard candles will not aid in discerning between the wzCDM cosmology and the fiducial ΛCDM cosmology. Conversely, this implies that if high redshift standard candles are found to be in disagreement with ΛCDM at high redshift, then this is a problem not only for ΛCDM but for the entire family of wzCDM cosmologies.

  7. Red clump stars and Gaia: calibration of the standard candle using a hierarchical probabilistic model (United States)

    Hawkins, Keith; Leistedt, Boris; Bovy, Jo; Hogg, David W.


    Distances to individual stars in our own Galaxy are critical in order to piece together the nature of its velocity and spatial structure. Core helium burning red clump (RC) stars have similar luminosities, are abundant throughout the Galaxy and thus constitute good standard candles. We build a hierarchical probabilistic model to quantify the quality of RC stars as standard candles using parallax measurements from the first Gaia data release. A unique aspect of our methodology is to fully account for (and marginalize over) parallax, photometry and dust correction uncertainties, which lead to more robust results than standard approaches. We determine the absolute magnitude and intrinsic dispersion of the RC in 2MASS bands J, H, Ks, Gaia G band and WISE bands W1, W2, W3 and W4. We find that the absolute magnitude of the RC is -1.61 ± 0.01 (in Ks), +0.44 ± 0.01 (in G), -0.93 ± 0.01 (in J), -1.46 ± 0.01 (in H), -1.68 ± 0.02 (in W1), -1.69 ± 0.02 (in W2), -1.67 ± 0.02 (in W3) and -1.76 ± 0.01 mag (in W4). The mean intrinsic dispersion is ˜0.17 ± 0.03 mag across all bands (yielding a typical distance precision of ˜8 per cent). Thus RC stars are reliable and precise standard candles. In addition, we have also re-calibrated the zero-point of the absolute magnitude of the RC in each band, which provides a benchmark for future studies to estimate distances to RC stars. Finally, the parallax error shrinkage in the hierarchical model outlined in this work can be used to obtain more precise parallaxes than Gaia for the most distant RC stars across the Galaxy.

  8. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    2Department of Ceramic Engineering, Gangneung-Wonju National University, Gangneung 210 702, Republic of Korea. MS received 15 March 2015; accepted 17 August 2015. Abstract. The electrochemical supercapacitor behaviour of bare, washed and nitric acid functionalized candle flame carbon soots were reported.

  9. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie


    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at © 2015 Taylor & Francis.

  10. Numerical modelling of ion transport in flames (United States)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.


    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at

  11. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions (United States)

    Bhatia, Pramod; Singh, Ravinder


    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  12. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; Exploring GRBs as Standard Candles (United States)

    Guiriec, S.; Kouveliotou, C.; Hartmann, D. H.; Granot, J.; Asano, K.; Meszaros, P.; Gill, R.; Gehrels, N.; McEnery, J.


    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB -ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.


    Energy Technology Data Exchange (ETDEWEB)

    Guiriec, S.; Kouveliotou, C. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Hartmann, D. H. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Granot, J.; Gill, R. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 4353701 (Israel); Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mészáros, P. [Department of Astronomy and Astrophysics and Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N.; McEnery, J., E-mail: [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and γ -ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB γ -ray prompt emission provides an excellent fit to GRB 110205A from optical to γ -ray energies. Our results show that the optical and highest γ -ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest γ -ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  14. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays: Exploring GRBs as Standard Candles (United States)

    Guiriec, Sylvain


    The Band function traditionally used for Gamma Ray Bursts (GRB) often fails to fit their prompt emission spectra. Our new model composed of three separate components provides an excellent description of the time-resolved prompt emission: a thermal-like and two non-thermal components. For the first time, analysis of GRBs with correlated optical and gamma-ray prompt emission show that our new model describes very accurately the whole broadband spectrum from the optical regime to higher energy gamma rays. In addition, this new model enables anew luminosity/hardness relation intrinsic to one of the non-thermal components showing that GRBs may be standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters. I will present this new unified model using analysis of GRBs detected with various observatories and instruments such as Fermi, CGRO/BATSE and the combination of the three instruments on board Swift and Suzaku/WAM. I will discuss here the striking similarities of GRB spectral shapes, whose components inform on the nature of the prompt emission, as well as the possible universality of the proposed luminosity/hardness relation in the context of our new model.

  15. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames (United States)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.


    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  16. Probing flame chemistry with MBMS, theory, and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, P.R. [Univ. of Massachusetts, Amherst (United States)


    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  17. Microgravity Turbulent Gas-Jet Diffusion Flames (United States)


    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  18. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker


    flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas...

  19. Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tianchao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    recent analysis of health impacts from air pollutant inhalation in homes found that PM2.5 is the most damaging at the population level. Chronic exposure to elevated PM2.5 has the potential to damage human respiratory systems, and may result in premature death. PM2.5 exposures in homes can be mitigated through various approaches including kitchen exhaust ventilation, filtration, indoor pollutant source reduction and designing ventilation systems to reduce the entry of PM2.5 from outdoors. Analysis of the potential benefits and costs of various approaches can be accomplished using computer codes that simulate the key physical processes including emissions, dilution and ventilation. The largest sources of PM2.5 in residences broadly are entry from outdoors and emissions from indoor combustion. The largest indoor sources are tobacco combustion (smoking), cooking and the burning of candles and incense. Data on the magnitude of PM2.5 and other pollutant emissions from these events and processes are required to conduct simulations for analysis. The goal of this study was to produce a database of pollutant emission rates associated with cooking and the burning of candles and incense. The target use of these data is for indoor air quality modeling.

  20. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  1. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.


    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  2. Modelling thermal radiation in buoyant turbulent diffusion flames (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.


    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  3. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam


    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  4. Modeling of flame assisted chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Masi, M.; Cavallotti, C.; Raffa, E. [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, 20131 Milano (Italy)


    The simulation of a flame assisted chemical vapor deposition (FACVD) process is here proposed with reference to the growth of silicon thin films through the silane/chlorosilanes/hydrogen/chlorine route. The goal is to design a reactor able to deposit micromorphous or multicrystalline films at the high growth rates necessary for photovoltaic applications. In fact, since FACVD processes can operate in atmospheric conditions and in auto-thermal mode, they present significant energetic advantages with respect to the plasma assisted technology used today. This work is in particular devoted to illustrate the multi-hierarchical modeling procedure adopted to determine the process optimal operating conditions and to design the deposition chamber. Different burner geometries (single, porous or multiple nozzles burner) were investigated in order to exploit the advantages of the two classical stagnation flow and Bunsen stretched flames. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Numerical modelling of swirling diffusive flames

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa


    Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.

  6. Modelling of local extinction and reignition of the flame

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland); Kjaeldman, L. [VTT Energy, Espoo (Finland); Jaeaeskelaeinen, K. [Imatran Voima Oy, Helsinki (Finland)


    The influence of the relations between the chemical time scale and the turbulent time scale on local extinction in turbulent flames has been studied. The results from the numerical investigation of a non-swirling flame in a sudden-expansion combustor was compared with measurements and computations reported in the literature. The turbulence-chemistry interaction was modelled using the Eddy-Dissipation Concept (EDC). In the study, different turbulent time scales were used; the Kolmogorov related time scale proposed in the EDC model and two turbulent time scales related to k/{epsilon}. The chemical time scale has been obtained from a model based on calculations with a comprehensive chemical reaction scheme. The results indicate that the Kolmogorov related time scale of the EDC model is too short to be used as an extinction criterium. The two k/{epsilon} related time scales both resulted in a closer agreement between the numerically obtained and the measured results. The result indicates that the time scale used in the EDC model should be further investigated before confident results from modelling of flows with extinction effects can be obtained. (author)

  7. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)


    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  8. Flame balls for a free boundary combustion model with radiative transfer

    NARCIS (Netherlands)

    van den Berg, G.J.B.; Guyonne, V.; Hulshof, J.


    We study radial flame ball solutions of a three-dimensional free boundary problem (FBP), which models combustion of a gaseous mixture with dust in a microgravity environment. The model combines diffusion of mass and temperature with reaction at the flame front, the reaction rate being temperature

  9. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu


    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  10. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie


    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  11. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng


    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome...

  12. Modeling wildland fire containment with uncertain flame length and fireline width (United States)

    Romain Mees; David Strauss; Richard Chase


    We describe a mathematical model for the probability that a fireline succeeds in containing a fire. The probability increases as the fireline width increases, and also as the fire's flame length decreases. More interestingly, uncertainties in width and flame length affect the computed containment probabilities, and can thus indirectly affect the optimum allocation...

  13. Organic aerosol formation in citronella candle plumes


    Bothe, Melanie; Donahue, Neil McPherson


    Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In rep...

  14. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation (United States)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.


    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  15. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    ... and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of ...

  16. Flame Length (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  17. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas


    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  18. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant ...

  19. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)


    other, the health risks associated with the use of allograft. (Hing et al 1999). .... very important reaction parameter. The lower value of furnace temperature was selected as 400°C and the upper value as 700°C. (iii) The precursor batch size was also identified as an ... of the value leads to unstable combustion flame. The con-.

  20. Structure of turbulent non-premixed flames modeled with two-step chemistry (United States)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.


    Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.

  1. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion. (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A


    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  2. 75 FR 44224 - Grant of Authority for Subzone Status; Yankee Candle Corporation (Candles and Gift Sets); Whately... (United States)


    ... Status; Yankee Candle Corporation (Candles and Gift Sets); Whately and South Deerfield, MA Pursuant to... special-purpose subzone at the candle and gift set manufacturing and distribution facilities of Yankee... activity related to the manufacturing and distribution of candles and gift sets at the facilities of Yankee...

  3. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone


    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO x emissions compared to diesel under lean burning conditions.

  4. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    diamond) and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte.

  5. 16 CFR 501.7 - Candles. (United States)


    ... quantity of contents shall be expressed in terms of count and measure (e.g., length and diameter), to the extent that diameter of such candles need not be expressed. The requirements of § 500.7 of this chapter...

  6. Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames using a Parallel Solution-Adaptive Scheme (United States)

    Jha, Pradeep Kumar

    Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow

  7. Investigating the Effect of Cosmic Opacity on Standard Candles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Yu, H.; Wang, F. Y., E-mail: [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)


    Standard candles can probe the evolution of dark energy over a large redshift range. But the cosmic opacity can degrade the quality of standard candles. In this paper, we use the latest observations, including Type Ia supernovae (SNe Ia) from the “joint light-curve analysis” sample and Hubble parameters, to probe the opacity of the universe. A joint fitting of the SNe Ia light-curve parameters, cosmological parameters, and opacity is used in order to avoid the cosmological dependence of SNe Ia luminosity distances. The latest gamma-ray bursts are used in order to explore the cosmic opacity at high redshifts. The cosmic reionization process is considered at high redshifts. We find that the sample supports an almost transparent universe for flat ΛCDM and XCDM models. Meanwhile, free electrons deplete photons from standard candles through (inverse) Compton scattering, which is known as an important component of opacity. This Compton dimming may play an important role in future supernova surveys. From analysis, we find that about a few per cent of the cosmic opacity is caused by Compton dimming in the two models, which can be corrected.

  8. When a Standard Candle Flickers

    DEFF Research Database (Denmark)

    Wilson-Hodge, Colleen A; Cherry, Michael L; Case, Gary L


    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma-ray telescopes. Although small-scale variations in the nebula are well known......, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in 2008 August, a ~ 7% (70 mCrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the ~ 15-50 ke......-100 keV band with GBM, Swift /BAT, and INTEGRAL /IBIS. The pulsed flux measured with RXTE /PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a ~ 3 year timescale are also seen independently...

  9. Modeling of flame lift-off length in diesel low-temperature combustion with multi-dimensional CFD based on the flame surface density and extinction concept (United States)

    Azimov, Ulugbek; Kim, Ki-Seong; Bae, Choongsik


    Low-Temperature Combustion (LTC) is becoming a promising technology for simultaneously reducing soot and NOx emissions from diesel engines. LTC regimes are evaluated by the flame lift-off length - the distance from the injector orifice to the location of hydroxyl luminescence closest to the injector in the flame jet. Various works have been dedicated to successful simulations of lifted flames of a diesel jet by use of various combustion modeling approaches. In this work, flame surface density and flamelet concepts were used to model the diesel lift-off length under LTC conditions. Numerical studies have been performed with the ECFM3Z model, n-Heptane and diesel fuels to determine the flame lift-off length and its correlation with soot formation under quiescent conditions. The numerical results showed good agreement with experimental data, which were obtained from an optically accessible constant volume chamber and presented at the Engine Combustion Network (ECN) of Sandia National Laboratories. It was shown that at a certain distance downstream from the injector orifice, stoichiometric scalar dissipation rate matched the extinction scalar dissipation rate. This computed extinction scalar dissipation rate correlated well with the flame lift-off length. For the range of conditions investigated, adequate quantitative agreement was obtained with the experimental measurements of lift-off length under various ambient gas O2 concentrations, ambient gas temperatures, ambient gas densities and fuel injection pressures. The results showed that the computed lift-off length values for most of the conditions lay in a reasonable range within the quasi-steady lift-off length values obtained from experiments. However, at ambient temperatures lower than 1000 K, the lift-off length values were under-predicted by the numerical analysis. This may be due to the use of the droplet evaporation model as it is believed that evaporation has a strong effect on the lift-off length.

  10. DC field response of one-dimensional flames using an ionized layer model

    KAUST Repository

    Xiong, Yuan


    We develop a simplified model to better explain electric current response when direct current (DC) is applied to a flame. In particular, different current responses have been observed by changing the polarity of the DC in a sub-saturated current regime that results from the presence of ions and electrons in the flame zone. A flame zone was modeled as a thin, ionized layer located in one-dimensional DC electric fields. We derived simplified model-governing equations from species equations by implementing mobility differences dependent on the type of charged particle, particularly between ions and electrons; we performed experiments to substantiate the model. Results showed that the sub-saturated current and local field intensity were significantly influenced by the polarity of the DC because of the combined effect of unequal mobility of charged particles and the position of the ionized layer in the gap relative to two electrodes. When an energized electrode is close to the ionized layer, applying a negative DC causes a more rapid increase in current than by applying a positive DC to the same electrode. Results from our experimental measurement of current using counterflow diffusion flames agreed qualitatively well with the model predictions. A sensitivity analysis using dimensional and non-dimensional parameters also supported the importance of the mobility difference and the relative location of the ionized layer on the electric current response.

  11. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results

    Energy Technology Data Exchange (ETDEWEB)

    Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Ghoneim, Z.A. [Ain Shams Univ., Abassia (Egypt)


    Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.

  12. When A Standard Candle Flickers (United States)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen Elif; Bhat, P. Narayana; Briggs, Michael S.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; hide


    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma ray telescopes. Although small-scale variations in the nebula are well-known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in August 2008 a 7% (70 mcrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the 15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board INTEGRAL (IBIS). A similar decline is also observed in the 3 - 15 keV data from the RXTE/PCA and in the 50 - 100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The change in the pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a 3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in April 2007. As of August 2010, the current flux has declined below the 2007 minimum.

  13. Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification

    Directory of Open Access Journals (Sweden)

    A. Huber


    Full Text Available For the analysis of thermoacoustic instabilities it is most important to determine the dynamic flame response to acoustic disturbances. Premixed flames are often modelled as single-input single-output system, where the “output” (the overall rate of heat release responds to a single “input” variable (often the velocity at the exit of the burner nozzle. However, for practical premixed flames, where perturbations of pressure or velocity at the fuel injector will modulate the fuel equivalence ratio, the heat release rate will respond to fluctuations of equivalence ratio as well as nozzle mass flow rate. In this case, a multiple-input, single-output (MISO model structure for the flame is appropriate. Such a model structure is developed in the present paper. Staged fuel injection as well as fuel line impedances can be taken into account, the integration with low-order or finite-element based models for stability analysis is straightforward. In order to determine unit impulse and frequency response functions for such a model structure, an identification scheme based on unsteady CFD calculation with broadband excitation followed by correlation analysis is proposed and validated successfully. Identification of MISO model coefficients is a challenging task, especially in the presence of noise. Therefore criteria are introduced which allow to ascertain a posteriori how well the identified model represents the true system dynamics. Using these criteria, it is investigated how excitation signal type, time series length and signal-to-noise ratio influence the results of the identification process. Consequences for passive design strategies based on multi-stage fuel injection and experimental work on practical premixed flame dynamics are discussed.

  14. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4 (United States)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.


    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  15. Social and Economic Impact of the Candle Light Source Project Candle project impact (United States)

    Baghiryan, M.

    Social and economic progress related to the realization of the CANDLE synchrotron light source creation project in Armenia is discussed. CANDLE service is multidisciplinary and long-lasting. Its impacts include significant improvement in science capacities, education quality, industrial capabilities, investment climate, country image, international relations, health level, restraining the "brain-drain", new workplaces, etc. CANDLE will serve as a universal national infrastructure assuring Armenia as a country with knowledge-based economy, a place for doing high-tech business, and be a powerful tool in achieving the country's jump forward in general.

  16. 75 FR 63200 - Petroleum Wax Candles From China (United States)


    ... COMMISSION Petroleum Wax Candles From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on petroleum wax candles... whether revocation of the antidumping duty order on petroleum wax candles from China would be likely to...

  17. 75 FR 80843 - Petroleum Wax Candles From China (United States)


    ... COMMISSION Petroleum Wax Candles From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on petroleum wax candles from China would be likely to lead to continuation or... Petroleum Wax Candles from China: Investigation No. 731-TA-282 (Third Review). Issued: December 17, 2010. By...

  18. Evolution of charged species in propane/air flames: mass-spectrometric analysis and modelling (United States)

    Rodrigues, J. M.; Agneray, A.; Jaffrézic, X.; Bellenoue, M.; Labuda, S.; Leys, C.; Chernukho, A. P.; Migoun, A. N.; Cenian, A.; Savel'ev, A. M.; Titova, N. S.; Starik, A. M.


    Experimental and modelling studies of ion formation during combustion of propane/air mixtures are presented. The positive and negative ions mass/charge spectra in propane/air stoichiometric flame at atmospheric pressure are recorded in the range from 0 to 512 atomic mass units. The C2H3O+ and HCO_{2}^{-} ions are found to be the most abundant ionic species in the flame front region. By increasing the distance from the flame front the ion composition changes significantly. In the burnt gas region the H3O+, NO+, CO_{3}^{-} , HCO_{3}^{-} ions are found to be the major charged species. To explain the experimental results the extended kinetic model describing the ion formation in flame and in the extraction system of the mass-spectrometer as well as ion-soot interaction is developed. It is shown that the ionic clusters, which are observed experimentally, form during the adiabatic expansion in the extraction system, and the presence of soot particles may change the total positive and negative ion concentrations in the gas phase. This paper was presented at the Second International Symposium on Nonequilibrium Processes, Combustion, and Atmospheric Phenomena (Dagomys, Sochi, Russia, 3-7 October 2006).

  19. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells. (United States)

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin


    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  20. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography (United States)

    Liu, Chang; Cao, Zhang; Li, Fangyan; Lin, Yuzhen; Xu, Lijun


    Distributions of temperature and H2O concentration in a swirling flame are critical to evaluate the performance of a gas turbine combustor. In this paper, 1D tunable diode laser absorption spectroscopy tomography (1D-TDLAST) was introduced to monitor swirling flames generated from a model swirl injector by simultaneously reconstructing the rotationally symmetric distributions of temperature and H2O concentration. The optical system was sufficiently simplified by introducing only one fan-beam illumination and a linear detector array of 12 equally-spaced photodetectors. The fan-beam illumination penetrated a cross section of interest in the swirling flame and the transmitted intensities were detected by the detector array. With the transmitted intensities in hand, projections were extracted and employed by a 1D tomographic algorithm to reconstruct the distributions of temperature and H2O concentration. The route of the precessing vortex core generated in the swirling flame can be easily inferred from the reconstructed profiles of temperature and H2O concentration at different heights above the nozzle of the swirl injector.

  1. Simple Flame Test Techniques Using Cotton Swabs (United States)

    Sanger, Michael J.; Phelps, Amy J.


    This article describes three new methods for performing simple flame tests using cotton swabs. The first method uses a Bunsen burner and solid metal salts; the second method uses a Bunsen burner and 1 M aqueous solutions of metal salts; and the third method uses candles, rubbing alcohol, and solid metal salts. These methods have the advantage of being easy to perform, require inexpensive and easily-obtained materials, and have easy cleanup and disposal methods. See the Discussion on this Tested Demonstation .

  2. Progress in research on chlorate candle technology (United States)

    Littman, J.


    Research and development program improves sodium chlorate candle formulation, production method, and igniter design. Cobalt is used as the fuel, dry processing methods are used to lower the water content, and a device based on pyrotechnic heater concepts is used as the igniter.

  3. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    diamond) and G (graphite) phase of carbon present in the candle ... bute as a potential material for various modern applications. [27,28]. In recent times, the ... used for bio-imaging application and confirmed that these fluorescent carbon nanoparticles ...

  4. The Chemical History of a Candle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. The Chemical History of a Candle. H R Madhusudan. Book Review Volume 7 Issue 3 March 2002 pp 87-89. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  5. The Chemical History of a Candle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. The Chemical History of a Candle. Michael Faraday. Classics Volume 7 Issue 3 March 2002 pp 90-98. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  6. The Chemical History of a Candle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. The Chemical History of a Candle. H R Madhusudan. Book Review Volume 7 Issue 3 March 2002 pp 87-89. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  7. A Modeling Tool for Household Biogas Burner Flame Port Design (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  8. Strain rate and fuel composition dependence of chemiluminescent species profiles in non-premixed counterflow flames: comparison with model results (United States)

    Prabasena, B.; Röder, M.; Kathrotia, T.; Riedel, U.; Dreier, T.; Schulz, C.


    A detailed comparison has been conducted between chemiluminescence (CL) species profiles of OH∗, CH∗, and C2 ∗, obtained experimentally and from detailed flame kinetics modeling, respectively, of atmospheric pressure non-premixed flames formed in the forward stagnation region of a fuel flow ejected from a porous cylinder and an air counterflow. Both pure methane and mixtures of methane with hydrogen (between 10 and 30 % by volume) were used as fuels. By varying the air-flow velocities methane flames were operated at strain rates between 100 and 350 s-1, while for methane/hydrogen flames the strain rate was fixed at 200 s-1. Spatial profiles perpendicular to the flame front were extracted from spectrograms recorded with a spectrometer/CCD camera system and evaluating each spectral band individually. Flame kinetics modeling was accomplished with an in-house chemical mechanism including C1-C4 chemistry, as well as elementary steps for the formation, removal, and electronic quenching of all measured active species. In the CH4/air flames, experiments and model results agree with respect to trends in profile peak intensity and position. For the CH4/H2/air flames, with increasing H2 content in the fuel the experimental CL peak intensities decrease slightly and their peak positions shift towards the fuel side, while for the model the drop in mole fraction is much stronger and the peak positions move closer to the fuel side. For both fuel compositions the modeled profiles peak closer to the fuel side than in the experiments. The discrepancies can only partly be attributed to the limited attainable spatial resolution but may also necessitate revised reaction mechanisms for predicting CL species in this type of flame.

  9. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)


    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  10. Experimental study and modeling of flame propagation in confined or semi confined areas

    International Nuclear Information System (INIS)

    Coudoro, Kodjo


    The context of the current study is the assessment of the occurrence of flame acceleration in accidental situations. The methodology developed for the assessment of hydrogen hazard in the nuclear industry led to the definition of a criterion for the prediction of the acceleration potential of a hydrogen/air/diluent mixture based on its properties. This study aims to extend this methodology to gaseous mixtures that can be encountered in the classical industry. Therefore, three mixtures were chosen: the first two are representatives of a natural gas/air mixture: G27 (82%CH 4 /18%N 2 ) and G222 (77%CH 4 /23%H 2 ). The third one is a H 2 /CO (50%H 2 /50%CO) mixture and represents the Syngas. During this work, flammability limits were measured at 300 K and two initial pressures (1 and 2 bar) for each mixture. Fundamental flame speeds and Markstein lengths were also measured at three initial temperatures (300, 330, 360 K) and 2 initial pressures (1 and 2 bar) for each mixtures. A kinetic modeling was performed based on three detailed kinetic models and allowed the calculation of the global activation energy on the basis of the kinetic model which showed the best agreement with the experimental data. The acceleration potential for each mixture in presence of obstacles has then been investigated. It was found that different criteria were to be applied depending on whether the flame is stable or not. A predicting criterion was proposed in both case. (author) [fr

  11. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de


    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  12. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)


    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  13. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed


    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  14. Stellar candles for the extragalactic distance scale

    CERN Document Server

    Gieren, Wolfgang


    This volume reviews the current status with respect to both theory and observation of the extragalactic distance scale. A sufficient accuracy is required both for a precise determination of the cosmological parameters and also in order to achieve a better understanding of physical processes in extragalactic systems. The "standard candles", used to set up the extragalactic distance scale, reviewed in this book include cepheid variables, RR Lyrae variables, novae, Type Ia and Type II supernovae as well as globular clusters and planetary nebulae.

  15. Difficulties in Using GRBs as Standard Candles (United States)

    Goldstein, Adam


    Gamma-Ray Bursts have been detected uniformly all over the observable universe, ranging in comoving distance from a few hundred Mpc to a few thousand Mpc, representing the farthest observable objects in the universe. This large distance coverage is highly attractive to those who study cosmology and the history of the early universe since there are no other observed objects that represent such a deep and comprehensive probe of the history of the universe. For this reason, there have been extensive studies into the possibility of using GRBs as standard candles much like Type Ia Supernovae, even though little is known about the physical mechanism that produces the observed burst of gamma-rays. We discuss the attempts at defining GRBs as standard candles, such as the search for a robust luminosity indicator, pseudo-redshift predictions, the complications that emission collimation introduces into the estimation of the rest-frame energetics, and the difficulty introduced by the widely varying observed properties of GRBs. These topics will be examined with supporting data and analyses from both Fermi and Swift observations. Problems with current studies using GRBs as standard candles will be noted as well as potential paths forward to solve these problems.

  16. The Gaia Red Clump as standard candle (United States)

    Ruiz-Dern, L.; Babusiaux, C.; Danielski, C.; Arenou, F.; Turon, C.; Lallement, R.


    Gaia has already provided new high precision parallaxes for two million objects, allowing to recalibrate standard candles. Red Clump stars are known to be good standard candles because of their small dependency of their luminosity on their stellar composition, colour and age. We developed methods to derive some of the main physical parameters to characterise the Red Clump as standard candle. We provide fully empirical calibrations by using visual to infrared photometry, the most up-to-date 3D extinction map, and spectroscopic atmosphere parameters. We derived new calibrations for 16 Colour-(\\gk) and Effective Temperature-(\\gk) relations and a new calibration of the RC absolute magnitude on the Gaia G and 2MASS \\ks bands. These calibrations are used afterwards to estimate the G-band interstellar extinction coefficient k_{G}. By combining of all these relations we implemented a method to determine effective temperatures and interstellar extinctions (A_0), which we will use in particular to derive asteroseismic parameters which can be directly compared with Gaia's results.

  17. Temperature bounds in a model of laminar flames

    International Nuclear Information System (INIS)

    Kirane, M.; Badraoui, S.


    We consider reaction-diffusion equations coupling temperature and mass fraction in one-step-reaction model of combustion in R N . Uniform temperature bounds are derived when the Lewis number is less than one. This result completes the case of Lewis number greater than one studied by J.D. Avrin and M. Kirane ''Temperature growth and temperature bounds in special cases of combustion models'' (to appear in Applicable Analysis). (author). 5 refs

  18. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David


    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  19. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives (United States)

    Smolenskaya, N. M.; Smolenskii, V. V.


    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  20. Direct drive ablation front stability: numerical predictions against flame front model

    Energy Technology Data Exchange (ETDEWEB)

    Masse, L. [Phd Student at IRPHE St Jerome, 13 - Marseille (France)]|[CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France); Hallo, L.; Tallot, C. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)


    We study the linear stability of flows resulting from constant heating of planar targets by a laser. In the coordinate system of the ablation front there is a flow from the cold to hot region, which is situated in a gravity field oriented from hot to cold region. Similar types of flow can be observed in combustion systems, which involve propagation of flame fronts. A spectral model which studies linear perturbation is directly taken from the combustion community. Here we present the results for state as well as perturbed flows. Growth rate determined from the models are compared to each other, and preliminary numerical results from FC12 simulations are shown. (authors)

  1. A priori tests of combustion models based on a CH{sub 4}/H{sub 2} Triple Flame

    Energy Technology Data Exchange (ETDEWEB)

    Dombard, J.; Naud, B.; Jimenez Sanchez, C.


    This document reproduces the final project of Jerome Dombard, presented on June 25, 2008, for the obtention of the Master degree MIMSE (Master Ingenierie Mathematique, Statistique et Economique) of Bordeaux University (Universite Bordeaux 1). We make an a priori study of FPI/FGM-type turbulent combustion models using a 2D DNS of a triple flame. A reduced chemical scheme of 16 species and 12 reactions is used (ARM1, proposed by J.-Y. Chen at Berkeley University). The fuel (CH4/H2 mixture) and oxidizer (air) correspond to the inlet composition of the Sydney bluff-body stabilised flame experiments (flames HM1-3). First, we compute 1D laminar premixed flames. The purpose of those calculations is twofold: 1. check the differences between different computer programs and different treatments of molecular diffusion, and 2. calibrate the 2D-DNS of the laminar triple flame (mainly decide on the grid resolution). Then, the solution of the 2D laminar triple flame is used to test a priori FPI/FGM tables. Finally, preliminary considerations on sub-grid scale modelling in the context of Large Eddy Simulation are made. (Author) 14 refs.

  2. Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame

    Directory of Open Access Journals (Sweden)

    Manedhar Reddy Busupally


    Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.

  3. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor (United States)

    Nau, Patrick; Yin, Zhiyao; Geigle, Klaus Peter; Meier, Wolfgang


    Wall temperatures were measured with thermographic phosphors on the quartz walls of a model combustor in ethylene/air swirl flames at 3 bar. Three operating conditions were investigated with different stoichiometries and with or without additional injection of oxidation air downstream of the primary combustion zone. YAG:Eu and YAG:Dy were used to cover a total temperature range of 1000-1800 K. Measurements were challenging due to the high thermal background from soot and window degradation at high temperatures. The heat flux through the windows was estimated from the temperature gradient between the in- and outside of the windows. Differences in temperature and heat flux density profiles for the investigated cases can be explained very well with the previously measured differences in flame temperatures and flame shapes. The heat loss relative to thermal load is quite similar for all investigated flames (15-16%). The results complement previous measurements in these flames to investigate soot formation and oxidation. It is expected, that the data set is a valuable input for numerical simulations of these flames.

  4. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.


    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  5. Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames

    International Nuclear Information System (INIS)

    Yılmaz, İlker; Taştan, Murat; İlbaş, Mustafa; Tarhan, Cevahir


    Highlights: • Numerical simulation of propane and propane–hydrogen blending fuel was performed. • The effects of turbulence and radiation model on combustion were examined. • Comparison showed that RNG and P–I models give a better agreement with measurements. • As burner and combustor fuel, hydrogen may be considered a good alternative. - Abstract: This paper presents numerical simulation results of propane, propane–hydrogen blending diffusion flames in a combustion chamber. The numerical simulations using Fluent CFD code were carried out by changing fuel blending from pure propane (100% C 3 H 8 ) to propane–hydrogen blending including 90% C 3 H 8 –10% H 2 , 80% C 3 H 8 –20% H 2 , 10% C 3 H 8 –90% H 2 , 20% C 3 H 8 –80% H 2 by volume. A two-dimensional axis-symmetric numerical model was solved to investigate the effects of the turbulence and radiation models on the combustion characteristics such as temperature, and gas concentration distributions. The combustion reaction scheme in the flame region was modeled using eddy dissipation model with global reaction scheme. The effects of two turbulence models including RNG k–ε, and Reynolds Stress Model, RSM, and two different radiation models including P–I and discrete transfer model were examined on combustion characteristics. The predictions are validated and compared with the published experimental and simulation results. Numerical results show that the velocity profiles, temperature gradients, CO 2 and O 2 concentrations profiles are overall agreement with published measurement and simulation results in the literature

  6. Modeling of free and confined turbulent natural gas flames using an extension of CFX-F3D

    Energy Technology Data Exchange (ETDEWEB)

    Roekaerts, D. [Shell Research and Technology Centre, Amsterdam (Netherlands); Hsu, A.


    A general form of the fast chemistry / assumed shape probability density function model for turbulent gaseous diffusion flames has been implemented in a new combination of computer programs consisting of the commercial code CFX-F3D (formerly CFDS-FLOW3D) and the program FLAME, developed at Delft University of Technology. Also a mixedness-reactedness model with two independent variables (mixture fraction and reaction progress variable) has been implemented. The main strength of the new program is that it combines the advantages of a general purpose commercial CFD code (applicable to arbitrarily shaped domains, wide range of solvers) with the advantages of special purpose combustion subroutines (more detail in modeling of chemistry and of turbulence-chemistry interaction, flexibility). The new combination of programs has been validated by the application to the prediction of the properties of a labscale turbulent natural gas diffusion flame for which detailed measurements are available. The mixedness-reactedness model has been applied to the case of a confined natural gas diffusion flame at globally rich conditions. In contrast with fast chemistry models, the mixedness-reactedness model can be used to predict the amount of methane at the end of the reactor vessel (`methane slip`) as a function of operating conditions. (author)

  7. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu


    A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were

  8. Computational fluid dynamic modeling of the flame spray pyrolysis process for silica nanopowder synthesis

    International Nuclear Information System (INIS)

    Olivas-Martinez, Miguel; Sohn, Hong Yong; Jang, Hee Dong; Rhee, Kang-In


    A computational fluid dynamic model that couples the fluid dynamics with various processes involving precursor droplets and product particles during the flame spray pyrolysis (FSP) synthesis of silica nanopowder from volatile precursors is presented. The synthesis of silica nanopowder from tetraethylorthosilicate and tetramethylorthosilicate in bench- and pilot-scale FSP reactors, with the ultimate purpose of industrial-scale production, was simulated. The transport and evaporation of liquid droplets are simulated from the Lagrangian viewpoint. The quadrature method of moments is used to solve the population balance equation for particles undergoing homogeneous nucleation and Brownian collision. The nucleation rate is computed based on the rates of thermal decomposition and oxidation of the precursor with no adjustable parameters. The computed results show that the model is capable of reproducing the magnitude as well as the variations of the average particle diameter with different experimental conditions using a single value of the collision efficiency factor α for a given reactor size

  9. Humphrey Davy and the Safety Lamp: The Use of Metal Gauze as a Flame Barrier (United States)

    Mills, Allan


    The "safety lamp" invented by Humphrey Davy in 1815 utilised the cooling effect of metal gauze to prevent the flame of a candle or oil lamp (essential for illumination in mines) from passing through such a screen. It is therefore rendered unable to ignite any potentially explosive mixture of air and methane in the atmosphere surrounding…

  10. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management (United States)

    Jack D. Cohen; Bret W. Butler


    Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...

  11. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus (United States)

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise


    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  12. Accumulation of organochlorines and brominated flame retardants in estuarine and marine food chains : Field measurements and model calculations

    NARCIS (Netherlands)

    Veltman, Karin; Hendriks, Jan; Huijbregts, Mark; Leonards, Pim; Van Den Heuvel-Greve, Martine; Vethaak, Dick


    Food chain accumulation of organochlorines and brominated flame retardants in estuarine and marine environments is compared to model estimations and fresh water field data. The food chain consists of herbivores, detritivores and primary and secondary carnivores i.e. fish, fish-eating birds and

  13. Accumulation of organochlorines and brominated flame retardants in estuarine and marine food chains: Field measurements and model calculations

    NARCIS (Netherlands)

    Veltman, K.; Hendriks, J.; Huijbregts, M.; Leonards, P.E.G.; Heuvel-Greve, van den M.J.; Vethaak, D.


    Food chain accumulation of organochlorines and brominated flame retardants in estuarine and marine environments is compared to model estimations and fresh water field data. The food chain consists of herbivores, detritivores and primary and secondary carnivores i.e. fish, fish-eating birds and

  14. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio


    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  15. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. (United States)

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz


    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants. (United States)

    Kovarich, Simona; Papa, Ester; Gramatica, Paola


    The identification of potential endocrine disrupting (ED) chemicals is an important task for the scientific community due to their diffusion in the environment; the production and use of such compounds will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data, the quantitative structure-activity relationship (QSAR) approach is applied to predict the ED activity of new chemicals. In the present study QSAR classification models are developed, according to the OECD principles, to predict the ED potency for a class of emerging ubiquitary pollutants, viz. brominated flame retardants (BFRs). Different endpoints related to ED activity (i.e. aryl hydrocarbon receptor agonism and antagonism, estrogen receptor agonism and antagonism, androgen and progesterone receptor antagonism, T4-TTR competition, E2SULT inhibition) are modeled using the k-NN classification method. The best models are selected by maximizing the sensitivity and external predictive ability. We propose simple QSARs (based on few descriptors) characterized by internal stability, good predictive power and with a verified applicability domain. These models are simple tools that are applicable to screen BFRs in relation to their ED activity, and also to design safer alternatives, in agreement with the requirements of REACH regulation at the authorization step. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah


    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth, and oxidation of soot, with a focus on the effects of pressure on soot yield. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements, like the temperature field, the species’ concentrations and the soot volume fraction. Fully coupled conservation equations for mass, momentum, energy, and species mass fractions are solved using a low Mach number formulation. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydrocarbons up to cyclopenta[cd]pyrene is used. Soot is modeled using a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Reasonable agreement is observed for the flame height, temperature, and the concentrations of various species. In each case, the peak soot volume fraction is predicted along the centerline as observed in the experiments. The predicted integrated soot mass at pressures ranging from 4-8 atm, scales as P2.1, in satisfactory agreement with the measured integrated soot pressure scaling (P2.27). Significant differences in the mole fractions of benzene and PAHs, and the predicted soot volume fractions are found, using two well-validated chemical kinetic mechanisms. At 4 atm, one mechanism over-predicts the peak soot volume fraction by a factor of 5, while the other under-predicts it by a factor of 5. A detailed analysis shows that the fuel tube wall temperature has an effect on flame stabilization.

  18. The effect of turbulence model variation on flame propagation in a particular 4-valve engine combustion chamber (United States)

    Jovanovic, Z.; Masonicic, Z.


    In this paper some initial results concerning the evolution of flame propagation in 4-valve engines with tilted valves were presented. Results were obtained by dint of multidimensional modeling of reactive flows in arbitrary geometry with moving boundaries. During induction fluid flow pattern was characterized with organized tumble motion followed by small but clearly legible deterioration in the vicinity of BDC. During compression the fluid flow pattern is entirely three-dimensional and fully controlled by vortex motion located in the central part of the chamber. The effect of turbulence model variation on flame propagation was tackled as well. Namely, some results obtained with eddy-viscosity model i.e. standard k-ɛ model were compared with results obtained with k-ξ-f model of turbulence in domain of 4-valve engine in-cylinder flow. Some interesting results emerged rendering impetus for further quest in the near future. In the case of combustion all differences ensuing from turbulence model variation, encountered in the case of non-reactive flow were annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards both turbulence models applied.

  19. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants. (United States)

    Papa, Ester; Kovarich, Simona; Gramatica, Paola


    In the European Union REACH regulation, the chemicals with particularly harmful behaviors, such as endocrine disruptors (EDs), are subject to authorization, and the identification of safer alternatives to these chemicals is required. In this context, the use of quantitative structure-activity relationships (QSAR) becomes particularly useful to fill the data gap due to the very small number of experimental data available to characterize the environmental and toxicological profiles of new and emerging pollutants with ED behavior such as brominated flame retardants (BFRs). In this study, different QSAR models were developed on different responses of endocrine disruption measured for several BFRs. The multiple linear regression approach was applied to a variety of theoretical molecular descriptors, and the best models, which were identified from all of the possible combinations of the structural variables, were internally validated for their performance using the leave-one-out (Q(LOO)(2) = 73-91%) procedure and scrambling of the responses. External validation was provided, when possible, by splitting the data sets in training and test sets (range of Q(EXT)(2) = 76-90%), which confirmed the predictive ability of the proposed equations. These models, which were developed according to the principles defined by the Organization for Economic Co-operation and Development to improve the regulatory acceptance of QSARs, represent a simple tool for the screening and characterization of BFRs.

  20. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol. (United States)

    Li, Yuyang; Yuan, Wenhao; Li, Tianyu; Li, Wei; Yang, Jiuzhong; Qi, Fei


    n-Butanol is a promising renewable biofuel and has a lot of advantages as a gasoline additive compared with ethanol. Though the combustion of pure n-butanol has been extensively investigated, the chemical structures of large hydrocarbons doped with n-butanol, especially for aromatic fuels, are still insufficiently understood. In this work, rich premixed toluene/n-butanol/oxygen/argon flames were investigated at 30 Torr with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The blending ratio of n-butanol was varied from 0 to 50%, while the equivalence ratio was maintained at a quite rich value (1.75) for the purpose of studying the influence of n-butanol on the aromatic growth process. Flame species including radicals, reactive molecules, isomers and polycyclic aromatic hydrocarbons (PAHs) were identified and their mole fraction profiles were measured. A kinetic model of toluene/n-butanol combustion was developed from our recently reported toluene and n-butanol models. It is observed that the production of most toluene decomposition products and larger aromatics was suppressed as the blending ratio of n-butanol increases. Meanwhile, the addition of n-butanol generally enhanced the formation of most observed C 2 -C 4 hydrocarbons and C 1 -C 4 oxygenated species. The rate of production (ROP) analysis and experimental observations both indicate that the interaction between toluene and n-butanol in their decomposition processes mainly occurs at the formation of small intermediates, e.g. acetylene and methyl. In particular, the interaction between toluene and n-butanol in methyl formation influences the formation of large monocyclic aromatics such as ethylbenzene, styrene and phenylacetylene, making their maximum mole fractions decay slowly upon increasing the blending ratio of n-butanol compared with toluene and benzyl. The increase of the blending ratio of n-butanol reduces the formation of key PAH precursors such as benzyl, fulvenallenyl

  1. Flame analysis using image processing techniques (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng


    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.


    Directory of Open Access Journals (Sweden)



    Full Text Available The effect of simplified chemical kinetic model on the micro-flame structure, central axis and wall temperatures were investigated with different one-step global chemical kinetic mechanisms following Mantel, Duterque and Fernández-Tarrazo models. Numerical investigations of the premixed methane-air flame in the micro-channel and lean conditions were carried out to compare and analyze the effect of the comprehensive chemical kinetic mechanisms. The results indicate that one-step global chemical kinetic mechanism affects both the micro-flame shape and the combustion temperature. Among three simulation models, Mantel model allows a stable micro-flame with a bamboo shoot form, which anchor at the inlet. Duterque model gives a stable elongated micro-flame with a considerable ignition delay, and a dead zone with fluid accumulation is observed at the entrance, which may explain the very high combustion temperature and the fast reaction rate obtained, despite the micro-flame development presents a very hot spot and causes a broadening of the combustion zone. Fernández-Tarrazo model results in a rapid extinction and doesn't seem to take all the kinetic behavior into account for the appropriate micro-combustion simulations.

  3. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.


    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model predicts the mean flame base standoff distance; the flame base area, curvature and speed; and the burner plate temperature given the operating conditions; the mean velocity, temperature and equivalence ratio of the reactants; thermal conductivity and the perforation ratio of the burner. This coupled model is combined with our flame transfer function (FTF) model to predict the dynamic response of the flame to velocity perturbations. We show that modeling the thermal coupling between the flame and the burner, while accounting for the two-dimensionality of the former, is critical to predicting the dynamic response characteristics such as the overshoot in the gain curve (resonant condition) and the phase delay. Good agreement with the numerical and experimental results is demonstrated over a range of conditions. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  4. Tallow Candles and Meaty Air in 'Bleak House'

    Directory of Open Access Journals (Sweden)

    Anna Henchman


    Full Text Available In Charles Dickens’s 'Bleak House' there is a strange (and disgusting pattern of characters feeling that they can ‘taste’ the air, and that that air tastes either meaty or greasy. Esther notices that snuffing ‘two great office candles in tin candlesticks’ at Mrs Jellyby’s ‘made the room taste strongly of hot tallow’, the mutton or beef fat out of which inexpensive candles were made. In 'Bleak House', candles retain their sheepy atmospheres and release them into the surrounding air when consumed. Mrs Jellyby’s home and Mr Vholes’s office are just two places in which Dickens suggests that the process of turning organic animal bodies into urban commodities (candles, parchment, wigs has not quite been completed. Candles and parchment are part animal, part object, and they constantly threaten to revert back into their animal forms. The commodification of animal bodies occurs primarily in the city, where parts of formerly living bodies are manufactured into things. Filled with the smell of burning chops or a spontaneously combusted human, Dickens’s greasier atmospheres contain animal matter suspended in the air that the characters smell, taste, and touch. Once we realize that the apparent smell of chops and candles is, in fact, Krook’s body, this act of taking the air becomes a form of cannibalism that is at least as unsettling as Michael Pollan’s recent account of cows being fed cow parts in factory farms. Drawing on this insight and on Allen MacDuffie’s analyses of energy systems in 'Bleak House', this article focuses on instances in which Dickens defamiliarizes the human consumption of energy by having his characters unintentionally ingest animal particles. Studying Dickens’s treatment of animal fat suspended in air adds a new dimension to recent work on systems of energy expenditure and exchange in an age of industrial capitalism.

  5. Optimized Design and Discussion on Middle and Large CANDLE Reactors

    Directory of Open Access Journals (Sweden)

    Xiaoming Chai


    Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.

  6. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments (United States)

    Mark A. Dietenberger


    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  7. 75 FR 49475 - Petroleum Wax Candles From the People's Republic of China: Preliminary Results of Request for... (United States)


    ... research firm in Malaysia on producers' prices for candles made and sold in Malaysia and stated that the... specially designed for Christmas. That is, they are holiday scenes and symbols. Both candles are square... from the People's Republic of China (PRC). Christmas novelty candles are candles specially designed for...

  8. 75 FR 38121 - Petroleum Wax Candles From China (United States)


    ... paper-cored wicks and containing any amount of petroleum wax, except for candles containing more than 50... investigation. The Commission's designated agency ethics official has advised that a five-year review is not... Office of Government Ethics. Consequently, former employees are not required to seek Commission approval...

  9. New Scientific Aspects of the "Burning Candle" Experiment (United States)

    Massalha, Taha


    The "burning candle" experiment is used in middle school education programs to prove that air contains a component that is essential to burning (i.e., oxygen). The accepted interpretation taught by teachers in middle school is this: when burning occurs, oxygen is used up, creating an underpressure that causes a rise in water level inside…

  10. Proper Use of Candles During a Power Outage

    Centers for Disease Control (CDC) Podcasts


    Home fires are a threat after a natural disaster and fire trucks may have trouble getting to your home. If the power is out, use flashlights or other battery-powered lights if possible, instead of candles.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 8/20/2008.

  11. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    DEFF Research Database (Denmark)

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders


    flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-models for absorption and emission coefficients. The model using constant values for the absorption...

  12. Flames in vortices & tulip-flame inversion (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  13. Analysis of turbulence and surface growth models on the estimation of soot level in ethylene non-premixed flames (United States)

    Yunardi, Y.; Munawar, Edi; Rinaldi, Wahyu; Razali, Asbar; Iskandar, Elwina; Fairweather, M.


    Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and destruction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-ɛ and the Reynolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but independent on the surface area of soot particles, f ( A s ) = ρ N s , yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f ( A s ) = A s and f ( A s ) = √ A s , result in an under- prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.

  14. Calibration of a Micronal flame photometer model B-260. Intercomparison of the analytical results for potassium

    International Nuclear Information System (INIS)

    Alencar, Lucia Maria Laboissiere; Dalston, Regina Celia Reboucas.


    In its environmental monitoring program, NUCLEBRAS analyzes systematically environmental samples in order to determine the total alpha and beta activities. In most of these samples, 40 K is present in measurable quantities and can therefore be used for measuring beta activity since it is almost a 100% beta emitter. A method using a flame photometer for measuring the potassium concentration in water is presented. 5 refs., 28 figs., 25 tabs

  15. Modeling and Simulation of Swirl Stabilized Turbulent Non-Premixed Flames (United States)

    Badillo-Rios, Salvador; Karagozian, Ann


    Flame stabilization is an important design criterion for many combustion chambers, especially at lean conditions and/or high power output, where insufficient stabilization can result in dangerous oscillations and noisy or damaged combustors. At high flow rates, swirling flow can offer a suitable stabilization mechanism, although understanding the dynamics of swirl-stabilized turbulent flames remains a significant challenge. Utilizing the General Equation and Mesh Solver (GEMS) code, which solves the Navier-Stokes equations along with the energy equation and five species equations, 2D axisymmetric and full 3D parametric studies and simulations are performed to guide the design and development of an experimental swirl combustor configuration and to study the effects of swirl on statistically stationary combustion. Results show that as the momentum of air is directed into the inner air inlet rather than the outer inlet of the swirl combustor, the central recirculating region becomes stronger and more unsteady, improving mixing and burning efficiency in that region. A high temperature region is found to occur as a result of burning of the trapped fuel from the central toroidal vortex. The effects of other parameters on flowfield and flame-stabilization dynamics are explored. Supported by ERC, Inc. (PS150006) and AFOSR (Dr. Chiping Li).

  16. Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics (United States)

    Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto


    Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.

  17. Combustion modelling of a fuel oil flame; Modelisation de la combustion d`une flamme de fuel

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Mechitouan, N.


    The combustion modelling of a fuel oil flame has been realised in the scope of the R and D `Combustion Turbines`. This report presents the results of the 2D simulation of a fuel oil flame (n-octane), at atmospherical pressure, without swirl, realised using the Eulerian two-phase flow software Melodif. This calculation has been defined in collaboration with IFP, using experimental data from the IFRP. The hollow cone spray of liquid fuel is injected in the middle of the combustion chamber, with a co-flowing annular air. The furnace diameter is 2 meter and its length is 6,25 meter. A large recirculation zone is induced by the air flow, and leads to take into account the whole furnace, in order to avoid some problems with the limit conditions at the outlet. This calculation deals with droplets evaporation, gaseous phase combustion and radiation heat transfer. Predictions concerning gaseous axial mean velocity and mean temperature gradient in the flame, are in good agreement with measurements. However the temperature is too low in the peripheral zone of the flow. This is probably due to the fact that heat exchanges at the wall furnace are not correctly represented, because of a lack of detailed limit conditions for the walls. The mean radial velocity is not so well predicted, but this measurement is also quite difficult in a strongly longitudinal flow. The results concerning the dispersed phase will not be compared, because no measurements on the liquid fuel were available. As it has been experimentally observed, the simulation shows that the fuel oil spray quickly evaporates as it enters the combustion chamber. This result allows to propose to use an homogeneous approach (hypothesis of no-slipping between the two phases) in an Eulerian one-phase flow code, in case of a 3D simulation of liquid fuel turbine. (authors)

  18. An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements

    KAUST Repository

    Burke, Sinéad M.


    Experimental data obtained in this study (Part II) complement the speciation data presented in Part I, but also offer a basis for extensive facility cross-comparisons for both experimental ignition delay time (IDT) and laminar flame speed (LFS) observables. To improve our understanding of the ignition characteristics of propene, a series of IDT experiments were performed in six different shock tubes and two rapid compression machines (RCMs) under conditions not previously studied. This work is the first of its kind to directly compare ignition in several different shock tubes over a wide range of conditions. For common nominal reaction conditions among these facilities, cross-comparison of shock tube IDTs suggests 20-30% reproducibility (2σ) for the IDT observable. The combination of shock tube and RCM data greatly expands the data available for validation of propene oxidation models to higher pressures (2-40. atm) and lower temperatures (750-1750. K).Propene flames were studied at pressures from 1 to 20. atm and unburned gas temperatures of 295-398. K for a range of equivalence ratios and dilutions in different facilities. The present propene-air LFS results at 1. atm were also compared to LFS measurements from the literature. With respect to initial reaction conditions, the present experimental LFS cross-comparison is not as comprehensive as the IDT comparison; however, it still suggests reproducibility limits for the LFS observable. For the LFS results, there was agreement between certain data sets and for certain equivalence ratios (mostly in the lean region), but the remaining discrepancies highlight the need to reduce uncertainties in laminar flame speed experiments amongst different groups and different methods. Moreover, this is the first study to investigate the burning rate characteristics of propene at elevated pressures (>5. atm).IDT and LFS measurements are compared to predictions of the chemical kinetic mechanism presented in Part I and good

  19. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor (United States)

    Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.


    Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.

  20. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi


    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  1. Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations. (United States)

    D'Angelo, Yves; Joulin, Guy


    An isolated combustion spot-known as a flame ball (FB)-is considered while it is advected by a turbulent flow of a lean premixture of such a light fuel as hydrogen. A Batchelor approximation for the surrounding Lagrangian flow is made. This in principle gives one an access to the FB lifetime t(life) and to its response to the ambiant Lagrangian rate-of-strain tensor g(t), by means of a nonlinear and forced integro-differential equation for the current FB radius. For a diagonal g(t) deduced from random Markov processes of the Ornstein-Uhlenbeck type, or linearly filtered versions thereof, extensive numerical simulations and approximate theoretical analyses agree that (i) flame balls can definitely live for much longer than their time of spontaneous expansion/collapse; (ii) large enough values of t(life) are compatible with Poisson statistics; (iii) the variations of with the characteristics of g(t) mirror the latter's statistics, more precisely that of trace(g(2)). Open problems, dealing with a nondiagonal g(t), ignition-related transients and/or collective effects, finally are evoked.

  2. Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities (Postprint) (United States)


    conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent burning velocity of Bunsen flames depends...burning velocity of Bunsen flames are inadequate because they should include two additional parameters: mean velocity Ū and burner width W. These...corru- gated) flame with well-defined boundary conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent

  3. Candle light-style OLED: a plausibly human-friendly safe night light (United States)

    Jou, Jwo-Huei; Chen, Po-Wei; Hsieh, Chun-Yu; Wang, Ching-Chiun; Chen, Chien-Chih; Tung, F.-C.; Chen, Szu-Hao; Wang, Yi-Shan


    Candles emit sensationally-warm light with a very-low color-temperature, comparatively most suitable for use at night. In response to the need for such a human-friendly night light, we demonstrate the employment of a high number of candle light complementary organic emitters to generate mimic candle light based on organic light emitting diode (OLED). One resultant candle light-style OLED shows a very-high color rendering index, with an efficacy at least 300 times that of candles or twice that of an incandescent bulb. The device can be fabricated, for example, by using four candle light complementary emitters, namely: red, yellow, green, and sky-blue phosphorescent dyes, vacuum-deposited into two emission layers, separated by a nano-layer of carrier modulation material to maximize both the desirable very-high color rendering index and energy efficiency, while keeping the blue emission very low and red emission high to obtain the desirable low color temperature. With different layer structures, the OLEDs can also show color tunable between that of candle light and dusk-hue. Importantly, a romantic sensation giving and supposedly physiologically-friendly candle light-style emission can hence be driven by electricity in lieu of the hydrocarbon-burning and greenhouse gas releasing candles that were invented 5,000 years ago.

  4. Application of the conditional source-term estimation model for turbulence-chemistry interactions in a premixed flame (United States)

    Salehi, M. M.; Bushe, W. K.; Daun, K. J.


    Conditional Source-term Estimation (CSE) is a closure model for turbulence-chemistry interactions. This model uses the first-order CMC hypothesis to close the chemical reaction source terms. The conditional scalar field is estimated by solving an integral equation using inverse methods. It was originally developed and has been used extensively in non-premixed combustion. This work is the first application of this combustion model for a premixed flame. CSE is coupled with a Trajectory Generated Low-Dimensional Manifold (TGLDM) model for chemistry. The CSE-TGLDM combustion model is used in a RANS code to simulate a turbulent premixed Bunsen burner. Along with this combustion model, a similar model which relies on the flamelet assumption is also used for comparison. The results of these two approaches in the prediction of the velocity field, temperature and species mass fractions are compared together. Although the flamelet model is less computationally expensive, the CSE combustion model is more general and does not have the limiting assumption underlying the flamelet model.

  5. Determination of reactivity parameters of model carbons, cokes and flame-chars

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Gjernes, Erik; Jessen, Thomas


    Reactivity profiles are defined and measured with thermogravimetry for a dense metallurgical Longyear coke, a polymer-derived porous active carbon, Carboxen 1000, and three flame-chars, Illinois #6, Pittsburgh #8 and New Mexico Blue #1. For each sample it is found that the reactivity profile can...... range of 130-133 kJ/mol. For Carboxen n=0.91 and E=146 kJ/mol. The reactivity differences between the coal chars are proposed mainly due to variations in the physical structure. Over the pressure-temperature domain examined reactivity varies considerably, but the structural profile is approximately...... invariant, i.e. each sample exhibits consistently the same structural evolution for a broad span of kinetic conditions. The structural profile is different for each carbonaceous material. In the 20-80% burn-off range, Carboxen undergoes a four-fold increase in reactivity, while for coal-derived chars...

  6. Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames (United States)

    Lietz, Christopher; Raman, Venkatramanan


    In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.

  7. Qualifications of Candle Filters for Combined Cycle Combustion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tomasz Wiltowski


    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

  8. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.


    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  9. Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Marcel


    In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)

  10. 76 FR 773 - Petroleum Wax Candles From the People's Republic of China: Continuation of Antidumping Duty Order (United States)


    ... International Trade Administration Petroleum Wax Candles From the People's Republic of China: Continuation of... the antidumping duty order on petroleum wax candles from the People's Republic of China (``PRC... of initiation of the sunset review of the antidumping duty order on petroleum wax candles from the...

  11. Design of Safer Flame Retardant Textiles through Inclusion Complex Formation with Cyclodextrins: A Combined Experimental and Modeling Study (United States)

    Zhang, Nanshan

    Triphenyl phosphate (TPP) is widely used as a phosphorus flame retardant. It is also one component of a commercial flame retardant mixture known as Firemaster 550. TPP is likely to be released into the environment due to its high volatility and has been detected at a concentration as high as 47,000 ng/m3 in air. Recent studies have also indicated that FRs like TPP could contribute to obesity and osteoporosis in humans. Cyclodextrins (CDs) are enzymatic degradation products of starch and consist of several (alpha-1,4)-linked alpha-Dglucopyranose units. CDs own a hydrophilic outside and a hydrophobic inner cavity, which enables the formation of non-covalently bonded cyclodextrin inclusion complexes (CD-ICs) with a vast array of molecules. We hypothesize that the formation of inclusion complexes between TPP and cyclodextrins will reduce its exposure yet also retain flame retarding properties of TPP, since the formation of FR-CD-ICs is expected to eliminate unnecessary loss of FRs, especially volatile FR compounds like TPP, and release them only during a fire when they are actually needed. After creating the TPP-beta-CD-IC, we applied it to polyethylene terephthalate (PET) films by a hot press technique. Flame tests indicated TPP-beta-CD-IC exhibited flame resistant performance matching that of neat TPP, even though much less TPP was contained in its beta-CD-IC. Incorporation of FRs and other chemical additives into textile substrates in the form of their crystalline CD-ICs is a promising way to reduce the exposure of hazardous chemicals to humans and to our environment while not impacting their efficacy. Two other parent CDs (alpha-CD and gamma-CD) were applied and their abilities to form ICs with guest TPP were studied. Results from a series of characterization methods, including FTIR, DSC, TGA, XRD and NMR indicated the successful synthesis of TPP-gamma-CD-IC via two routes. However, alpha-CD appears unable to form an IC with TPP, which is likely attributable to a

  12. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.


    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  13. Measurements and Modeling of SiCl(4) Combustion in a Low-Pressure H2/O2 Flame

    National Research Council Canada - National Science Library

    Moore, T; Brady, B; Martin, L. R


    .... A gas-phase chemical kinetics mechanism for the combustion of SiCl in an H2/O2/Ar flame was proposed, and experimental results were compared with predictions for a premixed, one-dimensional laminar...

  14. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Ian T. [ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden)


    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  15. LES of Sooting Flames (United States)


    investigated the formation of carbon in a well-stirred reactor. The critical C/O ratio for soot inception was observed and compared to Bunsen -Type flames ...The computations reproduced the flame structure, with reasonable agreement of the velocity field. They designed the swirl burner to match the...the vortex breakdown. 121 [203] introduced the compositional structure and flow field of two flames on the same burner . The two flames have the same

  16. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang


    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  17. An old flame (United States)

    Thompson, Frank


    Flames are seen more often in chemistry than in physics laboratories. However, as a continuation of the previous colourful demonstration of a levitating Bunsen flame described recently in this journal (De Carvalho 2012 Phys Educ. 47 517), two short experiments are reported. Firstly, flame rectification is investigated and secondly, the electrical potential around a charged object is measured.

  18. Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches. (United States)

    Liagkouridis, Ioannis; Cousins, Ian T; Cousins, Anna Palm


    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material-particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air-surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air-particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  20. Asymptotic analysis, direct numerical simulation and modeling of premixed turbulent flame-wall interaction; Etude asymptotique, simulation numerique directe et modelisation de l`interaction flamme turbulente premelangee-paroi

    Energy Technology Data Exchange (ETDEWEB)

    Bruneaux, G.


    Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.

  1. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.


    mainly between the fuel nozzle and the lifted flame edge. On the other hand, they were formed just prior to the flame edge for the non-autoignited lifted flames. The effect of fuel pyrolysis and partial oxidation were found to be important in explaining autoignited liftoff heights, especially in the Mild combustion regime. Flame structures of autoignited flames were investigated numerically for syngas (CO/H2) and methane fuels. The simulations of syngas fuel accounting for the differential diffusion have been performed by adopting several kinetic mechanisms to test the models ability in predicting the flame behaviors observed previously. The results agreed well with the observed nozzle-attached flame characteristics in case of non-autoignited flames. For autoignited lifted flames in high temperature regime, a unique autoignition behavior can be predicted having HO2 and H2O2 radicals in a broad region between the nozzle and stabilized lifted flame edge. Autoignition characteristics of laminar nonpremixed methane jet flames in high- temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  2. Negativly streched premixed flames (United States)

    Krikunova, A. I.; Saveliev, A. S.; Son, E. E.


    An experimental study of gravity effect on the blow-off and flash-back borders of the conical methane–air flame (normal and ring-stabilized) was performed. The influence of the preferential diffusion on the flame behavior in vicinity of flash-back boundaries was observed. Under conditions at Lewis number Le > 1, the radius of curvature of the flame tip increased gradually approaching flash-back boundaries while for the lean methane–air flames (Le < 1) the radius decreased abruptly. It was shown that the burning velocity for lean flames is less than that for reach ones, so the flash-back occurs at higher strains.

  3. How Beatrice Tinsley Destroyed Sandage's Quest for a Standard Candle (United States)

    Mitton, Simon


    The goal of cosmology and most extragalactic optical astronomy during the heroic period spanning the half century from Hubble to Sandage (1920s - 1970s) was a search for two numbers, the Hubble constant and the deceleration parameter. Standard candles were needed to establish the measure of the universe. In 1968, Beatrice Tinsley, then a postdoctoral fellow in the astronomy department of the University of Texas at Austin showed that the great enterprise at Palomar of calibrating the galaxies was in need of major revision. At the 132nd AAS Meeting (June 1970, Boulder, Colorado) she presented a paper on galactic evolution on the magnitude-redshift relation. In her Abstract she boldly wrote: "My present conclusion is opposite to that reached by most cosmologists." In fact her claims caused great consternation among cosmologists. In 1972 she published eight papers on the evolution of galaxies, and the effects of that evolution for observational cosmology and the origin of structure.


    International Nuclear Information System (INIS)

    Olivares E, Felipe; Hamuy, Mario; Pignata, Giuliano; Maza, Jose; Bersten, Melina; Phillips, Mark M.; Morrel, Nidia I.; Suntzeff, Nicholas B.; Filippenko, Alexei V.; Kirshner, Robert P.; Matheson, Thomas


    In this paper, we study the 'standardized candle method' using a sample of 37 nearby (redshift z V ) = 0.2 mag. The correlation between plateau luminosity and expansion velocity previously reported in the literature is recovered. Using this relation and assuming a standard reddening law (R V = 3.1), we obtain Hubble diagrams (HDs) in the BVI bands with dispersions of ∼0.4 mag. Allowing R V to vary and minimizing the spread in the HDs, we obtain a dispersion range of 0.25-0.30 mag, which implies that these objects can deliver relative distances with precisions of 12%-14%. The resulting best-fit value of R V is 1.4 ± 0.1.

  5. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry

    KAUST Repository

    Dennis, Claresta N.


    Single-laser-shot temperature measurements at 5 kHz were performed in a gas turbine model combustor using femtosecond (fs) coherent anti-Stokes Raman scattering (CARS). The combustor was operated at two conditions; one exhibiting a low level of thermoacoustic instability and the other a high level of instability. Measurements were performed at 73 locations within each flame in order to resolve the spatial flame structure and compare to previously published studies. The measurement procedures, including the procedure for calibrating the laser system parameters, are discussed in detail. Despite the high turbulence levels in the combustor, signals were obtained on virtually every laser shot, and these signals were strong enough for spectral fitting analysis for determination of flames temperatures. The spatial resolution of the single-laser shot temperature measurements was approximately 600 µm, the precision was approximately ±2%, and the estimated accuracy was approximately ±3%. The dynamic range was sufficient for temperature measurements ranging from 300 K to 2200 K, although some detector saturation was observed for low temperature spectra. These results demonstrate the usefulness of fs-CARS for the investigation of highly turbulent combustion phenomena. In a companion paper, the time-resolved fs CARS data are analyzed to provide insight into the temporal dynamics of the gas turbine model combustor flow field.

  6. Explosion triggering by an accelerating flame. (United States)

    Bychkov, Vitaly; Akkerman, V'yacheslav


    The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The limitations of the theory due to the shock formation in the compression wave are found. Comparison of the theoretical results to the previous numerical simulations shows good agreement.

  7. Active control for turbulent premixed flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.


    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  8. A 3D CFD Modelling Study of a Diesel Oil Evaporation Device Operating in the Stabilized Cool Flame Regime

    Directory of Open Access Journals (Sweden)

    Dionysios I. Kolaitis


    Full Text Available Diesel fuel is used in a variety of technological applications due to its high energy density and ease of distribution and storage. Motivated by the need to use novel fuel utilization techniques, such as porous burners and fuel cells, which have to be fed with a gaseous fuel, a Diesel fuel evaporation device, operating in the “Stabilized Cool Flame” (SCF regime, is numerically investigated. In this device, a thermo-chemically stable low-temperature oxidative environment is developed, which produces a well-mixed, heated air-fuel vapour gaseous mixture that can be subsequently fed either to premixed combustion systems or fuel reformer devices for fuel cell applications. In this work, the ANSYS CFX 11.0 CFD code is used to simulate the three-dimensional, turbulent, two-phase, multi-component and reacting flow-field, developed in a SCF evaporation device. An innovative modelling approach, based on the fitting parameter concept, has been developed in order to simulate cool flame reactions. The model, based on physico-chemical reasoning coupled with information from available experimental data, is implemented in the CFD code and is validated by comparing numerical predictions to experimental data obtained from an atmospheric pressure, recirculating flow SCF device. Numerical predictions are compared with temperature measurements, achieving satisfactory levels of agreement. The developed numerical tool can effectively support the theoretical study of the physical and chemical phenomena emerging in practical devices of liquid fuel spray evaporation in a SCF environment, as well as the design optimisation process of such innovative devices.

  9. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.

    The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range...... generated similar results. The principal motivation for ESF compared to Lagrangian particle based PDF is the relative ease of implementation of the former into Eulerian computational fluid dynamics(CFD) codes [5]. Several works have attempted to implement the ESF model for the simulations of diesel spray...

  10. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.


    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  11. Using slow-release permanganate candles to remediate PAH-contaminated water

    International Nuclear Information System (INIS)

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve


    Highlights: ► We quantified the efficacy of slow-release permanganate-paraffin candles to degrade and mineralize PAHs. ► 14 C-labeled PAHs were used to quantify both adsorption and transformation. ► Permanganate-treated PAHs were more biodegradable in soil microcosms. ► A flow-through candle system was used to quantify PAH removal in urban runoff. - Abstract: Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin–KMnO 4 ) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2–4 h. Using 14 C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO 2 ), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet–dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to

  12. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains measured and model predicted OPFRs gas-phase and surface-phase...

  13. Insights into flame-flow interaction during boundary layer flashback of swirl flames (United States)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel


    Boundary layer flashback in swirl flames is a frequent problem in industrial gas turbine combustors. During this event, an erstwhile stable swirl flame propagates into the upstream region of the combustor, through the low momentum region in the boundary layer. Owing to the involvement of various physical factors such as turbulence, flame-wall interactions and flame-flow interactions, the current scientific understanding of this phenomenon is limited. The transient and three-dimensional nature of the swirl flow, makes it even more challenging to comprehend the underlying physics of the swirl flame flashback. In this work, a model swirl combustor with an axial swirler and a centerbody was used to carry out the flashback experiments. We employed high-speed chemiluminescence imaging and simultaneous stereoscopic PIV to understand the flow-flame interactions during flashback. A novel approach to reconstruct the three-dimensional flame surface using time-resolved slice information is utilized to gain insight into the flame-flow interaction. It is realized that the blockage effect imposed by the flame deflects the approaching streamlines in axial as well as azimuthal directions. A detailed interpretation of streamline deflection during boundary layer flashback shall be presented. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107.

  14. On open and closed tips of bunsen burner flames (United States)

    Kozlovsky, G.; Sivashinsky, G. I.


    An adiabatic, constant-density reaction-diffusion-advection model for the Bunsen burner flame tip is studied numerically. It is shown that for Lewis numbers exceeding unity the reaction rate and flame speed gradually increase toward the flame tip. For small Lewis numbers the picture is quite different. The reaction rate drops near the tip. In spite of this the flame survives and, moreover, manages to consume all the fuel supplied to the reaction zone. There is no leakage of the fuel through the front. The flame speed varies nonmonotonously along the front from gradual reduction to steep increase near the tip.

  15. Brain in flames – animal models of psychosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Mattei D


    Full Text Available Daniele Mattei,1 Regina Schweibold,1,2 Susanne A Wolf1 1Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; 2Department of Neurosurgery, Helios Clinics, Berlin, Germany Abstract: The neurodevelopmental hypothesis of schizophrenia posits that schizophrenia is a psychopathological condition resulting from aberrations in neurodevelopmental processes caused by a combination of environmental and genetic factors which proceed long before the onset of clinical symptoms. Many studies discuss an immunological component in the onset and progression of schizophrenia. We here review studies utilizing animal models of schizophrenia with manipulations of genetic, pharmacologic, and immunological origin. We focus on the immunological component to bridge the studies in terms of evaluation and treatment options of negative, positive, and cognitive symptoms. Throughout the review we link certain aspects of each model to the situation in human schizophrenic patients. In conclusion we suggest a combination of existing models to better represent the human situation. Moreover, we emphasize that animal models represent defined single or multiple symptoms or hallmarks of a given disease. Keywords: inflammation, schizophrenia, microglia, animal models 

  16. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam. (United States)

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun


    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings (United States)

    Ott, Wayne R.; Siegmann, Hans C.

    This study employed two continuous particle monitors operating on different measurement principles to measure concentrations simultaneously from common combustion sources in indoor, outdoor, and in-transit settings. The pair of instruments use (a) photo-charging (PC) operating on the principle ionization of fine particles that responds to surface particulate polycyclic aromatic hydrocarbons (PPAHs), and (b) diffusion charging (DC) calibrated to measure the active surface area of fine particles. The sources studied included: (1) secondhand smoke (cigarettes, cigars, and pipes), (2) incense (stick and cone), (3) candles used as food warmers, (4) cooking (toasting bread and frying meat), (5) fireplaces and ambient wood smoke, and (6) in-vehicle exposures traveling on California arterials and interstate highways. The ratio of the PC to the DC readings, or the PC/DC ratio, was found to be different for major categories of sources. Cooking, burning toast, and using a "canned heat" food warmer gave PC/DC ratios close to zero. Controlled experiments with 10 cigarettes averaged 0.15 ng mm -2 (ranging from 0.11 to 0.19 ng mm -2), which was similar to the PC/DC ratio for a cigar, although a pipe was slightly lower (0.09 ng mm -2). Large incense sticks had PC/DC ratios similar to those of cigarettes and cigars. The PC/DC ratios for ambient wood smoke averaged 0.29 ng mm -2 on 6 dates, or about twice those of cigarettes and cigars, reflecting a higher ratio of PAH to active surface area. The smoke from two artificial logs in a residential fireplace had a PC/DC ratio of 0.33-0.35 ng mm -2. The emissions from candles were found to vary, depending on how the candles were burned. If the candle flickered and generated soot, a higher PC/DC ratio resulted than if the candle burned uniformly in still air. Inserting piece of metal into the candle's flame caused high PPAH emissions with a record PC/DC reading of 1.8 ng mm -2. In-vehicle exposures measured on 43- and 50-min drives on a

  18. Laboratory Fire Modeling. 1. Wind-Aided Flame Spread. 2. Wet Coagulation of Smoke. (United States)


    These conjectures are based on the computational results from exercise of global climatological models. Perhaps no input to’the calculations is more...Ps %5 SIN11 r . - ,. - ". ’ ’ . 5... " . 5*. . . * ". ". " completely the details of the downwind fuel preheating and the upwind fuel burnup , reduce thermal inertia (though thick enough structurally to sustain necessary pressure differences across the walls). Calculations show that vta a

  19. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)


    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)


    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.


    At a density near a few x10 7 g cm -3 , the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da T ), which steadily declines from much greater than one to less than one as the density decreases to a few x10 6 g cm -3 . Classical scaling arguments predict that the turbulent flame speed s T , normalized by the turbulent intensity u-check, follows s T /u-check = Da T 1/2 for Da T ∼ T ∼ 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s λ and width l λ , and we refer to this kind of flame as a λ-flame. The burning becomes a collection of λ-flames spread over a region approximately the size of the integral scale. While the total burning rate continues to have a well-defined average, s T ∼u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s T can actually be roughly twice u-check for Da T ∼> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da T ∼ 1. The λ-flame speed and width can be predicted based on the turbulence in the star (specifically the energy dissipation rate ε*) and the turbulent nuclear burning timescale of the fuel τ T nuc . We propose a practical method for measuring s λ and l λ based on the scaling relations and small-scale computationally inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for

  1. Numerical assessment of accurate measurements of laminar flame speed (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano


    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  2. Highly turbulent combustion: A study of lifted and shredded flames (United States)

    Ratner, Albert

    The impact of turbulence on flame chemistry in highly turbulent flames has been studied in order to test existing theories and produce data that are useful to the computer modeling community. In these flames, the fuel is injected separately from the air, but a significant amount of premixing occurs prior to combustion. By employing Particle Image Velocimetry (PIV), Planar Laser Induced Fluorescence (PLIF) of chemical species, and exhaust gas sampling, the effect of turbulence on flame chemistry has been quantified for a highly lifted, supersonic flame and for a highly swirled, shredded flame. In the supersonic flame, OH PLIF measurements were combined with combustion efficiency measurements and PIV to help to understand the mixing and flame structure. Negative velocities of more than 200 m/s were identified in the recirculating zones. Mechanisms of fuel-air mixing that result in decreased combustion efficiencies were identified. In the shredded flame, an ultra-high turbulence region was generated to examine what occurs when reaction layers encounter high turbulence levels. The flame was probed with simultaneous CH and OH PLIF and then simultaneous PIV and OH PLIF. It was found that the normalized turbulence level, even though it was ten-times greater than any previous imaging study, still produced no measurable impact on flame reaction layer thickness. This flame was also quantified by measurements of Flame Surface Density (Sigma). The thin flamelet assumption of flamelet theory is found to be valid in these highly turbulent flames. Data are presented that can be used to assess computational models as well as to provide insight into the physical processes of turbulent combustion.

  3. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill (United States)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang


    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  4. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames. (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot


    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  5. From a Better Understanding of GRB Prompt Emission to a New Type of Standard Candles? (United States)

    Guiriec, Sylvain


    Recent results revealed the simultaneous existence of multiple components in the prompt emission of gamma-ray bursts (GRBs) leading to a unified spectro-temporal model for the broadband spectrum from the optical regime up to higher gamma rays. Unexpectedly, we discovered a relation intrinsic to one specific component of this model: its luminosity is strongly and tightly correlated to its spectral break energy. This new luminosity-hardness relation has the same index for all GRBs when fitted to a power law. In addition, this relation seems to have the same normalization for all GRBs; therefore, this is a promising and physically motivated tool that may establish GRBs as cosmological standard candles. During this presentation, I will introduce this new relation, which might eventually be used to (i) estimate GRB distances, (ii) to support searches for gravitational waves and cosmic high-energy neutrinos, and (iii) constrain the cosmological parameters. I will give a few examples of GRB redshift estimates using this relation and I will show why this new result cannot solely be explain by instrumental selection effects and/or measurement/analysis biases.

  6. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm

    International Nuclear Information System (INIS)

    Allam, Dalia; Yousri, D.A.; Eteiba, M.B.


    Highlights: • More detailed models are proposed to emulate the multi-crystalline solar cell/module. • Moth-Flame Optimizer (MFO) is proposed for the parameter extraction process. • The performance of MFO technique is compared with the recent optimization algorithms. • MFO algorithm converges to the optimal solution more rapidly and more accurately. • MFO algorithm accomplished with three diode model achieves the most accurate model. - Abstract: As a result of the wide prevalence of using the multi-crystalline silicon solar cells, an accurate mathematical model for these cells has become an important issue. Therefore, a three diode model is proposed as a more precise model to meet the relatively complicated physical behavior of the multi-crystalline silicon solar cells. The performance of this model is compared to the performance of both the double diode and the modified double diode models of the same cell/module. Therefore, there is a persistent need to keep searching for a more accurate optimization algorithm to estimate the more complicated models’ parameters. Hence, a proper optimization algorithm which is called Moth-Flame Optimizer (MFO), is proposed as a new optimization algorithm for the parameter extraction process of the three tested models based on data measured at laboratory and other data reported at previous literature. To verify the performance of the suggested technique, its results are compared with the results of the most recent and powerful techniques in the literature such as Hybrid Evolutionary (DEIM) and Flower Pollination (FPA) algorithms. Furthermore, evaluation analysis is performed for the three algorithms of the selected models at different environmental conditions. The results show that, MFO algorithm achieves the least Root Mean Square Error (RMSE), Mean Bias Error (MBE), Absolute Error at the Maximum Power Point (AEMPP) and best Coefficient of Determination. In addition, MFO is reaching to the optimal solution with the

  7. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  8. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames (United States)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)


    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  9. $\\Zeta$-boson as "the standard candle" for high precision W-boson physics at LHC

    CERN Document Server

    Krasny, M W; Placzek, W; Siodmok, A


    In this paper we propose a strategy for measuring the inclusive W-boson production processes at LHC. This strategy exploits simultaneously the unique flexibility of the LHC collider in running variable beam particle species at variable beam energies, and the configuration flexibility of the LHC detectors. We propose their concrete settings for a precision measurement of the Standard Model parameters. These settings optimise the use of the Z boson and Drell-Yan pair production processes as ``the standard reference candles''. The presented strategy allows to factorise and to directly measure those of the QCD effects which affect differently the W and Z production processes. It reduces to a level of 10^{-4} the impact of uncertainties in the partonic distribution functions (PDFs) and in the transverse momentum of the quarks on the measurement precision. Last but not the least, it reduces by a factor of 10 an impact of systematic measurement errors, such as the energy scale and the measurement resolution, on the ...

  10. Premixed conical flame stabilization (United States)

    Krikunova, A. I.; Son, E. E.; Saveliev, A. S.


    In the current work, stabilization of premixed laminar and lean turbulent flames for wide range of flow rates and equivalence ratios was performed. Methane-air mixture was ignited after passing through premixed chamber with beads and grids, and conical nozzle (Bunsen-type burner). On the edge of the nozzle a stabilized body-ring was mounted. Ring geometry was varied to get the widest stable flame parameters. This work was performed as part of the project on experimental investigation of premixed flames under microgravity conditions.

  11. Analysis of flame surface density measurements in turbulent premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Fabien [Institut PRISME, Universite d' Orleans, 45072 Orleans (France); Chauveau, Christian; Goekalp, Iskender [Institut de Combustion, Aerothermique, Reactivite et Environnement, Centre National de la Recherche Scientifique, 45071 Orleans (France); Veynante, Denis [Laboratoire E.M2.C, Centre National de la Recherche Scientifique, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)


    In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)

  12. Curvature and velocity of methane-air Bunsen flame tips.


    García-Soriano, G.; García-Ybarra, P.L.; Higuera Antón, Francisco


    PIV and photographic recording are used to measure the velocity of the fresh gas and the shape of the reaction layer in a region around the tip of a methane-air Bunsen flame attached to a cylindrical burner. The results compare well with numerical simulations carried out with an infinite activation energy reaction model. The experimental and numerical results confirm that the well-known linear relation between flame velocity and flame stretch derived from asymptotic theory for weakly curved a...

  13. Effect of Wind Velocity on Flame Spread in Microgravity (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)


    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  14. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)


    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  15. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure (United States)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)


    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  16. Standard rulers, candles, and clocks from the low-redshift universe. (United States)

    Heavens, Alan; Jimenez, Raul; Verde, Licia


    We measure the length of the baryon acoustic oscillation (BAO) feature, and the expansion rate of the recent Universe, from low-redshift data only, almost model independently. We make only the following minimal assumptions: homogeneity and isotropy, a metric theory of gravity, a smooth expansion history, and the existence of standard candles (supernovæ) and a standard BAO ruler. The rest is determined by the data, which are compilations of recent BAO and type IA supernova results. Making only these assumptions, we find for the first time that the standard ruler has a length of 103.9±2.3h⁻¹ Mpc. The value is a measurement, in contrast to the model-dependent theoretical prediction determined with model parameters set by Planck data (99.3±2.1h⁻¹ Mpc). The latter assumes the cold dark matter model with a cosmological constant, and that the ruler is the sound horizon at radiation drag. Adding passive galaxies as standard clocks or a local Hubble constant measurement allows the absolute BAO scale to be determined (142.8±3.7 Mpc), and in the former case the additional information makes the BAO length determination more precise (101.9±1.9h⁻¹ Mpc). The inverse curvature radius of the Universe is weakly constrained and consistent with zero, independently of the gravity model, provided it is metric. We find the effective number of relativistic species to be N(eff)=3.53±0.32, independent of late-time dark energy or gravity physics.

  17. The application of separated flames in analytical flame spectroscopy. (United States)

    Kirkbright, G F; West, T S


    Premixed hydrocarbon-air flames invariably show two separate reaction zones. In the primary zone, the combustible gas mixture burns principally to carbon monoxide, hydrogen, and water, and in the outer mantle, or secondary diffusion flame, the hot gases burn with atmospheric oxygen to carbon dioxide and water. Teclu [J. Prakt. Chem. 44, 246 (1891)] and Smithells and Ingle [Trans. Chem. Soc. 61, 204 (1892)] independently demonstrated the existence of these two zones in various premixed hydrocarbon-air flames, using the flame separator. This device consists of a wide glass or silica tube fitted over the bunsen type burner to form an extension above the inner burner port. The primary combustion then occurs at the inner burner port, while the pale blue secondary diffusion flame is maintained at the top of the outer glass tube. An alternative method of separation of premixed hydrocarbon-air flames consists of sheathing the flame with an inert gas to lift off or separate the secondary diffusonzone. The interconal zone of flames separated by these methods are extended in length and exhibit very low radiative background. The interconal zone also contains the hottest part of the flame, and can be viewed without interference from radiation produced in a secondary diffusion zone that would normally surround it in separated flames. It is the hot interconal zone of premixed flames that is most frequently employed in analytical flame photometry, because it is in this region that the greatest population of atoms occurs when elements are introduced into the flame by nebulization of solutions of their salts. Thus, separated flames may be employed with advantage in thermal emission, atomic absorption, and atomic fluorescence spectroscopy. This paper describes the separation of the air-acetylene and nitrous oxide-acetylene flames, and some applications of these flames in analytical flame spectroscopy.

  18. Gas turbine flame diagnostic monitor

    Energy Technology Data Exchange (ETDEWEB)

    Morey, W.W.


    This patent describes a method for detecting the malfunction of a gas turbine during ignition, start up and under torque load. It comprises: the steps of: optically viewing the entire flame in each combustor of the gas turbine, determining a flame pattern based on electromagnetic radiation from the flame as a function of position in the field of view in each combustor, and comparing the flame pattern of each combustor with predetermined flame patterns, and determining a diagnosis of malfunction associated with one or more combustors of the turbine by the individual and total combustor correlated with the predetermined flame patterns.

  19. Permanent flame-blunted monofilament of middle cerebral artery occlusion technique for ischemia stroke induction in animal models

    Directory of Open Access Journals (Sweden)

    Yetty Ramli


    Full Text Available Background: Rat is the most frequently used animal for ischemic stroke studies. Recently, middle cerebral artery occlusion (MCAO by introducing various types of surgical monofilament intraluminally has been widely used, with their advantages and disadvantages. For permanent occlusion, problems with mortality in rats are higher than transient. In this study, we used permanent occlusion using modified monofilament by flaming on its tip which may reduce mortality rate, so that chronic phase of stroke can be learned extensively.Methods: Three male Sprague-Dawley rats underwent permanent MCAO. The flame-blunted monofilament was introduced through common carotid artery. Hematoxylin eosin histopathology confirmation and functional assessment post-stroke induction were then evaluated.Results: Evaluation was conducted on 3 rats in different time post-stroke induction (48 hours, 72 hours, and 3 weeks. Using histopathological examination, the infarction was proved in all 3 rats showing red neurons, perivascular edema and neutrophil spongiosis, in infarct and peri-infarct area. The changes in histopathology showed spongiosis were more dominant in 3 week-post-MCAO rats. On the other hand, red neurons and perivascular edema were less compared to 48 and 72-hour-post-MCAO rats.Conclusion: Flame–blunted monofilament showed its efficacy in producing infarct area. The advantages of this technique are easy to perform with simple and less expensive modification of the monofilament. Conducting successful permanent occlusion with less mortality rate will give chances to do further research on stroke in chronic phase and its effect on novel treatment.

  20. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.


    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  1. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert


    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  2. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi


    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that invo...

  3. Burning a Candle in a Vessel, a Simple Experiment with a Long History (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar


    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  4. CANDLES - Search for Neutrino-less Double Beta Decay of 48Ca (United States)

    Umehara, Saori; Candles Collaboration


    CANDLES is the project to search for neutrino-less double beta decay (0 νββ) of 48Ca. The CANDLES system aims at a high sensitive measurement by a characteristic detector system and 48Ca enrichment. The system realizes a complete 4 π active shield by immersing the CaF2 scintillators in liquid scintillator. The active shield by the liquid scintillator will effectively reject background events from external origins. On the other band, we have studied 48Ca enrichment and succeeded in obtaining enriched 48Ca although it is a small amount. Now we have developed the CANDLES III system, which contained 350 g of 48Ca without enrichment, at the Kamioka underground laboratory. Two improvements, a light-concentration system and a new DAQ system, were installed for the CANDLES III system. The light-concentration system improved a energy resolution by increasing a PMT photo-coverage by 80%. The new DAQ system, which is a dead time less system, improved a rejection efficiency for a characteristic background origin. We checked detector performance with the light-concentration system and the new DAQ system. Here we will report the detector performance for background rejection and the expected sensitivity with the two improvements.

  5. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.


    existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications

  6. Rubens Flame-Tube Demonstration. (United States)

    Ficken, George W.; Stephenson, Francis C.


    Investigates and explains the phenomenon associated with Rubens flame-tube demonstration, specifically the persistance of flames at regular intervals along the tube for few minutes after the gas is turned off. (GA)

  7. Large eddy simulation of flame flashback in a turbulent channel (United States)

    Hassanaly, Malik; Lietz, Christopher; Raman, Venkat; Kolla, Hemanth; Chen, Jacqueline; Gruber, Andrea; Computational Flow Physics Group Team


    In high-hydrogen content gas turbines, the propagation of a premixed flame along with boundary layers on the combustor walls is a source of failure, whereby the flame could enter the fuel-air premixing region that is not designed to hold high-temperature fluid. In order to develop models for predicting this phenomenon, a large eddy simulation (LES) based study is carried out here. The flow configuration is based on a direct numerical simulation (DNS) of a turbulent channel, where an initial planar flame is allowed to propagate upstream in a non-periodic channel. The LES approach uses a flamelet-based combustion model along with standard models for the unresolved subfilter flux terms. It is found that the LES are very accurate in predicting the structure of the turbulent flame front. However, there was a large discrepancy for the transient evolution of the flame, indicating that the flame-boundary layer interaction modulates flame propagation significantly, and the near-wall flame behavior may be non-flamelet like due to the anisotropic of the flow in this region.


    International Nuclear Information System (INIS)

    Hicks, E. P.; Rosner, R.


    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  9. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.


    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  10. Effect of Lewis number on ball-like lean limit flames

    KAUST Repository

    Zhou, Zhen


    The lean limit flames for three different fuel compositions premixed with air, representing three different mixture Lewis numbers, stabilized inside a tube in a downward flow are examined by experiments and numerical simulations. The CH* chemiluminescence distribution in CH4–air and CH4–H2–air flames and the OH* chemiluminescence distribution in H2–air flames are recorded in the experiments. Cell-like flames are observed for the CH4–air mixture for all tested equivalence ratios. However, for CH4–H2–air and H2–air flames, ball-like lean limit flames are observed. Flame temperature fields are measured using Rayleigh scattering. The experimentally observed lean limit flames are predicted qualitatively by numerical simulation with the mixture-averaged transport model and skeletal mechanism of CH4. The results of the simulations show that the entire lean limit flames of CH4–H2–air and H2–air mixtures are located inside a recirculation zone. However, for the lean limit CH4–air flame, only the leading edge is located inside the recirculation zone. A flame structure with negative flame displacement speed is observed for the leading edges of the predicted lean limit flames with all three different fuel compositions. As compared with 1D planar flames, the fuel transport caused by convection is less significant in the present 2D lean limit flames for the three different fuel compositions. For the trailing edges of the three predicted lean limit flames, a diffusion dominated flame structure is observed.

  11. Aerothermodynamic properties of stretched flames in enclosures (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  12. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method...

  13. 76 FR 46277 - Petroleum Wax Candles From the People's Republic of China: Final Results of Request for Comments... (United States)


    ... solicited comments from interested parties on the best method to consider whether novelty candles should or..., LLC, and Accent Imports, respectively, for scope rulings to determine whether each company's...

  14. Numerical solution of an edge flame boundary value problem (United States)

    Shields, Benjamin; Freund, Jonathan; Pantano, Carlos


    We study edge flames for modeling extinction, reignition, and flame lifting in turbulent non-premixed combustion. An adaptive resolution finite element method is developed for solving a strained laminar edge flame in the intrinsic moving frame of reference of a spatially evolving shear layer. The variable-density zero Mach Navier-Stokes equations are used to solve for both advancing and retreating edge flames. The eigenvalues of the system are determined simultaneously (implicitly) with the scalar fields using a Schur complement strategy. A homotopy transformation over density is used to transition from constant- to variable-density, and pseudo arc-length continuation is used for parametric tracing of solutions. Full details of the edge flames as a function of strain and Lewis numbers will be discussed. This material is based upon work supported [in part] by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  15. Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame (United States)

    Stöhr, M.; Sadanandan, R.; Meier, W.


    The relation between flow field and flame structure of a turbulent swirl flame is investigated using simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence of OH (OH-PLIF). The measurements are performed in one axial and three transverse sections through the combustion chamber of a gas turbine model combustor, which is operated with methane and air under atmospheric pressure. Analysis of the velocity fields using proper orthogonal decomposition (POD) shows that the dominant unsteady flow structure is a so-called precessing vortex core (PVC). In each of the four sections, the PVC is represented by a characteristic pair of POD eigenmodes, and the phase angle of the precession can be determined for each instantaneous velocity field from its projection on this pair. Phase-conditioned averages of velocity field and OH distribution are thereby obtained and reveal a pronounced effect of the PVC in the form of convection-enhanced mixing. The increased mixing causes a rapid ignition of the fresh gas, and the swirling motion of the PVC leads to an enlarged flame surface due to flame roll-up. A three-dimensional representation shows that the PVC is accompanied by a co-precessing vortex in the outer shear layer, which, however, has no direct impact on the flame. As an alternative to phase averaging, a low-order representation of the phase-resolved dynamics is calculated based on the first pair of POD modes. It is found that small-scale structures are represented more accurately in the phase averages, whereas the low-order model has a considerable smoothing effect and therefore provides less detailed information. The findings demonstrate that the combined application of POD, PIV, and PLIF can provide detailed insights into flow-flame interaction in turbulent flames.

  16. A numerical study of laminar flames propagating in stratified mixtures (United States)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  17. Incomplete combustion in nonadiabatic premixed gas flames (United States)

    Kagan, L.; Sivashinsky, G.


    The inward propagating spherical flame and burner stabilized Bunsen-type flame of low-Lewis-number premixtures are studied numerically. It is shown that reduction of the reaction rate induced by the flame stretch makes the flame vulnerable to the radiative heat losses which may well result in a partial or complete extinction of the flame.

  18. Flame Retardant Epoxy Resins (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.


    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  19. Antimony: a flame fighter (United States)

    Wintzer, Niki E.; Guberman, David E.


    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  20. Experimental and numerical study of cap-like lean limit flames in H 2 -CH 4 -air mixtures

    KAUST Repository

    Zhou, Zhen


    Lean limit flames of H2-CH4-air mixtures stabilized inside a tube with an inner diameter of 30 mm in a downward flow are studied experimentally and numerically. A transition from bubble-like flames, with a long decaying skirt, to cap-like flames with a sharp visible flame edge at the bottom is observed as the lean flammability limit is approached. This transition is accompanied by formation of a secondary weak flame front inside the cap-like flame. The CH* chemiluminescence distribution of the studied flames is recorded and the velocity field of the lean limit flames is measured using Particle Image Velocimetry (PIV). The flame temperature field is measured utilizing the Rayleigh scattering method. Numerical prediction with a mixture-averaged transport model and skeletal mechanism for CH4 qualitatively reproduces the above experimentally observed phenomena. The presence of negative flame displacement speed for the entire leading edge of the cap-like flames is numerically predicted and experimentally demonstrated. The secondary weak flame front is located in a region with reverse upward flow of the recirculation zone, which is found to support the propagation of the leading edge with a negative flame displacement speed. Furthermore, radiative heat loss has a significant influence on the lean flammability limit of the cap-like flames.

  1. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame (United States)

    Cheng, Robert K.; Bedat, Benoit


    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  2. Two-dimensional simulations of steady perforated-plate stabilized premixed flames (United States)

    Murat Altay, H.; Kedia, Kushal S.; Speth, Raymond L.; Ghoniem, Ahmed F.


    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between the mixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate's thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide.

  3. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat


    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  4. Electric Fields for Flame Extinguishment (United States)


    ethylene-air and methane-air flames, the application of a DC field of 0.5 kV/cm increased the burning velocity by close to a factor of two. Salamandra and...flame surface area and thus the velocity, but Jaggers and von Engel also saw physical perturbations in flame fronts with no electric field. Salamandra ...Conductivity in Propane-Air Flames by Using Rydberg State Stark Spectroscopy," Proc. Combustion Inst., Fall (1990). 12. Salamandra , G.D., and Mairov, N.I

  5. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed


    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  6. PIV Measurements in Weakly Buoyant Gas Jet Flames (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William


    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  7. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)


    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  8. The FLAME project in Atomki

    International Nuclear Information System (INIS)

    Hunyadi, M.; Iski, N.


    Complete text of publication follows. Eleven regions of eight Central European countries have launched the FLAME Project in 2010 (Future Laboratory for the diffusion and Application of innovation in Material Sciences and Engineering) to start and manage a new initiative of a network for innovation activities in the MS and E sector. The project aimed at supporting actors in the field of materials science and exploiting their research and commercial potentials. FLAME partners encourage trans-regional cooperation between R and D centres, universities, start-ups and SMEs by helping companies to distribute their innovations and supporting research in transferring results to the market. The project will implement a new cooperation model: the 'Future Lab', where duly trained 'regional facilitation coaches' will assist SMEs in accessing the whole Central European MS and E market and research potential. Each Future Lab will be specialized on thematic fields and help to make efficient use of local and regional potentials. The three Future Labs will be hosted by the Austrian, Italian and Slovenian partner organizations. Figure 1. Competence and innovation landscape on the FLAME website. Source: As the first step of project implementation in 2011 the competence and innovation maps within the participating regions were elaborated in order to list the relevant actors in the MS and E sector (Figure 1). In 2011, each project partner delegated two regional professionals as facilitation coaches to attend four training weeks across Europe. The facilitation coaches play an active role in the exchange of information and in motivating collaboration between research institutions and enterprises on technology based projects. The training sessions were located at four of the project partners: Kapfenberg/Austria (lead partner - Area m Styria); Warsaw/Poland (PP2 - Warsaw University of Technology); Debrecen/Hungary (PP5 - Atomki); Milan/Italy (PP

  9. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray


    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  10. Reconstructing cosmological matter perturbations using standard candles and rulers

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Ujjaini [Los Alamos National Laboratory; Sahni, Varun [IUCAA, PUNE; Starobinsky, Alexei A [LANDAU INST, MOSCOW


    For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified or interact directly. We show that for current supernovae (SNe) data, the linear growth factor at z = 0.3 can be constrained to 5% and the linear growth rate to 6%. With future SNe data, such as expected from the Joint Dark Energy Mission, we may be able to constrain the growth factor to 2%-3% and the growth rate to 3%-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future baryon acoustic oscillation data which would deliver measurements of both the angular diameter distance and the Hubble parameter, it should be possible to constrain the growth factor at z = 2.5%-9%. These constraints grow tighter with the errors on the data sets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.

  11. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)


    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  12. Identification of predominant odorants in thai desserts flavored by smoking with "Tian Op", a traditional Thai scented candle. (United States)

    Watcharananun, Wanwarang; Cadwallader, Keith R; Huangrak, Kittiphong; Kim, Hun; Lorjaroenphon, Yaowapa


    "Tian Op", a traditional Thai scented candle, is used for the smoking and flavoring of sweets, cakes, and other desserts for the purpose of adding a unique aroma to the final product. Gas chromatography-olfactometry, aroma extract dilution analysis, and GC-MS were applied to identify the potent odorants in two types of traditional Thai desserts ("num dok mai" and "gleep lum duan") prepared using a Tian Op smoking process. On the basis of the results of AEDA and calculated odor-activity values, the predominant odorants in the Tian Op flavored desserts were vinyl ketones (C(5)-C(9)), n-aldehydes (C(5)-C(11)), (E)-2-unsaturated aldehydes (C(8)-C(11)), and omega-1-unsaturated aldehydes (C(8) and C(9)). Sensory studies of model mixtures confirmed the importance of n-aldehydes, omega-1-unsaturated aldehydes, and guaiacol as predominant odorants; however, the results showed that vinyl ketones and (E)-2-unsaturated aldehydes, despite having high odor-activity values, may be of only minor importance in the typical aroma profiles of traditional Tian Op smoked desserts.

  13. Experimental and scale up study of the flame spread over the PMMA sheets

    Directory of Open Access Journals (Sweden)

    Mamourian Mojtaba


    Full Text Available To explore the flame spread mechanisms over the solid fuel sheets, downward flame spread over vertical polymethylmethacrylate sheets with thicknesses from 1.75 to 5.75 mm have been examined in the quiescent environment. The dependence of the flame spread rate on the thickness of sheets is obtained by one-dimensional heat transfer model. An equation for the flame spread rate based on the thermal properties and the thickness of the sheet by scale up method is derived from this model. During combustion, temperature within the gas and solid phases is measured by a fine thermocouple. The pyrolysis temperature, the length of the pyrolysis zone, the length of the preheating zone, and the flame temperature are determined from the experimental data. Mathematical analysis has yielded realistic results. This model provides a useful formula to predict the rate of flame spread over any thin solid fuel.

  14. Fail save shut off valve for filtering systems employing candle filters (United States)

    VanOsdol, John [Fairmont, WV


    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.


    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang; Eric K. Johnson


    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  16. Modeling and Measurements of a 16 kW Turbulent Nonadiabatic Syngas Diffusion Flame in a Cooled Cylindrical Combustion Chamber

    NARCIS (Netherlands)

    Louis, J.J.J.; Kok, Jacobus B.W.; Klein, S.A.


    A model is presented to predict nonadiabatic combustion of syngas under gas turbine conditions. Mixing, combustion, and heat loss are described with four independent scalar variables. These are the mixture fraction, an enthalpy variable and two reaction progress variables for combustion of hydrogen

  17. Turbulent Flame Speed and Self Similarity of Expanding Premixed Flames (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung


    In this study we present experimental turbulent flame speed data measured in constant-pressure expanding turbulent flames, propagating in nearly homogenous isotropic turbulence, in a dual-chamber, fan-stirred vessel. The cold flow is characterized by high speed particle image velocimetry while the flame propagation rate is obtained by tracking high speed Schlieren images of unity Lewis number methane-air flames over wide ranges of pressure and turbulence intensity. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from expanding flames and those from Bunsen geometries can be scaled by a single parameter: the turbulent Reynolds number utilizing recent theoretical results obtained by spectral closure of the G equation, after correcting for gas expansion effects.

  18. Computational Flame Diagnostics for Direct Numerical Simulations with Detailed Chemistry of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)


    The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.

  19. Development of the heat and mass transfer model for the study of the temperature traces water droplets in a flame

    Directory of Open Access Journals (Sweden)

    Antonov Dmitry


    Full Text Available The heat and mass transfer model is developed with using Ansys Fluent. The typical temperature of gases in the trace of water droplets is determined (initial temperature of gases 1170 К. Several types for the location of water droplets are studied: two successive water droplets; two parallel water droplets; five water droplets in checkerboard order. The hypothesis about gas temperature reduction in the trace of a moving liquid is confirmed.

  20. Development of the heat and mass transfer model for the study of the temperature traces water droplets in a flame


    Antonov Dmitry; Kostomarov Petr


    The heat and mass transfer model is developed with using Ansys Fluent. The typical temperature of gases in the trace of water droplets is determined (initial temperature of gases 1170 К). Several types for the location of water droplets are studied: two successive water droplets; two parallel water droplets; five water droplets in checkerboard order. The hypothesis about gas temperature reduction in the trace of a moving liquid is confirmed.

  1. Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira


    Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na 2 O in dry air condition and liquid Na 2 O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling

  2. Same sign di-lepton candles of the composite gluons

    CERN Document Server

    Azatov, Aleksandr; Ghosh, Diptimoy; Ray, Tirtha Sankar


    Composite Higgs models, where the Higgs boson is identified with the pseudo-Nambu-Goldstone-Boson (pNGB) of a strong sector, typically have light composite fermions (top partners) to account for a light Higgs. This type of models generically also predicts the existence of heavy vector fields (composite gluons) which appear as an octet of QCD. These composite gluons generically become very broad resonances once phase-space allows them to decay into two composite fermions. This makes their traditional experimental searches, which are designed to look for narrow resonances, quite ineffective. In this paper we, as an alternative, propose to utilize the impact of composite gluons on the production of top partners to constrain their parameter space. We place constraints on the parameters of the composite resonances using the 8 TeV LHC data and also assess the reach of the 14 TeV LHC. We find that the high luminosity LHC will be able to probe composite gluon masses up to $\\sim 6$ TeV, even in the broad resonance reg...

  3. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.


    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  4. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir


    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  5. Halogenated flame retardants: do the fire safety benefits justify the risks? (United States)

    Shaw, Susan D; Blum, Arlene; Weber, Roland; Kannan, Kurunthachalam; Rich, David; Lucas, Donald; Koshland, Catherine P; Dobraca, Dina; Hanson, Sarah; Birnbaum, Linda S


    Since the 1970s, an increasing number of regulations have expanded the use of brominated and chlorinated flame retardants. Many of these chemicals are now recognized as global contaminants and are associated with adverse health effects in animals and humans, including endocrine and thyroid disruption, immunotoxicity, reproductive toxicity, cancer, and adverse effects on fetal and child development and neurologic function. Some flame retardants such as polybrominated diphenyl ethers (PBDEs) have been banned or voluntarily phased out by manufacturers because of their environmental persistence and toxicity, only to be replaced by other organohalogens of unknown toxicity. Despite restrictions on further production in some countries, consumer products previously treated with banned retardants are still in use and continue to release toxic chemicals into the environment, and the worldwide use of organohalogen retardants continues to increase. This paper examines major uses and known toxic effects of commonly-used organohalogen flame retardants, replacements for those that have been phased out, their combustion by-products, and their effectiveness at reducing fire hazard. Policy and other solutions to maintain fire safety while reducing toxicity are suggested. The major conclusions are: (1) Flammability regulations can cause greater adverse environmental and health impacts than fire safety benefits. (2) The current options for end-of-life disposal of products treated with organohalogens retardants are problematic. (3) Life-cycle analyses evaluating benefits and risks should consider the health and environmental effects of the chemicals, as well as their fire safety impacts. (4) Most fire deaths and most fire injuries result from inhaling carbon monoxide, irritant gases, and soot. The incorporation of organohalogens can increase the yield of these toxic by-products during combustion. (5) Fire-safe cigarettes, fire-safe candles, child-resistant lighters, sprinklers, and

  6. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme (United States)

    Widiawati, Nina; Su'ud, Zaki


    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from -0.6695443 % at BOC to -0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  7. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.


    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  8. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik


    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  9. Electrical Aspects of Impinging Flames (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  10. Modeling human off-site aerosol exposures to polybrominated flame retardants emitted during the land application of sewage sludge. (United States)

    Ziemba, Chris; Yang, Wulin; Peccia, Jordan


    Elevated sewage sludge concentrations of polybrominated diphenyl ethers (PBDEs) are due to their broad utilization in textiles and polymers, their resistance to biological degradation, and also their hydrophobic nature-which drives partitioning into wastewater solids. This study estimated the total U.S. emissions of PBDE due to sewage sludge land application and then determined the human inhalation exposure to sludge-associated PBDEs as a function meteorological conditions and downwind distances from an application site. These aerosol exposures have also been incorporated into pharmacokinetic models to predict contributions to steady-state body burden. Our results suggest that while the amount of PBDEs aerosolized during the land application process is small compared to aerosol emissions associated with product use, the application of sludges onto U.S. soils constitutes a major source of PBDEs entering the outdoor environment. Regarding aerosol exposure to nearby residents, the maximum daily inhalation dosages from a common land application scenario occur immediately after sewage sludges are applied and were 137, 27, 1.9, and 81pg/day for significant congeners PBDE-47, -99, -153 and 209 respectively. These doses are 1-2 orders of magnitude less than the standard daily inhalation exposure to the same PBDEs associated with home indoor air and are similar to doses from inhalation of urban and rural outdoor air. Under the worst-case atmospheric transport scenario, the dosages are reduced by approximately 1 order of magnitude when the setback distance between the sludge aerosolization source and human receptor is increased to 200m. Though the health implications of low-level exposures are not well-understood, these sludge-derived PBDE dosages contribute less than a tenth of 1% to the estimated total body burden of PBDE produced from inhalation of indoor and outdoor air, exposure to house dust, and exposure to PBDE from food and water intake. Overall, the inhalation of

  11. A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines (United States)

    Richard, Stéphane; Veynante, Denis


    The current development of reciprocating engines relies increasingly on system simulation for both design activities and conception of algorithms for engine control. These numerical simulation tools require high computational efficiencies, as calculations have to be performed in times close to real-time. Then, they are today mainly based on simple empirical laws to describe the combustion processes in the cylinders. However, with the rapid evolution of emission regulations and fuel formulation, more and more physics is expected in combustion models. A solution consists in reducing 3-D combustion models to build 0-dimensional models that are both CPU-efficient and based on physical quantities. This approach has been used in a previous work to reduce the 3-D ECFM (Extended Coherent Flame Model), leading to the so-called CFM1D. A key feature of the latter is to be based on a 0-D equation for the flame wrinkling derived from the 3-D equation for the flame surface density. The objective of this paper is to present in details the theoretical derivation of the wrinkling equation and the underlying modeling assumptions as well. Academic validations are performed against experimental data for several turbulence intensities and fuels. Finally, the proposed model is applied to engine simulations for a wide range of operating conditions. Comparisons are successfully conducted between in-cylinder measurements and the model predictions, highlighting the interest of reducing 3-D CFD models for calculations performed in the context of system simulation.

  12. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.


    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  13. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad


    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  14. Neurotoxicity of brominated flame retardants (United States)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...


    Directory of Open Access Journals (Sweden)

    A. N. Chichko


    Full Text Available There are presented the computer calculations of^ longitudinal stresses of the crystallizing continuously cast ingot, being cooled by flat-flame spray burners. The character of the stresses changes in the zone of secondary cooling along the length of ingot and in the different cross sections is established. The possibility of occurrence of the longitudinal stresses skewness in the ingot cross section is shown

  16. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor (United States)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.


    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  17. Combustion Dynamics for Energetically Enhanced Flames Using Direct Microwave Energy Coupling (United States)


    this type of mode can be used to focus the microwave energy when a flame sits on top of the burner exit. The tip of the burner can be raised to be...used as a first order approximation of the Bunsen Flame geometry of our flame . Here, it was assumed that the rate for photo-ionization, from a third...discharge to 104 with pulsed plasma). A Chemkin simulation using GRI-mech 3.0 [17] with a premixed burner model of flame with methane and oxygen show

  18. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)


    these flames so that this information can be used effectively in combustion modeling.

  19. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu


    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  20. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.


    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  1. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad


    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  2. The flaming funis. (United States)

    Young, William W; Dedam, Jean-Paul; Conley, Sarah; Wickner, Paige


    The authors observed a Nicaraguan traditional birth attendant burn the fetal end of the umbilical cord with camphor. They review this practice and reflect on the role of foreign medical volunteers in the developing world. There is a long history to the use of camphor in rituals and medicine. No print references to burning the umbilical cord with camphor, its effectiveness, or its safety could be identified. Interviews with Nicaraguan traditional birth attendants revealed that the practice is passed from generation to generation and that it is believed to decrease infections through the medicinal properties of camphor as well as the flame it produces. It is continued in modern times because it is easy and inexpensive and because there are no clearly better and sustainable alternatives available. Gradual and culturally sensitive modernization to improve the health for mothers and babies is appropriate, but it will be a slow process. Health care volunteers in the developing world struggle with doing the best they can despite the limited resources and sometimes the local traditions. Volunteering as a medical worker in the developing world provides inspiring rewards, teaches powerful lessons, and exposes challenging conflicts.

  3. Tracking themes in Manuchehri’s candle conundrum in Arabic and Persian poetry till the end of 7th century AH

    Directory of Open Access Journals (Sweden)

    Parvane Saneai


     Manouchehri has derived some of his themes for ode of candle conundrum from Arabic literature. Following him, other poets have applied such themes in their poets. In fact, at the beginning of this stream is seen the composition of candle conundrum whose first symptoms can be seen in Arab poetry. Following Manouchehri, the poets have used in their poems the themes as follows: Shortening the wick of the candle, candles’ yellow face, candles’ laughing and crying, candles’ soul and body, Love and Lovers.

  4. Research on Forest Flame Recognition Algorithm Based on Image Feature (United States)

    Wang, Z.; Liu, P.; Cui, T.


    In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.


    Directory of Open Access Journals (Sweden)

    Z. Wang


    Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  6. Development of CANDLES low background HPGe detector and half-life measurement of 180Tam (United States)

    Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.


    A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.

  7. Polymer-based candle-shaped microneedle electrodes for electroencephalography on hairy skin (United States)

    Arai, Miyako; Kudo, Yuta; Miki, Norihisa


    In this paper, we report on the optimization of the shape of dry microneedle electrodes for electroencephalography (EEG) on hairy locations and compare the electrodes we developed with conventional wet electrodes. We propose the use of SU-8-based candle-shaped microneedle electrodes (CMEs), which have pillars of 1.0 mm height and 0.4 mm diameter with a gap of 0.43 mm between pillars. Microneedles are formed on the top of the pillars. The shape was determined by how well the pillars can avoid hairs and support the microneedles to penetrate through the stratum corneum. The skin-electrode contact impedances of the fabricated CMEs were found to be higher and less stable than those of conventional wet electrodes. However, the CMEs successfully acquired signals with qualities as good as those of conventional wet electrodes. Given the usability of the CMEs, which do not require skin preparation or gel, they are promising alternatives to conventional wet electrodes.

  8. Standard test method for determining atmospheric chloride deposition rate by wet candle method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers a wet candle device and its use in measuring atmospheric chloride deposition (amount of chloride salts deposited from the atmosphere on a given area per unit time). 1.2 Data on atmospheric chloride deposition can be useful in classifying the corrosivity of a specific area, such as an atmospheric test site. Caution must be exercised, however, to take into consideration the season because airborne chlorides vary widely between seasons. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Electrohydrodynamic instability of premixed flames under manipulations of dc electric fields (United States)

    Ren, Yihua; Cui, Wei; Li, Shuiqing


    We report an electrohydrodynamic instability in a premixed stagnation flame under manipulations of a dc electric field. This instability occurs when the electric field strength is at a certain value below the breakdown threshold, which is 0.75 kV/cm in the experimental setup. Above this value the flame front suddenly transits from a substrate-stabilized near-flat shape to a nozzle-stabilized conical surface, accompanied by a jump in the electric current through the flame field. At the transition moment, the flame spontaneously propagates upstream to the nozzle while the flow velocity at the upstream of the flame front decreases to zero, as revealed by high-speed photographs and PIV measurements. These phenomena indicate a transient balance between the fluid inertia and the electric body force around the instability threshold. A quantitative model suggests that the flame instability can be explained by a positive feedback loop, where the electric field applies a nonuniform electric body force, pulling the flame front upstream, and the pulled flame front in turn enhances the local electric body force. The electrohydrodynamic instability occurs when the electric pulling is strong enough and both the growth rates and the magnitudes of the electric body force on flame exceed those of the fluid dynamic pressure.

  10. Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Rabe


    Full Text Available Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species.

  11. Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor (United States)


    fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation

  12. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Craig T.; Ciccarelli, Gaby [Mechanical and Materials Engineering, Queen' s University, McLaughlin Hall, 130 Stuart Street, Kingston, ON K7L 3N6 (Canada)


    The effect of blockage ratio on the early phase of the flame acceleration process was investigated in an obstructed square cross-section channel. Flame acceleration was promoted by an array of top-and bottom-surface mounted obstacles that were distributed along the entire channel length at an equal spacing corresponding to one channel height. It was determined that flame acceleration is more pronounced for higher blockage obstacles during the initial stage of flame acceleration up to a flame velocity below the speed of sound of the reactants. The progression of the flame shape and flame area was determined by constructing a series of three-dimensional flame surface models using synchronized orthogonal schlieren images. A novel schlieren based photographic technique was used to visualize the unburned gas flow field ahead of the flame front. A small amount of helium gas is injected into the channel before ignition, and the evolution of the helium diluted unburned gas pocket is tracked simultaneously with the flame front. Using this technique the formation of a vortex downstream of each obstacle was observed. The size of the vortex increases with time until it reaches the channel wall and completely spans the distance between adjacent obstacles. A shear layer develops separating the core flow from the recirculation zone between the obstacles. The evolution of oscillations in centerline flame velocity is discussed in the context of the development of these flow structures in the unburned gas. (author)

  13. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem


    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  14. Role of buoyant flame dynamics in wildfire spread. (United States)

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D


    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling.

  15. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho


    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  16. Flame Retardants Used in Flexible Polyurethane Foam (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  17. Production of fullerenic nanostructures in flames (United States)

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das


    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  18. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.


    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  19. Physical and Chemical Processes in Turbulent Flames (United States)


    used a constant-pressure, fan -stirred combustion chamber to investigate the propagation of a spherically expanding flame (Fig. 1.1). Chambers based...radius, closer to the fans . However during flame expansion, the mean radial flow adjacent to the flame is radially outward in nature shown by the...AFRL-OSR-VA-TR-2015-0136 Physical and Chemical Processes in Turbulent Flames Chung Law TRUSTEES OF PRINCETON UNIVERSITY Final Report 06/23/2015

  20. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng


    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Response mechanisms of attached premixed flames subjected to harmonic forcing (United States)


    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  2. 30 CFR 14.20 - Flame resistance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  3. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.


    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  4. Environmental Considerations for Flame Resistant Textiles (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...


    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.


    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  6. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.


    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  7. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin


    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  8. The impact of candle burning during All Saints' Day ceremonies on ambient alkyl-substituted benzene concentrations. (United States)

    Olszowski, Tomasz; Kłos, Andrzej


    Research findings concerning benzene, toluene, ethylobenzene, meta-, para- and ortho-xylene as well as styrene (BTEXS) emission at public cemeteries during All Saints' Day are presented here. Tests were carried out at town-located cemeteries in Opole and Grodków (southern Poland) and, as a benchmark, at the centres of those same towns. The purpose of the study was to estimate BTEXS emissions caused by the candle burning and, equally important to examine, whether emissions generated by the tested sources were similar to the BTEXS emissions generated by road transport. During the festive period, significant increases in benzene concentrations, by 200 % and 144 %, were noted at the cemeteries in Opole and Grodków, as well as in toluene, by 366 % and 342 %, respectively. Styrene concentrations also increased. It was demonstrated that the ratio of toluene to benzene concentrations from emissions caused by the burning candles are comparable to the ratio established for transportation emissions.

  9. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.


    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  10. Rate Controlling Factors in a Bunsen Burner Flame (United States)

    Andrade-Gamboa, Julio; Corso, Hugo L.; Gennari, Fabiana C.


    Combustion and flames have been extensively investigated during past decades due to their industrial importance. The associated phenomena are both physical and chemical in nature, and the rigorous mathematical description is beyond the undergraduate teaching level. While thermodynamic calculations of temperature of a Bunsen burner flame can be made at the college level, there are not accessible chemical kinetic descriptions that can be used for instruction. In this paper we present a simple model that accounts for mass transfer, energy transfer, and kinetics of chemical reaction. From such a description, different controlling regimes can be deduced and tested with experimental data.

  11. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan


    80 Hz and became saturated at over 80 Hz, which has been explained based on the interaction between the buoyancy and ionic wind. Electrical measurement showed the power consumed by the AC was smaller than 0.01% of the heat release rate from the flame. To improve the understanding on the electric current resulting from applying electric field on flames, a simplified one-dimensional model was developed in that the reaction zone was modeled as a thin ionized layer. Model governing equations were derived from species equations by implementing mobility differences depending on the type of charged particles, especially between ions and electrons. The result showed that the sub-saturated current along with field intensity was significantly influenced by the polarity of DC due to the combined effect of non-equal mobility of charged particles as well as the position of the ionized layer in a gap relative to two electrodes. Experiments with quasi-one-dimensional flames under DC were conducted to substantiate the model and measured currents agreed qualitatively well with the model predictions.

  12. Periodontal Manifestations of Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and Elevated Temperature (CANDLE) Syndrome in an 11 Year Old Patient


    McKenna, Gerald J.; Ziada, Hassan M.


    Introduction: Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) is an auto inflammatory syndrome caused by an autosomal recessive gene mutation. This very rare syndrome has been reported in only 14 patients worldwide. A number of clinical signs have been reported including joint contractures, muscle atrophy, microcytic anaemia, and panniculitis-induced childhood lipodystrophy. Further symptoms include recurrent fevers, purpuric skin lesions, periorb...

  13. Physical and Chemical Process in Flames (United States)


    simulation for a turbulence Bunsen flame through our collaboration with Sandia National Lab. The solver is explicit 6th-order Rounge- Kutta...phenomena. For example, when the Bunsen flame was forced with high frequency, low amplitude disturbances, flame wrinkling was evident only at the flame base...and the wrinkling is 0 1 more evident for the flame surface near the 0 0.2 0.4 0.6 0.8 1 burner rim. This explains the experimental Figure 10

  14. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.


    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  15. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.


    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  16. Flex-flame burner and combustion method (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.


    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  17. Flame Dynamics inside Rectangular Meso scale Channels (United States)

    Anwar, Muzammil; Naseer Mohammad, Abdul; Mohammad, Akram; Juhany, Khalid A.


    The present work is focused on the experimental study of flame dynamics in preheated meso-scale straight channels of various aspect ratios (2, 5, 12 and 15) and inlet dimensions.Premixed methane-air mixture were used for the reported experiments. To maintain a positive wall temperature gradient inside the channel, the lower part of the rectangular channels were heated at a constant temperature using an external electric heater. Laminar premixed flames were stabilized inside these channels. Various flame propagation modes such as concave, planar, and convex flames with respect to unburned mixture. Concave flames lead to flashback whereas convex flames lead to blowout. Increase in aspect ratio and decrease of flow velocity leads to flame flashback.

  18. Tomographic PIV study of boundary-layer flashback in swirl flames (United States)

    Ebi, Dominik; Clemens, Noel


    Preventing boundary layer flashback in swirl combustors is a key challenge for gas turbines intended to burn high hydrogen content fuels. We are studying this type of flashback by investigating the upstream flame propagation of lean-premixed methane/hydrogen-air flames inside the mixing tube of our model swirl combustor. Experiments are conducted at atmospheric pressure. Flashback is triggered by increasing the equivalence ratio. Previous studies employing planar measurements have shown that the flame strongly alters the upstream flow field and thus its own propagation path. Volumetric measurement techniques are needed to further increase understanding of this highly three-dimensional coupled flow-flame interaction. Flashback is an inherently transient event with duration on the order of a few hundred milliseconds. Time-resolved tomographic PIV together with high-speed chemiluminescence imaging is therefore applied to investigate the velocity field in the vicinity of the flame.

  19. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.


    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  20. Effect of DPK flame retardant on combustion characteristics and fire safety of PVC membrane

    Directory of Open Access Journals (Sweden)

    Yu Xia


    Full Text Available In this work, the performances of PVC membrane with DPK flame retardant and without flame retardant were investigated under external radiation flux. The experimental results showed that the addition of DPK flame retardant can greatly reduce the peak heat release, total heat release of the material, and increase the time to peak heat release, time to ignition and the production of poisonous gas CO. By introducing the mathematical evaluation model and specifying the reliable evaluation indexes, the safety indexes of two kinds of materials are obtained. The results showed that by adding the flame retardant, the safety indexes of the PVC membranes were increased to 161% and 156% under 40 kw/m2 and 50 kw/m2 respectively, which is accordant to the result of experiments and suggest that the presence of DPK has a good flame retardant effect.


    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  2. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.


    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  3. Halogenated flame retardants in bobcats from the midwestern United States. (United States)

    Boyles, Esmarie; Tan, Hongli; Wu, Yan; Nielsen, Clayton K; Shen, Li; Reiner, Eric J; Chen, Da


    In response to the restrictions of polybrominated diphenyl ether (PBDE) flame retardants in various consumer products, alternative halogenated flame retardants have been subjected to increased use. Compared to aquatic ecosystems, relatively little information is available on the contamination of alternative flame retardants in terrestrial ecosystems, especially with regards to mammalian wildlife. In this study we used a top terrestrial carnivore, the bobcat (Lynx rufus), as a unique biomonitoring species for assessing flame retardant contamination in the Midwestern United States (U.S.) terrestrial ecosystems. Concentrations of ∑PBDEs (including all detectable PBDE congeners) ranged from 8.3 to 1920 ng/g lipid weight (median: 50.3 ng/g lw) in livers from 44 bobcats collected during 2013-2014 in Illinois. Among a variety of alternative flame retardants screened, Dechloranes (including anti- and syn-Dechlorane Plus and Dechlorane-602, 603, and 604), tetrabromo-o-chlorotoluene (TBCT), and hexabromocyclododecane (HBCD) were also frequently detected, with median concentrations of 28.7, 5.2, and 11.8 ng/g lw, respectively. Dechlorane analogue compositions in bobcats were different from what has been reported in other studies, suggesting species- or analogue-dependent bioaccumulation, biomagnification, or metabolism of Dechlorane chemicals in different food webs. Our findings, along with previously reported food web models, suggest Dechloranes may possess substantial bioaccumulation and biomagnification potencies in terrestrial mammalian food webs. Thus, attention should be given to these highly bioavailable flame retardants in future environmental biomonitoring and risk assessments in a post-PBDE era. Copyright © 2016. Published by Elsevier Ltd.

  4. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations. (United States)

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek


    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors (United States)

    Su'ud, Zaki; Widiawati, Nina; Sekimoto, H.; Artoto, A.


    Safely analysis of 800MWt Pb-208 cooled fast reactors with natural Uranium as fuel cycle input employing axial-radial combined Modiified CANDLE burnup scheme has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 800 MWt Pb-208 cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. Compared to the Pb-nat cooled long life Fast Reactors, Pb-208 cooled reactors have smaller Doppler but higher coolant density reactivity coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.003dk/k. And for ULOHS case it is assumed that the secondary cooling system has broken. During all accident the cladding temperature is the most critical. Especially for the case of UTOP accident. In addition the steam generator design has also consider excess power which may reach 50% extra during severe UTOP case..

  6. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker


    3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard......, and Longwell. Based on an accurate modeling of the flame structure, in particular the concentration profile of propargyl, we estimate the rate constant by fitting the kinetic modeling predictions to the measured benzene and phenyl profiles. The best agreement is obtained with k = 1.3 x 10(12) cm(3)/mol...

  7. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li


    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  8. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang


    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  9. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.


    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  10. The role of shock-flame interactions on flame acceleration in an obstacle laden channel

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, Gaby; Johansen, Craig T.; Parravani, Michael [Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada)


    Flame acceleration was investigated in an obstructed, square-cross-section channel. Flame acceleration was promoted by an array of top and bottom surface mounted obstacles that were distributed along the entire channel length at an equal spacing corresponding to one channel height. This work is based on a previous investigation of the effects of blockage ratio on the early stage of flame acceleration. This study is focused on the later stage of flame acceleration when compression waves, and eventually a shock wave, form ahead of the flame. The objective of the study is to investigate the effect of obstacle blockage on the rate of flame acceleration and on the final quasi-steady flame-tip velocity. Schlieren photography was used to track the development of the shock-flame complex. It was determined that the interaction between the flame front and the reflected shock waves produced from contact of the lead shock wave with the channel top, channel bottom, and obstacle surfaces govern the late stage of flame acceleration process. The shock-flame interactions produce oscillations in the flame-tip velocity similar to that observed in the early stage of flame acceleration, but only much larger in magnitude. Eventually the flame achieves a globally quasi-steady velocity. For the lowest blockage obstacles, the velocity approaches the speed of sound of the combustion products. The final quasi-steady flame velocity was lower in tests with the higher obstacle blockage. In the quasi-steady propagation regime with the lowest blockage obstacles, burning pockets of gas extended only a few obstacles back from the flame-tip, whereas burning pockets were observed further back in tests with the higher obstacle blockage. (author)

  11. Flame Surface Density Measurements and Curvature Statistics for Turbulent Premixed Bunsen Flames


    Capil, Tyler George


    In this work, turbulent premixed combustion was analyzed through CH (methylidyne) planar laser induced fluorescence (PLIF). Flame topography measurements in terms of flame surface density and curvature were calculated based on the flame front detected by the CH PLIF signal. The goal of this work was to investigate turbulent flames with extremely high turbulence intensity using a recently developed HiPilot burner (a Bunsen-type burner). The studies were first conducted on a series of piloted j...

  12. The Role of Combustion in Diffusion Flame-Vortex Ring Interaction (United States)

    Chen, Shin-Juh; Dahm, Werner J. A.


    We experimentally investigate flame-vortex interaction as an idealized representation of the coupling between fluid dynamics and combustion in turbulent diffusion flames under conditions that allow the elementary processes to be carefully investigated. Our configuration involves the rollup and burning of an initially flat diffusion flame in a laminar vortex ring formed by impulsively issuing fuel from a round nozzle into an oxidizer environment. Results are obtained under microgravity conditions for propane, ethane, methane fuels, as well as propane diluted with nitrogen, burning in air at atmospheric pressure. With similar ring circulation and fuel volume, the higher sooting propensity of propane rings produced larger radiant losses than the other cases, resulting in a fundamental change in the flame shape. Theoretical fuel consumption time based on simple spherical diffusion flame model agrees well with observed burnout time for most cases. However, trajectories of burning rings do not agree very well with either the inviscid and viscous models of vortex ring translation; effects of heat release must evidently be incorporated through a time varying viscosity. The observations help clarify certain aspects of the coupling between the fluid dynamics and combustion processes in flame-vortex interactions, leading to an improved understanding of turbulent diffusion flames.

  13. Physical and Chemical Processing in Flames (United States)


    type of the burner used in the investigation – a major hindrance that has prevented its utilization as a meaningful physical quantity for predictions...turbulent flame speeds measured from the present spherically expanding flames, as well as those from literature data on Bunsen flames, can be scaled by...Prezhdo, J Phys Chem, 99, 8633–8637 (1995). P. Zhang, C K Law, Int J Chem Kinet, 41, 727–734 (2009) R G Gilbert, K. Luther, and J Troe, Ber Bunsen

  14. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg


    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  15. Imaging of premixed flames in microgravity (United States)

    Kostiuk, L. W.; Cheng, R. K.


    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Candle NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.


    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Candle NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, and lake-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  17. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles (United States)

    Dhawan, Suhail; Jha, Saurabh W.; Leibundgut, Bruno


    The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = -18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just 0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.

  18. Numerical simulation of a laboratory-scale turbulent V-flame

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.B.; Day, M.S.; Shepherd, I.G.; Johnson, M.; Cheng, R.K.; Grcar,J.F.; Beckner, V.E.; Lijewski, M.J.


    We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The simulations are performed using an adaptive time-dependent low Mach number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit subgrid model for turbulence or turbulence chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.

  19. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Directory of Open Access Journals (Sweden)

    Gelan Yang


    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  20. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen


    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  1. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan


    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...... homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without...... and HCl and aerosols formed, most pronounced in flames with the lowest post-flame temperatures. This shows that KCl is sulfated in the gas phase to K2SO4, and this is followed by homogeneous nucleation of K2SO4 to form aerosols. Predictions from a kinetic model of the S/Cl/K chemistry agreed well...

  2. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun


    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  3. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003 (United States)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo


    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  4. CANDLE reactor: an option for simple, safe, high nuclear proliferation resistant , small waste and efficient fuel use reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.


    The innovative nuclear energy systems have been investigated intensively for long period in COE-INES program and CRINES activities in Tokyo Institute of Technology. Five requirements; sustainability, safety, waste, nuclear-proliferation, and economy; are considered as inevitable requirements for nuclear energy. Characteristics of small LBE cooled CANDLE fast reactor developed in this Institute are discussed for these requirements. It satisfies clearly four requirements; safety, nonproliferation and safeguard, less wastes and sustainability. For the remaining requirement, economy, a high potential to satisfy this requirement is also shown

  5. Developmental neurotoxicity of organophosphate flame retardants in early life stages of Japanese medaka (Oryzias latipes). (United States)

    Sun, Liwei; Tan, Hana; Peng, Tao; Wang, Sisi; Xu, Wenbin; Qian, Haifeng; Jin, Yuanxiang; Fu, Zhengwei


    Because brominated flame retardants are being banned or phased out worldwide, organophosphate flame retardants have been used as alternatives on a large scale and have thus become ubiquitous environmental contaminants; this raises great concerns about their environmental health risk and toxicity. Considering that previous research has identified the nervous system as a sensitive target, Japanese medaka were used as an aquatic organism model to evaluate the developmental neurotoxicity of 4 organophosphate flame retardants: triphenyl phosphate, tri-n-butyl phosphate, tris(2-butoxyethyl) phosphate, and tris(2-chloroethyl) phosphate (TCEP). The embryo toxicity test showed that organophosphate flame retardant exposure could decrease hatchability, delay time to hatching, increase the occurrence of malformations, reduce body length, and slow heart rate. Regarding locomotor behavior, exposure to the tested organophosphate flame retardants (except TCEP) for 96 h resulted in hypoactivity for medaka larvae in both the free-swimming and the dark-to-light photoperiod stimulation test. Changes of acetylcholinesterase activity and transcriptional responses of genes related to the nervous system likely provide a reasonable explanation for the neurobehavioral disruption. Overall, the present study clearly demonstrates the developmental neurotoxicity of various organophosphate flame retardants with very different potency and contribute to the determination of which organophosphate flame retardants are appropriate substitutes, as well as the consideration of whether regulations are reasonable and required. Environ Toxicol Chem 2016;35:2931-2940. © 2016 SETAC. © 2016 SETAC.

  6. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.


    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  7. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem


    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  8. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)


    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  9. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    This work presents a comprehensive flame characterization campaign on an operating full-scale Danish power plant. Amagerværket Unit 1 (AMV1, 350 MWth, 12 identical burners on 3 burner levels) is 100 % fuelled with wood dust burned in suspension and stabilized by swirling flows in a triple...... (LDA) velocity measurements, flame shape observations by video imaging, and particle entrainment by high speed infrared (IR) imaging. The flame is characterized along the geometrical centreline as well as in the horizontal and vertical plane of the flame. The results shed light on the flame anatomy...

  10. Tulip flames: changes in shape of premixed flames propagating in closed tubes (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  11. Analysis of polydisperse fuel spray flame (United States)

    Nave, Ophir; Lehavi, Yaron; Ajadi, Suraju; Gol'dshtein, Vladimir


    In this paper we analyzed the model of polydisperse fuel spray flame by using the sectional approach to describe the droplet-droplet interaction within the spray. The radii of the droplets are described by a probability density function. Our numerical simulations include a comparative analysis between three empirical droplet size distributions: the Rosin-Rammler distribution, the log-normal distribution and the Nakiyama-Tanasawa distribution. The log-normal distribution was found to produce a reasonable approximation to both the number and volume size distribution function. In addition our comparative analysis includes the application of the homotopy analysis method which yields convergent solutions for all values of the relevant parameters. We compared the above results to experimental fuel spray data such as {it{Tetralin}}, n-{it{Decane}}, and n-{it{Heptane}}.

  12. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.


    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  13. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames (United States)

    Bollinger, Lowell M; Williams, David T


    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  14. Flaming in CMC: Prometheus' Fire or Inferno's? (United States)

    Abrams, Zsuzsanna Ittzes


    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  15. Flame Imaging of Gas-Turbine Relight

    DEFF Research Database (Denmark)

    Read, Robert; Rogerson, J.W.; Hochgreb, S.


    . The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical...

  16. Development of PIV for Microgravity Diffusion Flames (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.


    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  17. Flame retardant cotton based highloft nonwovens (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  18. Flame retardant cotton barrier nonwovens for mattresses (United States)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  19. Extended Shvab-Zel'dovich formulation for multicomponent-fuel diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Fachini, Fernando F. [Instituto Nacional de Pesquisas Espaciais, Rod. Presidente Dutra Km 40, 12630-000 Cachoeira Paulista, SP (Brazil)


    In this paper an extension of the Shvab-Zel'dovich formulation is presented. This extended formulation, based on the Burke-Schumann kinetic mechanism, describes the combustion of multicomponent fuels in a diffusion flame in terms of mixture fraction and the excess enthalpy. Under the condition of Burke-Schumann kinetic mechanism, the multicomponent fuel is burned in a single flame. The model is applied to a diffusion flame generated by the burning of mixtures of n-heptane and hydrogen diluted in nitrogen in a counterflow configuration. Due to the very small ratio of the hydrogen molecular weight to the n-heptane molecular weight, small quantities of hydrogen (in terms of mass) in the mixture does not change significantly the properties related to the mass, like as the total heat released per unit of mass at the flame. However, properties related to the hydrogen mole fraction does change expressively with small quantities, like as the radiative energy loss from the hot region around the flame. The results show the flame properties as a function of the reciprocal scalar dissipation and hydrogen quantity in the mixture. It is observed that, by reducing the reciprocal scalar dissipation, the radiative energy loss decreases and by increasing the presence of the hydrogen, the sensitivity of the flame properties with the reciprocal scalar dissipation reduces. It is also revealed by the results, the effects of the potentiated preferential hydrogen mass diffusion in compositions in which nitrogen and n-heptane are the majority species, and the potentiated preferential n-heptane thermal diffusion in compositions in which nitrogen and hydrogen are the majority species, on the flame properties. Although, this work do not treat the extinction problem, the fluid dynamical results will be properly handled to provide information about the reciprocal scalar dissipation and the Linan's parameter necessary for future flame stability analyses. (author)

  20. Propagation of a Free Flame in a Turbulent Gas Stream (United States)

    Mickelsen, William R; Ernstein, Norman E


    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  1. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation. (United States)

    Li, Jian; Zhao, Zhihong; Li, Dianming; Tian, Haifeng; Zha, Fei; Feng, Hua; Guo, Lin


    Oil/water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water or water-in-oil emulsions. Smart surfaces with responsive wettability have received extensive attention especially for controllable oil/water separation. However, traditional smart membranes with a switchable wettability between superhydrophobicity and superhydrophilicity are limited to certain responsive materials and continuous external stimuli, such as pH, electrical field or light irradiation. Herein, a candle soot coated mesh (CSM) with a larger pore size and a candle soot coated PVDF membrane (CSP) with a smaller pore size with underwater superoleophobicity and underoil superhydrophobicity were successfully fabricated, which can be used for on-demand immiscible oil/water mixtures and surfactants-stabilized oil/water emulsion separation, respectively. Without any continuous external stimulus, the wettability of our membranes could be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing alternately, thus achieving effective and switchable oil/water separation with excellent separation efficiency. We believe that such smart materials will be promising candidates for use in the removal of oil pollutants in the future.

  2. Experimental study and kinetic modeling of the thermal degradation of aromatic volatile organic compounds (benzene, toluene and xylene-para) in methane flames; Etude experimentale et modelisation cinetique de la degradation thermique des composes organiques volatils aromatiques benzenes, toluene et para-xylene dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L.


    This study treats of the thermal degradation of a family of aromatic volatile organic compounds (VOCs) in laminar premixed methane flames at low pressure. The experimental influence of benzene, toluene and xylene-para on the structure of a reference methane flame has been studied. The molar fraction profiles of the stable and reactive, aliphatic, aromatic and cyclic species have been established by the coupling of the molecular beam sampling/mass spectroscopy technique with the gas chromatography/mass spectroscopy technique. Temperature profiles have been measured using a covered thermocouple. A detailed kinetic mechanism of oxidation of these compounds in flame conditions has been developed. Different available sub-mechanisms have been used as references: the GDF-Kin 1.0 model for the oxidation of methane and the models of Tan and Franck (1996) and of Lindstedt and Maurice (1996) in the case of benzene and toluene. In the case of para-xylene, a model has been developed because no mechanisms was available in the literature. These different mechanisms have been refined, completed or adjusted by comparing the experimental results with those obtained by kinetic modeling. The complete kinetic mechanism, comprising 156 chemical species involved in 1072 reactions allows to reproduce all the experimental observations in a satisfactory manner. The kinetic analysis of reactions velocity has permitted to determine oxidation kinetic schemes for benzene, toluene, xylene-para and for the cyclopentadienyl radical, main species at the origin of the rupture of the aromatic cycle. Reactions of recombination with the methyl radicals formed during methane oxidation, of the different aromatic or aliphatic radicals created during the oxidation of aromatics, play an important role and lead to the formation of several aromatic pollutants (ethyl-benzene for instance) or aliphatic pollutants (butadiene or penta-diene for instance) in flames. (J.S.)


    Energy Technology Data Exchange (ETDEWEB)

    Clinton R. Bedick; Stephen K. Beer; Kent H. Casleton; Benjamin T. Chorpening; David W. Shaw; M. Joseph Yip


    As part of the DOE Existing Plants, Emissions and Capture (EPEC) program, oxy-combustion is being investigated as a method to simplify carbon capture and reduce the parasitic energy penalties associated with separating CO2 from a dilute flue gas. Gas-phase radiation heat transfer in boilers becomes significant when shifting from air-firing to oxycombustion, and must be accurately represented in models. Currently, radiative property data are not widely available in the literature for conditions appropriate to this environment. In order to facilitate the development and validation of accurate oxy-combustion models, NETL conducted a series of studies to measure radiation properties of oxy-fuel flames at adiabatic flame temperatures of 1750 - 1950K, and product molar concentrations ranging from 95% CO2 to 100% steam, determined by equilibrium calculations. Transmission coefficients were measured as a function of wavelength using a mid-IR imaging spectrometer and a blackbody radiation source. Additionally, flame temperatures were calculated using data collected within CO2 and H2O absorption bands. Experimental results were compared to two statistical narrowband models and experimental data from literature sources. These comparisons showed good overall agreement, although differences between the models and experimental results were noted, particularly for the R branch of the 2.7 μm H2O band.

  4. Bounds for the propagation speed of combustion flames

    International Nuclear Information System (INIS)

    Fort, Joaquim; Campos, Daniel; Gonzalez, Josep R; Velayos, Joaquim


    We focus on a combustion model for premixed flames based on two coupled equations determining the spatial dynamics of temperature and fuel density. We rewrite these equations as a classical reaction-diffusion model, so that we can apply some known methods for the prediction of lower and upper bounds to the front speed. The predictions are compared to simulations, which show that our new bounds substantially improve those following from the linearization method, used in the previous work of Fort et al (2000 J. Phys. A: Math. Gen. 33 6953). Radiative losses lead to pulses rather than fronts. We find a bound for their speed which (in contrast to the linearization one) correctly predicts the order of magnitude of the flame speed

  5. Carbon dioxide dangers demonstration model (United States)

    Venezky, Dina; Wessells, Stephen


    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  6. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation (United States)

    Xing, Guangzheng; Zhao, Yibo; Modestov, Mikhail; Zhou, Cheng; Gao, Yang; Law, Chung K.


    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities (ρ = 2, 3, and 4 × 107 g cm-3) and of spherical flames (with curvature c = -0.01, 0, 0.01, and 0.05) at a particular density (ρ = 2 × 107 g cm-3) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 107 g cm-3 and temperature of 0.6 × 109 K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  7. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames (United States)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)


    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  8. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi


    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  9. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)


    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  10. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.


    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  11. The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio


    A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.

  12. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.


    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  13. Flame Color as a Lean Blowout Predictor

    Directory of Open Access Journals (Sweden)

    Rajendra R. Chaudhari


    Full Text Available The study characterizes the behavior of a premixed swirl stabilized dump plane combustor flame near its lean blow-out (LBO limit in terms of CH* chemiluminiscence intensity and observable flame color variations for a wide range of equivalence ratio, flow rates and degree of premixing (characterized by premixing length, Lfuel. LPG and pure methane are used as fuel. We propose a novel LBO prediction strategy based solely on the flame color. It is observed that as the flame approaches LBO, its color changes from reddish to blue. This observation is found to be valid for different levels of fuel-air premixing achieved by changing the available mixing length of the air and the fuel upstream of the dump plane although the flame dynamics were significantly different. Based on this observation, the ratio of the intensities of red and blue components of the flame as captured by a color CCD camera was used as a metric for detecting the proximity of the flame to LBO. Tests were carried out for a wide range of air flow rates and using LPG and CH4 as fuel. For all the operating conditions and both fuels tested, this ratio was found to monotonically decrease as LBO was approached. Moreover, the value of this ratio was within a small range close to LBO for all the cases investigated. This makes the ratio suitable as a metric for LBO detection at all levels of premixing.

  14. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang


    smaller average emission area under higher ambient oxygen concentration and temperature for both fuels, while dieseline has a slightly larger average flame emission area than diesel for most cases. The experimental findings were further analyzed and discussed based on an empirical model of the distributions of air and fuel. Both experiment results and theoretical model show that dieseline has wider 430 nm and 470 nm band emissions than diesel under all conditions. © 2016 Elsevier Ltd

  15. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib


    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  16. A state of the art report on flame acceleration and transition to detonation in hydrogen/air/diluent mixtures

    International Nuclear Information System (INIS)

    Chan, C.K.; Tennankore, K.N.


    Accidental ignition in pockets of flammable hydrogen/air/diluent mixtures will lead to a deflagration wave (slow flame). Particular conditions can accelerate this flame and cause a transition from deflagration to a detonation wave (rapid flame), with its associated spatially non-uniform and very high pressures. In this report, the differences between deflagration and detonation are outlined, and the various flame acceleration mechanisms, along with the related research results, are reviewed. The current understanding of transition to detonation as a two-step process, a local explosion followed by an amplification of the resulting blast wave into a detonation wave, is described in detail. Occurrence of a local explosion in hot spots generated by the focussing of shock waves existing ahead of a fast flame, or in high-reactivity centres generated by turbulence-induced rapid mixing of flame and unburnt gas, and the resulting local quenching of the flame, are described and relevant publications are cited. The current models for flame acceleration are listed and their limitations are identified. Also, the available qualitative criteria for assessing the likelihood of transition to detonation under given conditions are briefly discussed. The feasibility of developing a quantitative methodology for assessing this likelihood is discussed, and further more work required to complete this development is outlined. The development of a quantitative methodology is recommended

  17. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.


    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  18. Flaming alcoholic drinks: flirting with danger. (United States)

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter


    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments.

  19. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk


    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  20. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)


    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  1. Numerical simulation of autoigniting flames (United States)

    Asaithambi, Rajapandiyan; Mahesh, Krishnan


    Autoignition is highly sensitive to temperature and mixing. A density based method for DNS/LES of compressible chemically reacting flows is proposed with an explicit predictor step for advection and diffusion terms, and a semi-implicit corrector step for stiff chemical source terms. This segregated approach permits independent modification of the Navier-Stokes solver and the time integration algorithm for the chemical source term. The algorithm solves the total chemical and sensible energy equation and heat capacities of species are obtained from thermodynamic tables. Chemical mechanisms in the Chemkin format is parsed and source terms are automatically linearized allowing the ability to simulate multiple fuels with minimal effort. Validation of the algorithm is presented and results from autoigniting non-premixed flames in vitiated coflow with different fuels are discussed.

  2. Theory of Colored Flame Production (United States)


    which should be considered in addition to thermal Spossibilities. He stated, "Another persistent impurity in the spectra 4 ±of CO flames is CuCi . something of a mystery; it is possible that CuCI acts as a catalyst in the oxidation and receives ox- citation energy from the process". (f) Metal...2130~.0 1u.2 3274.0 3.8 9 3247.S 3.8 10 2. Cubr Land SpucztWu S032.2 4883.4 4810.4 72 4954.7 4 4879,3 8 4341.1 10 4288.u 7 S. Cuci band spectrwSA I A I

  3. Origin and monitoring of pollutants in fossil-fuel flames

    International Nuclear Information System (INIS)

    Chigier, N.A.


    A review is given of the origin of pollutants in fossil-fuel flames. Burning of fossil fuels is the major cause of air pollution and significant reductions in levels of environmental pollution can be achieved by more effective control of combustion systems. The chemical kinetics of formation of unburned hydrocarbons, oxides of nitrogen, carbon monoxide and particulate matter are described, as well as the reactions which can lead to oxidation and destruction of these pollutants within the flame. The important influence of mixing and aerodynamics is discussed, together with methods of mathematical modelling and prediction methods. Practical problems arising in gas turbine engines, spark ignition engines and diesel engines are investigated in order to minimize the emission of pollutants while preserving fuel economy. (author)

  4. Experimental and numerical investigation of laminar flame speeds of hydrogen/carbon monoxide/carbon dioxide/nitrogen mixtures (United States)

    Natarajan, Jayaprakash

    Coal derived synthetic gas (syngas) fuel is a promising solution for today's increasing demand for clean and reliable power. Syngas fuels are primarily mixtures of H2 and CO, often with large amounts of diluents such as N2, CO2, and H2O. The specific composition depends upon the fuel source and gasification technique. This requires gas turbine designers to develop fuel flexible combustors capable of operating with high conversion efficiency while maintaining low emissions for a wide range of syngas tact mixtures. Design tools often used in combustor development require data on various fundamental gas combustion properties. For example, laminar flame speed is often an input as it has a significant impact upon the size and static stability of the combustor. Moreover it serves as a good validation parameter for leading kinetic models used for detailed combustion simulations. Thus the primary objective of this thesis is measurement of laminar flame speeds of syngas fuel mixtures at conditions relevant to ground-power gas turbines. To accomplish this goal, two flame speed measurement approaches were developed: a Bunsen flame approach modified to use the reaction zone area in order to reduce the influence of flame curvature on the measured flame speed and a stagnation flame approach employing a rounded bluff body. The modified Bunsen flame approach was validated against stretch-corrected approaches over a range of fuels and test conditions; the agreement is very good (less than 10% difference). Using the two measurement approaches, extensive flame speed information were obtained for lean syngas mixtures at a range of conditions: (1) 5 to 100% H2 in the H2/CO fuel mixture; (2) 300-700 K preheat temperature; (3) 1 to 15 atm pressure, and (4) 0-70% dilution with CO2 or N2. The second objective of this thesis is to use the flame speed data to validate leading kinetic mechanisms for syngas combustion. Comparisons of the experimental flame speeds to those predicted using

  5. Combustion Dynamics of Plasma-Enhanced Premixed and Nonpremixed Flames (United States)


    flame stability is dominated by the plasma discharge. The number density of the OH was calibrated from the LIF signal using a Hencken Burner with a...the typical OH production level in a Bunsen flame without plasma enhancement. This is an indication that the plasma is mostly acting to dissociate and...remains relatively stable on the outer flame front and is close to the Burner flame OH production rates, which indicates that the outer flame has little

  6. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan


    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  7. An Experimental and Computational Study on Soot Formation in a Coflow Jet Flame Under Microgravity and Normal Gravity (United States)

    Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.


    Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to

  8. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.


    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  9. Burning velocity and flame surface area in high Karlovitz number flames (United States)

    Lapointe, Simon; Cheng, Lionel; Blanquart, Guillaume


    Accurate knowledge of the burning velocity of turbulent flames is of importance for many combustion devices. For low Karlovitz number flames, Damkohler proposed that the ratio of turbulent to laminar flame speed is proportional to the ratio of turbulent to laminar flame surface area. In recent DNS studies, it has been observed that Damkolher's scaling for low Karlovitz number flames still holds for high Karlovitz number flames. However, recent experimental studies have reported notable differences between global burning velocities and flame surface area measurements. In this work, the numerical and experimental results are further analyzed to explain the apparent contradiction. Emphasis is placed on identifying and quantifying potential experimental limitations at high Karlovitz numbers. More specifically, experimental flame surface measurements typically use binarized PLIF images. These images are two-dimensional and their resolution is limited by that of the PLIF system. The implications of using a two-dimensional iso-contour and the effects of the image resolution are assessed through post-processing of DNS datasets. Furthermore, the effects of integral length scale, Karlovitz number, and differential diffusion on the flame surface area are considered separately.

  10. CFD predictions of wake-stabilised jet flames in a cross-flow

    International Nuclear Information System (INIS)

    Lawal, Mohammed S.; Fairweather, Michael; Gogolek, Peter; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed; Williams, Alan


    This study describes an investigation into predicting the major flow properties in wake-stabilised jet flames in a cross flow of air using first- and second-order turbulence models, applied within a RANS (Reynolds-averaged Navier–Stokes) modelling framework. Standard and RNG (re-normalisation group) versions of the k-ε turbulence model were employed at the first-order level and the results compared with a second-moment closure, or RSM (Reynolds stress model). The combustion process was modelled using the laminar flamelet approach together with a thermal radiation model using the discrete ordinate method. The ability of the various turbulence models to reproduce experimentally established flame appearance, profiles of velocity and turbulence intensity, as well as the combustion efficiency of such flames is reported. The results show that all the turbulence models predict similar velocity profiles over the majority of the flow domain considered, except in the wake region, where the predictions of the RSM and RNG k-ε models are in closer agreement with experimental data. In contrast, the standard k-ε model over-predicts the peak turbulence intensity. Also, it is found that the RSM provides superior predictions of the planar recirculation and flame zones attached to the release pipe in the wake region. - Highlights: ► We investigated the prediction of the major properties in wake-stabilised methane jet flames in a cross flow. ► The ability of the various turbulence models to reproduce experimentally established flame parameters is reported. ► All the turbulence models considered predict similar velocity profiles, except in the wake region

  11. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.


    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  12. Time-resolved PIV investigation of flashback in stratified swirl flames of hydrogen-rich fuel (United States)

    Ranjan, Rakesh; Clemens, Noel


    Hydrogen is one of the promising alternative fuels to achieve greener power generation. However, susceptibility of flashback in swirl flames of hydrogen-rich fuels acts as a major barrier to its adoption in gas turbine combustors. The current study seeks to understand the flow-flame interaction during the flashback of the hydrogen-rich flame in stratified conditions. Flashback experiments are conducted with a model combustor equipped with an axial swirler and a center-body. Fuel is injected in the main swirl flow via the fuel ports on the swirler vanes. To achieve mean radial stratification, these fuel ports are located at a radial location closer to the outer wall of the mixing tube. Stratification in the flow is assessed by employing Anisole PLIF imaging. Flashback is triggered by a rapid increase in the global equivalence ratio. The upstream propagation of the flame is investigated by employing time-resolved stereoscopic PIV and chemiluminescence imaging. Stratification leads to substantially different flame propagation behavior as well as increased flame surface wrinkling. We gratefully acknowledge the sponsorship by the DOE NETL under Grant DEFC2611-FE0007107.

  13. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.


    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  14. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.


    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  15. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)


    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  16. Nanocellular foam with solid flame retardant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane


    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  17. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue


    Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......, membranes with pore sizes below 5 nm have been produced by this continuous filtration of nano-particles. In this way, top-layers with Knudsen separation have been achieved by a reduction of the pore size of three orders of magnitude within an hour. It has previously been shown that it also is possible...

  18. Experimental and numerical study of temperature fields and flows in flame during the diffusion combustion of certain liquid fuels (United States)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.


    The paper represents experimental studying the pulsations of temperature fields and the structure of a flow in the flame formed during the combustion of certain fuels. Also, the paper provides the mathematical modeling of a flow in the flame formed during the combustion of diesel fuels, as well as the comparison with experimental data and the estimation of the scale for turbulent vortices in flame. The experimental results are in satisfactory agreement with numerical modeling, which confirms the hypothesis of similarity for the pulsations of hydrodynamic and thermodynamic parameters.

  19. Characterization of flame radiosity in shrubland fires (United States)

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro


    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  20. New mass limit for white dwarfs: super-Chandrasekhar type ia supernova as a new standard candle. (United States)

    Das, Upasana; Mukhopadhyay, Banibrata


    Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe.

  1. Analysis of radiation polymerization of flame retarder

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Sawai, Takeshi; Ametani, Kazuo


    It was found that when vinyl phosphonate oligomer was irradiated with electron beam, the decrease of thermogravity in three steps arose. It was presumed that the first decrease of weight was due to the vaporization of water. This value is nearly constant independent of dose, but when divided irradiation was carried out, as dose increased, the decrease of weight became less. Fire damages have increased as population concentrates into cities and overcrowding occurs. To make combustible materials as well as the textile products belonging to people flame-retardant has become a social problem. The flame retarders and the method of processing which do not generate harmful gas in combustion are demanded. The practical test on making fibers flame-retardant by using radiation graft polymerization has been carried out since 1984, and the method of processing without generating harmful gas was obtained. It is necessary to elucidate the basic property of flame retarders due to irradiation for further developing the technology of flame retardation. This time, the thermogravimetric change of the flame retarders polymerized with radiation was examined. The experimental method and the results are reported. (K.I.)

  2. Sensing flame structure by process tomography. (United States)

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping


    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  3. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.


    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  4. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop


    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  5. Geometrical properties of turbulent premixed flames and other corrugated interfaces (United States)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.


    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  6. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li


    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  7. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.


    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  8. Local extinction and reignition of the flame; Liekin paikallinen sammuminen ja uudelleen syttyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kjaeldman, L. [VTT Energia, Espoo (Finland); Brink, A. [Aabo Akademi, Turku (Finland)


    A model of the local extinction and reignition of the flame suitable to be used in computational fluid dynamic analysis of primarily multi-burner furnaces is developed. The model is implemented in the computational environment Ardemus of VTT and Imatran Voima Oy, and tested against well defined experiments. The model makes the simulation of especially the near burner processes more realistic. (author)

  9. Application of the laminar flamelet concept in the numerical simulation of partially premixed flames

    NARCIS (Netherlands)

    Consul, R.; Claramunt, K.; Cadafalch, J.; Oliva, A.; De Goey, L.P.H.


    Flamelet models based on the mixture fraction variable using its dissipation rate for the mixing process are nowadays among the most extended models employed in the numerical simulation of turbulent flames [1]. During the last decade most of these approaches have been considered in the modelling of

  10. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility

    KAUST Repository

    Al Omier, Abdullah Abdulaziz


    Proceeding from the aim to reduce global pollution emissions from the continuous burning of hydrocarbons stimulated by increasing energy demand, more efficient and ultra-low emissions’ combustion concepts such as the homogenous charge compression ignition engines (HCCI) have been developed. These new engines rely on the low temperature chemistry (LTC) combustion concept. A detailed investigation of the properties of cool flames, governed by LTC, is essential for the design of these new engines. The primary goal of this work was to build a fundamental counterflow experiment for cool flames studies in a diffusive system, to better understand combustion in LTC engines. The project was intended to provide a basic understanding of the low-temperature reactivity and cool flames properties of butane isomers under atmospheric pressure conditions. This was achieved by establishing self-sustaining cool flames through a novel technique of ozone addition to an oxygen stream in a non-premixed counterflow model. The ignition and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that establishment of cool flames are favored at lower strain rates. Iso-butane was less reactive than n-butane by showing higher ignition and extinction limits. Ozone addition showed a significant influence on cool flame ignition and sustenance; it was found that increasing ozone concentration in the oxidizer stream dramatically increased the reactivity of both fuels. Results showed increased fuel reactivity as the temperature of the fuel stream outlet increased. 4 A numerical analysis was performed to simulate ignition and extinction of the cool flame in diffusive systems. The results revealed that ignition and extinction limits of cool flames are predominantly governed by LTC. The model qualitatively captured experimental trends for both fuels; however, it overpredicted both ignition and extinction limits under all strain rates

  11. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)


    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  12. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita


    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  13. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.


    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  14. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom


    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  15. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco


    A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of

  16. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario


    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  17. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.


    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  18. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  19. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)


    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  20. Launch Pad Flame Trench Refractory Materials (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary


    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  1. Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

    KAUST Repository

    Amin, Hafiz Muhammad Fahid


    volume fraction from 2 to 10 atm. Local soot volume fraction increased with pressure and soot concentration profiles showed good agreements when measured by both techniques. Experimental data obtained in this work is very helpful for the modelers for validating their codes and predicting the soot formation in pressurized flames.

  2. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo


    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  3. Impact of Vitiation on a Swirl-Stabilized and Premixed Methane Flame

    Directory of Open Access Journals (Sweden)

    Mao Li


    Full Text Available Vitiation refers to the condition where the oxygen concentration in the air is reduced due to the mix of dilution gas. The vitiation effects on a premixed methane flame were investigated on a swirl-stabilized gas turbine model combustor under atmospheric pressure. The main purpose is to analyze the combustion stability and CO emission performance in vitiated air and compare the results with the flame without vitiation. The N2, CO2, and H2O (steam were used as the dilution gas. Measurements were conducted in a combustor inlet temperature of 384 K and 484 K. The equivalence ratio was varied from stoichiometric conditions to the LBO (Lean Blowout limits where the flame was physically blown out from the combustor. The chemical kinetics calculation was performed with Chemkin software to analyze the vitiation effects on the flame reaction zone. Based on the calculation results, the changes in the temperature gradient, CO concentration, and active radicals across the flame reaction zone were identified. The time-averaged CH chemiluminescence images were recorded and the results indicated the features of the flame shape and location. The CH signal intensity provided the information about the heat-release zone in the combustor. The combustion LBO limits were measured and the vitiation of CO2 and H2O were found to have a stronger impact to elevate the LBO limits than N2. Near the LBO limits, the instability of the flame reaction was revealed by the high-speed chemiluminescence imaging and the results were analyzed by FFT (Fast Fourier Transfer. CO emission was measured with a water-cooled probe which is located at the exit of the combustor. The combustion vitiation has been found to have the compression effect on the operation range for low CO emission. However, this compression effect could be compensated by improving the combustor inlet temperature.

  4. Daphnid life cycle response to new generation of flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.; Bleyenberg, T.E.; Dits, A; Schoorl, M.; Schütt, J; Kools, S.A.E.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H.S.


    Relatively hazardous brominated flame retardants (BFRs) are currently substituted with halogen-free flame retardants (HFFRs). Consequently, information on their persistence, bioaccumulation and toxicity (PBT) is urgently needed. Therefore, we investigated the chronic toxicity to the water flea

  5. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun


    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  6. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  7. Flame acceleration in the early stages of burning in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Akkerman, V' yacheslav [Institute of Physics, Umeaa University, S-901 87 Umeaa (Sweden); Nuclear Safety Institute (IBRAE) of Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow (Russian Federation); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)


    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  8. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans


    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  9. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh


    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  10. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.


    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  11. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  12. Reduced Kinetic Mechanisms for Counterflow Methanol Diffusion Flames (United States)

    Müller, C. M.; Seshadri, K.; Chen, J. Y.

    Studies on the oxidation of methanol in laminar flames are of practical importance, because methanol is considered for use as an alternate fuel for propulsion of internal combustion engines. Numerous experimental and theoretical studies on the combustion of methanol in premixed flames are available and they have been briefly reviewed in Chap. 9. However, such an extensive study is not available for diffusion flames. The present chapter concerns the structure and extinction characteristics of methanol-air diffusion flames.

  13. Thermal-Diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation


    Xing, Guangzheng; Zhao, Yibo; Modestov, Mikhail; Zhou, Cheng; Gao, Yang; Law, Chung K.


    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in white dwarfs. The numerical critical Zel'dovich numbers of planar flames at different densities ($\\rho=2$, 3 and 4$\\times 10^7$~g/cm$^3$) and of spherica...

  14. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure (United States)


    piloted premixed jet burner was used to achieve Ul/S L in the range 40 − 390, corresponding to Karlovitz numbers Ka = 100 − 3500 and Damköhler...configuration and Ul/S L = 20 in the case of a bunsen flame [14] (also see the review by [5]). In all of these studies, the reaction zone has a thin sheet...of high-speed turbulent combustion in such different systems as the flat thermonuclear flame in degenerate matter and the jet- burner flame in

  15. High-Speed Turbulent Reacting Flows: Intrinsic Flame Instability and its Effects on the Turbulent Cascade (United States)

    Poludnenko, Alexei


    Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force

  16. Computatonal and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)


    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  17. Design of the flame detector based on pyroelectric infrared sensor (United States)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai


    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  18. 30 CFR 75.600-1 - Approved cables; flame resistance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant. [57 FR 61223...

  19. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis

    NARCIS (Netherlands)

    van der Veen, I.; de Boer, J.


    Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and

  20. Preparation and characterizations of flame retardant polyamide 66 fiber (United States)

    Li, Y. Y.; Liu, K.; Xiao, R.


    The polyamide 66 (PA66) is one of the most important thermoplastic materials, but it has the drawback of flammability. So the flame retardant PA66 was prepared by condensation polymerization using nylon salt and DOPO-based flame retardant in this paper. Then the flame retardant PA66 fiber was manufactured via melt spinning. The properties of flame retardant PA66 and flame retardant PA66 fiber were investigated by relative viscosity, differential scanning calorimetry (DSC), tensile test, vertical burning test (UL94) and limiting oxygen index (LOI) test. Although the loading of the DOPO-based flame retardant decreased the molecular weight, the melting temperature, the crystallinity and the mechanical properties of flame retardant PA66, the flame retardancy properties improved. The flame retardant PA66 loaded with 5.5 wt% of DOPO-based flame retardant can achieve a UL94 V-0 rating with a LOI value of 32.9%. The tenacity at break decreased from 4.51 cN·dtex-1 for PA66 fiber to 2.82 cN·dtex-1 for flame retardant PA66 fiber which still satisfied the requirements for fabrics. The flame retardant PA66 fiber expanded the application of PA66 materials which had a broad developing prospect.

  1. Application of a primitive variable Newton's method for the calculation of an axisymmetric laminar diffusion flame

    International Nuclear Information System (INIS)

    Xu, Yuenong; Smooke, M.D.


    In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation

  2. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Byungchul


    An experimental study was conducted on the effects of initial temperature variation on the stabilization characteristics of turbulent nonpremixed flames in coflow jets of methane fuel diluted by nitrogen. The typical behavior seen in the study showed that the liftoff height increased linearly with the jet velocity regardless of the initial temperature in the turbulent regime. Two models were investigated for predicting liftoff heights in the methane jets: the premixed flame model and the large-scale mixing model. For the premixed flame model, the liftoff heights in the methane jets were accurately predicted using the thermal diffusivity of the unburned gas temperature αst,0, instead of that of the burned gas temperature αst,b. For the large-scale mixing model, however, the prediction of liftoff heights differed slightly for the various fuel mole fractions. However, when considering the initial fuel mass fraction YF,0, the liftoff heights were successfully predicted. This result implies that the characteristics of the unburned fuel-air mixture play a crucial role for flame stabilization in coflow jets for a variety of initial conditions. In the turbulent regime, the blowout velocity and the liftoff height at blowout could be accurately predicted by the two models based on a consideration of the physical properties and the buoyancy effect of the initial temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  3. Real Time Quantitative 3-D Imaging of Diffusion Flame Species (United States)

    Kane, Daniel J.; Silver, Joel A.


    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode

  4. Optical investigation of gas-phase KCl/KOH sulfation in post flame conditions

    DEFF Research Database (Denmark)

    Weng, Wubin; chen, Shuang; Wu, Hao


    A counter-flow reactor setup was designed to investigate the gas-phase sulfation and homogeneous nucleation of potassium salts. Gaseous KOH and KCl were introduced into the post-flame zone of a laminar flat flame. The hot flame products mixed in the counter-flow with cold N2, with or without....... Depending on the potassium speciation in the inlet and the presence of SO2, they consisted of K2SO4, KCl, or K2CO3, respectively. The experiments showed that KOH was sulphated more readily than KCl, resulting in larger quantities of aerosols. The sulfation process in the counter-flow setup was simulated...... using a chemical kinetic model including a detailed subset for the Cl/S/K chemistry. Similar to the experimental results, much more potassium sulfate was predicted when seeding KOH compared to seeding KCl. For both KOH and KCl, sulfation was predicted to occur primarily through the reactions among...

  5. Numerical solution of flame sheet problems with and without multigrid methods (United States)

    Douglas, Craig C.; Ern, Alexandre


    Flame sheet problems are on the natural route to the numerical solution of multidimensional flames, which, in turn, are important in many engineering applications. In order to model the structure of flames more accurately, we use the vorticity-velocity formulation of the fluid flow equations, as opposed to the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear coupled elliptic partial differential equations involves a pseudo transient process and a steady state Newton iteration. Rather than working with dimensionless variables, we introduce scale factors that can yield significant savings in the execution time. In this context, we also investigate the applicability and performance of several multigrid methods, focusing on nonlinear damped Newton multigrid, using either one way or correction schemes.

  6. Time-resolved stereoscopic PIV study of flashback in swirl flames at elevated pressures (United States)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel


    Boundary layer flashback of turbulent premixed swirl flames can pose a major challenge to the operation of stationary gas turbines, especially with hydrogen-rich fuels. To improve our understanding of the physics behind this phenomenon at gas turbine relevant conditions, it is essential to investigate flashback at elevated pressures. With this purpose in mind, flashback experiments with hydrogen/methane-air premixtures are conducted in a model swirl combustor installed in an optically accessible high-pressure combustion facility. We have employed stereoscopic PIV in conjunction with high speed chemiluminiscence imaging to study the upstream propagation of the flame in the premix tube during flashback. Experiments are run at pressures ranging from 1 atm to 5 atm. These time-resolved measurements provide valuable insight into the flame-flow interaction during flashback at elevated pressures.

  7. RANS/PDF and LES/FDF for prediction of turbulent premixed flames (United States)

    Yilmaz, Server Levent

    Probability density function (PDF) and filtered density function (FDF) methodologies are developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both simulations employ finite rate kinetics via a reduced methane chemistry mechanism to account for combustion. Prediction results are compared with experimental data, and are shown to capture some of the intricate physics of turbulent premixed combustion. Keywords. large eddy simulation, filtered density function, Reynolds-averaged Navier-Stokes, probability density function, turbulent reacting flows, lean premixed combustion.

  8. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio


    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  9. SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method (United States)

    de Jaeger, T.; Galbany, L.; Filippenko, A. V.; González-Gaitán, S.; Yasuda, N.; Maeda, K.; Tanaka, M.; Morokuma, T.; Moriya, T. J.; Tominaga, N.; Nomoto, K.; Komiyama, Y.; Anderson, J. P.; Brink, T. G.; Carlberg, R. G.; Folatelli, G.; Hamuy, M.; Pignata, G.; Zheng, W.


    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the 'standard candle method' to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.

  10. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface. (United States)

    Iqbal, R; Majhy, B; Sen, A K


    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  11. PDF Calculations of Turbulent CH4 Flames with Detailed Chemistry using In Situ Adaptive Tabulation (United States)

    Saxena, Vivek; Pope, Stephen B.


    It is now generally accepted that the probability density function (PDF) approach is the most suited method for turbulent-reactive flows since complex reactions can be treated without modeling assumptions. Integration of detailed chemistry in PDF methods, however, has generally been prohibitively expensive computationally. The technique of In Situ Adaptive Tabulation (ISAT) allows us to accomplish this integration since it can reduce the required computer time by three orders of magnitude. The results of calculations for non-premixed piloted jet diffusion CH4 flames are presented. These calculations are the first successful attempt at representing detailed kinetics in PDF calculations of methane flames.

  12. Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature (United States)

    Doyle, S. J.; Salvador, P. R.; Xu, K. G.


    The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 1016 to 2.71 × 1019 m-3. The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (<5 s) is needed to obtain a valid ion density measurement and that prolonged flame exposures can yield the flame temperature but also risks damage to the Langmuir probe tip.

  13. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW


    Full Text Available The utility of expandable graphite as a flame retardant for PVC, plasticized with 60 phr of a phosphate ester, was investigated. Cone calorimeter results, at a radiant flux of 35 kW m 2, revealed that adding only 5 wt.% expandable graphite lowered...

  14. Hormonal activities of new brominated flame retardants

    Czech Academy of Sciences Publication Activity Database

    Ezechiáš, Martin; Svobodová, Kateřina; Cajthaml, Tomáš


    Roč. 87, č. 7 (2012), s. 820-824 ISSN 0045-6535 R&D Projects: GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z50200510 Keywords : Brominated flame retardants * 2,4,6-Tribromophenol * Endocrine disruptors Subject RIV: EE - Microbiology, Virology Impact factor: 3.137, year: 2012

  15. Optimization of Flame Atomic Absorption Spectrometry for ...

    African Journals Online (AJOL)

    Optimization of Flame Atomic Absorption Spectrometry for Measurement of High Concentrations of Arsenic and Selenium. ... This procedure allowed a rapid determination of As from minimum 4.462 mg/L to higher concentrations without sample pretreatment. Besides As, this method successfully measured Se concentrations ...

  16. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to

  17. Brominated flame retardants and endocrine disruption

    NARCIS (Netherlands)

    Vos, J.G.; Becher, G.; Berg, van den M.; Boer, de J.; Leonards, P.E.G.


    From an environmental point of view, an increasing important group of organohalogen compounds are the brominated flame retardants (BFRs), which are widely used in polymers and textiles and applied in construction materials, furniture, and electronic equipment. BFRs with the highest production volume

  18. Brominated flame retardants and endocrine disruption

    NARCIS (Netherlands)

    Vos, Joseph G.; Becher, Georg; Van Den Berg, Martin; Leonards, Pim E G


    From an environmental point of view, an increasing important group of organo-halogen compounds are the brominated flame retardants (BFRs), which are widely used in polymers and textiles and applied in construction materials, furniture, and electronic equipment. BFRs with the highest production

  19. The VLT-FLAMES Tarantula survey

    NARCIS (Netherlands)

    Taylor, W.D.; Evans, C.J.; Henault-Brunet, V.; Bastian, N.; Beletsky, Y.; Bestenlehner, J.; Brott, I.; Cantiello, M.; Carraro, G.; Clark, J.S.; Crowther, P.A.; de Koter, A.; de Mink, S.E.; Doran, E.; Dufton, P.L.; Dunstall, P.; Gieles, M.; Grafener, G.; Herrero, A.; Howarth, I.D.; Langer, N.; Lennon, D.J.; Maiz-Apellaniz, J; Markova, N.; Najarro, P.; Puls, J.; Sana, H.A.A.; Simon-Diaz, S.; Smartt, S.J.; Stroud, V.E.; van Loon, J.T.; Vink, J.S.; Walborn, N.R.


    The VLT-FLAMES Tarantula Survey is an ESO Large Programme that has provided multi-epoch spectroscopy of over 1000 stars in the 30 Doradus region in the Large Magellanic Cloud. Armed with this unique dataset the assembled consortium is now addressing a broad range of fundamental questions in both

  20. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.


    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  1. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran


    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  2. Turbulent Flame Speed Scaling for Positive Markstein Number Expanding Flames in Near Isotropic Turbulence (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung


    In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.

  3. Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings

    International Nuclear Information System (INIS)

    Xing, Weiyi; Jie, Ganxin; Song, Lei; Hu, Shuang; Lv, Xiaoqi; Wang, Xin; Hu, Yuan


    The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.

  4. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang


    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  5. Measurements of soot formation and hydroxyl concentration in near critical equivalence ratio premixed ethylene flame (United States)

    Inbody, Michael Andrew


    The testing and development of existing global and detailed chemical kinetic models for soot formation requires measurements of soot and radical concentrations in flames. A clearer understanding of soot particle inception relies upon the evaluation and refinement of these models in comparison with such measurements. We present measurements of soot formation and hydroxyl (OH) concentration in sequences of flat premixed atmospheric-pressure C2H4/O2/N2 flames and 80-torr C2H4/O2 flames for a unique range of equivalence ratios bracketting the critical equivalence ratio (phi(sub c)) and extending to more heavily sooting conditions. Soot volume fraction and number density profiles are measured using a laser scattering-extinction apparatus capable of resolving a 0.1 percent absorption. Hydroxyl number density profiles are measured using laser-induced fluorescence (LIF) with broadband detection. Temperature profiles are obtained from Rayleigh scattering measurements. The relative volume fraction and number density profiles of the richer sooting flames exhibit the expected trends in soot formation. In near-phi(sub c) visibility sooting flames, particle scattering and extinction are not detected, but an LIF signal due to polycyclic aromatic hydrocarbons (PAH's) can be detected upon excitation with an argon-ion laser. A linear correlation between the argon-ion LIF and the soot volume fraction implies a common mechanistic source for the growth of PAH's and soot particles. The peak OH number density in both the atmospheric and 80-torr flames declines with increasing equivalence ratio, but the profile shape remains unchanged in the transition to sooting, implying that the primary reaction pathways for OH remain unchanged over this transition. Chemical kinetic modeling is demonstrated by comparing predictions using two current reaction mechanisms with the atmospheric flame data. The measured and predicted OH number density profiles show good agreement. The predicted benzene

  6. Near-field local flame extinction of oxy-syngas non-premixed jet flames: a DNS study


    Ranga Dinesh, K.K.J.; Van Oijen, J.A; Luo, K.H.; Jiang, X.


    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify the influence of the Reynolds number on the oxy-syngas flame structure, and to clarify the local flame extinction of oxy-syngas and syngas-air flames at a higher Reynolds number.Two oxy-syngas fla...

  7. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winters, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farias, Paul Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grasser, Thomas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  8. Unsteady motion of a Bunsen type premixed flame with burner rotation


    後藤田, 浩; 植田, 利久; Hiroshi, Gotoda; Toshihisa, Ueda; 慶大理工; 慶大理工; School of Science for Open and Environmental Systems, Keio University; School of Science for Open and Environmental Systems, Keio University


    Characteristics of the unsteady motion of a Bunsen type premixed flame with bumer rotation are experimentally investigated. Time variations of the flame tip location are measured by using a laser tomographic mcthod. A non-periodically oscillating flame is observed between the periodically oscillating flame and the eccentric flame. The results show that the attracter of the periodically oscillating flame becomes stable limit cycle and the attractor of the eccentric flame is concentrated on a p...

  9. Improved Correlation for Blowout of Bluff-body Stabilized Flames (Preprint) (United States)


    Progress in Energy and Combustion Science 35, 98–120. 4DeZubay, E. A., 1950, “Characteristics of Disk-Controlled Flame,” Aero Digest , 54-57...J. M., Fisher, T. C., Frankel, S. H., Sekar, B., and Kiel, B. V., 2008, “ CFD Predictions of Damköhler Number Fields for Reduced Order Modeling of V

  10. CFD analysis of a scramjet combustor with cavity based flame holders (United States)

    Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat


    Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.

  11. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro


    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  12. Numerical study for flame deflector design of a space launch vehicle (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil


    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  13. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames

    KAUST Repository

    Belhi, Memdouh


    Two-dimensional axisymmetric simulations for counterflow nonpremixed methane-air flames were undertaken as an attempt to reproduce the experimentally observed electro-hydrodynamic effect, also known as the ionic wind effect, on flames. Incompressible fluid dynamic solver was implemented with a skeletal chemical kinetic mechanism and transport property evaluations. The simulation successfully reproduced the key characteristics of the flames subjected to DC bias voltages at different intensity and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current-voltage curve. The flame response to the electric field with positive and negative polarity exhibited qualitatively different characteristics. In the negative polarity of the configuration considered, a non-monotonic variation of the current with the voltage was observed along with the existence of an unstable regime at an intermediate voltage level. With positive polarity, a typical monotonic current-voltage curve was obtained. This behavior was attributed to the asymmetry in the distribution of the positive and negative ions resulting from ionization processes. The present study demonstrated that the mathematical and computational models for the ion chemistry, transport, and fluid dynamics were able to describe the key processes responsible for the flame-electric field interaction.

  14. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames (United States)

    Belhi, Memdouh; Lee, Bok Jik; Bisetti, Fabrizio; Im, Hong G.


    Two-dimensional axisymmetric simulations for counterflow non-premixed methane-air flames were undertaken as an attempt to reproduce the experimentally observed electro-hydrodynamic effect, also known as the ionic wind effect, on flames. Incompressible fluid dynamic solver was implemented with a skeletal chemical kinetic mechanism and transport property evaluations. The simulation successfully reproduced the key characteristics of the flames subjected to DC bias voltages at different intensity and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current–voltage curve. The flame response to the electric field with positive and negative polarity exhibited qualitatively different characteristics. In the negative polarity of the configuration considered, a non-monotonic variation of the current with the voltage was observed, along with the existence of an unstable regime at an intermediate voltage level. With positive polarity, a typical monotonic current–voltage curve was obtained. This behavior was attributed to the asymmetry in the distribution of the positive and negative ions resulting from ionization processes. The present study demonstrated that the mathematical and computational models for the ion chemistry, transport, and fluid dynamics were able to describe the key processes responsible for the flame-electric field interaction.

  15. Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames (United States)

    Tamadonfar, Parsa

    Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean

  16. Assessing Pediatric Nurses' Knowledge About Chemical Flame Retardants. (United States)

    Distelhorst, Laura; Bieda, Amy; DiMarco, Marguerite; Tullai-McGuinness, Susan

    Chemical flame retardants are routinely applied to children's products and are harmful to their health. Pediatric nurses are in a key position to provide education to caregivers on methods to decrease their children's exposure to these harmful chemicals. However, a critical barrier is the absence of any program to educate nurses about chemical flame retardants. In order to overcome this barrier, we must first assess their knowledge. This article provides key highlights every pediatric nurse should know about chemical flame retardants and reports the results of a knowledge assessment study. The purpose of this study was to (1) assess pediatric nurses' knowledge of chemical flame retardants, (2) determine what topic areas of chemical flame retardants pediatric nurses lack knowledge in, and (3) determine the best method to educate nurses about chemical flame retardants. A single sample cross-sectional questionnaire design was used. A total sample of 417 advanced practice registered nurses and registered nurses completed an online survey about chemical flame retardants. Pediatric nurses' knowledge of chemical flame retardants was low (M=13.4 out of 51). Articles, webinars, and e-mails were the primary preferred methods for education on the subject identified as a result of the survey. Pediatric nurses have a large knowledge deficit related to chemical flame retardants. The data collected from this study will help structure future educational formats for pediatric nurses on chemical flame retardants to increase their knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Turbulent premixed flames on fractal-grid-generated turbulence (United States)

    Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.


    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.

  18. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  19. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.


    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  20. The effect of unburned gas axial velocity on the characteristics of rotational flame during flashback (United States)

    Bufares, Ahmed M.; Wahid, M. A.


    The qualitative study has been carried out to investigate the effect of axial velocity of unburned gases on the flame characteristics during flame flashback in rotating burner. Our focus of study mainly on the flame shape and its behavior during flashback. It is found that the flame shape has been affected by the unburned gases axial velocity. Two flame shapes have been noticed the plate shape with cusp flame "fish flame" and upset dome flame. The cases that have been studied are flames at rotating speed 1200 rpm and 1620 rpm and several unburned gases axial velocity. Double concentric Bunsen rotating burner has been used in the study.

  1. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture (United States)

    Mameri, A.; Tabet, F.; Hadef, A.


    This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.

  2. Chemical structures of an n-butanol counterflow flame

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S.M.; Thomson, M.J. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering


    N-butanol, also known as biobutanol, is an attractive alternative biofuel that can replace gasoline in transportation applications. Biobutanol can be produced via the fermentation of sugars, starches, and lignocellulose obtained from agricultural feedstocks. Although biobutanol offers several advantages over ethanol, its detailed combustion characteristics are not well known. In order to determine the effect of fuel structure on combustion products, this paper presented the results of a study that examined the emission and temperature profiles of an n-butanol counterflow flame. The paper presented the experimental data and discussed the potential reaction mechanisms that rationalized the observed species profiles. It was found that significant quantities of acetylene, acetaldehyde, ethane, and propene were measured in the n-butanol flame and that the reaction pathways leading to the formation of these compounds were yet to be identified. In addition, significant concentrations of formaldehyde and acetaldehyde were found. Results will be utilized to validate a detailed chemical kinetic model for n-butanol combustion. 13 refs., 3 figs.

  3. Potential estrogenic effects of phosphorus-containing flame retardants. (United States)

    Zhang, Quan; Lu, Meiya; Dong, Xiaowu; Wang, Cui; Zhang, Chunlong; Liu, Weiping; Zhao, Meirong


    As the substitute of polybrominated diphenyl ethers (PBDEs), further assessments about the potential ecological safety and health risks of phosphorus-containing flame retardants (PFRs) are required because the worldwide demand for PFRs has been increasing every year. In this study, we examined the agonistic/antagonistic activity of a group of PFRs by three in vitro models (luciferase reporter gene assay, yeast two-hybrid assay, and E-screen assay). Molecule docking was used to further explain the interactions between ERα and PFRs. Data from luciferase reporter gene analysis showed three members of the nine tested PFRs significantly induced estrogenic effects, with the order of TPP > TCP > TDCPP, while TCEP and TEHP have remarkable antiestrogenic properties with calculated REC20 and RIC20 values of 10(-6) M or lower. Results from the luciferase reporter gene method are generally consistent with results obtained from the yeast two-hybrid assay and E-screen, except for the positive estrogenic activity of TBP in E-screen testing. Docking results showed that binding between ligands and ERα was stabilized by hydrophobic interactions. As a proposed alternative for brominated flame retardant, PFRs may have anti/estrogenic activity via ERα at the low dose typical of residue in environmental matrix or animals. PFRs with a short chain, halogen, and benzene ring in the substituent group tend to be estrogenic. Our research suggests that comprehensive evaluations, including health and ecological assessments, are required in determining whether PFRs are preferable as an emerging industrial substitute.

  4. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption (United States)

    Korucu, Ayse; Miller, Richard


    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  5. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.


    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  6. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed


    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  7. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.


    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  8. Chemical Kinetic and Aerodynamic Structures of Flames (United States)


    and Aerodynamic PE - 61102F Structures of Flames PR - 2308 SA - BSG - 89-0293 C.K. Law 7. PWORPOG ORGANIZATION NAME(S) AND ADODRSS(ES) L PERFORMING...activation energy (E) for the equivalent one-step overall reaction. The results show that these values are far from being constants. Instead they vary...significantly not only with the equivalence ratio, but also with the system pressure. For example, the activation energy is 4 found to continuously increase

  9. Physical and Chemical Processes in Flames (United States)


    turbulent slot- burner Bunsen flame [20]. The simulation is performed for three flow- through times, long enough to achieve statistical stationarity. The...constants. Compared with previous fitting formulas, notably that by Troe (Troe, J Ber Bunsen -Ges Phys Chern 87, 161 , 1983), the present expression...extinction and ignition of methyl decanoate in laminar nonpremixed flows," by K. Seshadri, T. F. Lu, 0 . Herbinet, S. Burner , U. Niemann, W. J. Pitz and C

  10. Similarity and Scaling of Turbulent Flame Speeds for Expanding Premixed Flames of C4-C8 n -alkanes (United States)

    Wu, Fujia; Saha, Abhishek; Chaudhuri, Swetaprovo; Yang, Sheng; Law, Chung K.


    We experimentally investigated the propagation speed of constant-pressure expanding flames in near isotropic turbulence using a dual-chamber, fan-stirred vessel. The motivation is to test whether the fuel similarity concept among C4-C8 n-alkanes on laminar flames also holds for turbulent flames. Previously it was found that the laminar flame speed and Markstein length are almost identical for C4-C8 n-alkanes. If this fuel similarity concept can also be shown for turbulent flames, it will suggest a canonical flame structure for large hydrocarbon fuels, i . e . , large fuels always decompose to small C0-C4 fuel fragments before being oxidized, and would significantly simplify the description of the flames. Preliminary results show that in the flamelet and thin-reaction zone, turbulent flame speeds of C4-C8 n-alkanes are indeed largely similar at various conditions, thereby suggesting the fuel similarity for turbulent flames. In addition, it is found that the normalized turbulent flame speed also approximately scales with the square root of an appropriately-defined Reynolds number recently found for C0-C4 fuels. This work was supported by the AFOSR under the technical monitoring of Dr. Chiping Li.

  11. Numerical Simulation of a Laboratory-Scale Turbulent SlotFlame

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski,Michael J.; Driscoll, James F.; Filatyev, Sergei A.


    We present three-dimensional, time-dependent simulations ofthe flowfield of a laboratory-scale slot burner. The simulations areperformed using an adaptive time-dependent low Mach number combustionalgorithm based on a second-order projection formulation that conservesboth species mass and total enthalpy. The methodology incorporatesdetailed chemical kinetics and a mixture model for differential speciesdiffusion. Methane chemistry and transport are modeled using the DRM-19mechanism along with its associated thermodynamics and transportdatabases. Adaptive mesh refinementdynamically resolves the flame andturbulent structures. Detailedcomparisons with experimental measurementsshow that the computational results provide a good prediction of theflame height, the shape of the time-averaged parabolic flame surfacearea, and the global consumption speed (the volume per second ofreactants consumed divided by the area of the time-averaged flame). Thethickness of the computed flamebrush increases in the streamwisedirection, and the flamesurface density profiles display the same generalshapes as the experiment. The structure of the simulated flame alsomatches the experiment; reaction layers are thin (typically thinner than1 mm) and the wavelengths of large wrinkles are 5--10 mm. Wrinklesamplify to become long fingers of reactants which burn through at a neckregion, forming isolated pockets of reactants. Thus both the simulatedflame and the experiment are in the "corrugated flameletregime."

  12. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis


    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  13. Gaussian process regression based optimal design of combustion systems using flame images

    International Nuclear Information System (INIS)

    Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng


    Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process

  14. A Hubble Space Telescope Survey for Novae in M87. II. Snuffing out the Maximum Magnitude–Rate of Decline Relation for Novae as a Non-standard Candle, and a Prediction of the Existence of Ultrafast Novae

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Doyle, Trisha; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024-5192 (United States); Lauer, Tod R. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Baltz, Edward A. [KIPAC, SLAC, 2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States); Kovetz, Attay [School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv (Israel); Madrid, Juan P. [CSIRO, Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Mikołajewska, Joanna [N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL 00-716 Warsaw (Poland); Neill, J. D. [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena CA 91125 (United States); Prialnik, Dina [Department of Geosciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1, Ontario (Canada); Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)


    The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.

  15. Stability of a laminar flame front propagating within a tube

    Energy Technology Data Exchange (ETDEWEB)

    Salamandra, G.D.; Maiorov, N.I.


    The present study examines the deformation of a flame propagating in a semi-closed horizontal tube under the action of perturbations artificially created on the flame surface by brief action of a transverse electrical field on the combustion zone. The fuel mixture used was a dry methane-air mixture containing 10% CH4, which produced a flame front with relatively low convexity. Flame front propagation was recorded by high-speed photographic methods. Interpretation of the photographs reveals that the magnitude of the perturbations increases by an exponential law; fine scale perturbations on the flame surface are suppressed by coarse scale perturbations, while the stable curved form of the flame front in the tube is ensured by the stabilizing action of the tube walls.

  16. Tomographic PIV measurements in a turbulent lifted jet flame (United States)

    Weinkauff, J.; Michaelis, D.; Dreizler, A.; Böhm, B.


    Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.

  17. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard


    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen......The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a thin...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  18. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.


    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  19. Polysiloxane-Based Organoclay Nanocomposites as Flame Retardants (United States)


    Polysiloxanes INTRODUCTION Halogen -based flame - retardant (FR) polymers and additives have been a cost-effective solution for FR appli- cations. However, there...D ec em be r 20 13 non- halogenated flame retardant polymers. Green Chem. 2011, 13 (3), 659–665. 7. Lewicki, J.P.; Liggat, J.J.; Patel, M. The...blended through several techniques with organoclays Cloisite 30B, 10A and Naþ ranging from 1 to 5 wt.%. Thermal and flame - retardant analysis

  20. Effect of Intense Sound Waves on a Stationary Gas Flame (United States)

    Hahnemann, H; Ehret, L


    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  1. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN


    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.


    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry


    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion

  3. Electrical perturbation of cellular premixed propane/air flames

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, C.L.; Harris, H.H. (Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry)


    The phenomenon originally called polyhedral flame structure was first reported 100 years ago. Subsequent investigations showed that polyhedral structure was only one example of a more general phenomenon known now as cellular flame structure, and the range of combustion mixtures that produce them has been broadened to include lean mixtures of H[sub 2]/air, lean H[sub 2]/Br[sub 2], and rich mixtures of hydrocarbons from ethylene to octane with air. Of particular interest to the authors is the role of charged species in flames, and especially in flames that exhibit cellular structure. The electrical aspects of combustion has a long and distinguished history and this subject has been the subject of a classic monograph by Lawton and Weinberg. Electrical perturbation has been reported to affect the temperature of flames, to stabilize them at high flow rates and, in the absence of gravity, to change the speed of flame propagation, and to affect the amount of soot produced. The authors report here that premixed propane/air flames exhibiting cellular structure are quite susceptible to perturbation by electric fields. Since only charged species in the flame would be affected by the potential, and a small current would not modify transport properties of neutral species appreciably, this observation suggests that studies of this type may be useful in helping to further elucidate the role of charged species in flames.

  4. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn


    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  5. Active Control for Statistically Stationary Turbulent PremixedFlame Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.B.; Day, M.S.; Grcar, J.F.; Lijewski, M.J.


    The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.

  6. Soot precursor measurements in benzene and hexane diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M. [Department of Mechanical System Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515 (Japan)


    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  7. Response of a swirl-stabilized flame to transverse acoustic excitation (United States)

    O'Connor, Jacqueline

    the flow. Experiments in this study showed that high amplitudes of acoustic forcing could alter both the time-average and dynamical characteristics of this structure, although very little effect was measured at low amplitude forcing. The convectively unstable shear layers, however, displayed significant response to the acoustics, even at low levels of acoustic forcing, and are responsible for the majority of the flame wrinkling and resultant heat release fluctuation of the flame. The modal structure of the transverse acoustic field played a large role in the characteristics of the response of these structures. The two major contributions of this work are the development of a detailed velocity-coupled pathway for transversely forced flames, as well as a methodology based on the principles of hydrodynamic stability theory by which to assess the response of complex combusting flows to acoustic fields. Additionally, a large archival data set has been produced with measurements of velocity and flame behavior for future modeling and analysis.

  8. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct

    Directory of Open Access Journals (Sweden)

    DengKe Li


    Full Text Available To study the fuel gas combustion hazards, the methane/air flame structure and flow characteristic in an open duct influenced by a rectangular obstacle were explored by experiment and realizable k-∊ model (RKE. In the test, the high-speed schlieren photography technology and dynamic detection technology were applied to record the flame propagation behavior. Meanwhile, the interaction between flame front and flame flow field induced by the obstacle was disclosed. In addition, the laminar-turbulence transition was also taken into consideration. The RKE and eddy dissipation concept (EDC premixed combustion model were applied to obtain an insight into the phenomenon of flow change and wrinkle appearing, which potently explained the experimental observations. As a result, the obstacle blocked the laminar flame propagation velocity and increased pressure a little in an open duct. Some small-scale vortices began to appear near the obstacle, mainly due to Kelvin-Helmholtz instability (KHI, and gradually grew into large-scale vortices, which led to laminar-turbulent transition directly. The vortices thickened the reaction area and hastened the reaction rate; reversely, the higher reaction rate induced larger vortices. The RKE model result fitted the test data well and explained the wrinkle forming mechanism of two special vortices in the case.

  9. Two-time correlation of heat release rate and spectrum of combustion noise from turbulent premixed flames (United States)

    Liu, Yu


    The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.

  10. Research on Service Life of Flame Resistant Materials in the Exhibition Hall by the Use of Mechanical Method of the Meso Damage Mechanics


    Zhang Junzhu


    The population in the exhibition hall is relatively dense, and fire incidents often occur, so the existence of flame resistant materials is very important. The flame resistant materials are used to analyze the museums, art galleries, science and technology museums and other exhibition halls. Taking two kinds of flame resistant materials, namely, Mg(OH)2 and Al(OH)3 as an example, this paper establishes a model of meso damage mechanics by the use of mechanical method of the meso damage mechani...

  11. Analysis of Completely Prevaporized Spray Flames with Water/Octane Core/Shell Structured Droplets

    Directory of Open Access Journals (Sweden)

    Chung-Yao Hsuan


    Full Text Available A series of studies on laminar flame propagation in off-stoichiometric dilute sprays of monodispersed inert or fuel drops had been investigated by large activation energy asymptotics. The present study extends previous theoretical model to consider water/octane core/shell structured drops instead of single-phase drops. The core/shell structured drops are composed of core fluid (water encased by a layer of shell fluid (n-octane. In this study, we only deal with the case that core/shell structured drops are vaporized completely just at flame location. Namely, the discussions of this paper are restricted to the completely prevaporized mode. By varying parameters of core water radius, core-to-shell ratio, the amount of liquid loading, and the stoichiometric ratio (lean or rich burning, we examine the gasification of core water and shell fuel of core/shell structured drops upstream of the bulk flame and its relation to the internal heat transfer. The effects of drop radius, core-to-shell ratio, liquid loading, and overall heat loss or gain on flame propagation flux are reported and discussed.

  12. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose


    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  13. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust. (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen


    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  14. Historical floods in flood frequency analysis: Is this game worth the candle? (United States)

    Strupczewski, Witold G.; Kochanek, Krzysztof; Bogdanowicz, Ewa


    In flood frequency analysis (FFA) the profit from inclusion of historical information on the largest historical pre-instrumental floods depends primarily on reliability of the information, i.e. the accuracy of magnitude and return period of floods. This study is focused on possible theoretical maximum gain in accuracy of estimates of upper quantiles, that can be obtained by incorporating the largest historical floods of known return periods into the FFA. We assumed a simple case: N years of systematic records of annual maximum flows and either one largest (XM1) or two largest (XM1 and XM2) flood peak flows in a historical M-year long period. The problem is explored by Monte Carlo simulations with the maximum likelihood (ML) method. Both correct and false distributional assumptions are considered. In the first case the two-parameter extreme value models (Gumbel, log-Gumbel, Weibull) with various coefficients of variation serve as parent distributions. In the case of unknown parent distribution, the Weibull distribution was assumed as estimating model and the truncated Gumbel as parent distribution. The return periods of XM1 and XM2 are determined from the parent distribution. The results are then compared with the case, when return periods of XM1 and XM2 are defined by their plotting positions. The results are presented in terms of bias, root mean square error and the probability of overestimation of the quantile with 100-year return period. The results of the research indicate that the maximal profit of inclusion of pre-instrumental foods in the FFA may prove smaller than the cost of reconstruction of historical hydrological information.

  15. On the formation and early evolution of soot in turbulent nonpremixed flames

    KAUST Repository

    Bisetti, Fabrizio


    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is

  16. Investigations into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques: “V” and “M” Flame Configurations in a Swirl Combustor

    KAUST Repository

    Kewlani, Gaurav


    Turbulent premixed combustion is studied using experiments and numerical simulations in an acoustically uncoupled cylindrical sudden-expansion swirl combustor, and the impact of the equivalence ratio on the flame–flow characteristics is analyzed. In order to numerically capture the inherent unsteadiness exhibited in the flow, the large eddy simulation (LES) technique based on the artificial flame thickening combustion model is employed. The experimental data are obtained using particle image velocimetry. It is observed that changes in heat loading, in the presence of wall confinement, significantly influence the flow field in the wake region, the stabilization location of the flame, and the flame intensity. Specifically, increasing the equivalence ratio drastically reduces the average inner recirculation zone size and causes transition of the flame macrostructure from the “V” configuration to the “M” configuration. In other words, while the flame stabilizes along the inner shear layer for the V flame, a persistent diffuse reaction zone is also manifested along the outer shear layer for the M flame. The average chemiluminescence intensity increases in the case of the M flame macrostructure, while the axial span of the reaction zone within the combustion chamber decreases. The predictions of the numerical approach resemble the experimental observations, suggesting that the LES framework can be an effective tool for examining the effect of heat loading on flame–flow interactions and the mechanism of transition of the flame macrostructure with a corresponding change in the equivalence ratio.

  17. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun


    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could


    Energy Technology Data Exchange (ETDEWEB)

    Remming, Ian S. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Khokhlov, Alexei M. [Department of Astronomy and Astrophysics, the Enrico Fermi Institute, and the Computational Institute, The University of Chicago, Chicago, IL 60637 (United States)


    We present general equations for non-ideal, reactive flow magnetohydrodynamics (RFMHD) in the form best suited for describing thermonuclear combustion in high-density degenerate matter of SNe Ia. The relative importance of various non-ideal effects is analyzed as a function of characteristic spatial and temporal scales of the problem. From the general RFMHD equations, we derive the one-dimensional ordinary differential equations describing the steady-state propagation of a planar thermonuclear flame front in a magnetic field. The physics of the flame is first studied qualitatively using a simple case of one-step Arrhenius kinetics, a perfect gas equation of state (EOS), and constant thermal conductivity coefficients. After that, the equations are solved, the internal flame front structure is calculated, and the flame velocity, S {sub l} , and flame thickness, δ {sub l} , are found for carbon–oxygen degenerate material of supernovae using a realistic EOS, transport properties, and detailed nuclear kinetics. The magnetic field changes the flame behavior significantly, both qualitatively and quantitatively, as compared to the non-magnetic case of classical combustion. (1) The magnetic field influences the evolutionarity of a flame front and makes it impossible for a flame to propagate steadily in a wide range of magnetic field strengths and orientations relative to the front. (2) When the flame moves steadily, it can propagate in several distinct modes, the most important being the slow C {sub S} and super-Alfvénic C {sub sup} modes. (3) The speed of the flame can be diminished or enhanced by up to several factors relative to the non-magnetic laminar flame speed.

  19. Turbulent diffusion in the flame of a rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Strekotin, V.V.; Telegin, A.A.; Lisin, F.N.; Malysheva, O.I.


    Experimental data on the distribution of velocities in the stream in the flow of air from models of a burner with a normal annular Laval nozzle and a burner with an increase in the angle of opening of the stream under supersonic conditions were obtained. The results of the work may be used in the design of burners for rotary kilns. According to the experimental data the coefficient of turbulent diffusion reaches a value of 0.0071 m/sup 2//sec for a pure flow and is reduced by 30% with an increase in the dust content from 0 to 1 kg/kg. It is desirable to use the data obtained in calculations of the flame processes and selection of means of intensification of the process of mixing of the fuel with the oxidizer in the presence of dust.

  20. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells. (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Stapleton, Heather M; Seidler, Frederic J


    In addition to their activity as endocrine disruptors, brominated and organophosphate flame retardants are suspected to be developmental neurotoxicants, although identifying their specific mechanisms for that activity has been elusive. In the current study, we evaluated the effects of several flame retardants on neurodifferentiation using two in vitro models that assess distinct "decision nodes" in neural cell development: embryonic rat neural stem cells (NSCs), which evaluate the origination of neurons and glia from precursors, and rat neuronotypic PC12 cells, which characterize a later stage where cells committed to a neuronal phenotype undergo neurite outgrowth and neurotransmitter specification. In NSCs, both brominated and organophosphate flame retardants diverted the phenotype in favor of glia and away from formation of neurons, leading to an increased glia/neuron ratio, a common hallmark of the in vivo effects of neurotoxicants. For this early decision node, the brominated flame retardants were far more potent than the organophosphates. In PC12 cells, the brominated flame retardants were far less effective, whereas tris (1,3-dichloro-2-propyl) phosphate, an organophosphate, was more effective. Thus, the two classes of flame retardants differentially impact the two distinct vulnerable periods of neurodifferentiation. Furthermore, the effects on neurodifferentiation were separable from outright cytotoxicity, an important requirement in establishing a specific effect of these agents on neural cell development. These results reinforce the likelihood that flame retardants act as developmental neurotoxicants via direct effects on neural cell differentiation, over and above other activities that can impact nervous system development, such as endocrine disruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment (United States)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker


    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  2. Mass spectrometric characterization of halogenated flame retardants. (United States)

    Guo, Tan; LaBelle, Bruce; Petreas, Myrto; Park, June-Soo


    Concerns about the adverse health effects of ubiquitous flame retardants spurred our interest in the development of a sensitive and reliable analytical method for these toxic compounds in various sample matrices. This study focuses on the investigation of fragmentation pathways and the structures of target ions of thirteen new halogenated flame retardants. In this study, we use gas chromatography (GC)/high-resolution double-focusing sector mass spectrometry to characterize the fragmentation pathways of these new flame retardants. Along with the isotope patterns, accurate mass data were acquired to verify the molecular formula. The fragmentation pathways are classified based on the types of bond dissociations, e.g. σ-bond cleavage, α-bond cleavage and multiple-bond dissociations with a hydrogen shift. The α-bond dissociation occurs among 1,2-bis-(2,4,6-tribromophenoxy)ethane, allyl 2,4,6-tribromophenyl ether (ATE), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE) and 2-bromoallyl 2,4,6-tribromophenyl ether (BATE). The peak clusters that dominated ATE, BATE and hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) spectra correspond to two fragments as proved by accurate mass data and isotope patterns. These two fragments are formed as the result of two competing fragmentation pathways of radical loss and hydrogen shift. Fragmentation pathways of the other compounds are complex, involving cleavage of multiple bonds and hydrogen shifts. The accurate-mass-based GC/MS method offers great selectivity and sensitivity for quantitative analysis of the persistent organic pollutants. Thus, elucidation of the structures of the fragments is of prime importance for building an accurate-mass-based isotopic method. In addition, this study is useful for GC/MS/MS method development because multiple reaction monitoring (MRM) transitions of precursor ions and product ions may be easily elucidated based on these fragmentation patterns. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Nanotechnology finding its way into flame retardancy

    Energy Technology Data Exchange (ETDEWEB)

    Schartel, Bernhard, E-mail: [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)


    Nanotechnology is one of the key technologies of the 21{sup st} century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  4. The mechanism of self-ignition and flame holding in supersonic combustion chamber (United States)

    Goldfeld, Marat; Timofeev, Konstantin


    The presented research has been concentrated to definition of conditions of self-ignition of hydrogen in the combustion chamber at the entrance Mach number 4. The experimental model was made in the form of rectangular channel with a flame holder in the form of backward facing step (BFS). Fuel injection was carried out in front of BFS on the top and bottom walls of model through 8 circular holes, which was located under angles of 45° or 90°. Performed investigations allowed determining effective model of fuel injection for self-ignition and flame stabilization and prevention of choking of the channel. It is shown that the choice of the fuel injection scheme determines the ignition conditions and controlling the combustion process.

  5. Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song


    The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated ignit...... serve as an important tool for the simulation of spray flames in marine diesel engines, where fuel injectors with different nozzle diameters are applied for pilot and main injections.......The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated...

  6. Spectroscopy of Propellant-Related Flames (United States)


    data. For propellant HMX1, the absorption data of Vanderhoff [12], the CARS data of Stufflebeam [13], and the CN LIF profile [4,5] can be compared...CARS experiments at 23 atm, Stufflebeam measured the concentration of N2, CO, H2 and temperature in an HMX1 propellant flame at distances about 1 mm...Parr, Hanson-Parr PLIF CN, NH, OH, NO, 10 NO2, T Stufflebeam CARS N2, CO, H2, T 13 Vanderhoff Absorption CN, NH, OH, T 12 Edwards LIF CN, NH, OH, T 4

  7. New hybrid halogen-free flame retardants (United States)

    Kijowska, Dorota; Jankowski, Piotr


    The main objective of this work were researches concerning the methods of the in-situ modification of silicate layer-tubular mineral (SL-TM) halloysite, using the salts of melamine, i.e. melamine cyanurate. The modified mineral was used as flame retardant to thermoplastic polymers. In the case of the application of halloysite modified by melamine cyanurate to polyamide 6 (PA6) the highest parameters of vertical and horizontal flammability were achieved. The mechanical properties of filled polyamide 6 have been improved.

  8. Temperature and species measurement in a quenching boundary layer on a flat-flame burner (United States)

    Fuyuto, Takayuki; Kronemayer, Helmut; Lewerich, Burkhard; Brübach, Jan; Fujikawa, Taketoshi; Akihama, Kazuhiro; Dreier, Thomas; Schulz, Christof


    A detailed understanding of transport phenomena and reactions in near-wall boundary layers of combustion chambers is essential for further reducing pollutant emissions and improving thermal efficiencies of internal combustion engines. In a model experiment, the potential of laser-induced fluorescence (LIF) was investigated for measurements inside the boundary layer connected to flame-wall interaction at atmospheric pressure. Temperature and species distributions were measured in the quenching boundary layer formed close to a cooled metal surface located parallel to the flow of a premixed methane/air flat flame. Multi-line NO-LIF thermometry provided gas-phase temperature distributions. In addition, flame species OH, CH2O and CO were monitored by single-photon (OH, CH2O) and two-photon (CO) excitation LIF, respectively. The temperature dependence of the OH-LIF signal intensities was corrected for using the measured gas-phase temperature distributions. The spatial line-pair resolution of the imaging system was 22 μm determined by imaging microscopic line pairs printed on a resolution target. The experimental results show the expected flame quenching behavior in the boundary layer and they reveal the potential and limitations of the applied diagnostics techniques. Limitations in spatial resolution are attributed to refraction of fluorescence radiation propagating through steep temperature gradients in the boundary layer. For the present experimental arrangements, the applied diagnostics techniques are applicable as close to the wall as 200 μm with measurement precision then exceeding the 15-25% limit for species detection, with estimates of double this value for the case of H2CO due to the unknown effect of the Boltzmann fraction corrections not included in the data evaluation process. Temperature measurements are believed to be accurate within 50 K in the near-wall zone, which amounts to roughly 10% at the lower temperatures encountered in this region of the flames.

  9. 30 CFR 75.600 - Trailing cables; flame resistance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; flame resistance. 75.600 Section 75.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. [Statutory Provisions] Trailing cables used in coal mines shall meet the...

  10. Flame retardants: Dust - and not food - might be the risk

    NARCIS (Netherlands)

    de Boer, J.; Ballesteros-Gomez, A.M.; Leslie, H.A.; Brandsma, S.H.; Leonards, P.E.G.


    Flame retardants (FRs) are used to delay ignition of materials such as furniture and electric and electronic instruments. Many FRs are persistent and end up in the environment. Environmental studies on flame retardants (FRs) took off in the late 1990s. Polybrominated diphenylethers (PBDEs) appeared

  11. Environmental fate & effects of new generation flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.


    There is a pressing need for substituting several halogenated flame retardants, given the human and environmental health concerns of many of these compounds. Halogen Free Flame Retardants (HFFRs) have been suggested as alternatives and are already being marketed, although their potential impact on

  12. Histopathology of the organs of Broiler Chickens exposed to flames ...

    African Journals Online (AJOL)

    Histopathology of the organs of broiler chickens exposed to the flame and fumes of refined petroleum product kerosene at varying distances over a period of 16hrs daily for 56 days in a poultry house were evaluated. Kerosene burning was simulated in a designed burner. Kerosene flame in a designed burner was placed 4, ...

  13. Toxicity of new generation flame retardants to Daphnia magna

    NARCIS (Netherlands)

    Waaijers, S.L.; Hartmann, J; Soeter, A.M.; Helmus, R.; Kools, S.A.E.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H.S.


    There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and

  14. Diamond growth in premixed propylene-oxygen flames


    Shin, Ho Seon; Goodwin, David G.


    Diamond film growth in low-pressure premixed propylene/oxygen flames is demonstrated. Well-faceted films are grown at a pressure of 180 Torr and a fuel/oxygen ratio of 0.47. Using propylene as the fuel may greatly improve the economics of flame synthesis of diamond, since propylene is an order of magnitude cheaper than acetylene.

  15. Flame retardant antibacterial cotton high-loft nonwoven fabrics (United States)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  16. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric


    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  17. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    The flame characteristics of castor oil based foam and that of polyether foam impregnated with inorganic flame retardants (FR) were investigated. The polyether foams were impregnated with measured concentration of Antimony trioxide and Sodium bromide, Ammonium dihydrogen orthophosphate, Diammonium hydrogen ...

  18. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    ABSTRACT: The flame characteristics of castor oil based foam and that of polyether foam impregnated with inorganic flame retardants (FR) were investigated. The polyether foams were impregnated with measured concentration of Antimony trioxide and Sodium bromide, Ammonium dihydrogen orthophosphate ...

  19. Life cycle assessment of flame retardants in an electronics application

    NARCIS (Netherlands)

    Jonkers, Niels; Krop, Hildo; van Ewijk, Harry; Leonards, Pim E.G.


    Purpose: Flame retardants are added to plastics and textiles to save lives. However, certain brominated flame retardants (BFRs) form an environmental hazard and should be replaced by less harmful alternatives. In the recently completed European research project ENFIRO, we examined which alternatives

  20. Reconstructing the Cryptanalytic Attack behind the Flame Malware

    NARCIS (Netherlands)

    M.J. Fillinger (Max)


    textabstractFlame was an advanced malware, used for espionage, which infected computers running a Microsoft Windows operating system. Once a computer in a local network was infected, Flame could spread to the other computers in the network via Windows Update, disguised as a security patch from