WorldWideScience

Sample records for modeling amygdala shape

  1. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    Science.gov (United States)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  2. Preregistered Replication of "Affective Flexibility: Evaluative Processing Goals Shape Amygdala Activity".

    Science.gov (United States)

    Lumian, Daniel S; McRae, Kateri

    2017-09-01

    The human amygdala is sensitive to stimulus characteristics, and growing evidence suggests that it is also responsive to cognitive framing in the form of evaluative goals. To examine whether different evaluations of stimulus characteristics shape amygdala activation, we conducted a preregistered replication of Cunningham, Van Bavel, and Johnsen's (2008) study demonstrating flexible mapping of amygdala activation to stimulus characteristics, depending on evaluative goals. Participants underwent functional MRI scanning while viewing famous names under three conditions: They were asked to report their overall attitude toward each name, their positive associations only, or their negative associations only. We observed an interaction between condition and rating type, identified as the effect of interest in Cunningham et al. (2008). Specifically, postscan positivity, but not negativity, ratings predicted left amygdala activation when participants were asked to evaluate positive, but not negative, associations with the names. These results provide convergent evidence that cognitive framing, in the form of evaluative goals, can significantly alter whether amygdala activation indexes positivity or negativity.

  3. Modeling a Negative Response Bias in the Human Amygdala by Noradrenergic-Glucocorticoid Interactions

    NARCIS (Netherlands)

    Kukolja, Juraj; Schlaepfer, Thomas E.; Keysers, Christian; Klingmueller, Dietrich; Maier, Wolfgang; Fink, Gereon R.; Hurlemann, Rene

    2008-01-01

    An emerging theme in the neuroscience of emotion is the question of how acute stress shapes, and distorts, social-emotional behavior. The prevailing neurocircuitry models of social-emotional behavior emphasize the central role of the amygdala. Acute stress leads to increased central levels of

  4. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2018-06-08

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  5. Issues in Biological Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...

  6. A Model of Differential Amygdala Activation in Psychopathy

    Science.gov (United States)

    Moul, Caroline; Killcross, Simon; Dadds, Mark R.

    2012-01-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in…

  7. Oriented active shape models.

    Science.gov (United States)

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  8. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  9. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  10. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  11. Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer's disease animal model.

    Science.gov (United States)

    Yang, Eun-Jeong; Mahmood, Usman; Kim, Hyunju; Choi, Moonseok; Choi, Yunjung; Lee, Jean-Pyo; Chang, Moon-Jeong; Kim, Hye-Sun

    2017-04-01

    Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD) mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris

    2014-01-01

    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  13. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  14. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  15. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Directory of Open Access Journals (Sweden)

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  16. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD

    NARCIS (Netherlands)

    Ronzoni, G.; Arco, A. Del; Mora, F.; Segovia, G.

    2016-01-01

    Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats

  17. A statistical model for mapping morphological shape

    Directory of Open Access Journals (Sweden)

    Li Jiahan

    2010-07-01

    Full Text Available Abstract Background Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine. Results We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model. Conclusion By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.

  18. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    Science.gov (United States)

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  19. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  20. Thermomechanical macroscopic model of shape memory alloys

    International Nuclear Information System (INIS)

    Volkov, A.E.; Sakharov, V.Yu.

    2003-01-01

    The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru

  1. Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model

    Directory of Open Access Journals (Sweden)

    Dongliang eMa

    2016-01-01

    Full Text Available In this study, we investigated the reorganized basolateral amygdala (BLA-subiculum pathway in a status epilepticus (SE mouse model with epileptic episodes induced by pilocarpine. We have previously observed a dramatic loss of neurons in the CA1-3 fields of the hippocampus in epileptic mice. Herein, we observed a 43-57 % reduction in the number of neurons in the BLA of epileptic mice. However, injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L into the BLA indicated 25.63 % increase in the number of PHA-L-immunopositive terminal-like structures in the ventral subiculum (v-Sub of epileptic mice as compared to control mice. These data suggest that the projections from the basal nucleus at BLA to the vSub in epileptic mice are resistant to epilepsy-induced damage. Consequently, these epileptic mice exhibit partially impairment but not total loss of context-dependent fear memory. Epileptic mice also show increased c-Fos expression in the BLA and vSub when subjected to contextual memory test, suggesting the participation of these 2 brain areas in foot shock-dependent fear conditioning. These results indicate the presence of functional neural connections between the BLA-vSub regions that participate in learning and memory in epileptic mice.

  2. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus

    Science.gov (United States)

    Bullock, Daniel; Barbas, Helen

    2016-01-01

    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203

  3. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus.

    Directory of Open Access Journals (Sweden)

    Yohan J John

    2016-02-01

    Full Text Available In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.

  4. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Science.gov (United States)

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-03-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  5. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.

    Science.gov (United States)

    Wu, Zhong-Min; Ni, Gui-Lian; Shao, Ai-Min; Cui, Rong

    2017-09-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder, characterized by intense fear, and increased arousal and avoidance of traumatic events. The current available treatments for PTSD have limited therapeutic value. Genistein, a natural isoflavone, modulates a variety of cell functions. In this study, we tested anti-anxiety activity and underlying mechanisms of genistein in a PTSD rat model. The rats were trained to associate a tone with foot shock delivery on day 0, then fear conditioning was performed on day 7, 14 and 21. Genistein (2-8mg/kg) was injected intraperitoneally daily for 7 days. The anti-anxiety effects of genistein were measured by contextual freezing behavior and elevated plus maze. By the end of the experiments, the amygdala was extracted and subject to neurochemistry analysis. Genistein alleviated contextual freezing behavior and improved performance in elevated plus maze dose-dependently in PTSD rats. Furthermore, in these rats, genistein enhanced serotonergic transmission in the amygdala, including upregulation of tryptophan hydroxylase, serotonin, and phosphorylated (p)-CaMKII and p-CREB, as well. Genistein exerts anti-anxiety effects on a PTSD model probably through enhancing serotonergic system and CaMKII/CREB signaling pathway in the amygdala. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Directory of Open Access Journals (Sweden)

    Ioannis Vlachos

    2011-03-01

    Full Text Available The basal nucleus of the amygdala (BA is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS-related input from the adjacent lateral nucleus (LA and contextual input from the hippocampus or medial prefrontal cortex (mPFC. We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  7. Abnormal fear conditioning and amygdala processing in an animal model of autism

    DEFF Research Database (Denmark)

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah

    2008-01-01

    A core feature of autism spectrum disorders is the impairment in social interactions. Among other brain regions, a deficit in amygdala processing has been suggested to underlie this impairment, but whether the amygdala is processing fear abnormally in autism, is yet not clear. We used the valproic......-treated animals displayed several symptoms common to autism, among them impaired social interactions and increased repetitive behaviors. Furthermore, VPA-treated rats were more anxious and exhibited abnormally high and longer lasting fear memories, which were overgeneralized and harder to extinguish...

  8. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...

  9. Statistical shape and appearance models of bones.

    Science.gov (United States)

    Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A

    2014-03-01

    When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C

    2009-01-01

    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  11. Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive Deficits in Schizophrenia

    OpenAIRE

    Rosenfeld, Andrew J.; Lieberman, Jeffrey A.; Jarskog, L. Fredrik

    2010-01-01

    Until recently, the social cognitive impairment in schizophrenia has been underappreciated and remains essentially untreated. Deficits in emotional processing, social perception and knowledge, theory of mind, and attributional bias may contribute to functional social cognitive impairments in schizophrenia. The amygdala has been implicated as a key component of social cognitive circuitry in both animal and human studies. In addition, structural and functional studies of schizophrenia reproduci...

  12. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...

  13. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  14. Digital Modeling and Shaping of Design Practices

    DEFF Research Database (Denmark)

    Reijonen, Satu

    This paper focuses on the role of digital modeling in shaping coordinative practices between architects and energy engineers in construction design. The paper presents a case study of the use of an energy performance calculation programme, a numeric digital modeling tool, that not only enables...... coordination between the two communities but also shapes coordinative practices around the emerging building. The paper draws on two interlinked strands of literature that have engaged in the role of material artefacts in the social: the entanglement of technology in organizing and management (Orlikowski 2000......, 2010), and the socio-material constructivist studies of technology (Akrich 1992, Akrich et al. 2000, Latour 1991). The programme influences the coordinative practices in following ways: it shapes the modus of interaction between energy engineers and architects and enforces particular jurisdictional...

  15. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior.

    Science.gov (United States)

    Perathoner, Simon; Cordero-Maldonado, Maria Lorena; Crawford, Alexander D

    2016-06-01

    Emotion is a key aspect of behavior, enabling humans and animals to assign either positive or negative values to sensory inputs and thereby to make appropriate decisions. Classical experiments in mammalian models, mainly in primates and rodents, have shown that the amygdala is essential for appetitive and aversive associative processing and that dysfunction of this brain region leads to various psychiatric conditions, including depression, generalized anxiety disorder, panic disorder, phobias, autism, and posttraumatic stress disorder. In the past 2 decades, the zebrafish (Danio rerio; Cyprinidae) has emerged as a versatile, reliable vertebrate model organism for the in vivo study of development, gene function, and numerous aspects of human pathologies. Small size, high fecundity, rapid external development, transparency, genetic tractability, and high genetic and physiologic homology with humans are among the factors that have contributed to the success with this small fish in different biomedical research areas. Recent findings indicate that, despite the anatomical differences in the brain structure of teleosts and tetrapods, fish possess a structure homologous to the mammalian amygdala, a hypothesis that is supported by the expression of molecular markers, analyses of neuronal projections in different brain areas, and behavioral studies. This Review summarizes this evidence and highlights a number of relevant bioassays in zebrafish to study emotional memory and motivational behavior. © 2016 Wiley Periodicals, Inc.

  16. Establishment of a rhesus monkey model of chronic temporal lobe epilepsy using repetitive unilateral intra-amygdala kainic acid injections.

    Science.gov (United States)

    Chi, Yajie; Wu, Bolin; Guan, Jianwei; Xiao, Kuntai; Lu, Ziming; Li, Xiao; Xu, Yuting; Xue, Shan; Xu, Qiang; Rao, Junhua; Guo, Yanwu

    2017-09-01

    Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Constitutive Models for Shape Memory Alloy Polycrystals

    Science.gov (United States)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  18. Modeling shape selection of buckled dielectric elastomers

    Science.gov (United States)

    Langham, Jacob; Bense, Hadrien; Barkley, Dwight

    2018-02-01

    A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.

  19. Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of Diabetes Mellitus.

    Directory of Open Access Journals (Sweden)

    Yousef Mohamadi

    2015-01-01

    Full Text Available In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including the medial amygdala (Me, bed nucleus of the stria terminalis (BNST and medial preoptic area (MPOA via perception of social odors. Diabetes Mellitus (DM is a widespread metabolic disease that affects many organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we hypothesized damage to the nuclei of this circuit can cause reproductive dysfunctions. Therefore in this project we assessed diabetic effect on these nuclei. For this purpose neuron tracing technique and TUNEL assay were used. We injected HRP in the MPOA and counted labeled cells in the Me and BNST to evaluate the reduction of neurons in diabetic animals. Also, coronal sections were analyzed with the TMB histochemistry method. Animals in this study were adult male Wistar rats (230 ± 8g divided to control and 10-week streptozotocin-induced diabetic groups. After data analysis by SPSS 16 software, a significant reduction of HRP-labeled neurons was shown in both Me and BNST nuclei in the diabetic group. Moreover, apoptotic cells were significantly observed in diabetic animals in contrast to control the group. In conclusion, these alterations of the circuit as a result of diabetes might be one of the reasons for reproductive dysfunctions.

  20. Using a Shape Model in the Design of Hearing Aids

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Nielsen, Claus; Laugesen, Søren

    2004-01-01

    shapes by a skilled operator. These faceplate planes are aligned to the average shape from the shape model and an average faceplate plane is calculated. Given a surface representation of a new ear canal, the shape model is fitted using a combination of the iterative closest point algorithm and the active...... shape model approach. The average faceplate from the training set can now be placed on the new ear canal using the position of the fitted shape model. A leave-one-out study shows that the algorithm is able to produce results comparable to a human operator....

  1. Airfoil Shape Optimization based on Surrogate Model

    Science.gov (United States)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2018-02-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  2. Micromechanical modelling of shape memory alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F.; Wang, X.M.; Yue, Z.F. [School of Mechanic, Civil Engineering and Architecture, Northwestern Polytechnical University, Xian, 710072 (China)

    2004-03-01

    An isothermal finite element method (FEM) model has been applied to study the behavior of two kinds of shape memory alloy (SMA) composites. For SMA-fiber reinforced normal metal composites, the FEM analysis shows that the mechanical behavior of the composites depends on the SMA volume fraction. For normal metal-fiber reinforced SMA matrix composites, the SMA phase transformation is affected by the increasing Young's modulus of the metal fiber. The phase transformation was also treated using a simple numerical analysis, which assumes that there are uniform stresses and strains distributions in the fiber and the matrix respectively. It is found that there is an obvious difference between the FEM analysis and the simple numerical assessment. Only FEM can provide reasonable predictions of phase transformations in SMA/normal metal composites. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  3. Microplane modelling of shape memory alloys

    International Nuclear Information System (INIS)

    Kadkhodaei, M; Salimi, M; Rajapakse, R K N D; Mahzoon, M

    2007-01-01

    A three-dimensional (3D) constitutive model based on a statically constrained microplane theory with volumetric-deviatoric split is proposed for polycrystalline shape memory alloys (SMAs) under multiaxial loading paths. Microplane governing equations are 1D stress-strain relations for normal and shear stresses on each microplane, in which suitable relationships between the microscopic and macroscopic quantities are considered so that switching between elastic and inelastic local responses automatically occurs according to the macroscopic response of SMA without additional constraint. Shear stress on each microplane is expressed by the resultant shear component within the plane to overcome directional bias and to prevent the appearance of shear strain in a pure axial loading or axial strain in a pure shear loading while microplane formulations based on two shear directions may predict such impractical results. The behaviour of SMA under simple and complicated loadings has been studied. In nonproportional loading paths, the model shows interaction between stress components, as well as deviation from normality. Predicted results from the model are in good agreement with those of the existing theoretical and experimental investigations

  4. Rescue of Impaired Fear Extinction and Normalization of Cortico-Amygdala Circuit Dysfunction in a Genetic Mouse Model by Dietary Zinc Restriction

    OpenAIRE

    Whittle, Nigel; Hauschild, Markus; Lubec, Gert; Holmes, Andrew; Singewald, Nicolas

    2010-01-01

    Fear extinction is impaired in neuropsychiatric disorders, including posttraumatic stress disorder. Identifying drugs that facilitate fear extinction in animal models provides leads for novel pharmacological treatments for these disorders. Zinc (Zn) is expressed in neurons in a cortico-amygdala circuit mediating fear extinction, and modulates neurotransmitter systems regulating extinction. We previously found that the 129S1/SvImJ mouse strain (S1) exhibited a profound impairment in fear extin...

  5. 3D shape decomposition and comparison for gallbladder modeling

    Science.gov (United States)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  6. Simple Parametric Model for Airfoil Shape Description

    Science.gov (United States)

    Ziemkiewicz, David

    2017-12-01

    We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.

  7. Shape prior modeling using sparse representation and online dictionary learning.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  8. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl

    2004-01-01

    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  9. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  10. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  11. Modeling self-occlusions in dynamic shape and appearance tracking

    KAUST Repository

    Yang, Yanchao; Sundaramoorthi, Ganesh

    2013-01-01

    We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over

  12. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  13. Shape optimization in biomimetics by homogenization modelling

    International Nuclear Information System (INIS)

    Hoppe, Ronald H.W.; Petrova, Svetozara I.

    2003-08-01

    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  14. Dynamic shape transitions in the sdg boson model

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192 Os. 13 refs., 3 figs

  15. Dynamic shape transitions in the sdg boson model

    Science.gov (United States)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  16. Dynamic shape transitions in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S. (Melbourne Univ., Parkville (Australia). School of Physics)

    1992-01-01

    The dynamic evolution of shapes in the sdg interacting bosun model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, {sup 192}Os. (author).

  17. Surface morphology of amygdala is associated with trait anxiety.

    Directory of Open Access Journals (Sweden)

    Shuyu Li

    Full Text Available Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each subject was first manually outlined using high-resolution magnetic resonance (MR image, followed by 3D surface reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels, which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right amygdala on trait anxiety.

  18. Some Issues of Biological Shape Modelling with Applications

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Skoglund, Karl

    2003-01-01

    This paper illustrates current research at Informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations to, modifications to, and applications of the elements of constructing models of shape or appearance...

  19. Deep brain stimulation of the amygdala alleviates fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory.

    Science.gov (United States)

    Sui, Li; Huang, SiJia; Peng, BinBin; Ren, Jie; Tian, FuYing; Wang, Yan

    2014-07-01

    Deep brain stimulation (DBS) of the amygdala has been demonstrated to modulate hyperactivity of the amygdala, which is responsible for the symptoms of post-traumatic stress disorder (PTSD), and thus might be used for the treatment of PTSD. However, the underlying mechanism of DBS of the amygdala in the modulation of the amygdala is unclear. The present study investigated the effects of DBS of the amygdala on synaptic transmission and synaptic plasticity at cortical inputs to the amygdala, which is critical for the formation and storage of auditory fear memories, and fear memories. The results demonstrated that auditory fear conditioning increased single-pulse-evoked field excitatory postsynaptic potentials in the cortical-amygdala pathway. Furthermore, auditory fear conditioning decreased the induction of paired-pulse facilitation and long-term potentiation, two neurophysiological models for studying short-term and long-term synaptic plasticity, respectively, in the cortical-amygdala pathway. In addition, all these auditory fear conditioning-induced changes could be reversed by DBS of the amygdala. DBS of the amygdala also rescued auditory fear conditioning-induced enhancement of long-term retention of fear memory. These findings suggested that DBS of the amygdala alleviating fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory may underlie the neuromodulatory role of DBS of the amygdala in activities of the amygdala.

  20. 15. Amygdala pain mechanisms

    Science.gov (United States)

    Neugebauer, Volker

    2015-01-01

    A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623

  1. Objective models of compressed breast shapes undergoing mammography

    Science.gov (United States)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  2. Objective models of compressed breast shapes undergoing mammography

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Steve Si Jia [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University and Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Patel, Bhavika [Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sechopoulos, Ioannis [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2013-03-15

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  3. Objective models of compressed breast shapes undergoing mammography

    International Nuclear Information System (INIS)

    Feng, Steve Si Jia; Patel, Bhavika; Sechopoulos, Ioannis

    2013-01-01

    Purpose: To develop models of compressed breasts undergoing mammography based on objective analysis, that are capable of accurately representing breast shapes in acquired clinical images and generating new, clinically realistic shapes. Methods: An automated edge detection algorithm was used to catalogue the breast shapes of clinically acquired cranio-caudal (CC) and medio-lateral oblique (MLO) view mammograms from a large database of digital mammography images. Principal component analysis (PCA) was performed on these shapes to reduce the information contained within the shapes to a small number of linearly independent variables. The breast shape models, one of each view, were developed from the identified principal components, and their ability to reproduce the shape of breasts from an independent set of mammograms not used in the PCA, was assessed both visually and quantitatively by calculating the average distance error (ADE). Results: The PCA breast shape models of the CC and MLO mammographic views based on six principal components, in which 99.2% and 98.0%, respectively, of the total variance of the dataset is contained, were found to be able to reproduce breast shapes with strong fidelity (CC view mean ADE = 0.90 mm, MLO view mean ADE = 1.43 mm) and to generate new clinically realistic shapes. The PCA models based on fewer principal components were also successful, but to a lesser degree, as the two-component model exhibited a mean ADE = 2.99 mm for the CC view, and a mean ADE = 4.63 mm for the MLO view. The four-component models exhibited a mean ADE = 1.47 mm for the CC view and a mean ADE = 2.14 mm for the MLO view. Paired t-tests of the ADE values of each image between models showed that these differences were statistically significant (max p-value = 0.0247). Visual examination of modeled breast shapes confirmed these results. Histograms of the PCA parameters associated with the six principal components were fitted with Gaussian distributions. The six

  4. Confidence of model based shape reconstruction from sparse data

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.

    2010-01-01

    Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...

  5. Modeling self-occlusions in dynamic shape and appearance tracking

    KAUST Repository

    Yang, Yanchao

    2013-12-01

    We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over methods employing global image statistics in cases of complex object radiance and cluttered background. In cases of complex 3D object motion and relative viewpoint change, self-occlusions and disocclusions of the object are prominent, and current methods employing joint shape and appearance models are unable to accurately adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Experiments on video exhibiting occlusion/dis-occlusion, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy compared to recent methods employing joint shape/appearance models or employing global statistics. © 2013 IEEE.

  6. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  7. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  8. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  9. Shell model calculations at superdeformed shapes

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.

    1991-01-01

    Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs

  10. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  11. Rapid de novo shape encoding: a challenge to connectionist modeling

    OpenAIRE

    Greene, Ernest

    2018-01-01

    Neural network (connectionist) models are designed to encode image features and provide the building blocks for object and shape recognition. These models generally call for: a) initial diffuse connections from one neuron population to another, and b) training to bring about a functional change in those connections so that one or more high-tier neurons will selectively respond to a specific shape stimulus. Advanced models provide for translation, size, and rotation invariance. The present dis...

  12. Statistical shape model with random walks for inner ear segmentation

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma

    2016-01-01

    is required. We propose a new framework for segmentation of micro-CT cochlear images using random walks combined with a statistical shape model (SSM). The SSM allows us to constrain the less contrasted areas and ensures valid inner ear shape outputs. Additionally, a topology preservation method is proposed...

  13. Modeling the variability of shapes of a human placenta.

    Science.gov (United States)

    Yampolsky, M; Salafia, C M; Shlakhter, O; Haas, D; Eucker, B; Thorp, J

    2008-09-01

    Placentas are generally round/oval in shape, but "irregular" shapes are common. In the Collaborative Perinatal Project data, irregular shapes were associated with lower birth weight for placental weight, suggesting variably shaped placentas have altered function. (I) Using a 3D one-parameter model of placental vascular growth based on Diffusion Limited Aggregation (an accepted model for generating highly branched fractals), models were run with a branching density growth parameter either fixed or perturbed at either 5-7% or 50% of model growth. (II) In a data set with detailed measures of 1207 placental perimeters, radial standard deviations of placental shapes were calculated from the umbilical cord insertion, and from the centroid of the shape (a biologically arbitrary point). These two were compared to the difference between the observed scaling exponent and the Kleiber scaling exponent (0.75), considered optimal for vascular fractal transport systems. Spearman's rank correlation considered pcentroid) was associated with differences from the Kleiber exponent (p=0.006). A dynamical DLA model recapitulates multilobate and "star" placental shapes via changing fractal branching density. We suggest that (1) irregular placental outlines reflect deformation of the underlying placental fractal vascular network, (2) such irregularities in placental outline indicate sub-optimal branching structure of the vascular tree, and (3) this accounts for the lower birth weight observed in non-round/oval placentas in the Collaborative Perinatal Project.

  14. Chemosensory function of the amygdala.

    Science.gov (United States)

    Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique

    2010-01-01

    The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Tensegrity Models and Shape Control of Vehicle Formations

    OpenAIRE

    Nabet, Benjamin; Leonard, Naomi Ehrich

    2009-01-01

    Using dynamic models of tensegrity structures, we derive provable, distributed control laws for stabilizing and changing the shape of a formation of vehicles in the plane. Tensegrity models define the desired, controlled, multi-vehicle system dynamics, where each node in the tensegrity structure maps to a vehicle and each interconnecting strut or cable in the structure maps to a virtual interconnection between vehicles. Our method provides a smooth map from any desired planar formation shape ...

  16. Modelling the wedge shape for the virtual wedge

    International Nuclear Information System (INIS)

    Chang Liyun; Ho Shengyow; Chen, Helen H W

    2003-01-01

    We present a method to model the virtual wedge shape in a 3D treatment planning system as a physical wedge. The virtual wedge shape was determined using the measured dose profile of the virtual wedge at a chosen reference depth. The differences between the calculated and the measured dose profiles for the virtual wedge were within 0.5% at the reference depth, and within 2.5% at other depths. This method provides a fast and accurate way to implement the virtual wedge into our planning system for any wedge angles. This method is also applicable to model the physical wedge shapes with comparable good results

  17. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering (Singapore); Dept. of Preventive Dentistry, National Univ. of Singapore (Singapore); Ong, S.H. [Dept. of Electrical and Computer Engineering, National Univ. of Singapore (Singapore); Div. of Bioengineering, National Univ. of Singapore (Singapore); Liu, J.; Nowinski, W.L. [Biomedical Imaging Lab., Agency for Science Technology and Research (Singapore); Goh, P.S. [Dept. of Diagnostic Radiology, National Univ. of Singapore (Singapore)

    2007-06-15

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices ({kappa}) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  18. Shape determinative slice localization for patient-specific masseter modeling using shape-based interpolation

    International Nuclear Information System (INIS)

    Ng, H.P.; Foong, K.W.C.; Ong, S.H.; Liu, J.; Nowinski, W.L.; Goh, P.S.

    2007-01-01

    The masseter plays a critical role in the mastication system. A hybrid method to shape-based interpolation is used to build the masseter model from magnetic resonance (MR) data sets. The main contribution here is the localizing of determinative slices in the data sets where clinicians are required to perform manual segmentations in order for an accurate model to be built. Shape-based criteria were used to locate the candidates for determinative slices and fuzzy-c-means (FCM) clustering technique was used to establish the determinative slices. Five masseter models were built in our work and the average overlap indices (κ) achieved is 85.2%. This indicates that there is good agreement between the models and the manual contour tracings. In addition, the time taken, as compared to manually segmenting all the slices, is significantly lesser. (orig.)

  19. Framing effect following bilateral amygdala lesion.

    Science.gov (United States)

    Talmi, Deborah; Hurlemann, René; Patin, Alexandra; Dolan, Raymond J

    2010-05-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed--as a potential loss or a potential gain--systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral amygdala degeneration, exhibit an intact framing effect. However, choice preference in these patients did show a qualitatively distinct pattern compared to controls evident in an increased propensity to gamble, indicating that loss of amygdala function does exert an overall influence on risk-taking. These findings suggest either that amygdala does contribute to decision making but does not play a causal role in framing, or that UW is not a pure lesion model of amygdala function. 2010 Elsevier Ltd. All rights reserved.

  20. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  1. Modelling the shape hierarchy for visually guided grasping

    Directory of Open Access Journals (Sweden)

    Omid eRezai

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modelled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP. The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e. distance from the observer to the object surface. We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. However (in contrast with superquadrics further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

  2. Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues

    Directory of Open Access Journals (Sweden)

    Joel Rosato

    2014-06-01

    Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.

  3. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

  4. Shape Modelling Using Markov Random Field Restoration of Point Correspondences

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen

    2003-01-01

    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized sh...

  5. Gallbladder shape extraction from ultrasound images using active contour models.

    Science.gov (United States)

    Ciecholewski, Marcin; Chochołowicz, Jakub

    2013-12-01

    Gallbladder function is routinely assessed using ultrasonographic (USG) examinations. In clinical practice, doctors very often analyse the gallbladder shape when diagnosing selected disorders, e.g. if there are turns or folds of the gallbladder, so extracting its shape from USG images using supporting software can simplify a diagnosis that is often difficult to make. The paper describes two active contour models: the edge-based model and the region-based model making use of a morphological approach, both designed for extracting the gallbladder shape from USG images. The active contour models were applied to USG images without lesions and to those showing specific disease units, namely, anatomical changes like folds and turns of the gallbladder as well as polyps and gallstones. This paper also presents modifications of the edge-based model, such as the method for removing self-crossings and loops or the method of dampening the inflation force which moves nodes if they approach the edge being determined. The user is also able to add a fragment of the approximated edge beyond which neither active contour model will move if this edge is incomplete in the USG image. The modifications of the edge-based model presented here allow more precise results to be obtained when extracting the shape of the gallbladder from USG images than if the morphological model is used. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    Science.gov (United States)

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  7. Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization

    Science.gov (United States)

    Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane

    2003-01-01

    The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.

  8. Photometry and shape modeling of Mars crosser asteroid (1011 Laodamia

    Directory of Open Access Journals (Sweden)

    Apostolovska G.

    2014-01-01

    Full Text Available An analysis of photometric observations of Mars crosser asteroid 1011 Laodamia conducted at Bulgarian National Astronomical Observatory Rozhen over a twelve year interval (2002, 2003, 2004, 2006, 2007, 2008, 2011, 2012 and 2013 is made. Based on the obtained lightcurves the spin vector, sense of rotation, and preliminary shape model of (1011 Laodamia have been determined using the lightcurve inversion method. The aim of this investigation is to increase the set of asteroids with known spin and shape parameters and to contribute in improving the model in combination with other techniques and sparse data produced by photometric asteroid surveys such as Pan-STARRS or GAIA.

  9. Detecting hippocampal shape changes in Alzheimer's disease using statistical shape models

    Science.gov (United States)

    Shen, Kaikai; Bourgeat, Pierrick; Fripp, Jurgen; Meriaudeau, Fabrice; Salvado, Olivier

    2011-03-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and model the hippocampal shape variations among the population. We use the shape variation from SSM as features to classify AD from normal control cases (NC). Conventional SSM uses principal component analysis (PCA) to compute the modes of variations among the population. Although these modes are representative of variations within the training data, they are not necessarily discriminant on labelled data. In this study, a Hotelling's T 2 test is used to qualify the landmarks which can be used for PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances using support vector machines (SVM). Using only landmarks statistically discriminant between AD and NC in SSM showed a better separation between AD and NC. These predictors also showed better correlation to the cognitive scores such as mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS).

  10. Thermomechanical model for NiTi shape memory wires

    International Nuclear Information System (INIS)

    Frost, M; Sedlák, P; Sippola, M; Šittner, P

    2010-01-01

    A simple one-dimensional rate-independent model is proposed. It is able to capture responses of a NiTi shape memory alloy wire element to mechanical and thermal loadings. Since the model takes into account martensitic phase transformation as well as deformation processes in the martensite, both shape memory effects and pseudoelasticity can be simulated. The model introduces non-hysteretic transformation strain. Particular attention was paid to description of partial loading cycles. By changing the input parameters the model can be adapted to various types of NiTi-based materials. The model was implemented in the finite element code Abaqus as a User routine and several simulations were performed to validate the implementation

  11. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features.......The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  12. Thermodynamic modelling of shape memory behaviour: some examples

    International Nuclear Information System (INIS)

    Stalmans, R.; Humbeeck, J. van; Delaey, L.

    1995-01-01

    This paper gives a general view of a recently developed thermodynamic model of the thermoelastic martensitic transformation. Unlike existing empirical, mathematical or thermodynamic models, this generalised thermodynamic model can be used to understand and describe quantitatively the overall thermomechanical behaviour of polycrystalline shape memory alloys. Important points of difference between this and previous thermodynamic models are that the contributions of the stored elastic energy and of the crystal defects are also included. In addition, the mathematical approach and the assumptions in this model are selected in such a way that the calculations yield close approximations of the real behaviour and that the final mathematical equations are relatively simple. Several illustrations indicate that this model, in contrast to other models, can be used to understand the shape memory behaviour of complex cases. As an example of quantitative calculations, it is shown that this modelling can be an effective tool in the ''design'' of multifunctional materials consisting of shape memory elements embedded in matrix materials. (orig.)

  13. The amygdala, reward and emotion.

    Science.gov (United States)

    Murray, Elisabeth A

    2007-11-01

    Recent research provides new insights into amygdala contributions to positive emotion and reward. Studies of neuronal activity in the monkey amygdala and of autonomic responses mediated by the monkey amygdala show that, contrary to a widely held view, the amygdala is just as important for processing positive reward and reinforcement as it is for negative. In addition, neuropsychological studies reveal that the amygdala is essential for only a fraction of what might be considered 'stimulus-reward processing', and that the neural substrates for emotion and reward are partially nonoverlapping. Finally, evidence suggests that two systems within the amygdala, operating in parallel, enable reward-predicting cues to influence behavior; one mediates a general, arousing effect of reward and the other links the sensory properties of reward to emotion.

  14. Localization of deformations within the amygdala in individuals with psychopathy.

    Science.gov (United States)

    Yang, Yaling; Raine, Adrian; Narr, Katherine L; Colletti, Patrick; Toga, Arthur W

    2009-09-01

    Despite the repeated findings of impaired fear conditioning and affective recognition in psychopathic individuals, there has been a paucity of brain imaging research on the amygdala and no evidence suggesting which regions within the amygdala may be structurally compromised in individuals with psychopathy. To detect global and regional anatomical abnormalities in the amygdala in individuals with psychopathy. Cross-sectional design using structural magnetic resonance imaging. Participants were recruited from high-risk communities (temporary employment agencies) in the Los Angeles, California, area and underwent imaging at a hospital research facility at the University of Southern California. Twenty-seven psychopathic individuals as defined by the Hare Psychopathy Checklist-Revised and 32 normal controls matched on age, sex, and ethnicity. Amygdala volumes were examined using traditional volumetric analyses and surface-based mesh modeling methods were used to localize regional surface deformations. Individuals with psychopathy showed significant bilateral volume reductions in the amygdala compared with controls (left, 17.1%; right, 18.9%). Surface deformations were localized in regions in the approximate vicinity of the basolateral, lateral, cortical, and central nuclei of the amygdala. Significant correlations were found between reduced amygdala volumes and increased total and facet psychopathy scores, with correlations strongest for the affective and interpersonal facets of psychopathy. Results provide the first evidence, to our knowledge, of focal amygdala abnormalities in psychopathic individuals and corroborate findings from previous lesion studies. Findings support prior hypotheses of amygdala deficits in individuals with psychopathy and indicate that amygdala abnormalities contribute to emotional and behavioral symptoms of psychopathy.

  15. A three-dimensional constitutive model for shape memory alloy

    International Nuclear Information System (INIS)

    Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song

    2009-01-01

    Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model

  16. Polynomial constitutive model for shape memory and pseudo elasticity

    International Nuclear Information System (INIS)

    Savi, M.A.; Kouzak, Z.

    1995-01-01

    This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs

  17. Optogenetic dissection of amygdala functioning

    Directory of Open Access Journals (Sweden)

    Ryan eLalumiere

    2014-03-01

    Full Text Available Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that the amygdala has widespread connections with a variety of brain structures, from the prefrontal cortex to regions of the brainstem, that explain its powerful influence on other parts of the brain and behaviors mediated by those regions. Thus, many optogenetic studies have focused on harnessing the powers of this technique to elucidate the functioning of the amygdala in relation to motivation, fear, and memory as well as to determine how the amygdala regulates activity in other structures. For example, studies using optogenetics have examined how specific circuits within amygdala nuclei regulate anxiety. Other work has provided insight into how the basolateral and central amygdala nuclei regulate memory processing underlying aversive learning. Many experiments have taken advantage of optogenetics’ ability to target either genetically distinct subpopulations of neurons or the specific projections from the amygdala to other brain regions. Findings from such studies have provided evidence that particular patterns of activity in basolateral amygdala glutamatergic neurons are related to memory consolidation processes, while other work has indicated the critical nature of amygdala inputs to the prefrontal cortex and nucleus accumbens in regulating behavior dependent on those downstream structures. This review will examine the recent discoveries on amygdala functioning made through experiments using optogenetics, placing these findings in the context of the major

  18. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  19. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  20. Orthodontic applications of a superelastic shape-memory alloy model

    International Nuclear Information System (INIS)

    Glendenning, R.W.; Enlow, R.L.

    2000-01-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  1. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  2. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  3. Development of an engineering model for ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  4. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  5. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  6. 3D active shape modeling for cardiac MR and CT image segmentation

    NARCIS (Netherlands)

    Assen, Hans Christiaan van

    2006-01-01

    3D Active Shape Modeling is a technique to capture shape information from a training set containing characteristic shapes of, e.g., a heart. The description contains a mean shape, and shape variations (e.g. eigen deformations and eigen values). Many models based on these statistics, and used for

  7. 2D-3D shape reconstruction of the distal femur from stereo X-Ray imaging using statistical shape models

    DEFF Research Database (Denmark)

    Baka, N.; Kaptein, B. L.; de Bruijne, Marleen

    2011-01-01

    Three-dimensional patient specific bone models are required in a range of medical applications, such as pre-operative surgery planning and improved guidance during surgery, modeling and simulation, and in vivo bone motion tracking. Shape reconstruction from a small number of X-ray images is desired...... as it lowers both the acquisition costs and the radiation dose compared to CT. We propose a method for pose estimation and shape reconstruction of 3D bone surfaces from two (or more) calibrated X-ray images using a statistical shape model (SSM). User interaction is limited to manual initialization of the mean...... pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations...

  8. Patch-based generative shape model and MDL model selection for statistical analysis of archipelagos

    DEFF Research Database (Denmark)

    Ganz, Melanie; Nielsen, Mads; Brandt, Sami

    2010-01-01

    We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning ...

  9. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  10. Preferential amygdala reactivity to the negative assessment of neutral faces.

    Science.gov (United States)

    Blasi, Giuseppe; Hariri, Ahmad R; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R; Mattay, Venkata S

    2009-11-01

    Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues.

  11. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  12. Rock shape, restitution coefficients and rockfall trajectory modelling

    Science.gov (United States)

    Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry

    2014-05-01

    Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.

  13. The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Machida, Mayumi; Sanford, Larry D

    2014-05-01

    Fear conditioning [inescapable shock training (ST)] and fearful context re-exposure (CR) alone can produce significant fear indicated by increased freezing and reductions in subsequent rapid eye movement (REM) sleep. Damage to or inactivation of the basolateral nucleus of the amygdala (BLA) prior to or after ST or prior to CR generally has been found to attenuate freezing in the shock training context. However, no one has examined the impact of BLA inactivation on fear-induced changes in sleep. Here, we used the GABAA agonist, muscimol (MUS), to inactivate BLA prior to ST, the period when fear is learned, and assessed sleep after ST and sleep and freezing after two CR sessions. Wistar rats (n = 14) were implanted with electrodes for recording sleep and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure (handling) over 2 consecutive days and baseline sleep following handling was recorded. On experimental day 1, the rats were injected (0.5 μl) into BLA with either MUS (1.0 μM; n = 7) or vehicle (distilled water, n = 7) 30 min prior to ST (20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval). On experimental days 7 and 21, the animals experienced CR (CR1 and CR2, respectively) alone. Electroencephalogram and electromyogram were recorded for 8 h on each day, and the recording was scored for non-rapid eye movement sleep, REM sleep, and wakefulness. Freezing was examined during CR1 and CR2. MUS microinjections into BLA prior to ST blocked the post-training reduction in REM sleep seen in vehicle-treated rats. Furthermore, in MUS-treated rats, REM sleep after CR1 and CR2 was at baseline levels and freezing was significantly attenuated. Thus, BLA inactivation prior to ST blocks the effects of footshock stress on sleep and reduces fear memory, as indicated by the lack of freezing and changes in sleep after CR. These data indicate that BLA is an important regulator of stress-induced alterations in

  14. Automated robust generation of compact 3D statistical shape models

    Science.gov (United States)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  15. Spider phobia is associated with decreased left amygdala volume: a cross-sectional study

    Science.gov (United States)

    2013-01-01

    Background Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects. Methods Twenty female patients with spider phobia and twenty age-matched healthy female controls underwent magnetic resonance imaging to investigate amygdala volumes. The amygdalae were segmented using an automatic, model-based segmentation tool (FSL FIRST). Differences in amygdala volume were investigated by multivariate analysis of covariance with group as between-subject factor and left and right amygdala as dependent factors. The relation between amygdala volume and clinical features such as symptom severity, disgust sensitivity, trait anxiety and duration of illness was investigated by Spearman correlation analysis. Results Spider phobic patients showed significantly smaller left amygdala volume than healthy controls. No significant difference in right amygdala volume was detected. Furthermore, the diminished amygdala size in patients was related to higher symptom severity, but not to higher disgust sensitivity or trait anxiety and was independent of age. Conclusions In summary, the results reveal a relation between higher symptom severity and smaller left amygdala volume in patients with spider phobia. This relation was independent of other potential confounders such as the disgust sensitivity or trait anxiety. The findings suggest that greater spider phobic fear is associated with smaller left amygdala. However, the smaller left amygdala volume may either stand for a higher vulnerability to develop a phobic disorder or emerge as a consequence of the disorder. PMID:23442196

  16. Visualization of the variability of 3D statistical shape models by animation.

    Science.gov (United States)

    Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter

    2004-01-01

    Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.

  17. Orthodontic applications of a superelastic shape-memory alloy model

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, R.W.; Enlow, R.L. [Otago Univ., Dunedin (New Zealand). Dept. of Math. and Stat.; Hood, J.A.A. [Dept. of Oral Sciences and Orthodontics, Univ. of Otago, Dunedin (New Zealand)

    2000-07-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  18. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  19. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  20. Experimental Modeling of the Formation of Saucer-Shaped sills

    Science.gov (United States)

    Galland, O.; Planke, S.; Malthe-Sorenssen, A.

    2007-12-01

    Many magma intrusions in sedimentary basins are sills, and especially saucer-shaped sills. These features are observed in many places (i.e. South Africa; the Norwegian and North Sea; Siberia; Argentina). Sand injectites exhibit similar geometries. The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes in sedimentary basins. To understand such processes, we performed experimental modeling of saucer-shaped sill emplacement. The experiments consist of injecting a molten low viscosity vegetable oil (model magma) at a constant flow rate into a fine-grained Coulomb silica flour (model rock). When the oil starts intruding, the initially flat surface of the model inflates and forms a smooth dome. At the end of the experiment, the oil erupts at the edge of the dome. After the experiment, the oil cools and solidifies, the resulting solid intrusion is unburied and exposed, and its upper surface digitalized. For our purpose, we did our experiments without external deformation. We performed two series of experiments with varying depth of injection. The first series consisted of injection into a homogeneous medium. The resulting intrusions were cone-sheets and dykes. The second series consisted of heterogeneous models where the heterogeneity was a weak layer made of a flexible net. The resulting intrusions were made of (1) a horizontal basal sill emplaced along the weakness, and (2) inclined sheets nucleating at the edges of the basal sill and propagating upward and outward. The inclined sheets exhibited a convex shape, i.e. a decreasing slope outward. In addition, the deeper the sills emplaced, the larger they were. Our experimental results are consistent with saucer-shaped features in nature. We infer from our results that the transition between the basal sills and the inclined sheets results from a transition of emplacement processes. We suggest that the basal sill emplace by open (mode I) fracturing, whereas

  1. Stress, memory and the amygdala.

    Science.gov (United States)

    Roozendaal, Benno; McEwen, Bruce S; Chattarji, Sumantra

    2009-06-01

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.

  2. Modelling and calibration of a ring-shaped electrostatic meter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianyong [University of Teesside, Middlesbrough TS1 3BA (United Kingdom); Zhou Bin; Xu Chuanlong; Wang Shimin, E-mail: zhoubinde1980@gmail.co [Southeast University, Sipailou 2, Nanjing 210096 (China)

    2009-02-01

    Ring-shaped electrostatic flow meters can provide very useful information on pneumatically transported air-solids mixture. This type of meters are popular in measuring and controlling the pulverized coal flow distribution among conveyors leading to burners in coal-fired power stations, and they have also been used for research purposes, e.g. for the investigation of electrification mechanism of air-solids two-phase flow. In this paper, finite element method (FEM) is employed to analyze the characteristics of ring-shaped electrostatic meters, and a mathematic model has been developed to express the relationship between the meter's voltage output and the motion of charged particles in the sensing volume. The theoretical analysis and the test results using a belt rig demonstrate that the output of the meter depends upon many parameters including the characteristics of conditioning circuitry, the particle velocity vector, the amount and the rate of change of the charge carried by particles, the locations of particles and etc. This paper also introduces a method to optimize the theoretical model via calibration.

  3. Abdomen and spinal cord segmentation with augmented active shape models.

    Science.gov (United States)

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC.

  4. Hysteresis behaviour of thermoelastic alloys: some shape memory alloys models

    International Nuclear Information System (INIS)

    Lexcellent, C.; Torra, V.; Raniecki, B.

    1993-01-01

    The hysteretic behaviour of shape memory alloys (SMA) needs a more and more thin analysis because of its importance for technological applications. The comparison between different approaches allows to explicite the specifity of every model (macroscopic approach, micro-macro level, local description, phenomenological approach) and their points of convergence. On one hand, a thermodynamic treatment with a free energy expression as a mixing rule of each phase (parent or austenite phase and martensite) by adding a coupling term: the configurational energy, allowes modelling of material hysteresis loops. On the other hand, a phenomenological treatment based on a local investigation of two single crystals with a visualisation of microscopic parameters allows to perceive the phase transition mechanisms (nucleation, growth). All the obtained results show the importance of entropy production (or of the definition of the configurational energy term) for the correct description of hysteresis loops (subloops or external). (orig.)

  5. Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... deformation field between shapes. The tutorial demonstrates both generative active shape and appearance models, and MRF restoration on 3D polygonized surfaces. ''Exercise: Spectral-Spatial classification of multivariate images'' From annotated training data this exercise applies spatial image restoration...... using Markov random field relaxation of a spectral classifier. Keywords: the Ising model, the Potts model, stochastic sampling, discriminant analysis, expectation maximization....

  6. Circular blurred shape model for multiclass symbol recognition.

    Science.gov (United States)

    Escalera, Sergio; Fornés, Alicia; Pujol, Oriol; Lladós, Josep; Radeva, Petia

    2011-04-01

    In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.

  7. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M

    2008-01-01

    iteration are used. Thereby, we gradually capture the shape variation in the training collection better and better. Convergence of the method is explicitly enforced. The method is evaluated on collections of artificial training shapes where the expected shape mean and modes of variation are known by design...

  8. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety.

    Science.gov (United States)

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-07-01

    A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract 3 indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults.

  9. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety

    Science.gov (United States)

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-01-01

    Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708

  10. Thermomechanical model for NiTi shape memory wires

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Sedlák, Petr; Sippola, M.; Šittner, Petr

    2010-01-01

    Roč. 19, č. 9 (2010), s. 1-10 ISSN 0964-1726 R&D Projects: GA MŠk(CZ) 1M06031; GA ČR(CZ) GA106/09/1573; GA ČR(CZ) GP106/09/P302; GA ČR GAP108/10/1296 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : shape memory alloys * modeling * proportional loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.094, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=U2fe5mHN9p3gHClCdF1&page=1&doc=1

  11. Smooth extrapolation of unknown anatomy via statistical shape models

    Science.gov (United States)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  12. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  13. Modelling foot height and foot shape-related dimensions.

    Science.gov (United States)

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  14. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  15. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-01-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented

  16. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models

    NARCIS (Netherlands)

    Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Lineara, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Chen, Wei; Richard, Edo; Schmand, Ben

    2012-01-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually

  17. Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study

    International Nuclear Information System (INIS)

    Hacker, Fred L.; Kooy, Hanne M.; Bellerive, Marc R.; Killoran, Joseph H.; Leber, Zachary H.; Shrieve, Dennis C.; Tarbell, Nancy J.; Loeffler, Jay S.

    1997-01-01

    Purpose: The patient population treated with fractionated stereotactic radiotherapy (SRT) is significantly different than that treated with stereotactic radiosurgery (SRS). Generally, lesions treated with SRT are larger, less spherical, and located within critical regions of the central nervous system; hence, they offer new challenges to the treatment planner. Here a simple, cost effective, beam shaping system has been evaluated relative to both circular collimators and an ideal dynamically conforming system for effectiveness in providing conformal therapy for these lesions. Methods and Materials: We have modeled a simple system for conformal arc therapy using four independent jaws. The jaw positions and collimator angle are changed between arcs but held fixed for the duration of each arc. Eleven previously treated SRT cases have been replanned using this system. The rectangular jaw plans were then compared to the original treatment plans which used circular collimators. The plans were evaluated with respect to tissue sparing at 100%, 80%, 50%, and 20% of the prescription dose. A plan was also done for each tumor in which the beam aperture was continuously conformed to the beams eye view projection of the tumor. This was used as an ideal standard for conformal therapy in the absence of fluence modulation. Results: For tumors with a maximum extent of over 3.5 cm the rectangular jaw plans reduced the mean volume of healthy tissue involved at the prescription dose by 57% relative to the circular collimator plans. The ideal conformal plans offered no significant further improvement at the prescription dose. The relative advantage of the rectangular jaw plans decreased at lower isodoses so that at 20% of the prescription dose tissue involvement for the rectangular jaw plans was equivalent to that for the circular collimator plans. At these isodoses the ideal conformal plans gave substantially better tissue sparing. Conclusion: A simple and economical field shaping

  18. Sparse principal component analysis in medical shape modeling

    Science.gov (United States)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  19. Selective involvement of the amygdala in systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Bart J Emmer

    2006-12-01

    Full Text Available BACKGROUND: Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE. The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE. METHODS AND FINDINGS: We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE, 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI. In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 x 10(-6 mm2/s; p = 0.006 and 949 x 10(-6 mm2/s; p = 0.019, respectively was lower than in healthy control participants (1152 x 10(-6 mm2/s. Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 x 10(-6 mm2/s was lower (p = 0.029 than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 x 10(-6 mm2/s and also lower (p = 0.001 than in healthy control participants. CONCLUSIONS: This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies.

  20. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  1. From circuits to behaviour in the amygdala

    Science.gov (United States)

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  2. Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses, and amygdala vasopressin receptor 1a expression.

    Science.gov (United States)

    Poirier, G L; Cordero, M I; Sandi, C

    2013-01-01

    Exposure to violence is traumatic and an important source of mental health disturbance, yet the factors associated with victimization remain incompletely understood. The aim of the present study was to investigate factors related to vulnerability to depression-like behaviors in females. An animal model of intimate partner violence, which was previously shown to produce long-lasting behavioral effects in females as a result of male partner aggression, was used. The associations among the degree of partner aggression, the long-term consequences on depressive-like behavior, and the impact of the anxious temperament of the female were examined. In a separate group, pre-selected neural markers were evaluated in the amygdala and the lateral septum of females. Expression was examined by analyses of targeted candidate genes, serotonin transporter (slc6a4), vasopressin receptor 1a, (avpr1a), and oxytocin receptor (oxtr). Structural equation modeling revealed that the female's temperament moderated depressive-like behavior that was induced by cohabitation aggression from the male partner. More specifically, increased floating in the forced swim test following male aggression was most apparent in females exhibiting more anxiety-like behavior (i.e., less open arm exploration in an elevated plus-maze) prior to the cohabitation. Aggression reduced slc6a4 levels in the lateral septum. However, the interaction between partner aggression and the anxious temperament of the female affected the expression of avpr1a in the amygdala. Although, aggression reduced levels of this marker in females with high anxiety, no such pattern was observed in females with low anxiety. These results identify important characteristics in females that moderate the impact of male aggression. Furthermore, these results provide potential therapeutic targets of interest in the amygdala and the lateral septum to help improve post-stress behavioral pathology and increase resilience to social adversity.

  3. Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses and amygdala vasopressin receptor 1a expression.

    Directory of Open Access Journals (Sweden)

    Guillaume L Poirier

    2013-05-01

    Full Text Available Exposure to violence is traumatic and an important source of mental health disturbance, yet the factors associated with victimization remain incompletely understood. The aim of the present study was to investigate factors related to vulnerability to depression-like behaviors in females. An animal model of intimate partner violence, which was previously shown to produce long-lasting behavioral effects in females as a result of male partner aggression, was used. The associations among the degree of partner aggression, the long-term consequences on depressive-like behavior, and the impact of the anxious temperament of the female were examined. In a separate group, pre-selected neural markers were evaluated in the amygdala and the lateral septum of females. Expression was examined by analyses of targeted candidate genes, serotonin transporter (slc6a4, vasopressin receptor 1a, (avpr1a, and oxytocin receptor (oxtr. Structural equation modeling revealed that the female’s temperament moderated depressive-like behavior that was induced by cohabitation aggression from the male partner. More specifically, increased floating in the forced swim test following male aggression was most apparent in females exhibiting more anxiety-like behavior (i.e., less open arm exploration in an elevated plus-maze prior to the cohabitation. Aggression reduced slc6a4 levels in the lateral septum. However, the interaction between partner aggression and the anxious temperament of the female affected the expression of avpr1a in the amygdala. Although aggression reduced levels of this marker in females with high anxiety, no such pattern was observed in females with low anxiety. These results identify important characteristics in females that moderate the impact of male aggression. Furthermore, these results provide potential therapeutic targets of interest in the amygdala and the lateral septum to help improve post-stress behavioral pathology and increase resilience to social

  4. Amygdala subsystems and control of feeding behavior by learned cues.

    Science.gov (United States)

    Petrovich, Gorica D; Gallagher, Michela

    2003-04-01

    A combination of behavioral studies and a neural systems analysis approach has proven fruitful in defining the role of the amygdala complex and associated circuits in fear conditioning. The evidence presented in this chapter suggests that this approach is also informative in the study of other adaptive functions that involve the amygdala. In this chapter we present a novel model to study learning in an appetitive context. Furthermore, we demonstrate that long-recognized connections between the amygdala and the hypothalamus play a crucial role in allowing learning to modulate feeding behavior. In the first part we describe a behavioral model for motivational learning. In this model a cue that acquires motivational properties through pairings with food delivery when an animal is hungry can override satiety and promote eating in sated rats. Next, we present evidence that a specific amygdala subsystem (basolateral area) is responsible for allowing such learned cues to control eating (override satiety and promote eating in sated rats). We also show that basolateral amygdala mediates these actions via connectivity with the lateral hypothalamus. Lastly, we present evidence that the amygdalohypothalamic system is specific for the control of eating by learned motivational cues, as it does not mediate another function that depends on intact basolateral amygdala, namely, the ability of a conditioned cue to support new learning based on its acquired value. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning. In addition, this model may be informative for understanding mechanisms of maladaptive aspects of learned control of eating that contribute to eating disorders and more moderate forms of overeating.

  5. A neuroplasticity hypothesis of chronic stress in the basolateral amygdala.

    Science.gov (United States)

    Boyle, Lara M

    2013-06-01

    Chronic stress plays a role in the etiology of several affective and anxiety-related disorders. Despite this, its mechanistic effects on the brain are still unclear. Of particular interest is the effect of chronic stress on the amygdala, which plays a key role in the regulation of emotional responses and memory consolidation. This review proposes a neuroplasticity model for the effects of chronic stress in this region, emphasizing the roles of glutamate and BDNF signaling. This model provides a review of recent discoveries of the effects of chronic stress in the amygdala and reveals pathways for future research.

  6. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  7. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  8. Stress, memory and the amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McEwen, Bruce S.; Chattarji, Sumantra

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified

  9. Central amygdala, stress and adaption

    NARCIS (Netherlands)

    Roozendaal, Benno

    1992-01-01

    In this thesis the results were presented of studies that were designed to provide more insight in the role of the central nucleus of the amygdala (CEA) in the adaptation to environmental demands. The experiments were performed in several situations, in which rats react either directly to aversive

  10. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos; Chaudhuri, Siddhartha; Koller, Daphne; Koltun, Vladlen

    2012-01-01

    represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation

  11. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  12. Modeling of mechanical properties for ferrous shape memory alloy

    International Nuclear Information System (INIS)

    Wada, Manabu; Ide, Yusuke; Mizote, Shinichiro; Naoi, Hisashi; Tsukimori, Kazuyuki

    2002-08-01

    In order to acquire technical data that are necessary for manufacture and design of the simulation test device for analyzing the core mechanics of Fast Breeder Reactor, ferrous shape memory alloy of Fe-28%Mn-6%Si-5%Cr is melted, forged and heat-treated. The microstructures are austenite. The specimens are deformed of up to 16% work-strain by tensile and compressive test, resulting in appearance of epsilon-martensite that is induced by stress. Then, heating at 673K for 10 minutes causes austenitic transformation from epsilon-martensite and shape memory strains are measured. We also investigate shape memory character of specimens, which are given, so called 'training treatment' of 5% pre-strain and recovery heat treatment. As a result, there is little difference between tensile and compressive test without training treatment and shape memory strain is 2% after being given 5% work-strain and recovery heat treatment. On the other hand, training treatment is remarkable and shape memory strain reaches to 3.7% after 5% work-strain. We analyze shape recovery character of this alloy specimen at three-point bending by using finite element method, and indicate possibility that its deformation behavior can be estimated from mechanical properties' data obtained at tensile and compressive test. (author)

  13. Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM)

    Science.gov (United States)

    Iqtait, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.

  14. Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

    Science.gov (United States)

    Yang, Xin; Jin, Jiaoying; Xu, Mengling; Wu, Huihui; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2013-01-01

    Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM) is developed and evaluated to outline common carotid artery (CCA) for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB) and lumen-intima-boundary (LIB) on transverse views slices from three-dimensional ultrasound (3D US) images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD) of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD) of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression. PMID:23533535

  15. Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2013-01-01

    Full Text Available Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method based on Active Shape Model (ASM is developed and evaluated to outline common carotid artery (CCA for carotid atherosclerosis computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB and lumen-intima-boundary (LIB on transverse views slices from three-dimensional ultrasound (3D US images. The data set consists of sixty-eight, 17 × 2 × 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80 mg atorvastatin and nine with placebo, who had carotid stenosis of 60% or more, at baseline and after three months of treatment. Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC of 94.4% ± 3.2% and 92.8% ± 3.3%, mean absolute distances (MAD of 0.26 ± 0.18 mm and 0.33 ± 0.21 mm, and maximum absolute distances (MAXD of 0.75 ± 0.46 mm and 0.84 ± 0.39 mm. It took 4.3 ± 0.5 mins to segment single 3D US images, while it took 11.7 ± 1.2 mins for manual segmentation. The method would promote the translation of carotid 3D US to clinical care for the monitoring of the atherosclerotic disease progression and regression.

  16. The amygdala and ventromedial prefrontal cortex in morality and psychopathy.

    Science.gov (United States)

    Blair, R J R

    2007-09-01

    Recent work has implicated the amygdala and ventromedial prefrontal cortex in morality and, when dysfunctional, psychopathy. This model proposes that the amygdala, through stimulus-reinforcement learning, enables the association of actions that harm others with the aversive reinforcement of the victims' distress. Consequent information on reinforcement expectancy, fed forward to the ventromedial prefrontal cortex, can guide the healthy individual away from moral transgressions. In psychopathy, dysfunction in these structures means that care-based moral reasoning is compromised and the risk that antisocial behavior is used instrumentally to achieve goals is increased.

  17. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  18. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  19. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. 4D Shape-Preserving Modelling of Bone Growth

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads; Kreiborg, Sven

    1998-01-01

    From a set of temporally separated scannings of the same anatomical structure we wish to identify and analyze the growth in terms of a metamorphosis. That is, we study the tempral change of shape which may prowide an understanding of the biological processes which govern the growth process. We...

  1. Markov Random Field Restoration of Point Correspondences for Active Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2004-01-01

    In this paper it is described how to build a statistical shape model using a training set with a sparse of landmarks. A well defined model mesh is selected and fitted to all shapes in the training set using thin plate spline warping. This is followed by a projection of the points of the warped...

  2. Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1)

    Science.gov (United States)

    2012-08-01

    High -­‐ temperature  SMAs 24 Braze  Joint  between  two  wrought  pieces  of  a  Ni24.5Pd25Ti50.5  HTSMA   (HTSMA  from...process  can  be  used   to  join  other  metal  alloys  and   high -­‐ temperature   SMAs 25 Cellular  Shape  Memory...20 30 40 50 60 910 3 4 8 5 2 T (°C) Shape memory & superelasticity 1 0 e (%) (GPa) 6 7 A NiTi wire

  3. A sharp interface evolutionary model for shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Knüpfer, H.; Kružík, Martin

    2016-01-01

    Roč. 96, č. 11 (2016), s. 1347-1355 ISSN 0044-2267 R&D Projects: GA ČR GA14-15264S Institutional support: RVO:67985556 Keywords : Polyconvexity * shape memory materials * rate-independent problems Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kruzik-0465809.pdf

  4. Magnetic shape-memory alloys: thermomechanical modelling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Stefanelli, U.

    2014-01-01

    Roč. 26, č. 6 (2014), s. 783-810 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetic shape- memory alloys * martensitic phase transformation * ferro/paramagnetic phase transformation Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007/s00161-014-0339-8#

  5. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  6. Modelling human hard palate shape with Bézier curves.

    Directory of Open Access Journals (Sweden)

    Rick Janssen

    Full Text Available People vary at most levels, from the molecular to the cognitive, and the shape of the hard palate (the bony roof of the mouth is no exception. The patterns of variation in the hard palate are important for the forensic sciences and (palaeoanthropology, and might also play a role in speech production, both in pathological cases and normal variation. Here we describe a method based on Bézier curves, whose main aim is to generate possible shapes of the hard palate in humans for use in computer simulations of speech production and language evolution. Moreover, our method can also capture existing patterns of variation using few and easy-to-interpret parameters, and fits actual data obtained from MRI traces very well with as little as two or three free parameters. When compared to the widely-used Principal Component Analysis (PCA, our method fits actual data slightly worse for the same number of degrees of freedom. However, it is much better at generating new shapes without requiring a calibration sample, its parameters have clearer interpretations, and their ranges are grounded in geometrical considerations.

  7. 3D active shape and appearance models in cardiac image analysis

    NARCIS (Netherlands)

    Lelieveldt, B.P.F.; Frangi, A.F.; Mitchell, S.C.; Assen, van H.C.; Ordás, S.; Reiber, J.H.C.; Sonka, M.; Paragios, N.; Chen, Y.; Faugeras, O.

    2006-01-01

    This chapter introduces statistical shape- and appearance models and their biomedical applications. Three- and four-dimensional extension of these models are the main focus. Approaches leading to automated landmark definition are introduced and discussed. The applicability is underlined by

  8. A Solvable Model for Nuclear Shape Phase Transitions

    International Nuclear Information System (INIS)

    Levai, G.; Arias, J. M.

    2009-01-01

    There has been considerable interest recently in phase transitions that occur between some well-defined nuclear shapes, e.g. the spherical vibrator, the axially deformed rotor and the γ-unstable rotor, which are assigned to the U(5), SU(3) and 0(6) symmetries. These shape phase transitions occur through critical points of the IBM phase diagram and correspond to rapid structural changes. The first transition of this type describes transition form the spherical to the γ-unstable phase and has been associated with an E(5) symmetry. Later further critical point symmetries e.g. X(5) and Y(5) have also been proposed for transitions between other nuclear shape phases. In another application the chain of even Ru isotopes was considered from A 98 to 112 [2]. The parameters were extracted from a fit to the low-lying energy spectrum of each nucleus and were used to plot the corresponding potential. It was found that up to A =102 the potential is essentially an harmonic oscillator, while at A =104 a rather flat potential was seen, in accordance with the expected phase transition and E(5) symmetry there. With increasing A then the minimum got increasingly deeper and moved away from β = 0. We discuss the possibility of generalizing the formalism in two ways: first by including dependence on the 7 variable allowing for the approximate description of nuclei close to the X(5) symmetry, and second, including higher-lying energy levels in the quasi-exactly solvable formalism

  9. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several designers are faced with the task of creating an object that describe a certain emotion/perception (aggressive, soft, heavy, etc.), each is most likely to interpret...... the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition...

  10. Nonlinear Model of Pseudoelastic Shape Memory Alloy Damper Considering Residual Martensite Strain Effect

    Directory of Open Access Journals (Sweden)

    Y. M. Parulekar

    2012-01-01

    Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.

  11. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Hoffman, Ann N; Lorson, Nickolaus G; Sanabria, Federico; Foster Olive, M; Conrad, Cheryl D

    2014-07-01

    Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Development of a statistical shape model of multi-organ and its performance evaluation

    International Nuclear Information System (INIS)

    Nakada, Misaki; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2010-01-01

    Existing statistical shape modeling methods for an organ can not take into account the correlation between neighboring organs. This study focuses on a level set distribution model and proposes two modeling methods for multiple organs that can take into account the correlation between neighboring organs. The first method combines level set functions of multiple organs into a vector. Subsequently it analyses the distribution of the vectors of a training dataset by a principal component analysis and builds a multiple statistical shape model. Second method constructs a statistical shape model for each organ independently and assembles component scores of different organs in a training dataset so as to generate a vector. It analyses the distribution of the vectors of to build a statistical shape model of multiple organs. This paper shows results of applying the proposed methods trained by 15 abdominal CT volumes to unknown 8 CT volumes. (author)

  13. Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.

    Science.gov (United States)

    de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J

    2003-07-01

    Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.

  14. The amygdala and decision-making.

    Science.gov (United States)

    Gupta, Rupa; Koscik, Timothy R; Bechara, Antoine; Tranel, Daniel

    2011-03-01

    Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize "somatic marker" type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an "impulsive," habit type system that triggers emotional responses to immediate outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Design reuse in product shape modeling : A study of freeform feature reuse by signal processing techniques

    NARCIS (Netherlands)

    Wang, C.

    2005-01-01

    Lack of facilities in supporting design reuse is a serious problem in product shape modeling, especially in computer-aided design systems. This becomes a bottleneck of fast shape conceptualization and creation in consumer product design, which consequently prohibits creativity and innovation. In the

  16. ShapeSelectForest: a new r package for modeling landsat time series

    Science.gov (United States)

    Mary Meyer; Xiyue Liao; Gretchen Moisen; Elizabeth Freeman

    2015-01-01

    We present a new R package called ShapeSelectForest recently posted to the Comprehensive R Archival Network. The package was developed to fit nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral...

  17. Shapes of nuclear configurations in a cranked harmonic oscillator model

    International Nuclear Information System (INIS)

    Troudet, T.; Arvieu, R.

    1980-05-01

    The shapes of nuclear configurations are calculated using Slater determinants built with cranked harmonic oscillator single particle states. The nuclear forces role is played by a volume conservation condition (of the potential or of the density) in a first part. In a second part, we have used the finite range, density dependent interaction of Cogny. A very simple classification of configurations emerges in the first part, the relevant parameter being the equatorial eccentricity of the nuclear density. A critical equatorial eccentricity is obtained which governs the accession to the case for which the nucleus is oblate and symmetric around its axis of rotation. Nuclear configurations calculated in the second part observe remarkably well these behaviors

  18. COMPUTATIONAL MODELING OF AIRFLOW IN NONREGULAR SHAPED CHANNELS

    Directory of Open Access Journals (Sweden)

    A. A. Voronin

    2013-05-01

    Full Text Available The basic approaches to computational modeling of airflow in the human nasal cavity are analyzed. Different models of turbulent flow which may be used in order to calculate air velocity and pressure are discussed. Experimental measurement results of airflow temperature are illustrated. Geometrical model of human nasal cavity reconstructed from computer-aided tomography scans and numerical simulation results of airflow inside this model are also given. Spatial distributions of velocity and temperature for inhaled and exhaled air are shown.

  19. MRI Amygdala Volume in Williams Syndrome

    Science.gov (United States)

    Capitao, Liliana; Sampaio, Adriana; Sampaio, Cassandra; Vasconcelos, Cristiana; Fernandez, Montse; Garayzabal, Elena; Shenton, Martha E.; Goncalves, Oscar F.

    2011-01-01

    One of the most intriguing characteristics of Williams Syndrome individuals is their hypersociability. The amygdala has been consistently implicated in the etiology of this social profile, particularly given its role in emotional and social behavior. This study examined amygdala volume and symmetry in WS individuals and in age and sex matched…

  20. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  1. Correction tool for Active Shape Model based lumbar muscle segmentation.

    Science.gov (United States)

    Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaelle; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio

    2015-08-01

    In the clinical environment, accuracy and speed of the image segmentation process plays a key role in the analysis of pathological regions. Despite advances in anatomic image segmentation, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a low number of interactions, and a user-independent solution. In this work we present a new interactive correction method for correcting the image segmentation. Given an initial segmentation and the original image, our tool provides a 2D/3D environment, that enables 3D shape correction through simple 2D interactions. Our scheme is based on direct manipulation of free form deformation adapted to a 2D environment. This approach enables an intuitive and natural correction of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle segmentation from Magnetic Resonance Images. Experimental results show that full segmentation correction could be performed within an average correction time of 6±4 minutes and an average of 68±37 number of interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.03.

  2. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca; Naegel, Arne; Heisig, Michael; Wittum, Gabriel

    2017-01-01

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living

  3. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.; Gurses, Ercan; Siddiq, Amir Mohammed

    2012-01-01

    , application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement

  4. A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials

    OpenAIRE

    Kopfová, J.; Krejčí, P. (Pavel)

    2011-01-01

    We establish the well-posedness and thermodynamic consistency of a variational inequality modeling temperature-induced memory erasure in shape memory materials. It is shown that the input-output operator is continuous with respect to uniform convergence.

  5. An integrated numerical model for the prediction of Gaussian and billet shapes

    International Nuclear Information System (INIS)

    Hattel, J.H.; Pryds, N.H.; Pedersen, T.B.

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency and the shading effect for Gaussian and billet shape, respectively. From the obtained results, the effect of these parameters on the final shape is illustrated

  6. Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume.

    Science.gov (United States)

    Marwha, Dhruv; Halari, Meha; Eliot, Lise

    2017-02-15

    The amygdala plays a key role in many affective behaviors and psychiatric disorders that differ between men and women. To test whether human amygdala volume (AV) differs reliably between the sexes, we performed a systematic review and meta-analysis of AVs reported in MRI studies of age-matched healthy male and female groups. Using four search strategies, we identified 46 total studies (58 matched samples) from which we extracted effect sizes for the sex difference in AV. All data were converted to Hedges g values and pooled effect sizes were calculated using a random-effects model. Each dataset was further meta-regressed against study year and average participant age. We found that uncorrected amygdala volume is about 10% larger in males, with pooled sex difference effect sizes of g=0.581 for right amygdala (κ=28, n=2022), 0.666 for left amygdala (κ=28, n=2006), and 0.876 for bilateral amygdala (κ=16, n=1585) volumes (all p values brain volume (TBV; g=1.278, pbrain size in males. Among studies reporting AVs normalized for ICV or TBV, sex difference effect sizes were small and not statistically significant: g=0.171 for the right amygdala (p=0.206, κ=13, n=1560); 0.233 for the left amygdala (p=0.092, κ=12, n=1512); and 0.257 for bilateral volume (p=0.131, κ=5, n=1629). These values correspond to less than 0.1% larger corrected right AV and 2.5% larger corrected left AV in males compared to females. In summary, AV is not selectively enhanced in human males, as often claimed. Although we cannot rule out subtle male-female group differences, it is not accurate to refer to the human amygdala as "sexually dimorphic." Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  8. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  9. Modelling research on determining shape coefficients for subdivision interpretation in γ-ray spectral logging

    International Nuclear Information System (INIS)

    Yin Wangming; She Guanjun; Tang Bin

    2011-01-01

    This paper first describes the physical meaning of the shape coefficients in the subdivision interpretation of γ-ray logging; then discusses the theory, method to determine the practical shape coefficients with logging model and defines the formula to approximately calculate the coefficients. A great deal of experimental work has been preformed with a HPGe γ-ray spectrometer and reached satisfied result which has validated the effeciency of the modelling method. (authors)

  10. Shape models of asteroids based on lightcurve observations with BlueEye600 robotic observatory

    Science.gov (United States)

    Ďurech, Josef; Hanuš, Josef; Brož, Miroslav; Lehký, Martin; Behrend, Raoul; Antonini, Pierre; Charbonnel, Stephane; Crippa, Roberto; Dubreuil, Pierre; Farroni, Gino; Kober, Gilles; Lopez, Alain; Manzini, Federico; Oey, Julian; Poncy, Raymond; Rinner, Claudine; Roy, René

    2018-04-01

    We present physical models, i.e. convex shapes, directions of the rotation axis, and sidereal rotation periods, of 18 asteroids out of which 10 are new models and 8 are refined models based on much larger data sets than in previous work. The models were reconstructed by the lightcurve inversion method from archived publicly available lightcurves and our new observations with BlueEye600 robotic observatory. One of the new results is the shape model of asteroid (1663) van den Bos with the rotation period of 749 h, which makes it the slowest rotator with known shape. We describe our strategy for target selection that aims at fast production of new models using the enormous potential of already available photometry stored in public databases. We also briefly describe the control software and scheduler of the robotic observatory and we discuss the importance of building a database of asteroid models for studying asteroid physical properties in collisional families.

  11. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    International Nuclear Information System (INIS)

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  12. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Sparse Decomposition and Modeling of Anatomical Shape Variation

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Rostrup, Egill; Ryberg, Charlotte

    2007-01-01

    counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features...... to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns...... two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome....

  14. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.

    1988-01-01

    The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)

  15. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, M.; Tasaka, K.; Kawasaki, Y.

    1989-01-01

    Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps

  16. Automatic anatomy recognition via multiobject oriented active shape models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2010-12-01

    This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a

  17. A thermodynamically consistent model of shape-memory alloys

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora

    2011-01-01

    Roč. 11, č. 1 (2011), s. 355-356 ISSN 1617-7061 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : slape memory alloys * model based on relaxation * thermomechanic coupling Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110169/abstract

  18. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  19. Review of Shape Deviation Modeling for Additive Manufacturing

    OpenAIRE

    Zhu , Zuowei; Keimasi , Safa; ANWER , Nabil; Mathieu , Luc; Qiao , Lihong

    2016-01-01

    International audience; Additive Manufacturing (AM) is becoming a promising technology capable of building complex customized parts with internal geometries and graded material by stacking up thin individual layers. However, a comprehensive geometric model for Additive Manufacturing is not mature yet. Dimensional and form accuracy and surface finish are still a bottleneck for AM regarding quality control. In this paper, an up-to-date review is drawn on methods and approaches that have been de...

  20. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta

    International Nuclear Information System (INIS)

    Bruse, Jan L.; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N.; Capelli, Claudio

    2016-01-01

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient’s anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously

  1. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    Science.gov (United States)

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover

  2. An integrated numerical model for the prediction of Gaussian and billet shapes

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini; Pedersen, Trine Bjerre

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained...... by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency...

  3. An approach to modeling tensile–compressive asymmetry for martensitic shape memory alloys

    International Nuclear Information System (INIS)

    Zaki, Wael

    2010-01-01

    In this paper, the asymmetric tensile–compressive behavior of shape memory alloys is modeled based on the mathematical framework of Raniecki and Mróz (2008 Acta Mech. 195 81–102). The framework allows the definition of smooth, non-symmetric, pressure-insensitive yield functions that are used here to incorporate tensile–compressive modeling capabilities into the Zaki–Moumni (ZM) model for shape memory materials. It is found that, despite some increased complexity, the generalized model is capable of producing satisfactory results that agree with uniaxial experimental data taken from the literature

  4. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  5. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Gafforelli, G; Corigliano, A; Xu, R; Kim, S G

    2013-01-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters

  6. Statistical shape (ASM) and appearance (AAM) models for the segmentation of the cerebellum in fetal ultrasound

    Science.gov (United States)

    Reyes López, Misael; Arámbula Cosío, Fernando

    2017-11-01

    The cerebellum is an important structure to determine the gestational age of the fetus, moreover most of the abnormalities it presents are related to growth disorders. In this work, we present the results of the segmentation of the fetal cerebellum applying statistical shape and appearance models. Both models were tested on ultrasound images of the fetal brain taken from 23 pregnant women, between 18 and 24 gestational weeks. The accuracy results obtained on 11 ultrasound images show a mean Hausdorff distance of 6.08 mm between the manual segmentation and the segmentation using active shape model, and a mean Hausdorff distance of 7.54 mm between the manual segmentation and the segmentation using active appearance model. The reported results demonstrate that the active shape model is more robust in the segmentation of the fetal cerebellum in ultrasound images.

  7. NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

    Science.gov (United States)

    Gao, Meng; Lengersdorf, Daniel; Stüttgen, Maik C; Güntürkün, Onur

    2018-05-02

    Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A feed-forward spiking model of shape-coding by IT cells

    Directory of Open Access Journals (Sweden)

    August eRomeo

    2014-05-01

    Full Text Available The ability to recognize a shape is linked to figure-ground organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across figure-ground (FG reversals. Here we present a network structure which explains both shape-coding by IT cells and the suppression of responses to figure-ground reversed stimuli. In the model figure-ground discrimination is achieved much before shape discrimination, that is itself evidenced by the difference in the spiking onsets of a couple of cells selective for two image categories.

  9. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  10. Teaching and Learning of Computational Modelling in Creative Shaping Processes

    Directory of Open Access Journals (Sweden)

    Daniela REIMANN

    2017-10-01

    Full Text Available Today, not only diverse design-related disciplines are required to actively deal with the digitization of information and its potentials and side effects for education processes. In Germany, technology didactics developed in vocational education and computer science education in general education, both separated from media pedagogy as an after-school program. Media education is not a subject in German schools yet. However, in the paper we argue for an interdisciplinary approach to learn about computational modeling in creative processes and aesthetic contexts. It crosses the borders of programming technology, arts and design processes in meaningful contexts. Educational scenarios using smart textile environments are introduced and reflected for project based learning.

  11. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  12. Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    2013-01-01

    Full Text Available As a new type of intelligent material, magnetically shape memory alloy (MSMA has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  13. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    Science.gov (United States)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  14. A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.

    Science.gov (United States)

    McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I

    2017-04-05

    There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range

  15. The Amygdala and the Relevance Detection Theory of Autism: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Tiziana eZalla

    2013-12-01

    Full Text Available In the last few decades, there has been increasing interest in the role of the amygdala in psychiatric disorders and in particular its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs. Given that the amygdala is a component structure of the social brain, several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing, mental state understanding and empathy. Nevertheless, many theoretical accounts, based on the Amygdala Theory of Autism, fail to elucidate the complex pattern of impairments observed in this population, which extends beyond the social domain. As posited by the Relevance Detector theory (Sander, Grafman and Zalla, 2003, the human amygdala is a critical component of a brain circuit involved in the appraisal of self-relevant events that include, but are not restricted to, social stimuli. Here, we propose that the behavioral and social-emotional features of ASDs may be better understood in terms of a disruption in a ‘Relevance Detector Network’ affecting the processing of stimuli that are relevant for the organism’s self-regulating functions. In the present review, we will first summarize the main literature supporting the involvement of the amygdala in socio-emotional disturbances in ASDs. Next, we will present a revised version of the amygdala Relevance Detector hypothesis and we will show that this theoretical framework can provide a better understanding of the heterogeneity of the impairments and symptomatology of ASDs. Finally, we will discuss some predictions of our model, and suggest new directions in the investigation of the role of the amygdala within the more generally disrupted cortical connectivity framework as a model of neural organization of the autistic brain.

  16. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  17. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  18. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  19. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  20. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  1. On the selection of shape and orientation of a greenhouse. Thermal modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 004, Punjab (India)

    2009-01-15

    In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31 N and 77 E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 C (maximum) and 3.5 C (daily average) at 31 N latitude. (author)

  2. A model of growth restraints to explain the development and evolution of tooth shapes in mammals.

    Science.gov (United States)

    Osborn, Jeffrey W

    2008-12-07

    The problem investigated here is control of the development of tooth shape. Cells at the growing soft tissue interface between the ectoderm and mesoderm in a tooth anlage are observed to buckle and fold into a template for the shape of the tooth crown. The final shape is created by enamel secreted onto the folds. The pattern in which the folds develop is generally explained as a response to the pattern in which genes are locally expressed at the interface. This congruence leaves the problem of control unanswered because it does not explain how either pattern is controlled. Obviously, cells are subject to Newton's laws of motion so that mechanical forces and constraints must ultimately cause the movements of cells during tooth morphogenesis. A computer model is used to test the hypothesis that directional resistances to growth of the epithelial part of the interface could account for the shape into which the interface folds. The model starts with a single epithelial cell whose growth is constrained by 4 constant directional resistances (anterior, posterior, medial and lateral). The constraints force the growing epithelium to buckle and fold. By entering into the model different values for these constraints the modeled epithelium is induced to buckle and fold into the different shapes associated with the evolution of a human upper molar from that of a reptilian ancestor. The patterns and sizes of cusps and the sequences in which they develop are all correctly reproduced. The model predicts the changes in the 4 directional constraints necessary to develop and evolve from one tooth shape into another. I conclude more generally expressed genes that control directional resistances to growth, not locally expressed genes, may provide the information for the shape into which a tooth develops.

  3. Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes

    Science.gov (United States)

    Leite, Walter L.; Stapleton, Laura M.

    2011-01-01

    In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…

  4. A model to simulate day-to-day variations in rectum shape

    NARCIS (Netherlands)

    Hoogeman, Mischa S.; van Herk, Marcel; Yan, Di; Boersma, Liesbeth J.; Koper, Peter C. M.; Lebesque, Joos V.

    2002-01-01

    PURPOSE: To develop a model that predicts possible rectum configurations that can occur during radiotherapy of prostate cancer on the basis of a planning CT scan and patient group data. MATERIALS AND METHODS: We used a stochastic shape description model with a limited number of parameters (area,

  5. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  6. Testosterone reduces amygdala-orbitofrontal cortex coupling

    NARCIS (Netherlands)

    van Wingen, Guido; Mattern, Claudia; Verkes, Robbert Jan; Buitelaar, Jan; Fernández, Guillén

    2010-01-01

    Testosterone influences various aspects of affective behavior, which is mediated by different brain regions within the emotion circuitry. Previous neuroimaging studies have demonstrated that testosterone increases neural activity in the amygdala. To investigate whether this could be due to altered

  7. False memory for face in short-term memory and neural activity in human amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-03

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities

    Science.gov (United States)

    Akiki, Teddy J.; Averill, Christopher L.; Wrocklage, Kristen M.; Schweinsburg, Brian; Scott, J. Cobb; Martini, Brenda; Averill, Lynnette A.; Southwick, Steven M.; Krystal, John H.; Abdallah, Chadi G.

    2017-01-01

    Background The hippocampus and amygdala have been repeatedly implicated in the psychopathology of posttraumatic stress disorder (PTSD). While numerous structural neuroimaging studies examined these two structures in PTSD, these analyses have largely been limited to volumetric measures. Recent advances in vertex-based neuroimaging methods have made it possible to identify specific locations of subtle morphometric changes within a structure of interest. Methods In this cross-sectional study, we used high-resolution magnetic resonance imaging to examine the relationship between PTSD symptomatology, as measured using the Clinician Administered PTSD Scale for the DSM-IV (CAPS), and structural shape of the hippocampus and amygdala using vertex-wise shape analyses in a group of combat-exposed US Veterans (N = 69). Results Following correction for multiple comparisons and controlling for age and cranial volume, we found that participants with more severe PTSD symptoms showed an indentation in the anterior half of the right hippocampus and an indentation in the dorsal region of the right amygdala (corresponding to the centromedial amygdala). Post hoc analysis using stepwise regression suggest that among PTSD symptom clusters, arousal symptoms explain most of the variance in the hippocampal abnormality, whereas re-experiencing symptoms explain most of the variance in the amygdala abnormality. Conclusion The results provide evidence of localized abnormalities in the anterior hippocampus and centromedial amygdala in combat-exposed US Veterans suffering from PTSD symptoms. This novel finding provides a more fine-grained analysis of structural abnormalities in PTSD and may be informative for understanding the neurobiology of the disorder. PMID:28825050

  9. Individual Differences in Animal Stress Models: Considering Resilience, Vulnerability, and the Amygdala in Mediating the Effects of Stress and Conditioned Fear on Sleep.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2016-06-01

    To examine the REM sleep response to stress and fearful memories as a potential marker of stress resilience and vulnerability and to assess the role of the basolateral amygdala (BLA) in mediating the effects of fear memory on sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at the BLA. Data loggers were placed intraperitoneally to record core body temperature. After recovery from surgery, the rats received shock training (ST: 20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval) and afterwards received microinjections of the GABAA agonist muscimol (MUS; 1.0 μM) to inactivate BLA or microinjections of vehicle (VEH) alone. Subsequently, the rats were separated into 4 groups (VEH-vulnerable (VEH-Vul; n = 14), VEH-resilient (VEH-Res; n = 13), MUS-vulnerable (MUS-Vul; n = 8), and MUS-resilient (MUS-Res; n = 11) based on whether or not REM was decreased, compared to baseline, during the first 4 h following ST. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of ST and fearful context re-exposure alone (CTX). REM was significantly reduced on the ST day in both VEH-Vul and MUS-Vul rats; however, post-ST MUS blocked the reduction in REM on the CTX day in the MUS-Vul group. The VEH-Res and MUS-Res rats showed similar levels of REM on both ST and CTX days. The effects of post-ST inactivation of BLA on freezing and SIH were minimal. Outbred Wistar rats can show significant individual differences in the effects of stress on REM that are mediated by BLA. These differences in REM can be independent of behavioral fear and the peripheral stress response, and may be an important biomarker of stress resilience and vulnerability. © 2016 Associated Professional Sleep Societies, LLC.

  10. Myosin light chain kinase regulates synaptic plasticity and fear learning in the lateral amygdala.

    Science.gov (United States)

    Lamprecht, R; Margulies, D S; Farb, C R; Hou, M; Johnson, L R; LeDoux, J E

    2006-01-01

    Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

  11. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    International Nuclear Information System (INIS)

    Arrieta, J S; Diani, J; Gilormini, P

    2014-01-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)

  12. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    Science.gov (United States)

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  13. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Koenigs, Michael; Grafman, Jordan

    2009-10-01

    Posttraumatic stress disorder (PTSD) is characterized by recurrent distressing memories of an emotionally traumatic event. In this review, the authors present neuroscientific data highlighting the function of two brain areas--the amygdala and ventromedial prefrontal cortex (vmPFC)--in PTSD and related emotional processes. A convergent body of human and nonhuman studies suggests that the amygdala mediates the acquisition and expression of conditioned fear and the enhancement of emotional memory, whereas the vmPFC mediates the extinction of conditioned fear and the volitional regulation of negative emotion. It has been theorized that the vmPFC exerts inhibition on the amygdala, and that a defect in this inhibition could account for the symptoms of PTSD. This theory is supported by functional imaging studies of PTSD patients, who exhibit hypoactivity in the vmPFC but hyperactivity in the amygdala. A recent study of brain-injured and trauma-exposed combat veterans confirms that amygdala damage reduces the likelihood of developing PTSD. But contrary to the prediction of the top-down inhibition model, vmPFC damage also reduces the likelihood of developing PTSD. The putative roles of the amygdala and the vmPFC in the pathophysiology of PTSD, as well as implications for potential treatments, are discussed in light of these results.

  14. Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD.

    Science.gov (United States)

    Andero, Raül; Brothers, Shaun P; Jovanovic, Tanja; Chen, Yen T; Salah-Uddin, Hasib; Cameron, Michael; Bannister, Thomas D; Almli, Lynn; Stevens, Jennifer S; Bradley, Bekh; Binder, Elisabeth B; Wahlestedt, Claes; Ressler, Kerry J

    2013-06-05

    The amygdala-dependent molecular mechanisms driving the onset and persistence of posttraumatic stress disorder (PTSD) are poorly understood. Recent observational studies have suggested that opioid analgesia in the aftermath of trauma may decrease the development of PTSD. Using a mouse model of dysregulated fear, we found altered expression within the amygdala of the Oprl1 gene (opioid receptor-like 1), which encodes the amygdala nociceptin (NOP)/orphanin FQ receptor (NOP-R). Systemic and central amygdala infusion of SR-8993, a new highly selective NOP-R agonist, impaired fear memory consolidation. In humans, a single-nucleotide polymorphism (SNP) within OPRL1 is associated with a self-reported history of childhood trauma and PTSD symptoms (n = 1847) after a traumatic event. This SNP is also associated with physiological startle measures of fear discrimination and magnetic resonance imaging analysis of amygdala-insula functional connectivity. Together, these data suggest that Oprl1 is associated with amygdala function, fear processing, and PTSD symptoms. Further, our data suggest that activation of the Oprl1/NOP receptor may interfere with fear memory consolidation, with implications for prevention of PTSD after a traumatic event.

  15. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala

    Directory of Open Access Journals (Sweden)

    Brent Myers

    2009-06-01

    Full Text Available A common characteristic of irritable bowel syndrome (IBS is that symptoms, including abdominal pain and abnormal bowel habits, are often triggered or exacerbated during periods of stress and anxiety. However, the impact of anxiety and affective disorders on the gastrointestinal (GI tract is poorly understood and may in part explain the lack of effective therapeutic approaches to treat IBS. The amygdala is an important structure for regulating anxiety with the central nucleus of the amygdala (CeA facilitating the activation of the hypothalamic-pituitary-adrenal (HPA axis and the autonomic nervous system in response to stress. Moreover, chronic stress enhances function of the amygdala and promotes neural plasticity throughout the amygdaloid complex. This review outlines the latest findings obtained from human studies and animal models related to the role of the emotional brain in the regulation of enteric function, specifically how increasing the gain of the amygdala to induce anxiety-like behavior using corticosterone (CORT or chronic stress increases responsiveness to both visceral and somatic stimuli in rodents. A focus of the review is the relative importance of mineralocorticoid receptor (MR and glucocorticoid receptor (GR-mediated mechanisms within the amygdala in the regulation of anxiety and nociceptive behaviors that are characteristic features of IBS. This review also discusses several outstanding questions important for future research on the role of the amygdala in the generation of abnormal GI function that may lead to potential targets for new therapies to treat functional bowel disorders such as IBS.

  16. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    Science.gov (United States)

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    Science.gov (United States)

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  18. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  19. The amygdala: securing pleasure and avoiding pain

    Directory of Open Access Journals (Sweden)

    Anushka B P Fernando

    2013-12-01

    Full Text Available The amygdala has traditionally been associated with fear, mediating the impact of negative emotions on memory. However, this view does not fully encapsulate the function of the amygdala, nor the impact that processing in this structure has on the motivational limbic corticostriatal circuitry of which it is an important structure. Here we discuss the interactions between different amygdala nuclei with cortical and striatal regions involved in motivation; interconnections and parallel circuitries that have become increasingly understood in recent years. We review the evidence that the amygdala stores memories that allow initially motivationally neutral stimuli to become associated through pavlovian conditioning with motivationally relevant outcomes which, importantly, can be either appetitive (e.g. food or aversive (e.g. electric shock. We also consider how different psychological processes supported by the amygdala such as conditioned reinforcement and punishment, conditioned motivation and suppression, and conditioned approach and avoidance behavior, are not only psychologically but also neurobiologically dissociable, being mediated by distinct yet overlapping neural circuits within the limbic corticostriatal circuitry. Clearly the role of the amygdala goes beyond encoding aversive stimuli to also encode the appetitive, requiring an appreciation of the amygdala’s mediation of both appetitive and fearful behavior through diverse psychological processes.

  20. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  1. Shape interior modeling and mass property optimization using ray-reps

    DEFF Research Database (Denmark)

    Wu, Jun; Kramer, Lou; Westermann, Rüdiger

    2016-01-01

    , and prove this parametrization covers the optimal interior regarding static and rotational stability criteria. This compact formulation thoroughly reduces the number of design variables compared to the general volumetric element-wise formulation. We demonstrate the effectiveness of our reduced formulation......We present a novel method for the modeling and optimization of the material distribution inside 3D shapes, such that their 3D printed replicas satisfy prescribed constraints regarding mass properties. In particular, we introduce an extension of ray-representation to shape interior modeling...

  2. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    OpenAIRE

    Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...

  3. Automatic generation of 3D statistical shape models with optimal landmark distributions.

    Science.gov (United States)

    Heimann, T; Wolf, I; Meinzer, H-P

    2007-01-01

    To point out the problem of non-uniform landmark placement in statistical shape modeling, to present an improved method for generating landmarks in the 3D case and to propose an unbiased evaluation metric to determine model quality. Our approach minimizes a cost function based on the minimum description length (MDL) of the shape model to optimize landmark correspondences over the training set. In addition to the standard technique, we employ an extended remeshing method to change the landmark distribution without losing correspondences, thus ensuring a uniform distribution over all training samples. To break the dependency of the established evaluation measures generalization and specificity from the landmark distribution, we change the internal metric from landmark distance to volumetric overlap. Redistributing landmarks to an equally spaced distribution during the model construction phase improves the quality of the resulting models significantly if the shapes feature prominent bulges or other complex geometry. The distribution of landmarks on the training shapes is -- beyond the correspondence issue -- a crucial point in model construction.

  4. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Approximate Mathematical Modeling of Osmotic Dehydration of Cone-Shaped Fruits and Vegetables in Hypertonic Solutions

    OpenAIRE

    Mohammad Sirousazar

    2017-01-01

    Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentratio...

  6. Dopamine in the medial amygdala network mediates human bonding.

    Science.gov (United States)

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  7. Prefrontal-amygdala fear networks come into focus

    Directory of Open Access Journals (Sweden)

    Maithe eArruda-Carvalho

    2015-10-01

    Full Text Available The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD. PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic and infralimbic subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.

  8. Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants.

    Science.gov (United States)

    Goldstein-Piekarski, Andrea N; Korgaonkar, Mayuresh S; Green, Erin; Suppes, Trisha; Schatzberg, Alan F; Hastie, Trevor; Nemeroff, Charles B; Williams, Leanne M

    2016-10-18

    Amygdala circuitry and early life stress (ELS) are both strongly and independently implicated in the neurobiology of depression. Importantly, animal models have revealed that the contribution of ELS to the development and maintenance of depression is likely a consequence of structural and physiological changes in amygdala circuitry in response to stress hormones. Despite these mechanistic foundations, amygdala engagement and ELS have not been investigated as biobehavioral targets for predicting functional remission in translational human studies of depression. Addressing this question, we integrated human neuroimaging and measurement of ELS within a controlled trial of antidepressant outcomes. Here we demonstrate that the interaction between amygdala activation engaged by emotional stimuli and ELS predicts functional remission on antidepressants with a greater than 80% cross-validated accuracy. Our model suggests that in depressed people with high ELS, the likelihood of remission is highest with greater amygdala reactivity to socially rewarding stimuli, whereas for those with low-ELS exposure, remission is associated with lower amygdala reactivity to both rewarding and threat-related stimuli. This full model predicted functional remission over and above the contribution of demographics, symptom severity, ELS, and amygdala reactivity alone. These findings identify a human target for elucidating the mechanisms of antidepressant functional remission and offer a target for developing novel therapeutics. The results also offer a proof-of-concept for using neuroimaging as a target for guiding neuroscience-informed intervention decisions at the level of the individual person.

  9. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  10. Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires

    International Nuclear Information System (INIS)

    Doraiswamy, S; Rao, A; Srinivasa, A R

    2011-01-01

    We present a simple model for simulating the response of a superelastic shape memory alloy wire based on the thermodynamics of irreversible processes, which can simulate the full thermomechanical response including internal hysteresis loops, at different temperatures, with minimal data input. The key idea is to separate the dissipative response and the elastic response of shape memory alloys using a Gibbs potential based formulation, and then use a Preisach model for the dissipative part of the response. This enables better handling of the features observed in the superelastic response such as those due to changes in temperature and internal hysteresis loops. We compare the predicted response with experiments performed on 0.75 mm NiTi shape memory alloy wires at three different temperatures

  11. An integrative model of evolutionary covariance: a symposium on body shape in fishes.

    Science.gov (United States)

    Walker, Jeffrey A

    2010-12-01

    A major direction of current and future biological research is to understand how multiple, interacting functional systems coordinate in producing a body that works. This understanding is complicated by the fact that organisms need to work well in multiple environments, with both predictable and unpredictable environmental perturbations. Furthermore, organismal design reflects a history of past environments and not a plan for future environments. How complex, interacting functional systems evolve, then, is a truly grand challenge. In accepting the challenge, an integrative model of evolutionary covariance is developed. The model combines quantitative genetics, functional morphology/physiology, and functional ecology. The model is used to convene scientists ranging from geneticists, to physiologists, to ecologists, to engineers to facilitate the emergence of body shape in fishes as a model system for understanding how complex, interacting functional systems develop and evolve. Body shape of fish is a complex morphology that (1) results from many developmental paths and (2) functions in many different behaviors. Understanding the coordination and evolution of the many paths from genes to body shape, body shape to function, and function to a working fish body in a dynamic environment is now possible given new technologies from genetics to engineering and new theoretical models that integrate the different levels of biological organization (from genes to ecology).

  12. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    Science.gov (United States)

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. Asymmetry of Hippocampus and Amygdala Defect in Subjective Cognitive Decline Among the Community Dwelling Chinese

    Directory of Open Access Journals (Sweden)

    Ling Yue

    2018-06-01

    Full Text Available Background: Subjective cognitive decline (SCD may be the first clinical sign of Alzheimer's disease (AD. SCD individuals with normal cognition may already have significant medial temporal lobe atrophy. However, few studies have been devoted to exploring the alteration of left-right asymmetry with hippocampus and amygdala in SCD. The aim of this study was to compare SCD individuals with amnestic mild cognitive impairment (MCI patients and the normal population for volume and asymmetry of hippocampus, amygdala and temporal horn, and to assess their relationship with cognitive function in elderly population living in China.Methods: 111 SCD, 30 MCI, and 67 healthy controls (HC underwent a standard T1-weighted MRI, from which the volumes of the hippocampus and amygdala were calculated and compared. Then we evaluated the pattern and extent of asymmetry in hippocampus and amygdala of these samples. Furthermore, we also investigated the relationship between the altered brain regions and cognitive function.Results: Among the three groups, SCD showed more depressive symptoms (p < 0.001 and higher percentage of heart disease (16.4% vs. 35.1%, p = 0.007 than controls. In terms of brain data, significant differences were found in the volume and asymmetry of both hippocampus and amygdala among the three groups (P < 0.05. In logistic analysis controlled by age, gender, education level, depression symptoms, anxiety symptom, somatic disease and lifestyle in terms of smoking, both SCD and MCI individuals showed significant decreased right hippocampal and amygdala volume than controls. For asymmetry pattern, a ladder-shaped difference of left-larger-than-right asymmetry was found in amygdala with MCI>SCD>HC, and an opposite asymmetry of left-less-than-right pattern was found with HC>SCD>MCI in hippocampus. Furthermore, correlation was shown between the volume of right hippocampus and right amygdala with MMSE and MoCA in SCD group.Conclusion: Our results supported

  14. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity

    Science.gov (United States)

    Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  15. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    Science.gov (United States)

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

  16. Computer-aided-design-model-assisted absolute three-dimensional shape measurement.

    Science.gov (United States)

    Li, Beiwen; Bell, Tyler; Zhang, Song

    2017-08-20

    Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.

  17. A unified spray forming model for the prediction of billet shape geometry

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini

    2004-01-01

    In the present work a unified model for simulating the spray forming process has been developed. Models for the atomization and the deposition processes have been coupled together in order to obtain a new unified description of the spray forming process. The model is able to predict the shape...... and the temperatures of a spray-formed billet and takes into account the thermal coupling between the gas and the droplets, the change in droplet size distribution along the r-axis in the spray cone and the shading effect. The deposition describes the evolution of the preform with time. For this stage a novel 3D model......, which allows the atomizer to be placed asymmetrically over the substrate and also includes the withdrawal of the deposit, was developed. This makes it possible to model not only the growth of a Gaussian shaped preform in which case the spray axis and the rotation axis coincide, but also the surface...

  18. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

    Science.gov (United States)

    Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.

    2015-10-01

    This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

  19. "Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators

    Science.gov (United States)

    Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu

    2018-03-01

    A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.

  20. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  1. A unified spray forming model for the prediction of billet shape geometry

    International Nuclear Information System (INIS)

    Hattel, J.H.; Pryds, N.H.

    2004-01-01

    In the present work a unified model for simulating the spray forming process has been developed. Models for the atomization and the deposition processes have been coupled together in order to obtain a new unified description of the spray forming process. The model is able to predict the shape and the temperatures of a spray-formed billet and takes into account the thermal coupling between the gas and the droplets, the change in droplet size distribution along the r-axis in the spray cone and the shading effect. The deposition describes the evolution of the preform with time. For this stage a novel 3D model, which allows the atomizer to be placed asymmetrically over the substrate and also includes the withdrawal of the deposit, was developed. This makes it possible to model not only the growth of a Gaussian shaped preform in which case the spray axis and the rotation axis coincide, but also the surface evolution during billet growth. For this purpose, shading must be taken into account as a core part of the surface evolution algorithm. The unified model involves coupling of three sub models for the atomization, the deposition and the shape of the billet. This coupling, which is a central part of the present work, is also described. Results from the integrated model are presented and the potential for better process understanding as well as process optimization is evident

  2. Constitutive modeling of SMA SMP multifunctional high performance smart adaptive shape memory composite

    International Nuclear Information System (INIS)

    Jarali, Chetan S; Raja, S; Upadhya, A R

    2010-01-01

    Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP

  3. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    Science.gov (United States)

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic

  4. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    Science.gov (United States)

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.

  5. Probability density function shape sensitivity in the statistical modeling of turbulent particle dispersion

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.

  6. Extraction of the mode shapes of a segmented ship model with a hydroelastic response

    Directory of Open Access Journals (Sweden)

    Yooil Kim

    2015-11-01

    Full Text Available The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the sim-plicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave ex-citation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were meas-ured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

  7. Building and Testing a Statistical Shape Model of the Human Ear Canal

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Larsen, Rasmus; Laugesen, Søren

    2002-01-01

    Today the design of custom in-the-ear hearing aids is based on personal experience and skills and not on a systematic description of the variation of the shape of the ear canal. In this paper it is described how a dense surface point distribution model of the human ear canal is built based on a t...

  8. Lightcurves for Shape Modeling: 852 Wladilena, 1089 Tama, and 1180 Rita

    Science.gov (United States)

    Polishook, David

    2012-10-01

    The folded lightcurves and synodic periods of 852 Wladilena, 1089 Tama, and 1180 Rita are reported. The data are used by Hanus et al. (2012) to derive the rotation axis and to construct a shape model by applying the inversion lightcurve technique.

  9. A 3D active shape model driven by fuzzy inference : application to cardiac CT and MR

    NARCIS (Netherlands)

    Assen, van H.C.; Danilouchkine, M.G.; Dirksen, M.S.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2008-01-01

    Abstract—Manual quantitative analysis of cardiac left ventricular function using Multislice CT and MR is arduous because of the large data volume. In this paper, we present a 3-D active shape model (ASM) for semiautomatic segmentation of cardiac CT and MRvolumes, without the requirement of

  10. Pedestrian detection and tracking using a mixture of view-based shape-texture models

    NARCIS (Netherlands)

    Munder, S.; Schnörr, C.; Gavrila, D.M.

    2008-01-01

    This paper presents a robust multicue approach to the integrated detection and tracking of pedestrians in a cluttered urban environment. A novel spatiotemporal object representation is proposed, which combines a generative shape model and a discriminative texture classifier, both of which are

  11. Numerical Modeling of Induction Heating Process using Inductors with Circular Shape Turns

    Directory of Open Access Journals (Sweden)

    Mihaela Novac

    2008-05-01

    Full Text Available This paper is focused on the problemof numerical modeling of electromagneticfield coupled with the thermal one in theheating process of the steel billets, usinginductors with circular shape turns. As resultswe have: electromagnetic field lines evolutionand map temperatures in piece at the endingof heating process.

  12. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan

    2009-01-01

    Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009

  13. Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Usui, Naotaka; Inoue, Yushi; Toichi, Motomi

    2017-09-01

    Faces contain multifaceted information that is important for human communication. Neuroimaging studies have revealed face-specific activation in multiple brain regions, including the inferior occipital gyrus (IOG) and amygdala; it is often assumed that these regions constitute the neural network responsible for the processing of faces. However, it remains unknown whether and how these brain regions transmit information during face processing. This study investigated these questions by applying dynamic causal modeling of induced responses to human intracranial electroencephalography data recorded from the IOG and amygdala during the observation of faces, mosaics, and houses in upright and inverted orientations. Model comparisons assessing the experimental effects of upright faces versus upright houses and upright faces versus upright mosaics consistently indicated that the model having face-specific bidirectional modulatory effects between the IOG and amygdala was the most probable. The experimental effect between upright versus inverted faces also favored the model with bidirectional modulatory effects between the IOG and amygdala. The spectral profiles of modulatory effects revealed both same-frequency (e.g., gamma-gamma) and cross-frequency (e.g., theta-gamma) couplings. These results suggest that the IOG and amygdala communicate rapidly with each other using various types of oscillations for the efficient processing of faces. Hum Brain Mapp 38:4511-4524, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Tuning and Test of Fragmentation Models Based on Identified Particles and Precision Event Shape Data

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; Naughton, J M; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1996-01-01

    Event shape and charged particle inclusive distributions are measured using 750000 decays of the $Z$ to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

  15. SHERMAN - A shape-based thermophysical model II. Application to 8567 (1996 HW1)

    Science.gov (United States)

    Howell, E. S.; Magri, C.; Vervack, R. J.; Nolan, M. C.; Taylor, P. A.; Fernández, Y. R.; Hicks, M. D.; Somers, J. M.; Lawrence, K. J.; Rivkin, A. S.; Marshall, S. E.; Crowell, J. L.

    2018-03-01

    We apply a new shape-based thermophysical model, SHERMAN, to the near-Earth asteroid (NEA) 8567 (1996 HW1) to derive surface properties. We use the detailed shape model of Magri et al. (2011) for this contact binary NEA to analyze spectral observations (2-4.1 microns) obtained at the NASA IRTF on several different dates to find thermal parameters that match all the data. Visible and near-infrared (0.8-2.5 microns) spectral observations are also utilized in a self-consistent way. We find that an average visible albedo of 0.33, thermal inertia of 70 (SI units) and surface roughness of 50% closely match the observations. The shape and orientation of the asteroid is very important to constrain the thermal parameters to be consistent with all the observations. Multiple viewing geometries are equally important to achieve a robust solution for small, non-spherical NEAs. We separate the infrared beaming effects of shape, viewing geometry and surface roughness for this asteroid and show how their effects combine. We compare the diameter and albedo that would be derived from the thermal observations assuming a spherical shape with those from the shape-based model. We also discuss how observations from limited viewing geometries compare to the solution from multiple observations. The size that would be derived from the individual observation dates varies by 20% from the best-fit solution, and can be either larger or smaller. If the surface properties are not homogeneous, many solutions are possible, but the average properties derived here are very tightly constrained by the multiple observations, and give important insights into the nature of small NEAs.

  16. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  17. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  18. Approximate Mathematical Modeling of Osmotic Dehydration of Cone-Shaped Fruits and Vegetables in Hypertonic Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Sirousazar

    2017-07-01

    Full Text Available Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentration of fruit have direct effects on the dehydration rate and also inverse influence on the dehydration duration. The geometrical parameters of fruit and water concentration in hypertonic solution showed direct effect on the dehydration duration as well as inverse effect on the dehydration rate. The presented model seems to be useful tool to predict the dehydration kinetics of cone-shaped fruit during osmotic dehydration process and to optimize the process prior to perform the experiments.

  19. Modelling stochastic chances in curve shape, with an application to cancer diagnostics

    DEFF Research Database (Denmark)

    Hobolth, A; Jensen, Eva B. Vedel

    2000-01-01

    Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach is that t......Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach...... is that the parameters in the model do not relate to a particular polygonal approximation. A somewhat similar approach has been used by Kent et al. (1996), who describe the limiting behaviour of a model with a first-order Markov property as the landmarks on the curve become closely spaced; see also Grenander(1993...

  20. Lip-Synching Using Speaker-Specific Articulation, Shape and Appearance Models

    Directory of Open Access Journals (Sweden)

    Gaspard Breton

    2009-01-01

    Full Text Available We describe here the control, shape and appearance models that are built using an original photogrammetric method to capture characteristics of speaker-specific facial articulation, anatomy, and texture. Two original contributions are put forward here: the trainable trajectory formation model that predicts articulatory trajectories of a talking face from phonetic input and the texture model that computes a texture for each 3D facial shape according to articulation. Using motion capture data from different speakers and module-specific evaluation procedures, we show here that this cloning system restores detailed idiosyncrasies and the global coherence of visible articulation. Results of a subjective evaluation of the global system with competing trajectory formation models are further presented and commented.

  1. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    Science.gov (United States)

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  2. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    Science.gov (United States)

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  3. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    Science.gov (United States)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  4. Disorganized Amygdala Networks in Conduct-Disordered Juvenile Offenders With Callous-Unemotional Traits.

    Science.gov (United States)

    Aghajani, Moji; Klapwijk, Eduard T; van der Wee, Nic J; Veer, Ilya M; Rombouts, Serge A R B; Boon, Albert E; van Beelen, Peter; Popma, Arne; Vermeiren, Robert R J M; Colins, Olivier F

    2017-08-15

    The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., deficient emotional reactivity, callousness) in conduct-disordered (CD) youth. Though subregion-specific anomalies in amygdala function have been suggested in CU pathophysiology among antisocial populations, system-level studies of CU traits have typically examined the amygdala as a unitary structure. Hence, nothing is yet known of how amygdala subregional network function may contribute to callous-unemotionality in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral amygdala (BLA) and centromedial amygdala (CMA) networks across three matched groups of juveniles: CD offenders with CU traits (CD/CU+; n = 25), CD offenders without CU traits (CD/CU-; n = 25), and healthy control subjects (n = 24). We additionally examined whether perturbed amygdala subregional connectivity coincides with altered volume and shape of the amygdaloid complex. Relative to CD/CU- and healthy control youths, CD/CU+ youths showed abnormally increased BLA connectivity with a cluster that included both dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal regions. In contrast, compared with CD/CU- and healthy control youths, CD/CU+ youths showed diminished CMA connectivity with ventromedial/orbitofrontal regions. Critically, these connectivity changes coincided with local hypotrophy of BLA and CMA subregions (without being statistically correlated) and were associated to more severe CU symptoms. These findings provide unique insights into a putative mechanism for perturbed attention-emotion interactions, which could bias salience processing and associative learning in youth with CD/CU+. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  5. A Nonparametric Shape Prior Constrained Active Contour Model for Segmentation of Coronaries in CTA Images

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2014-01-01

    Full Text Available We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy.

  6. Dome Structures Above Sills and Saucer-Shaped Sills: Insights From Experimental Modeling

    Science.gov (United States)

    Planke, S.; Galland, O.; Malthe-Sørenssen, A.

    2007-12-01

    Saucer-shaped magma and sand intrusions are common features in sedimentary basins. They result from fundamental processes for the emplacement of fluids in shallow sedimentary basins. Seismic data show that the overburden above saucer-shaped intrusions is usually deformed and exhibits a dome-like structure. The formation of such structures, and the associated deformation, are of primary importance in the evolution of petroleum systems. In this presentation, we report on experimental investigation of the deformation processes associated with the intrusion of saucer-shaped intrusions into sedimentary basins. The experimental setup consists of molten low-viscosity oil injected into fine-grained silica flour (see Galland et al., this session). It properly simulates the emplacement of saucer-shaped intrusions and the deformation of the country rock. During experiments, the surface of the model is digitalized through a structured light technique based on moiré projection principle. Such a tool provides topographic maps of the model and allows a periodic (every 1.5 s) monitoring of the model surface. When the model magma starts intruding, a symetrical dome rises above the inlet. As injection proceeds, the dome inflates and widens. Subsequently, the dome evolves to a plateau-like feature, with nearly flat surface and steep edges. The plateau keeps lifting up, but nearly stoppes widening. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusion formed in the experiment is a typical saucer-shaped sill. The evolution of the deforming surface reflects the evolution of the intrusion. We infer that the first doming phase corresponds to the emplacement of a horizontal basal sill by open fracturing. The dome-to-plateau transition corresponds to a transition of the liquid emplacement mechanism from basal sill to inclined sheet. We suggest that the emplacement of the inclined sheets results from shear fracturing at the dome edge.

  7. Weighted regularized statistical shape space projection for breast 3D model reconstruction.

    Science.gov (United States)

    Ruiz, Guillermo; Ramon, Eduard; García, Jaime; Sukno, Federico M; Ballester, Miguel A González

    2018-05-02

    The use of 3D imaging has increased as a practical and useful tool for plastic and aesthetic surgery planning. Specifically, the possibility of representing the patient breast anatomy in a 3D shape and simulate aesthetic or plastic procedures is a great tool for communication between surgeon and patient during surgery planning. For the purpose of obtaining the specific 3D model of the breast of a patient, model-based reconstruction methods can be used. In particular, 3D morphable models (3DMM) are a robust and widely used method to perform 3D reconstruction. However, if additional prior information (i.e., known landmarks) is combined with the 3DMM statistical model, shape constraints can be imposed to improve the 3DMM fitting accuracy. In this paper, we present a framework to fit a 3DMM of the breast to two possible inputs: 2D photos and 3D point clouds (scans). Our method consists in a Weighted Regularized (WR) projection into the shape space. The contribution of each point in the 3DMM shape is weighted allowing to assign more relevance to those points that we want to impose as constraints. Our method is applied at multiple stages of the 3D reconstruction process. Firstly, it can be used to obtain a 3DMM initialization from a sparse set of 3D points. Additionally, we embed our method in the 3DMM fitting process in which more reliable or already known 3D points or regions of points, can be weighted in order to preserve their shape information. The proposed method has been tested in two different input settings: scans and 2D pictures assessing both reconstruction frameworks with very positive results. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  9. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes.

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Feng, Steve Si Jia; van Zelst, Jan; Vreemann, Suzan; Mann, Jessica Rice; D'Orsi, Carl Joseph; Sechopoulos, Ioannis

    2017-06-01

    To develop a set of accurate 2D models of compressed breasts undergoing mammography or breast tomosynthesis, based on objective analysis, to accurately characterize mammograms with few linearly independent parameters, and to generate novel clinically realistic paired cranio-caudal (CC) and medio-lateral oblique (MLO) views of the breast. We seek to improve on an existing model of compressed breasts by overcoming detector size bias, removing the nipple and non-mammary tissue, pairing the CC and MLO views from a single breast, and incorporating the pectoralis major muscle contour into the model. The outer breast shapes in 931 paired CC and MLO mammograms were automatically detected with an in-house developed segmentation algorithm. From these shapes three generic models (CC-only, MLO-only, and joint CC/MLO) with linearly independent components were constructed via principal component analysis (PCA). The ability of the models to represent mammograms not used for PCA was tested via leave-one-out cross-validation, by measuring the average distance error (ADE). The individual models based on six components were found to depict breast shapes with accuracy (mean ADE-CC = 0.81 mm, ADE-MLO = 1.64 mm, ADE-Pectoralis = 1.61 mm), outperforming the joint CC/MLO model (P ≤ 0.001). The joint model based on 12 principal components contains 99.5% of the total variance of the data, and can be used to generate new clinically realistic paired CC and MLO breast shapes. This is achieved by generating random sets of 12 principal components, following the Gaussian distributions of the histograms of each component, which were obtained from the component values determined from the images in the mammography database used. Our joint CC/MLO model can successfully generate paired CC and MLO view shapes of the same simulated breast, while the individual models can be used to represent with high accuracy clinical acquired mammograms with a small set of parameters. This is the first

  10. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    2017-06-01

    Full Text Available Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD. Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC, and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life.

  11. The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory.

    Science.gov (United States)

    Mackiewicz, Kristen L; Sarinopoulos, Issidoros; Cleven, Krystal L; Nitschke, Jack B

    2006-09-19

    Prior research has shown memory is enhanced for emotional events. Key brain areas involved in emotional memory are the amygdala and hippocampus, which are also recruited during aversion and its anticipation. This study investigated whether anticipatory processes signaling an upcoming aversive event contribute to emotional memory. In an event-related functional MRI paradigm, 40 healthy participants viewed aversive and neutral pictures preceded by predictive warning cues. Participants completed a surprise recognition task directly after functional MRI scanning or 2 weeks later. In anticipation of aversive pictures, bilateral dorsal amygdala and anterior hippocampus activations were associated with better immediate recognition memory. Similar associations with memory were observed for activation of those areas in response to aversive pictures. Anticipatory activation predicted immediate memory over and above these associations for picture viewing. Bilateral ventral amygdala activations in response to aversive pictures predicted delayed memory only. We found that previously reported sex differences of memory associations with left amygdala for women and with right amygdala for men were confined to the ventral amygdala during picture viewing and delayed memory. Results support an established animal model elucidating the functional neuroanatomy of the amygdala and hippocampus in emotional memory, highlight the importance of anticipatory processes in such memory for aversive events, and extend neuroanatomical evidence of sex differences for emotional memory.

  12. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens.

    Science.gov (United States)

    Urs, Raksha; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2010-06-01

    To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Profiles of whole isolated human lenses (n=30) aged 20-69, were measured from shadow-photogrammetric images. The profiles were fit to a 10th-order Fourier series consisting of cosine functions in polar-co-ordinate system that included terms for tilt and decentration. The profiles were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10th-order Fourier series to obtain thickness and diameter, while in the second, all lenses were simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop an age-dependent mathematical model for the whole lens shape. Thickness and diameter obtained from Fourier series fits exhibited high correlation with manual measurements made from shadow-photogrammetric images. The root-mean-squared-error of the age-dependent fit was 205 microm. The age-dependent equations provide a reliable lens model for ages 20-60 years. The contour of the whole human crystalline lens can be modeled with a Fourier series. Shape obtained from the age-dependent model described in this paper can be used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Estimating Small-Body Gravity Field from Shape Model and Navigation Data

    Science.gov (United States)

    Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam

    2008-01-01

    This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.

  14. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  15. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    Science.gov (United States)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  16. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  17. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jin Won; Choi, Yun Ho [Ajou University, Suwon (Korea, Republic of); Park, Jae Hong [LIG Nexl Co. Ltd, Seongnam (Korea, Republic of)

    2013-02-15

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  18. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    International Nuclear Information System (INIS)

    Seo, Jin Won; Choi, Yun Ho; Park, Jae Hong

    2013-01-01

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  19. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Maladaptive social information processing in childhood predicts young men's atypical amygdala reactivity to threat.

    Science.gov (United States)

    Choe, Daniel Ewon; Shaw, Daniel S; Forbes, Erika E

    2015-05-01

    Maladaptive social information processing, such as hostile attributional bias and aggressive response generation, is associated with childhood maladjustment. Although social information processing problems are correlated with heightened physiological responses to social threat, few studies have examined their associations with neural threat circuitry, specifically amygdala activation to social threat. A cohort of 310 boys participated in an ongoing longitudinal study and completed questionnaires and laboratory tasks assessing their social and cognitive characteristics the boys were between 10 and 12 years of age. At age 20, 178 of these young men underwent functional magnetic resonance imaging and a social threat task. At age 22, adult criminal arrest records and self-reports of impulsiveness were obtained. Path models indicated that maladaptive social information-processing at ages 10 and 11 predicted increased left amygdala reactivity to fear faces, an ambiguous threat, at age 20 while accounting for childhood antisocial behavior, empathy, IQ, and socioeconomic status. Exploratory analyses indicated that aggressive response generation - the tendency to respond to threat with reactive aggression - predicted left amygdala reactivity to fear faces and was concurrently associated with empathy, antisocial behavior, and hostile attributional bias, whereas hostile attributional bias correlated with IQ. Although unrelated to social information-processing problems, bilateral amygdala reactivity to anger faces at age 20 was unexpectedly predicted by low IQ at age 11. Amygdala activation did not mediate associations between social information processing and number of criminal arrests, but both impulsiveness at age 22 and arrests were correlated with right amygdala reactivity to anger facial expressions at age 20. Childhood social information processing and IQ predicted young men's amygdala response to threat a decade later, which suggests that childhood social

  1. Impaired Emotional Declarative Memory Following Unilateral Amygdala Damage

    OpenAIRE

    Adolphs, Ralph; Tranel, Daniel; Denburg, Natalie

    2000-01-01

    Case studies of patients with bilateral amygdala damage and functional imaging studies of normal individuals have demonstrated that the amygdala plays a critical role in encoding emotionally arousing stimuli into long-term declarative memory. However, several issues remain poorly understood: the separate roles of left and right amygdala, the time course over which the amygdala participates in memory consolidation, and the type of knowledge structures it helps consolidate. We investigated thes...

  2. The amygdala complex: multiple roles in associative learning and attention.

    OpenAIRE

    Gallagher, M; Holland, P C

    1994-01-01

    Although certain neurophysiological functions of the amygdala complex in learning seem well established, the purpose of this review is to propose that an additional conceptualization of amygdala function is now needed. The research we review provides evidence that a subsystem within the amygdala provides a coordinated regulation of attentional processes. An important aspect of this additional neuropsychology of the amygdala is that it may aid in understanding the importance of connections bet...

  3. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Dong Zhou

    2016-01-01

    Full Text Available Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  4. Human vision model in relation to characteristics of shapes for the Mach band effect.

    Science.gov (United States)

    Wu, Bo-Wen; Fang, Yi-Chin

    2015-10-01

    For human vision to recognize the contours of objects means that, as the contrast variation at the object's edges increases, so will the Mach band effect of human vision. This paper more deeply investigates the relationship between changes in the contours of an object and the Mach band effect of human vision. Based on lateral inhibition and the Mach band effect, we studied subjects' eyes as they watched images of different shapes under a fixed brightness at 34  cd/m2, with changes of contrast and spatial frequency. Three types of display were used: a television, a computer monitor, and a projector. For each display used, we conducted a separate experiment for each shape. Although the maximum values for the contrast sensitivity function curves of the displays were different, their variations were minimal. As the spatial frequency changed, the diminishing effect of the different lines also was minimal. However, as the shapes at the contour intersections were modified by the Mach band effect, a greater degree of variation occurred. In addition, as the spatial frequency at a contour intersection increased, the Mach band effect became lower, along with changes in the corresponding contrast sensitivity function curve. Our experimental results on the characteristics of human vision have led to what we believe is a new vision model based on tests with different shapes. This new model may be used for future development and implementation of an artificial vision system.

  5. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy.

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  6. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator. PMID:27110274

  7. Learning a generative model of images by factoring appearance and shape.

    Science.gov (United States)

    Le Roux, Nicolas; Heess, Nicolas; Shotton, Jamie; Winn, John

    2011-03-01

    Computer vision has grown tremendously in the past two decades. Despite all efforts, existing attempts at matching parts of the human visual system's extraordinary ability to understand visual scenes lack either scope or power. By combining the advantages of general low-level generative models and powerful layer-based and hierarchical models, this work aims at being a first step toward richer, more flexible models of images. After comparing various types of restricted Boltzmann machines (RBMs) able to model continuous-valued data, we introduce our basic model, the masked RBM, which explicitly models occlusion boundaries in image patches by factoring the appearance of any patch region from its shape. We then propose a generative model of larger images using a field of such RBMs. Finally, we discuss how masked RBMs could be stacked to form a deep model able to generate more complicated structures and suitable for various tasks such as segmentation or object recognition.

  8. Quantitative model for the generic 3D shape of ICMEs at 1 AU

    Science.gov (United States)

    Démoulin, P.; Janvier, M.; Masías-Meza, J. J.; Dasso, S.

    2016-10-01

    Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims: By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods: In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results: The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions: The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.

  9. A Semianalytical Model for Pumping Tests in Finite Heterogeneous Confined Aquifers With Arbitrarily Shaped Boundary

    Science.gov (United States)

    Wang, Lei; Dai, Cheng; Xue, Liang

    2018-04-01

    This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.

  10. Amygdala reactivity and negative emotionality: divergent correlates of antisocial personality and psychopathy traits in a community sample.

    Science.gov (United States)

    Hyde, Luke W; Byrd, Amy L; Votruba-Drzal, Elizabeth; Hariri, Ahmad R; Manuck, Stephen B

    2014-02-01

    Previous studies have emphasized that antisocial personality disorder (APD) and psychopathy overlap highly but differ critically in several features, notably negative emotionality (NEM) and possibly amygdala reactivity to social signals of threat and distress. Here we examined whether dimensions of psychopathy and APD correlate differentially with NEM and amygdala reactivity to emotional faces. Testing these relationships among healthy individuals, dimensions of psychopathy and APD were generated by the profile matching technique of Lynam and Widiger (2001), using facet scales of the NEO Personality Inventory-Revised, and amygdala reactivity was measured using a well-established emotional faces task, in a community sample of 103 men and women. Higher psychopathy scores were associated with lower NEM and lower amygdala reactivity, whereas higher APD scores were related to greater NEM and greater amygdala reactivity, but only after overlapping variance in APD and psychopathy was adjusted for in the statistical model. Amygdala reactivity did not mediate the relationship of APD and psychopathy scores to NEM. Supplemental analyses also compared other measures of factors within psychopathy in predicting NEM and amygdala reactivity and found that Factor 2 psychopathy was positively related to NEM and amygdala reactivity across measures of psychopathy. The overall findings replicate seminal observations on NEM in psychopathy by Hicks and Patrick (2006) and extend this work to neuroimaging in a normative population. They also suggest that one critical way in which APD and psychopathy dimensions may differ in their etiology is through their opposing levels of NEM and amygdala reactivity to threat. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Whole vertebral bone segmentation method with a statistical intensity-shape model based approach

    Science.gov (United States)

    Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer

    2011-03-01

    An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.

  12. A model of shape memory materials with hierarchical twinning: statics and dynamics

    International Nuclear Information System (INIS)

    Saxena, A.; Bishop, A.R.; Wu, Y.; Lookman, T.

    1995-01-01

    We consider a model of shape memory materials in which hierarchical twinning near the habit plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a triple-well potential (φ 6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation-induced strain gradient terms. The last term favors hierarchy which enables communication between macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes tweed formation (criss-cross patterns of twins). External stress or pressure modulates (''patterns'') the spacing of domain walls. Therefore the ''pattern'' is encoded in the modulated hierarchical variation of the depth and width of the twins. This hierarchy of length scales provides a related hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of the complete shape memory cycle-write, record, erase and recall-are explained within this model. Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. (orig.)

  13. PREDICTION OF BLOOD PATTERN IN S-SHAPED MODEL OF ARTERY UNDER NORMAL BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    Mohd Azrul Hisham Mohd Adib

    2013-06-01

    Full Text Available Athletes are susceptible to a wide variety of traumatic and non-traumatic vascular injuries to the lower limb. This paper aims to predict the three-dimensional flow pattern of blood through an S-shaped geometrical artery model. This model has created by using Fluid Structure Interaction (FSI software. The modeling of the geometrical S-shaped artery is suitable for understanding the pattern of blood flow under constant normal blood pressure. In this study, a numerical method is used that works on the assumption that the blood is incompressible and Newtonian; thus, a laminar type of flow can be considered. The authors have compared the results with a previous study with FSI validation simulation. The validation and verification of the simulation studies is performed by comparing the maximum velocity at t = 0.4 s, because at this time, the blood accelerates rapidly. In addition, the resulting blood flow at various times, under the same boundary conditions in the S-shaped geometrical artery model, is presented. The graph shows that velocity increases linearly with time. Thus, it can be concluded that the flow of blood increases with respect to the pressure inside the body.

  14. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  15. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Science.gov (United States)

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  16. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  17. Electropolishing on single-cell: (TESLA, Reentrant and Low Loss shapes) Comsol modelling

    International Nuclear Information System (INIS)

    Bruchon, M.

    2007-01-01

    In the framework of improvement of cavity electropolishing, modelling permits to evaluate some parameters not easily accessible by experiments and can also help us to guide them. Different laboratories (DESY, Fermilab) work on electro or chemical polishing modelling with different approaches and softwares. At CEA Saclay, COMSOL software is used to model horizontal electropolishing of cavity in two dimensions. The goal of this study has been motivated by improvement of our electropolishing setup by modifying the arrival of the acid. The influence of a protuberant cathode has been evaluated and compared for different shapes of single cell cavities: TESLA, ILC Low Loss (LL ILC ), and ILC Reentrant (RE ILC ). (author)

  18. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Wada, Ken; Hyodo, Toshio

    2013-01-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  19. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  20. A phenomenological two-phase constitutive model for porous shape memory alloys

    KAUST Repository

    El Sayed, Tamer S.

    2012-07-01

    We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.

  1. Use of Image Based Modelling for Documentation of Intricately Shaped Objects

    Science.gov (United States)

    Marčiš, M.; Barták, P.; Valaška, D.; Fraštia, M.; Trhan, O.

    2016-06-01

    In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  2. Bohr model description of the critical point for the first order shape phase transition

    Science.gov (United States)

    Budaca, R.; Buganu, P.; Budaca, A. I.

    2018-01-01

    The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.

  3. Bohr model description of the critical point for the first order shape phase transition

    Directory of Open Access Journals (Sweden)

    R. Budaca

    2018-01-01

    Full Text Available The critical point of the shape phase transition between spherical and axially deformed nuclei is described by a collective Bohr Hamiltonian with a sextic potential having simultaneous spherical and deformed minima of the same depth. The particular choice of the potential as well as the scaled and decoupled nature of the total Hamiltonian leads to a model with a single free parameter connected to the height of the barrier which separates the two minima. The solutions are found through the diagonalization in a basis of Bessel functions. The basis is optimized for each value of the free parameter by means of a boundary deformation which assures the convergence of the solutions for a fixed basis dimension. Analyzing the spectral properties of the model, as a function of the barrier height, revealed instances with shape coexisting features which are considered for detailed numerical applications.

  4. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca

    2017-12-07

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living) epidermis. For this region, previous works suggested a diffusion model and an approximation of the cells by hexagonal prisms. The work at hand extends this in three ways. First, the extracellular space is treated with full spatial resolution. This induces a decrease of permeability by about 10%. Second, cells of tetrakaidecahedral shape are considered, in addition to the original hexagonal prisms. For both cell types, the resulting membrane permeabilities are compared. Third, for the first time, the influence of cell stacking in the vertical direction is considered. This is particularly important for the stratum granulosum, where tight junctions are present.

  5. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    Science.gov (United States)

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  6. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce

    Directory of Open Access Journals (Sweden)

    Natalya Pya

    2016-02-01

    Full Text Available Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM and shape constrained generalized additive models (SCAM for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC. An observed structured spatial trend in tree height is modelled via 2-dimensional surface

  7. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  8. A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Benešová, B.; Sedlák, P.

    2016-01-01

    Roč. 21, č. 3 (2016), s. 358-382 ISSN 1081-2865 R&D Projects: GA ČR GA13-13616S; GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : shape memory alloys * constitutive model * generalized standard materials * dissipation * energetic solution Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://mms.sagepub.com/content/21/3/358

  9. Shape optimization for Navier-Stokes equations with algebraic turbulence model : numerical analysis and computation

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Stebel, Jan

    2011-01-01

    Roč. 63, č. 2 (2011), s. 277-308 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x

  10. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  11. Analytical model for shape anisotropy in thin-film nanostructured arrays: Interaction effects

    International Nuclear Information System (INIS)

    Alvarez-Sanchez, R.; Costa-Kraemer, J.L.; Briones, F.

    2006-01-01

    When reducing the size of array elements and interelement separations to the nanoscale, long-range magnetostatic interactions become important. A methodology that extends the study of conventional single-element magnetostatics is presented, adding the effect of stacking nanoelements into close proximity in arrays and the consequent interaction effects. This would be very time consuming to model by micromagnetic simulations that are also very vulnerable to artifacts due to cell or boundary condition selection. The proposed method considers an analytical expression valid for short interelement separations and not very costly to evaluate by computational means. This approach allows the quantitative study of shape anisotropy in non-square-shaped arrays. It is also shown how it can be used to find anisotropy compensation conditions, where an anisotropy due to a magnetic element shape can be compensated by the shape anisotropy due to the array. The obtained results can be used to establish a criterion for the minimum number of elements to be considered for a micromagnetic simulation of an array to be realistic depending on the element size and separation

  12. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  13. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Altered time course of amygdala activation during speech anticipation in social anxiety disorder.

    Science.gov (United States)

    Davies, Carolyn D; Young, Katherine; Torre, Jared B; Burklund, Lisa J; Goldin, Philippe R; Brown, Lily A; Niles, Andrea N; Lieberman, Matthew D; Craske, Michelle G

    2017-02-01

    Exaggerated anticipatory anxiety is common in social anxiety disorder (SAD). Neuroimaging studies have revealed altered neural activity in response to social stimuli in SAD, but fewer studies have examined neural activity during anticipation of feared social stimuli in SAD. The current study examined the time course and magnitude of activity in threat processing brain regions during speech anticipation in socially anxious individuals and healthy controls (HC). Participants (SAD n=58; HC n=16) underwent functional magnetic resonance imaging (fMRI) during which they completed a 90s control anticipation task and 90s speech anticipation task. Repeated measures multi-level modeling analyses were used to examine group differences in time course activity during speech vs. control anticipation for regions of interest, including bilateral amygdala, insula, ventral striatum, and dorsal anterior cingulate cortex. The time course of amygdala activity was more prolonged and less variable throughout speech anticipation in SAD participants compared to HCs, whereas the overall magnitude of amygdala response did not differ between groups. Magnitude and time course of activity was largely similar between groups across other regions of interest. Analyses were restricted to regions of interest and task order was the same across participants due to the nature of deception instructions. Sustained amygdala time course during anticipation may uniquely reflect heightened detection of threat or deficits in emotion regulation in socially anxious individuals. Findings highlight the importance of examining temporal dynamics of amygdala responding. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  16. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age

    Science.gov (United States)

    Graham, Alice M.; Buss, Claudia; Rasmussen, Jerod M.; Rudolph, Marc D.; Demeter, Damion V.; Gilmore, John H.; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D.; Fair, Damien A.

    2015-01-01

    The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255

  17. An earlier time of scan is associated with greater threat-related amygdala reactivity.

    Science.gov (United States)

    Baranger, David A A; Margolis, Seth; Hariri, Ahmad R; Bogdan, Ryan

    2017-08-01

    Time-dependent variability in mood and anxiety suggest that related neural phenotypes, such as threat-related amygdala reactivity, may also follow a diurnal pattern. Here, using data from 1,043 young adult volunteers, we found that threat-related amygdala reactivity was negatively coupled with time of day, an effect which was stronger in the left hemisphere (β = -0.1083, p-fdr = 0.0012). This effect was moderated by subjective sleep quality (β = -0.0715, p-fdr = 0.0387); participants who reported average and poor sleep quality had relatively increased left amygdala reactivity in the morning. Bootstrapped simulations suggest that similar cross-sectional samples with at least 300 participants would be able to detect associations between amygdala reactivity and time of scan. In control analyses, we found no associations between time and V1 activation. Our results provide initial evidence that threat-related amygdala reactivity may vary diurnally, and that this effect is potentiated among individuals with average to low sleep quality. More broadly, our results suggest that considering time of scan in study design or modeling time of scan in analyses, as well as collecting additional measures of circadian variation, may be useful for understanding threat-related neural phenotypes and their associations with behavior, such as fear conditioning, mood and anxiety symptoms, and related phenotypes. © The Author (2017). Published by Oxford University Press.

  18. Does the amygdala response correlate with the personality trait 'harm avoidance' while evaluating emotional stimuli explicitly?

    Science.gov (United States)

    Van Schuerbeek, Peter; Baeken, Chris; Luypaert, Robert; De Raedt, Rudi; De Mey, Johan

    2014-05-07

    The affective personality trait 'harm avoidance' (HA) from Cloninger's psychobiological personality model determines how an individual deals with emotional stimuli. Emotional stimuli are processed by a neural network that include the left and right amygdalae as important key nodes. Explicit, implicit and passive processing of affective stimuli are known to activate the amygdalae differently reflecting differences in attention, level of detailed analysis of the stimuli and the cognitive control needed to perform the required task. Previous studies revealed that implicit processing or passive viewing of affective stimuli, induce a left amygdala response that correlates with HA. In this new study we have tried to extend these findings to the situation in which the subjects were required to explicitly process emotional stimuli. A group of healthy female participants was asked to rate the valence of positive and negative stimuli while undergoing fMRI. Afterwards the neural responses of the participants to the positive and to the negative stimuli were separately correlated to their HA scores and compared between the low and high HA participants. Both analyses revealed increased neural activity in the left laterobasal (LB) amygdala of the high HA participants while they were rating the positive and the negative stimuli. Our results indicate that the left amygdala response to explicit processing of affective stimuli does correlate with HA.

  19. Automatic Sex Determination of Skulls Based on a Statistical Shape Model

    Directory of Open Access Journals (Sweden)

    Li Luo

    2013-01-01

    Full Text Available Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females, we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.

  20. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    Science.gov (United States)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  1. Understanding the Shape of the Land and Watersheds Using Simple Models in the Classroom

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Russell, R.; Bergman, J.; Genyuk, J.; Lagrave, M.

    2006-12-01

    Middle school students can gain essential understandings of the Earth and its processes in the classroom by making and manipulating simple models. While no substitute for field experiences, simple models made of easily-obtained materials can foster student understanding of natural environments. Through this collection of hands-on activities, students build and manipulate simple models that demonstrate (1) tectonic processes that shape the land, (2) the shape of the land surface, (3) how the shape of the land influences the distribution of waterways and watersheds, and (4) how the human communities within a watershed are interconnected through use of surface water. The classroom activities described in this presentation are available on Windows to the Universe (www.windows.ucar.edu), a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Windows to the Universe, a long-standing Web resource supporting Earth and space science education, provides users with content about the Earth and space sciences at three levels (beginner, intermediate, and advanced) in English and Spanish. Approximately 80 hands-on classroom activities appropriate for K-12 classrooms are available within the teacher resources section of the Windows to the Universe.

  2. Neonatal Amygdala Lesions and Stress Responsivity in Rats : Relevance to schizophrenia

    NARCIS (Netherlands)

    Terpstra, Jeroen

    2004-01-01

    "Stress responsiveness in an animal model with relevance to schizophrenia” Rats bearing lesions of the amygdala made on postnatal day 7 (D7 AMX) model aspects of neurodevelopmental psychopathologies, such as schizophrenia. Adult D7 AMX rats display impaired pre-pulse inhibition, impaired

  3. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Directory of Open Access Journals (Sweden)

    P. Räisänen

    2017-12-01

    Full Text Available Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR model and in the Los Alamos sea ice model, version 4 (CICE4, both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM. In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH is compared with another (NONSPH in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77–0.78 in the visible region than in the spherical case ( ≈  0.89. Therefore, for the same effective snow grain size (or equivalently, the same specific projected area, the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02–0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. −0.22 W m−2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain

  4. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    Science.gov (United States)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the

  5. Extending the amygdala in theories of threat processing

    Science.gov (United States)

    Fox, Andrew S.; Oler, Jonathan A.; Tromp, Do P.M.; Fudge, Julie L.; Kalin, Ned H.

    2015-01-01

    The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the central extended amygdala's ability to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology. PMID:25851307

  6. Noradrenergic enhancement of amygdala responses to fear

    NARCIS (Netherlands)

    Onur, Oezguer A; Walter, Henrik; Schlaepfer, Thomas E; Rehme, Anne K; Schmidt, Christoph; Keysers, Christian; Maier, Wolfgang; Hurlemann, René

    Multiple lines of evidence implicate the basolateral amygdala (BLA) and the noradrenergic (norepinephrine, NE) system in responding to stressful stimuli such as fear signals, suggesting hyperfunction of both in the development of stress-related pathologies including anxiety disorders. However, no

  7. SDSS-II: Determination of shape and color parameter coefficients for SALT-II fit model

    Energy Technology Data Exchange (ETDEWEB)

    Dojcsak, L.; Marriner, J.; /Fermilab

    2010-08-01

    In this study we look at the SALT-II model of Type IA supernova analysis, which determines the distance moduli based on the known absolute standard candle magnitude of the Type IA supernovae. We take a look at the determination of the shape and color parameter coefficients, {alpha} and {beta} respectively, in the SALT-II model with the intrinsic error that is determined from the data. Using the SNANA software package provided for the analysis of Type IA supernovae, we use a standard Monte Carlo simulation to generate data with known parameters to use as a tool for analyzing the trends in the model based on certain assumptions about the intrinsic error. In order to find the best standard candle model, we try to minimize the residuals on the Hubble diagram by calculating the correct shape and color parameter coefficients. We can estimate the magnitude of the intrinsic errors required to obtain results with {chi}{sup 2}/degree of freedom = 1. We can use the simulation to estimate the amount of color smearing as indicated by the data for our model. We find that the color smearing model works as a general estimate of the color smearing, and that we are able to use the RMS distribution in the variables as one method of estimating the correct intrinsic errors needed by the data to obtain the correct results for {alpha} and {beta}. We then apply the resultant intrinsic error matrix to the real data and show our results.

  8. 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory

    International Nuclear Information System (INIS)

    Mehrabi, R; Kadkhodaei, M

    2013-01-01

    This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)

  9. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  10. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  11. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  12. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... the use of the intensity information in the training images. Experiments on public benchmark data of patients suffering from low- and high-grade gliomas show that the method performs well compared to current state-of-the-art methods, while not being tied to any specific imaging protocol....... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  13. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    Science.gov (United States)

    Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin

    2016-06-01

    Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  14. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    Directory of Open Access Journals (Sweden)

    Andrew eKonya

    2016-06-01

    Full Text Available Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  15. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  16. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    Science.gov (United States)

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  17. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  18. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  19. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  20. Modeling fiber motion in a pulp pressure screen: the effect of slot shape

    International Nuclear Information System (INIS)

    Dong, S.; Salcudean, M.; Gartshore, I.

    2003-01-01

    A pressure screen is a piece of equipment in the pulp and paper industry used either to remove contaminants from the pulp suspension or to separate fibers having different properties. Contaminants such as fiber bundles, bark and plastic specks are introduced when fibers are separated from the wood by mechanical or chemical pulping processes. Contaminants significantly affect the strength and smoothness of the paper and must be removed before the final paper is produced. The screen plate is a critical part of the pressure screen and its design is the key to screen performance. This paper uses a new and comprehensive CFD simulation tool to examine the flow and fiber behavior in a single slot screen having any reasonable slot shape. -This simulation tool includes three coupled models: first, the flow model solves the Reynolds Averaged Navier-Stokes (RANS) equation using the standard k - ε turbulence model to predict the flow field in the equipment. Second, a three-dimensional flexible fiber model is used to track the fiber trajectory in the screen. Third, a very general wall model is used to deal with the case when a fiber touches the equipment wall. The simulated results show that the slot shape has a critical influence on fiber behavior and screen performance. Three general slot shapes were investigated: the smooth slot, the step-step contour slot and slope-slope contour slot. Of these the slope-slope contour slot provides the best passage for the fibers with a length of 1mm and 3mm. (author)

  1. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

    Science.gov (United States)

    Yates, Keegan M; Untaroiu, Costin D

    2018-04-16

    Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  3. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  4. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  5. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  6. Mechanisms Of Saucer-Shaped Sill Emplacement: Insight From Experimental Modeling

    Science.gov (United States)

    Galland, O.; Planke, S.; Malthe-Sørenssen, A.; Polteau, S.; Svensen, H.; Podladchikov, Y. Y.

    2006-12-01

    It has been recently demonstrated that magma intrusions in sedimentary basins had a strong impact on petroleum systems. Most of these intrusions are sills, and especially saucer-shaped sills. These features can be observed in many sedimentary basins (i.e. the Karoo basin, South Africa; the Norwegian and North Sea; the Tunguska basin, Siberia; the Neuquén basin in Argentina). The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes. However, the mechanisms that govern their formation remain poorly constrained. Experiments were conducted to simulate the emplacement of saucer-shaped magma intrusions in sedimentary basins. The model rock and magma were fine-grained silica flour and molten vegetable oil, respectively. This modeling technique allows simultaneous simulation of magma emplacement and brittle deformation at a basin scale. For our purpose, we performed our experiments without external deformation. During the experiments, the oil was injected horizontally at constant flow rate within the silica flour. Then the oil initially emplaced in a sill, whereas the surface of the model inflated into a smooth dome. Subsequently, the oil propagated upwards along inclined sheets, finally reaching the surface at the edge of the dome. The resulting geometries of the intrusions were saucer-shaped sills. Then the oil solidified, and the model was cut in serial cross-sections through which the structures of the intrusive body and of the overburden can be observed. In order to constraint the processes governing the emplacement of such features, we performed a parametric study based on a set of experiments in which we systematically varied parameters such as the depth of emplacement and the injection flow rate of the oil. Our results showed that saucer diameters are larger at deeper level of emplacement. Opposite trend was obtained with varying injection flow rates. Based on our results, we conducted a detailed

  7. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    Science.gov (United States)

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators

    International Nuclear Information System (INIS)

    Sepiani, H.; Ebrahimi, F.; Karimipour, H.

    2009-01-01

    This paper presents a theoretical study of the thermally driven behavior of a shape memory alloy (SMA)/FGM actuator under arbitrary loading and boundary conditions by developing an integrated mathematical model. The model studied is established on the geometric parameters of the three-dimensional laminated composite box beam as an actuator that consists of a functionally graded core integrated with SMA actuator layers with a uniform rectangular cross section. The constitutive equation and linear phase transformation kinetics relations of SMA layers based on Tanaka and Nagaki model are coupled with the governing equation of the actuator to predict the stress history and to model the thermo-mechanical behavior of the smart shape memory alloy/FGM beam. Based on the classical laminated beam theory, the explicit solution to the structural response of the structure, including axial and lateral deflections of the structure, is investigated. As an example, a cantilever box beam subjected to a transverse concentrated load is solved numerically. It is found that the changes in the actuator's responses during the phase transformation due to the strain recovery are significant

  9. A multidimensional stability model for predicting shallow landslide size and shape across landscapes.

    Science.gov (United States)

    Milledge, David G; Bellugi, Dino; McKean, Jim A; Densmore, Alexander L; Dietrich, William E

    2014-11-01

    The size of a shallow landslide is a fundamental control on both its hazard and geomorphic importance. Existing models are either unable to predict landslide size or are computationally intensive such that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes that is capable of predicting shallow landslide size but simple enough to be applied over entire watersheds. It accounts for lateral resistance by representing the forces acting on each margin of potential landslides using earth pressure theory and by representing root reinforcement as an exponential function of soil depth. We test our model's ability to predict failure of an observed landslide where the relevant parameters are well constrained by field data. The model predicts failure for the observed scar geometry and finds that larger or smaller conformal shapes are more stable. Numerical experiments demonstrate that friction on the boundaries of a potential landslide increases considerably the magnitude of lateral reinforcement, relative to that due to root cohesion alone. We find that there is a critical depth in both cohesive and cohesionless soils, resulting in a minimum size for failure, which is consistent with observed size-frequency distributions. Furthermore, the differential resistance on the boundaries of a potential landslide is responsible for a critical landslide shape which is longer than it is wide, consistent with observed aspect ratios. Finally, our results show that minimum size increases as approximately the square of failure surface depth, consistent with observed landslide depth-area data.

  10. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  11. Modeling the preferred shapes of polyamine transporter ligands and dihydromotuporamine-C mimics: shovel versus hoe.

    Science.gov (United States)

    Breitbeil, Fred; Kaur, Navneet; Delcros, Jean-Guy; Martin, Bénédicte; Abboud, Khalil A; Phanstiel, Otto

    2006-04-20

    Preferred conformers generated from motuporamine and anthracene-polyamine derivatives provided insight into the shapes associated with polyamine transporter (PAT) recognition and potentially dihydromotuporamine C (4a) bioactivity. Molecular modeling revealed that N(1)-(anthracen-9-ylmethyl)-3,3-triamine (6a), N(1)-(anthracen-9-ylmethyl)-4,4-triamine (6b), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-3,3-triamine (7a), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-4,4-triamine (7b), and 4a all preferred a hoe motif. This hoe shape was defined by the all-anti polyamine shaft extending above the relatively flat, appended ring system. The hoe geometry was also inferred by the (1)H NMR spectrum of the free amine of 7a (CDCl(3)), which showed a strong shielding effect of the anthracene ring on the chemical shifts associated with the appended polyamine chain. This shielding effect was found to be independent over a broad concentration range of 7a, which also supported an intramolecular phenomenon. The degree of substitution at the N(1)-position seems to be an important determinant of both the molecular shape preferences and biological activity of anthracenylmethyl-polyamine conjugates.

  12. COMPARING 3D FOOT SHAPE MODELS BETWEEN TAIWANESE AND JAPANESE FEMALES.

    Science.gov (United States)

    Lee, Yu-Chi; Kouchi, Makiko; Mochimaru, Masaaki; Wang, Mao-Jiun

    2015-06-01

    This study compares foot shape and foot dimensions between Taiwanese and Japanese females. One hundred Taiwanese and 100 Japanese female 3D foot scanning data were used for comparison. To avoid the allometry effect, data from 23 Taiwanese and 19 Japanese with foot length between 233 to 237 mm were used for shape comparison. Homologous models created for the right feet of the 42 subjects were analyzed by Multidimensional Scaling. The results showed that there were significant differences in the forefoot shape between the two groups, and Taiwanese females had slightly wider feet with straighter big toe than Japanese females. The results of body and foot dimension comparison indicated that Taiwanese females were taller, heavier and had larger feet than Japanese females, while Japanese females had significantly larger toe 1 angle. Since some Taiwanese shoemakers adopt the Japanese shoe sizing system for making shoes, appropriateness of the shoe sizing system was also discussed. The present results provide very useful information for improving shoe last design and footwear fit for Taiwanese females.

  13. The Effect of Sterilization on Size and Shape of Fat Globules in Model Processed Cheese Samples

    Directory of Open Access Journals (Sweden)

    B. Tremlová

    2006-01-01

    Full Text Available Model cheese samples from 4 independent productions were heat sterilized (117 °C, 20 minutes after the melting process and packing with an aim to prolong their durability. The objective of the study was to assess changes in the size and shape of fat globules due to heat sterilization by using image analysis methods. The study included a selection of suitable methods of preparation mounts, taking microphotographs and making overlays for automatic processing of photographs by image analyser, ascertaining parameters to determine the size and shape of fat globules and statistical analysis of results obtained. The results of the experiment suggest that changes in shape of fat globules due to heat sterilization are not unequivocal. We found that the size of fat globules was significantly increased (p < 0.01 due to heat sterilization (117 °C, 20 min, and the shares of small fat globules (up to 500 μm2, or 100 μm2 in the samples of heat sterilized processed cheese were decreased. The results imply that the image analysis method is very useful when assessing the effect of technological process on the quality of processed cheese quality.

  14. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1980-01-01

    The dynamic deformation model has been improved and applied to calculate the potential energies of deformation and the collective spectra of 16 O, 72 Se, and 240 Pu. A comprehensive view based on the dynamics of five-dimensional quadrupole motion is provided for three seemingly different types of shape coexistence: spherical (Op - Oh) and deformed (2p - 2h) shapes in 16 O, spherical and deformed minima in the potential energy surface of 72 Se, ground-state shape and the fission-isomer shape of 240 Pu. 5 figures, 3 tables

  15. Comparison of Different Turbulence Models for Numerical Simulation of Pressure Distribution in V-Shaped Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Zhaoliang Bai

    2017-01-01

    Full Text Available V-shaped stepped spillway is a new shaped stepped spillway, and the pressure distribution is quite different from that of the traditional stepped spillway. In this paper, five turbulence models were used to simulate the pressure distribution in the skimming flow regimes. Through comparing with the physical value, the realizable k-ε model had better precision in simulating the pressure distribution. Then, the flow pattern of V-shaped and traditional stepped spillways was given to illustrate the unique pressure distribution using realizable k-ε turbulence model.

  16. SU-E-I-58: Objective Models of Breast Shape Undergoing Mammography and Tomosynthesis Using Principal Component Analysis.

    Science.gov (United States)

    Feng, Ssj; Sechopoulos, I

    2012-06-01

    To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.

  17. Shape model of the maxillary dental arch using Fourier descriptors with an application in the rehabilitation for edentulous patient.

    Science.gov (United States)

    Rijal, Omar M; Abdullah, Norli A; Isa, Zakiah M; Noor, Norliza M; Tawfiq, Omar F

    2013-01-01

    The knowledge of teeth positions on the maxillary arch is useful in the rehabilitation of the edentulous patient. A combination of angular (θ), and linear (l) variables representing position of four teeth were initially proposed as the shape descriptor of the maxillary dental arch. Three categories of shape were established, each having a multivariate normal distribution. It may be argued that 4 selected teeth on the standardized digital images of the dental casts could be considered as insufficient with respect to representing shape. However, increasing the number of points would create problems with dimensions and proof of existence of the multivariate normal distribution is extremely difficult. This study investigates the ability of Fourier descriptors (FD) using all maxillary teeth to find alternative shape models. Eight FD terms were sufficient to represent 21 points on the arch. Using these 8 FD terms as an alternative shape descriptor, three categories of shape were verified, each category having the complex normal distribution.

  18. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol

    NARCIS (Netherlands)

    Hurlemann, R.; Walter, H.; Rehme, A. K.; Kukolja, J.; Santoro, S. C.; Schmidt, C.; Schnell, K.; Musshoff, F.; Keysers, C.; Maier, W.; Kendrick, K. M.; Onur, O. A.

    Background. Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy

  19. Developmental exposure to an environmental PCB mixture delays the propagation of electrical kindling from the amygdala.

    Science.gov (United States)

    Bandara, Suren B; Sadowski, Renee N; Schantz, Susan L; Gilbert, Mary E

    2017-01-01

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that

  20. Statistical modelling of the interplay between solute shape and rejection in porous membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2012-01-01

    ellipsoid was approximately equal to the radius of the pores, in case the spherical size of the particle was smaller than the membrane pore. Furthermore, for spherical particles larger than the pore, such a maximum was found to occur after the smaller of the radii was smaller than the pore radius. Either...... for spherical particles bigger or smaller than the pore radius, K was monotonically decreasing towards zero as the particles became more elongated. When relating the values of K to the friction model, the maximal rejection coefficient was found to reach a characteristic minimum when changing shape. The results...

  1. Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models

    OpenAIRE

    Wang, Quan

    2012-01-01

    Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which better exploits the complicated spatial structure of high-dimensional features. In this paper, we first review the basic ideas of PCA and kernel PCA. Then we focus on the reconstruction of pre-images for kernel PCA. We also give an introduction on how PCA is used in active shape models (ASMs), and discuss how kernel PCA can be applied ...

  2. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  3. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.

    Science.gov (United States)

    Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark

    2016-01-01

    Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.

  4. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  5. Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy

    International Nuclear Information System (INIS)

    Young, Sung; Nam, Tae-Hyun

    2013-01-01

    Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading

  6. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    Science.gov (United States)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  7. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Science.gov (United States)

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  8. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    Science.gov (United States)

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  9. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    Science.gov (United States)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  10. Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer Cells with a New Biophysical Model.

    Science.gov (United States)

    Batmanov, Kirill; Wang, Junbai

    2017-09-18

    DNA shape readout is an important mechanism of transcription factor target site recognition, in addition to the sequence readout. Several machine learning-based models of transcription factor-DNA interactions, considering DNA shape features, have been developed in recent years. Here, we present a new biophysical model of protein-DNA interactions by integrating the DNA shape properties. It is based on the neighbor dinucleotide dependency model BayesPI2, where new parameters are restricted to a subspace spanned by the dinucleotide form of DNA shape features. This allows a biophysical interpretation of the new parameters as a position-dependent preference towards specific DNA shape features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across various cancer cell lines and cellular conditions. The results reveal that there are DNA shape variations at FOXA1 (Forkhead Box Protein A1) binding sites in steroid-treated MCF7 cells. The new biophysical model is useful for elucidating the finer details of transcription factor-DNA interaction, as well as for predicting cancer mutation effects in the future.

  11. Framing effect following bilateral amygdala lesion

    OpenAIRE

    Talmi, Deborah; Hurlemann, Ren?; Patin, Alexandra; Dolan, Raymond J.

    2010-01-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed ? as a potential loss or a potential gain ? systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral ...

  12. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior.

    Science.gov (United States)

    Ferri, Sarah L; Kreibich, Arati S; Torre, Matthew; Piccoli, Cara T; Dow, Holly; Pallathra, Ashley A; Li, Hongzhe; Bilker, Warren B; Gur, Ruben C; Abel, Ted; Brodkin, Edward S

    2016-10-29

    There is a strong need to better understand the neurobiology of juvenile sociability (tendency to seek social interaction), a phenotype of central relevance to autism spectrum disorders (ASD). Although numerous genetic mouse models of ASD showing reduced sociability have been reported, and certain brain regions, such as the amygdala, have been implicated in sociability, there has been little emphasis on delineating brain structures and circuits activated during social interactions in the critical juvenile period of the mouse strain that serves as the most common genetic background for these models-the highly sociable C57BL/6J (B6) strain. We measured expression of the immediate early genes Fos and Egr-1 to map activation of brain regions following the Social Approach Test (SAT) in juvenile male B6 mice. We hypothesized that juvenile B6 mice would show activation of the amygdala during social interactions. The basolateral amygdala (BLA) was activated by social exposure in highly sociable, 4-week-old B6 mice. In light of these data, and the many lines of evidence indicating alteration of amygdala circuits in human ASD, future studies are warranted to assess structural and functional alterations in the BLA, particularly at BLA synapses, in various mouse models of ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Generation of a statistical shape model with probabilistic point correspondences and the expectation maximization- iterative closest point algorithm

    International Nuclear Information System (INIS)

    Hufnagel, Heike; Pennec, Xavier; Ayache, Nicholas; Ehrhardt, Jan; Handels, Heinz

    2008-01-01

    Identification of point correspondences between shapes is required for statistical analysis of organ shapes differences. Since manual identification of landmarks is not a feasible option in 3D, several methods were developed to automatically find one-to-one correspondences on shape surfaces. For unstructured point sets, however, one-to-one correspondences do not exist but correspondence probabilities can be determined. A method was developed to compute a statistical shape model based on shapes which are represented by unstructured point sets with arbitrary point numbers. A fundamental problem when computing statistical shape models is the determination of correspondences between the points of the shape observations of the training data set. In the absence of landmarks, exact correspondences can only be determined between continuous surfaces, not between unstructured point sets. To overcome this problem, we introduce correspondence probabilities instead of exact correspondences. The correspondence probabilities are found by aligning the observation shapes with the affine expectation maximization-iterative closest points (EM-ICP) registration algorithm. In a second step, the correspondence probabilities are used as input to compute a mean shape (represented once again by an unstructured point set). Both steps are unified in a single optimization criterion which depe nds on the two parameters 'registration transformation' and 'mean shape'. In a last step, a variability model which best represents the variability in the training data set is computed. Experiments on synthetic data sets and in vivo brain structure data sets (MRI) are then designed to evaluate the performance of our algorithm. The new method was applied to brain MRI data sets, and the estimated point correspondences were compared to a statistical shape model built on exact correspondences. Based on established measures of ''generalization ability'' and ''specificity'', the estimates were very satisfactory

  14. Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD.

    Science.gov (United States)

    Tsoory, M M; Vouimba, R M; Akirav, I; Kavushansky, A; Avital, A; Richter-Levin, G

    2008-01-01

    A key assumption in the study of stress-induced cognitive and neurobiological modifications is that alterations in hippocampal functioning after stress are due to an excessive activity exerted by the amygdala on the hippocampus. Research so far focused on stress-induced impairment of hippocampal plasticity and memory but an exposure to stress may simultaneously also result in strong emotional memories. In fact, under normal conditions emotionally charged events are better remembered compared with neutral ones. Results indicate that under these conditions there is an increase in activity within the amygdala that may lead to memory of a different quality. Studying the way emotionality activates the amygdala and the functional impact of this activation we found that the amygdala modulates memory-related processes in other brain areas, such as the hippocampus. However, this modulation is complex, involving both enhancing and suppressing effects, depending on the way the amygdala is activated and the hippocampal subregion examined. The current review summarizes our findings and attempts to put them in context with the impact of an exposure to a traumatic experience, in which there is a mixture of a strong memory of some aspects of the experience but impaired memory of other aspects of that experience. Toward that end, we have recently developed an animal model for the induction of predisposition to stress-related disorders, focusing on the consequences of exposure to stressors during juvenility on the ability to cope with stress in adulthood. Exposing juvenile-stressed rats to an additional stressful challenge in adulthood revealed their impairment to cope with stress and resulted in significant elevation of the amygdala. Interestingly, and similar to our electrophysiological findings, differential effects were observed between the impact of the emotional challenge on CA1 and dentate gyrus subregions of the hippocampus. Taken together, the results indicate that long

  15. [MR spectroscopy of amygdala: investigation of methodology].

    Science.gov (United States)

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  16. Amygdala damage eliminates monetary loss aversion.

    Science.gov (United States)

    De Martino, Benedetto; Camerer, Colin F; Adolphs, Ralph

    2010-02-23

    Losses are a possibility in many risky decisions, and organisms have evolved mechanisms to evaluate and avoid them. Laboratory and field evidence suggests that people often avoid risks with losses even when they might earn a substantially larger gain, a behavioral preference termed "loss aversion." The cautionary brake on behavior known to rely on the amygdala is a plausible candidate mechanism for loss aversion, yet evidence for this idea has so far not been found. We studied two rare individuals with focal bilateral amygdala lesions using a series of experimental economics tasks. To measure individual sensitivity to financial losses we asked participants to play a variety of monetary gambles with possible gains and losses. Although both participants retained a normal ability to respond to changes in the gambles' expected value and risk, they showed a dramatic reduction in loss aversion compared to matched controls. The findings suggest that the amygdala plays a key role in generating loss aversion by inhibiting actions with potentially deleterious outcomes.

  17. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  18. USE OF IMAGE BASED MODELLING FOR DOCUMENTATION OF INTRICATELY SHAPED OBJECTS

    Directory of Open Access Journals (Sweden)

    M. Marčiš

    2016-06-01

    Full Text Available In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.

  19. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    Directory of Open Access Journals (Sweden)

    Kun-Dar Li

    2015-11-01

    Full Text Available In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  20. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    Science.gov (United States)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  1. Amygdala lesions in rhesus macaques decrease attention to threat

    Science.gov (United States)

    Dal Monte, Olga; Costa, Vincent D.; Noble, Pamela L.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2015-01-01

    Evidence from animal and human studies has suggested that the amygdala plays a role in detecting threat and in directing attention to the eyes. Nevertheless, there has been no systematic investigation of whether the amygdala specifically facilitates attention to the eyes or whether other features can also drive attention via amygdala processing. The goal of the present study was to examine the effects of amygdala lesions in rhesus monkeys on attentional capture by specific facial features, as well as gaze patterns and changes in pupil dilation during free viewing. Here we show reduced attentional capture by threat stimuli, specifically the mouth, and reduced exploration of the eyes in free viewing in monkeys with amygdala lesions. Our findings support a role for the amygdala in detecting threat signals and in directing attention to the eye region of faces when freely viewing different expressions. PMID:26658670

  2. Cohesive granular media modelization with non-convex particles shape: Application to UO2 powder compaction

    International Nuclear Information System (INIS)

    Saint-Cyr, B.

    2011-01-01

    We model in this work granular materials composed of non-convex and cohesive aggregates, in view of application to the rheology of UO 2 powders. The effect of non convexity is analyzed in terms of bulk quantities (Coulomb internal friction and cohesion) and micromechanical parameters such as texture anisotropy and force transmission. In particular, we find that the packing fraction evolves in a complex manner with the shape non convexity and the shear strength increases but saturates due to interlocking between the aggregates. We introduce simple models to describe these features in terms of micro-mechanical parameters. Furthermore, a systematic investigation of shearing, uniaxial compaction and simple compression of cohesive packings show that bulk cohesion increases with non-convexity but is strongly influenced by the boundary conditions and shear bands or stress concentration. (author) [fr

  3. Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading

    Science.gov (United States)

    Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.

    2018-05-01

    A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.

  4. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research.

    Science.gov (United States)

    Woods, Christopher; Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia; Dickinson, Alexander

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets.

  5. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research.

    Directory of Open Access Journals (Sweden)

    Christopher Woods

    Full Text Available This paper introduces statistical shape modelling (SSM for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA. Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA and reconstruction from partial datasets.

  6. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    Science.gov (United States)

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  8. Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape

    International Nuclear Information System (INIS)

    Serinaldi, Francesco

    2011-01-01

    In the context of the liberalized and deregulated electricity markets, price forecasting has become increasingly important for energy company's plans and market strategies. Within the class of the time series models that are used to perform price forecasting, the subclasses of methods based on stochastic time series and causal models commonly provide point forecasts, whereas the corresponding uncertainty is quantified by approximate or simulation-based confidence intervals. Aiming to improve the uncertainty assessment, this study introduces the Generalized Additive Models for Location, Scale and Shape (GAMLSS) to model the dynamically varying distribution of prices. The GAMLSS allow fitting a variety of distributions whose parameters change according to covariates via a number of linear and nonlinear relationships. In this way, price periodicities, trends and abrupt changes characterizing both the position parameter (linked to the expected value of prices), and the scale and shape parameters (related to price volatility, skewness, and kurtosis) can be explicitly incorporated in the model setup. Relying on the past behavior of the prices and exogenous variables, the GAMLSS enable the short-term (one-day ahead) forecast of the entire distribution of prices. The approach was tested on two datasets from the widely studied California Power Exchange (CalPX) market, and the less mature Italian Power Exchange (IPEX). CalPX data allow comparing the GAMLSS forecasting performance with published results obtained by different models. The study points out that the GAMLSS framework can be a flexible alternative to several linear and nonlinear stochastic models. - Research Highlights: ► Generalized Additive Models for Location, Scale and Shape (GAMLSS) are used to model electricity prices' time series. ► GAMLSS provide the entire dynamicaly varying distribution function of prices resorting to a suitable set of covariates that drive the instantaneous values of the parameters

  9. Impact of family history and depression on amygdala volume.

    LENUS (Irish Health Repository)

    Saleh, Karim

    2012-07-30

    Family history of depression significantly impacts life-long depression risk. Family history could impact the stress and emotion regulation system that involves the amygdala. This study\\'s purpose was to investigate family history\\'s effect on amygdala volumes, and differences in first degree relatives with and without major depressive disorder (MDD). Participants, aged 18-65, were healthy volunteers (N=52) with (n=26) and without (n=26) first degree family history, and patients with MDD (N=48) with (n=27) and without (n=21)first-degree family history recruited for structural magnetic resonance imaging (MRI). Participants underwent clinical assessment followed by manual amygdala tracing. Patients with MDD without family history showed significantly larger right amygdala without a family history of MDD. These effects had larger right amygdala than healthy controls without MDD family history. These effects were pronounced in females. Family history and gender impacted amygdala volumes in all participants, providing a rationale for the inconsistent results in MDD amygdala studies. Higher familial risk in depression seems to be associated with smaller amygdala volumes, whereas depression alone is associated with larger amygdala volumes. Ultimately, these findings highlight consideration of family history and gender in research and treatment strategies.

  10. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    Science.gov (United States)

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  11. Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia.

    Science.gov (United States)

    Pinkham, Amy E; Liu, Peiying; Lu, Hanzhang; Kriegsman, Michael; Simpson, Claire; Tamminga, Carol

    2015-08-01

    The amygdala's role in threat perception suggests that increased activation of this region may be related to paranoid ideation. However, investigations of amygdala function in paranoid individuals with schizophrenia, compared with both healthy individuals and nonparanoid individuals with schizophrenia, have consistently reported reduced task-related activation. The reliance of blood-oxygen-level-dependent functional MRI on a contrast between events and baseline, and the inability to quantitatively measure this baseline, may account for these counterintuitive findings. The present study tested for differences in baseline levels of amygdala activity in paranoid and nonparanoid individuals with schizophrenia using arterial spin labeling perfusion MRI. Resting cerebral blood flow (CBF) and task-related activation of the amygdala were measured in 25 healthy individuals, 16 individuals with schizophrenia who were actively paranoid at the time of scanning, and 16 individuals with schizophrenia who were not paranoid. Analysis of relative CBF values extracted from the amygdala bilaterally revealed significantly increased activity in the left amygdala in paranoid patient volunteers compared with healthy comparison subjects and nonparanoid patient volunteers. Increased CBF was also evident in the right amygdala but did not reach the level of statistical significance. Paranoid volunteers also showed significantly decreased task-related activation of the amygdala compared with the two other groups. These findings suggest that amygdala hyperactivation may underlie paranoia in schizophrenia. Additionally, the reported differences between paranoid and nonparanoid patient volunteers emphasize the importance of considering symptom-based subgroups and baseline levels of activity in future investigations of neural activation in schizophrenia.

  12. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; van den Munkhof, H.E.; Reneman, L.; Homberg, J.R.; Sabbe, B.; van den Brink, W.; van Wingen, G.

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  13. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Kaag, Anne Marije; van den Munkhof, Hanna E.; Reneman, Liesbeth; Homberg, Judith R.; Sabbe, Bernard; van den Brink, Wim; van Wingen, Guido

    2015-01-01

    Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal

  14. Efficient Measurement of Shape Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method

    Directory of Open Access Journals (Sweden)

    In Kyu Park

    2002-10-01

    Full Text Available Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for 3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the 3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast and accurate measurement of shape dissimilarity for different types of 3D object models.

  15. An analytical model of a curved beam with a T shaped cross section

    Science.gov (United States)

    Hull, Andrew J.; Perez, Daniel; Cox, Donald L.

    2018-03-01

    This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.

  16. Rapid automated superposition of shapes and macromolecular models using spherical harmonics.

    Science.gov (United States)

    Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I

    2016-06-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.

  17. Tracking boundary movement and exterior shape modelling in lung EIT imaging

    International Nuclear Information System (INIS)

    Biguri, A; Soleimani, M; Grychtol, B; Adler, A

    2015-01-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT. (paper)

  18. Tracking boundary movement and exterior shape modelling in lung EIT imaging.

    Science.gov (United States)

    Biguri, A; Grychtol, B; Adler, A; Soleimani, M

    2015-06-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT.

  19. Prospective Validation of a High Dimensional Shape Model for Organ Motion in Intact Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Casey W.; Green, Garrett; Noticewala, Sonal S.; Li, Nan; Shen, Hanjie [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Vaida, Florin [Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California (United States); Mell, Loren K., E-mail: lmell@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2016-11-15

    Purpose: Validated models are needed to justify strategies to define planning target volumes (PTVs) for intact cervical cancer used in clinical practice. Our objective was to independently validate a previously published shape model, using data collected prospectively from clinical trials. Methods and Materials: We analyzed 42 patients with intact cervical cancer treated with daily fractionated pelvic intensity modulated radiation therapy and concurrent chemotherapy in one of 2 prospective clinical trials. We collected online cone beam computed tomography (CBCT) scans before each fraction. Clinical target volume (CTV) structures from the planning computed tomography scan were cast onto each CBCT scan after rigid registration and manually redrawn to account for organ motion and deformation. We applied the 95% isodose cloud from the planning computed tomography scan to each CBCT scan and computed any CTV outside the 95% isodose cloud. The primary aim was to determine the proportion of CTVs that were encompassed within the 95% isodose volume. A 1-sample t test was used to test the hypothesis that the probability of complete coverage was different from 95%. We used mixed-effects logistic regression to assess effects of time and patient variability. Results: The 95% isodose line completely encompassed 92.3% of all CTVs (95% confidence interval, 88.3%-96.4%), not significantly different from the 95% probability anticipated a priori (P=.19). The overall proportion of missed CTVs was small: the grand mean of covered CTVs was 99.9%, and 95.2% of misses were located in the anterior body of the uterus. Time did not affect coverage probability (P=.71). Conclusions: With the clinical implementation of a previously proposed PTV definition strategy based on a shape model for intact cervical cancer, the probability of CTV coverage was high and the volume of CTV missed was low. This PTV expansion strategy is acceptable for clinical trials and practice; however, we recommend daily

  20. Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes.

    Science.gov (United States)

    Pelloni, Stefano; Lazzeretti, Paolo

    2018-01-05

    Assuming that graphene is an "infinite alternant" polycyclic aromatic hydrocarbon resulting from tessellation of a surface by only six-membered carbon rings, planar fragments of various size and shape (hexagon, triangle, rectangle, and rhombus) have been considered to investigate their response to a magnetic field applied perpendicularly. Allowing for simple polygonal current models, the diatropicity of a series of polycyclic textures has been reliably determined by comparing quantitative indicators, the π-electron contribution to I B , the magnetic field-induced current susceptibility of the peripheral circuit, to ξ∥ and to σ∥(CM)=-NICS∥(CM), respectively the out-of-plane components of the magnetizability tensor and of the magnetic shielding tensor at the center of mass. Extended numerical tests and the analysis based on the polygonal model demonstrate that (i) ξ∥ and σ∥(CM) yield inadequate and sometimes erroneous measures of diatropicity, as they are heavily flawed by spurious geometrical factors, (ii) I B values computed by simple polygonal models are valid quantitative indicators of aromaticity on the magnetic criterion, preferable to others presently available, whenever current susceptibility cannot be calculated ab initio as a flux integral, (iii) the hexagonal shape is the most effective to maximize the strength of π-electron currents over the molecular perimeter, (iv) the edge current strength of triangular and rhombic graphene fragments is usually much smaller than that of hexagonal ones, (v) doping by boron and nitrogen nuclei can regulate and even inhibit peripheral ring currents, (vi) only for very large rectangular fragments can substantial current strengths be expected. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Probabilistic models for 2D active shape recognition using Fourier descriptors and mutual information

    CSIR Research Space (South Africa)

    Govender, N

    2014-08-01

    Full Text Available information to improve the initial shape recognition results. We propose an initial system which performs shape recognition using the euclidean distances of Fourier descriptors. To improve upon these results we build multinomial and Gaussian probabilistic...

  2. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  3. On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Hanken, Katrin; Francis, Yoselin; Kastrup, Andreas; Eling, Paul; Klein, Jan; Hildebrandt, Helmut

    2018-02-01

    Recently, we proposed a model explaining the origin of fatigue in multiple sclerosis (MS) patients. This model assumes that the feeling of fatigue results from inflammation-induced information processing within interoceptive brain areas. To investigate the association between self-reported cognitive fatigue and structural integrity of interoceptive brain areas in MS patients. 95 MS patients and 28 healthy controls participated in this study. All participants underwent diffusion tensor MRI and fractional anisotropy data were calculated for the amygdala, the stria terminalis and the corpus callosum, a non-interoceptive brain area. Based on the cognitive fatigue score of the Fatigue Scale for Motor and Cognition, patients were divided into moderately cognitively fatigued (cognitive fatigue score ≥ 28) and cognitively non-fatigued (cognitive fatigue score < 28) MS patients. Healthy controls were recruited as a third group. Repeated measures analyses of covariance, controlling for age, depression and brain atrophy, were performed to investigate whether the factor Group had a significant effect on the fractional anisotropy data. A significant effect of Group was observed for the amygdala (F = 3.389, p = 0.037). MS patients without cognitive fatigue presented lower values of the amygdala than MS patients with cognitive fatigue and healthy controls. For the stria terminalis and the corpus callosum, no main effect of Group was observed. The structural integrity of the amygdala in non-fatigued MS patients appears to be reduced. According to our model this might indicate that the absence of fatigue in non-fatigued MS patients might result from disturbed inflammation-induced information processing in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modeling size effects on the transformation behavior of shape memory alloy micropillars

    International Nuclear Information System (INIS)

    Hernandez, Edwin A Peraza; Lagoudas, Dimitris C

    2015-01-01

    The size dependence of the thermomechanical response of shape memory alloys (SMAs) at the micro and nano-scales has gained increasing attention in the engineering community due to existing and potential uses of SMAs as solid-state actuators and components for energy dissipation in small scale devices. Particularly, their recent uses in microelectromechanical systems (MEMS) have made SMAs attractive options as active materials in small scale devices. One factor limiting further application, however, is the inability to effectively and efficiently model the observed size dependence of the SMA behavior for engineering applications. Therefore, in this work, a constitutive model for the size-dependent behavior of SMAs is proposed. Experimental observations are used to motivate the extension of an existing thermomechanical constitutive model for SMAs to account for the scale effects. It is proposed that such effects can be captured via characteristic length dependent material parameters in a power-law manner. The size dependence of the transformation behavior of NiFeGa micropillars is investigated in detail and used as model prediction cases. The constitutive model is implemented in a finite element framework and used to simulate and predict the response of SMA micropillars with different sizes. The results show a good agreement with experimental data. A parametric study performed using the calibrated model shows that the influence of micropillar aspect ratio and taper angle on the compression response is significantly smaller than that of the micropillar average diameter. It is concluded that the model is able to capture the size dependent transformation response of the SMA micropillars. In addition, the simplicity of the calibration and implementation of the proposed model make it practical for the design and numerical analysis of small scale SMA components that exhibit size dependent responses. (paper)

  5. Improved radiograph measurement inter-observer reliability by use of statistical shape models

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, E.C., E-mail: elise.pegg@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Mellon, S.J., E-mail: stephen.mellon@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Salmon, G. [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Alvand, A., E-mail: abtin.alvand@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Pandit, H., E-mail: hemant.pandit@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Murray, D.W., E-mail: david.murray@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom); Gill, H.S., E-mail: richie.gill@ndorms.ox.ac.uk [University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD (United Kingdom)

    2012-10-15

    Pre- and post-operative radiographs of patients undergoing joint arthroplasty are often examined for a variety of purposes including preoperative planning and patient assessment. This work examines the feasibility of using active shape models (ASM) to semi-automate measurements from post-operative radiographs for the specific case of the Oxford™ Unicompartmental Knee. Measurements of the proximal tibia and the position of the tibial tray were made using the ASM model and manually. Data were obtained by four observers and one observer took four sets of measurements to allow assessment of the inter- and intra-observer reliability, respectively. The parameters measured were the tibial tray angle, the tray overhang, the tray size, the sagittal cut position, the resection level and the tibial width. Results demonstrated improved reliability (average of 27% and 11.2% increase for intra- and inter-reliability, respectively) and equivalent accuracy (p > 0.05 for compared data values) for all of the measurements using the ASM model, with the exception of the tray overhang (p = 0.0001). Less time (15 s) was required to take measurements using the ASM model compared with manual measurements, which was significant. These encouraging results indicate that semi-automated measurement techniques could improve the reliability of radiographic measurements.

  6. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data

  7. Improved radiograph measurement inter-observer reliability by use of statistical shape models

    International Nuclear Information System (INIS)

    Pegg, E.C.; Mellon, S.J.; Salmon, G.; Alvand, A.; Pandit, H.; Murray, D.W.; Gill, H.S.

    2012-01-01

    Pre- and post-operative radiographs of patients undergoing joint arthroplasty are often examined for a variety of purposes including preoperative planning and patient assessment. This work examines the feasibility of using active shape models (ASM) to semi-automate measurements from post-operative radiographs for the specific case of the Oxford™ Unicompartmental Knee. Measurements of the proximal tibia and the position of the tibial tray were made using the ASM model and manually. Data were obtained by four observers and one observer took four sets of measurements to allow assessment of the inter- and intra-observer reliability, respectively. The parameters measured were the tibial tray angle, the tray overhang, the tray size, the sagittal cut position, the resection level and the tibial width. Results demonstrated improved reliability (average of 27% and 11.2% increase for intra- and inter-reliability, respectively) and equivalent accuracy (p > 0.05 for compared data values) for all of the measurements using the ASM model, with the exception of the tray overhang (p = 0.0001). Less time (15 s) was required to take measurements using the ASM model compared with manual measurements, which was significant. These encouraging results indicate that semi-automated measurement techniques could improve the reliability of radiographic measurements

  8. Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model

    International Nuclear Information System (INIS)

    Mäntynen, Ville; Konttila, Teijo; Stenroos, Matti

    2014-01-01

    Solving the inverse problem of electrocardiography (ECG) and magnetocardiography (MCG) is often referred to as cardiac source imaging. Spatial properties of ECG and MCG as imaging systems are, however, not well known. In this modelling study, we investigate the sensitivity and point-spread function (PSF) of ECG, MCG, and combined ECG+MCG as a function of source position and orientation, globally around the ventricles: signal topographies are modelled using a realistically-shaped volume conductor model, and the inverse problem is solved using a distributed source model and linear source estimation with minimal use of prior information. The results show that the sensitivity depends not only on the modality but also on the location and orientation of the source and that the sensitivity distribution is clearly reflected in the PSF. MCG can better characterize tangential anterior sources (with respect to the heart surface), while ECG excels with normally-oriented and posterior sources. Compared to either modality used alone, the sensitivity of combined ECG+MCG is less dependent on source orientation per source location, leading to better source estimates. Thus, for maximal sensitivity and optimal source estimation, the electric and magnetic measurements should be combined. (paper)

  9. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    Science.gov (United States)

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal

  10. Knee cartilage segmentation using active shape models and local binary patterns

    Science.gov (United States)

    González, Germán.; Escalante-Ramírez, Boris

    2014-05-01

    Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.

  11. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  12. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  13. Neural Models for the Broadside-Coupled V-Shaped Microshield Coplanar Waveguides

    Science.gov (United States)

    Guney, K.; Yildiz, C.; Kaya, S.; Turkmen, M.

    2006-09-01

    This article presents a new approach based on multilayered perceptron neural networks (MLPNNs) to calculate the odd-and even-mode characteristic impedances and effective permittivities of the broadside-coupled V-shaped microshield coplanar waveguides (BC-VSMCPWs). Six learning algorithms, bayesian regulation (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Powell (CGF), are used to train the MLPNNs. The neural results are in very good agreement with the results reported elsewhere. When the performances of neural models are compared with each other, the best and worst results are obtained from the MLPNNs trained by the BR and CGF algorithms, respectively.

  14. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  15. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    When I just joined the Lindor-Larsen group as a fresh PhD student, the Nobel Prize in Chemistry that year was awarded for the development of multiscale models for complex chemical systems" to prize the pioneering works of Martin Karplus, Michael Levitt and Arieh Warshel. As a computational......L), whose conformational dynamics however is still not fully understood. We found modern simulation methods and force elds are able to capture key aspects of how this protein changes its shape, paving the way for future studies for systems that are dicult to study experimentally. In Chapter 3, we...... revisited the problem of accurately quantifying the thermodynamics and kinetics, by following a novel route. In this route both of the forward and backward rates are calculated directly from MD simulations using a recently developed enhanced sampling method, called \\infrequent metadynamics...

  16. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Shariat, Bashir S; Liu, Yinong; Rio, Gerard

    2013-01-01

    To improve actuation controllability of a NiTi shape memory alloy component in applications, it is desirable to create a wide stress window for the stress-induced martensitic transformation in the alloy. One approach is to create functionally graded NiTi with a geometric gradient in the actuation direction. This geometric gradient leads to transformation load and displacement gradients in the structure. This paper reports a study of the pseudoelastic behaviour of geometrically graded NiTi by means of mechanical model analysis and experimentation using three types of sample geometry. Closed-form solutions are obtained for nominal stress–strain variation of such components under cyclic tensile loading and the predictions are validated with experimental data. The geometrically graded NiTi samples exhibit a distinctive positive stress gradient for the stress-induced martensitic transformation and the slope of the stress gradient can be adjusted by sample geometry design. (paper)

  17. Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets

    Science.gov (United States)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.

    2018-05-01

    A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.

  18. Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions

    Science.gov (United States)

    Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.

    2017-12-01

    Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.

  19. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    Science.gov (United States)

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  1. Disorganized Attachment in Infancy Predicts Greater Amygdala Volume in Adulthood

    Science.gov (United States)

    Lyons-Ruth, K.; Pechtel, P.; Yoon, S.A.; Anderson, C.M.; Teicher, M.H.

    2016-01-01

    Early life stress in rodents is associated with increased amygdala volume in adulthood. In humans, the amygdala develops rapidly during the first two years of life. Thus, disturbed care during this period may be particularly important to amygdala development. In the context of a 30-year longitudinal study of impoverished, highly stressed families, we assessed whether disorganization of the attachment relationship in infancy was related to amygdala volume in adulthood. Amygdala volumes were assessed among 18 low-income young adults (8M/10F, 29.33±0.49 years) first observed in infancy (8.5±5.6 months) and followed longitudinally to age 29. In infancy (18.58±1.02 mos), both disorganized infant attachment behavior and disrupted maternal communication were assessed in the standard Strange Situation Procedure (SSP). Increased left amygdala volume in adulthood was associated with both maternal and infant components of disorganized attachment interactions at 18 months of age (overall r = .679, p attachment disturbance in adolescence, were not significantly related to left amygdala volume. Left amygdala volume was further associated with dissociation and limbic irritability in adulthood. Finally, left amygdala volume mediated the prediction from attachment disturbance in infancy to limbic irritability in adulthood. Results point to the likely importance of quality of early care for amygdala development in human children as well as in rodents. The long-term prediction found here suggests that the first two years of life may be an early sensitive period for amygdala development during which clinical intervention could have particularly important consequences for later child outcomes. PMID:27060720

  2. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  3. Shape of the BMI-mortality association by cause of death, using generalized additive models: NHIS 1986-2006.

    Science.gov (United States)

    Zajacova, Anna; Burgard, Sarah A

    2012-03-01

    Numerous studies have examined the association between body mass index (BMI) and mortality. The precise shape of their association, however, has not been established. We use nonparametric methods to determine the relationship between BMI and mortality. Data from the National Health Interview Survey-Linked Mortality Files 1986-2006 for adults aged 50 to 80 are analyzed using a Poisson approach to survival modeling within the generalized additive model (GAM) framework. The BMI-mortality association is more V shaped than U shaped, with the odds of dying rising steeply from the lowest risk point at BMIs of 23 to 26. The association varies considerably by time since interview and cause of death. For instance, the association has an inverted J shape for respiratory causes but is monotonically increasing for diabetes deaths. Our findings have implications for interpreting results from BMI-mortality studies and suggest caution in translating the findings into public health messages.

  4. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    International Nuclear Information System (INIS)

    Ermer, J.J.; Mosher, J.C.; Baillet, S.; Leahy, R.M.

    2001-01-01

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC (6), the total number of forward model evaluations can often approach an order of 10 3 or 10 4 . Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models (7) (or fast approximations described in (1), (7)) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the scalp

  5. Amygdala temporal dynamics: temperamental differences in the timing of amygdala response to familiar and novel faces

    Directory of Open Access Journals (Sweden)

    Shelton Richard C

    2009-12-01

    Full Text Available Abstract Background Inhibited temperament - the predisposition to respond to new people, places or things with wariness or avoidance behaviors - is associated with increased risk for social anxiety disorder and major depression. Although the magnitude of the amygdala's response to novelty has been identified as a neural substrate of inhibited temperament, there may also be differences in temporal dynamics (latency, duration, and peak. We hypothesized that persons with inhibited temperament would have faster responses to novel relative to familiar neutral faces compared to persons with uninhibited temperament. We used event-related functional magnetic resonance imaging to measure the temporal dynamics of the blood oxygen level dependent (BOLD response to both novel and familiar neutral faces in participants with inhibited or uninhibited temperament. Results Inhibited participants had faster amygdala responses to novel compared with familiar faces, and both longer and greater amygdala response to all faces. There were no differences in peak response. Conclusion Faster amygdala response to novelty may reflect a computational bias that leads to greater neophobic responses and represents a mechanism for the development of social anxiety.

  6. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the ''olfactory amygdala''

    International Nuclear Information System (INIS)

    Kevetter, G.A.; Winans, S.S.

    1981-01-01

    The anterior cortical (C1) and posterolateral cortical (C2) nuclei of the amygdala are designated the ''olfactory amygdala'' because they each receive direct projections from the main olfactory bulb. The efferents of these nuclei were traced after stereotaxic placement of 1-5 muCi tritiated proline in the corticomedial amygdala of the male golden hamsters. Following survival times of 12, 24, or 48 hours, 20 micron frozen sections of the brains were processed for light microscopic autoradiography. Efferents from C2 terminate in layers II and III of the olfactory tubercle and in layer Ib of pars ventralis and pars medialis of the anterior olfactory nucleus. Fibers from this nucleus also project to layers I and II of the infralimbic cortex and to the molecular layer of the agranular insular cortex. More posteriorly, fibers from C2 terminate in layer I of the dorsolateral entorhinal cortex, and in the endopiriform nucleus. From C1, efferent fibers travel in the stria terminalis and terminate in the precommissural bed nucleus of the stria terminalis and in the mediobasal hypothalamus. Efferents from C1 also innervate the molecular layer of C2, the amygdalo-hippocampal area, and the adjacent piriform cortex. Neurons in both C1 and C2 project to the molecular layer of the medial amygdaloid nucleus and the posteromedial cortical nucleus of the amygdala, the plexiform layer of the ventral subiculum, and the molecular layer of the lateral entorhinal cortex

  7. Automatic generation of statistical pose and shape models for articulated joints.

    Science.gov (United States)

    Xin Chen; Graham, Jim; Hutchinson, Charles; Muir, Lindsay

    2014-02-01

    Statistical analysis of motion patterns of body joints is potentially useful for detecting and quantifying pathologies. However, building a statistical motion model across different subjects remains a challenging task, especially for a complex joint like the wrist. We present a novel framework for simultaneous registration and segmentation of multiple 3-D (CT or MR) volumes of different subjects at various articulated positions. The framework starts with a pose model generated from 3-D volumes captured at different articulated positions of a single subject (template). This initial pose model is used to register the template volume to image volumes from new subjects. During this process, the Grow-Cut algorithm is used in an iterative refinement of the segmentation of the bone along with the pose parameters. As each new subject is registered and segmented, the pose model is updated, improving the accuracy of successive registrations. We applied the algorithm to CT images of the wrist from 25 subjects, each at five different wrist positions and demonstrated that it performed robustly and accurately. More importantly, the resulting segmentations allowed a statistical pose model of the carpal bones to be generated automatically without interaction. The evaluation results show that our proposed framework achieved accurate registration with an average mean target registration error of 0.34 ±0.27 mm. The automatic segmentation results also show high consistency with the ground truth obtained semi-automatically. Furthermore, we demonstrated the capability of the resulting statistical pose and shape models by using them to generate a measurement tool for scaphoid-lunate dissociation diagnosis, which achieved 90% sensitivity and specificity.

  8. Birth-death models and coalescent point processes: the shape and probability of reconstructed phylogenies.

    Science.gov (United States)

    Lambert, Amaury; Stadler, Tanja

    2013-12-01

    Forward-in-time models of diversification (i.e., speciation and extinction) produce phylogenetic trees that grow "vertically" as time goes by. Pruning the extinct lineages out of such trees leads to natural models for reconstructed trees (i.e., phylogenies of extant species). Alternatively, reconstructed trees can be modelled by coalescent point processes (CPPs), where trees grow "horizontally" by the sequential addition of vertical edges. Each new edge starts at some random speciation time and ends at the present time; speciation times are drawn from the same distribution independently. CPPs lead to extremely fast computation of tree likelihoods and simulation of reconstructed trees. Their topology always follows the uniform distribution on ranked tree shapes (URT). We characterize which forward-in-time models lead to URT reconstructed trees and among these, which lead to CPP reconstructed trees. We show that for any "asymmetric" diversification model in which speciation rates only depend on time and extinction rates only depend on time and on a non-heritable trait (e.g., age), the reconstructed tree is CPP, even if extant species are incompletely sampled. If rates additionally depend on the number of species, the reconstructed tree is (only) URT (but not CPP). We characterize the common distribution of speciation times in the CPP description, and discuss incomplete species sampling as well as three special model cases in detail: (1) the extinction rate does not depend on a trait; (2) rates do not depend on time; (3) mass extinctions may happen additionally at certain points in the past. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Computational Modeling of Shape Memory Polymer Origami that Responds to Light

    Science.gov (United States)

    Mailen, Russell William

    Shape memory polymers (SMPs) transform in response to external stimuli, such as infrared (IR) light. Although SMPs have many applications, this investigation focuses on their use as actuators in self-folding origami structures. Ink patterned on the surface of the SMP sheet absorbs thermal energy from the IR light, which produces localized heating. The material shrinks wherever the activation temperature is exceeded and can produce out-of-plane deformation. The time and temperature dependent response of these SMPs provides unique opportunities for developing complex three-dimensional (3D) structures from initially flat sheets through self-folding origami, but the application of this technique requires predicting accurately the final folded or deformed shape. Furthermore, current computational approaches for SMPs do not fully couple the thermo-mechanical response of the material. Hence, a proposed nonlinear, 3D, thermo-viscoelastic finite element framework was formulated to predict deformed shapes for different self-folding systems and compared to experimental results for self-folding origami structures. A detailed understanding of the shape memory response and the effect of controllable design parameters, such as the ink pattern, pre-strain conditions, and applied thermal and mechanical fields, allows for a predictive understanding and design of functional, 3D structures. The proposed modeling framework was used to obtain a fundamental understanding of the thermo-mechanical behavior of SMPs and the impact of the material behavior on hinged self-folding. These predictions indicated how the thermal and mechanical conditions during pre-strain significantly affect the shrinking and folding response of the SMP. Additionally, the externally applied thermal loads significantly influenced the folding rate and maximum bending angle. The computational framework was also adapted to understand the effects of fully coupling the thermal and mechanical response of the material

  10. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety.

    Science.gov (United States)

    Cohen, Joshua L; Glover, Matthew E; Pugh, Phyllis C; Fant, Andrew D; Simmons, Rebecca K; Akil, Huda; Kerman, Ilan A; Clinton, Sarah M

    2015-01-01

    The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel.

  11. Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2015-08-05

    Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.

  12. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Miller, Dwight Peter

    2006-01-01

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

  13. Modeling the Speed Choice Behaviors of Drivers on Mountainous Roads with Complicated Shapes

    Directory of Open Access Journals (Sweden)

    Yiming Shao

    2015-02-01

    Full Text Available Roadway geometric features and pavement conditions can significantly affect driver behavior, particularly with regard to vehicle speed. This paper presents the development of an algorithm for speed selection for use in automated passenger car travel (without driver input on mountainous roads with complicated shapes. The relationship between favorable driving speed and the geometric features of horizontal curves was established on the basis of driving experiments and spot speed observation data, and speed control models were established for driving on curves, curve approaches/departures, and tangents. The models developed can be used to calculate a driver's desired speed on any roadway with a defined geometry. The model considers the driver's behavior type and the vehicle's dynamic properties. This paper presents the results of simulation experiments on roads with small curve radii and narrow widths. The algorithms developed may be used for assisted and automated driving. Under automated driving conditions, speed control and speed change based on the algorithms developed make drivers feel natural as if they drive the car themselves.

  14. Modelling and assessment of dependent performance shaping factors through Analytic Network Process

    International Nuclear Information System (INIS)

    De Ambroggi, Massimiliano; Trucco, Paolo

    2011-01-01

    Despite continuous progresses in research and applications, one of the major weaknesses of current HRA methods dwells in their limited capability of modelling the mutual influences between performance shaping factors (PSFs). Indeed at least two types of dependencies between PSFs can be defined: (i) dependency between the states of the PSFs; (ii) dependency between the influences (impacts) of the PSFs on the human performance. This paper introduces a method, based on Analytic Network Process (ANP), for the quantification of the latter, where the overall contribution of each PSF (weight) to the human error probability (HEP) is eventually returned. The core of the method is the modelling process, articulated into two steps: firstly, a qualitative network of dependencies between PSFs is identified, then, the importance of each PSF is quantitatively assessed using ANP. The model allows to distinguish two components of the PSF influence: direct influence that is the influence that the considered PSF is able to express by itself, notwithstanding the presence of other PSFs and indirect influence that is the incremental influence of the considered PSF through its influence on other PSFs. A case study in Air Traffic Control is presented where the proposed approach is integrated into the cognitive simulator PROCOS. The results demonstrated a significant modification of the influence of PSFs over the operator performance when dependencies are taken into account, underlining the importance of considering not only the possible correlation between the states of PSFs but also their mutual dependency in affecting human performance in complex systems.

  15. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  16. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  17. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    Science.gov (United States)

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  18. Roles of the basolateral amygdala and hippocampus in social recognition

    NARCIS (Netherlands)

    Gispen, W.H.; Maaswinkel, H.; Baars, A.M.; Spruijt, B.M.

    1996-01-01

    Lesions of the amygdala or hippocampus have a large impact on social behavior of rats. In this study we investigated whether a social recognition test was also affected by those lesions. An NMDA-induced lesion of the basolateral amygdala did not impair the ability to distinguish a familiar from an

  19. Amygdala and hippocampus enlargement during adolescence in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Teluij, M.; Buitelaar, J.K.; Tendolkar, I.

    2010-01-01

    OBJECTIVE: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal

  20. Amygdala reactivity to fearful faces correlates positively with impulsive aggression

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V

    2018-01-01

    Facial expressions robustly activate the amygdala, a brain structure playing a critical role in aggression. Whereas previous studies suggest that amygdala reactivity is related to various measures of impulsive aggression, we here estimate a composite measure of impulsive aggression and evaluate...

  1. Amygdala and Hippocampus Enlargement during Adolescence in Autism

    Science.gov (United States)

    Groen, Wouter; Teluij, Michelle; Buitelaar, Jan; Tendolkar, Indira

    2010-01-01

    Objective: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal volume, findings in adolescence are sparse.…

  2. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  3. Time-dependent effects of corticosteroids on human amygdala processing

    NARCIS (Netherlands)

    Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G.

    2010-01-01

    Acute stress is associated with a sensitized amygdala. Corticosteroids, released in response to stress, are suggested to restore homeostasis by normalizing/desensitizing brain processing in the aftermath of stress. Here, we investigated the effects of corticosteroids on amygdala processing using

  4. Medial Amygdala and Aggressive Behavior : Interaction Between Testosterone and Vasopressin

    NARCIS (Netherlands)

    Koolhaas, J.M.; Roozendaal, B.; Boorsma, F.; Van Den Brink, T.H.C.

    1990-01-01

    This paper considers the functional significance of the testosterone-dependent vasopressinergic neurons of the medial amygdala (Ame) in intermale aggressive behavior of rats. Local microinfusion of vasopressin into the medial amygdala causes an increase in offensive behavior both in gonadally intact

  5. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1979-01-01

    It has been shown that the gross features of the collective spectra of even-even nuclei ranging from 12 C to 240 Pu are reproduced by the dynamic deformation model without any fitting parameters. We apply another test to be same model in the present study. Can this single model explain three seemingly different types of shape co-existence proposed previously: spherical op-oh and deformed 2p-2h shapes in 16 O, spherical and prolate-deformed minima in the potential energy surface of 72 Se, ground state shape and fission isomer shape of 240 Pu. Of these three nuclei, only the nucleus 72 Se is off the line of beta-stability. The calculated potential energy surfaces and collective spectra of 16 O, 72 Se, and 240 Pu are discussed and compared with experiments. The three different kinds of shape coexistence proposed previously for 16 O, 72 Se, and 240 Pu are all reproduced by the present version of the dynamic deformation model within the same model and without any fitting parameters. We conclude that the combination of the dynamics of the nine-dimensional quadrupole and pairing motions with a large space microscopic calculation provides a rather powerful tool for studying practically all even-even nuclei

  6. Amygdala fMRI Signal as a Predictor of Reaction Time

    Directory of Open Access Journals (Sweden)

    Philipp Riedel

    2016-10-01

    importantly, activation in the amygdala predicts behavior in a simple task that is performed during the exposure to threat. This finding is in line with ‘attentional capture by threat’ - a model that includes the amygdala as a key brain region for the process that causes the response slowing.

  7. Short Term Evaluation of an Anatomically Shaped Polycarbonate Urethane Total Meniscus Replacement in a Goat Model.

    Directory of Open Access Journals (Sweden)

    A C T Vrancken

    Full Text Available Since the treatment options for symptomatic total meniscectomy patients are still limited, an anatomically shaped, polycarbonate urethane (PCU, total meniscus replacement was developed. This study evaluates the in vivo performance of the implant in a goat model, with a specific focus on the implant location in the joint, geometrical integrity of the implant and the effect of the implant on synovial membrane and articular cartilage histopathological condition.The right medial meniscus of seven Saanen goats was replaced by the implant. Sham surgery (transection of the MCL, arthrotomy and MCL suturing was performed in six animals. The contralateral knee joints of both groups served as control groups. After three months follow-up the following aspects of implant performance were evaluated: implant position, implant deformation and the histopathological condition of the synovium and cartilage.Implant geometry was well maintained during the three month implantation period. No signs of PCU wear were found and the implant did not induce an inflammatory response in the knee joint. In all animals, implant fixation was compromised due to suture breakage, wear or elongation, likely causing the increase in extrusion observed in the implant group. Both the femoral cartilage and tibial cartilage in direct contact with the implant showed increased damage compared to the sham and sham-control groups.This study demonstrates that the novel, anatomically shaped PCU total meniscal replacement is biocompatible and resistant to three months of physiological loading. Failure of the fixation sutures may have increased implant mobility, which probably induced implant extrusion and potentially stimulated cartilage degeneration. Evidently, redesigning the fixation method is necessary. Future animal studies should evaluate the improved fixation method and compare implant performance to current treatment standards, such as allografts.

  8. Amygdala signals subjective appetitiveness and aversiveness of mixed gambles

    DEFF Research Database (Denmark)

    Gelskov, Sofie V.; Henningsson, Susanne; Madsen, Kristoffer Hougaard

    2015-01-01

    People are more sensitive to losses than to equivalent gains when making financial decisions. We used functional magnetic resonance imaging (fMRI) to illuminate how the amygdala contributes to loss aversion. The blood oxygen level dependent (BOLD) response of the amygdala was mapped while healthy...... individuals were responding to 50/50 gambles with varying potential gain and loss amounts. Overall, subjects demanded twice as high potential gain as loss to accept a gamble. The individual level of loss aversion was expressed by the decision boundary, i.e., the gain-loss ratio at which subjects accepted...... and rejected gambles with equal probability. Amygdala activity increased the more the gain-loss ratio deviated from the individual decision boundary showing that the amygdala codes action value. This response pattern was more strongly expressed in loss aversive individuals, linking amygdala activity...

  9. How the amygdala affects emotional memory by altering brain network properties.

    Science.gov (United States)

    Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno

    2014-07-01

    The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A common polymorphism in a Williams syndrome gene predicts amygdala reactivity and extraversion in healthy adults

    Science.gov (United States)

    Swartz, Johnna R.; Waller, Rebecca; Bogdan, Ryan; Knodt, Annchen R.; Sabhlok, Aditi; Hyde, Luke W.; Hariri, Ahmad R.

    2015-01-01

    Background Williams syndrome (WS), a genetic disorder resulting from hemizygous microdeletion of chromosome 7q11.23, has emerged as a model for identifying the genetic architecture of socioemotional behavior. Recently, common polymorphisms in GTF2I, which is found within the WS microdeletion, have been associated with reduced social anxiety in the general population. Identifying neural phenotypes affected by these polymorphisms will help advance our understanding not only of this specific genetic association but also the broader neurogenetic mechanisms of variability in socioemotional behavior. Methods Through an ongoing parent protocol, the Duke Neurogenetics Study, we measured threat-related amygdala reactivity to fearful and angry facial expressions using functional MRI (fMRI), assessed trait personality using the Revised NEO Personality Inventory, and imputed GTF2I rs13227433 from saliva-derived DNA using custom Illumina arrays. Participants included 808 non-Hispanic Caucasian, African American, and Asian university students. Results The GTF2I rs13227433 AA genotype, previously associated with lower social anxiety, predicted decreased threat-related amygdala reactivity. An indirect effect of GTF2I genotype on the warmth facet of extraversion was mediated by decreased threat-related amygdala reactivity in women but not men. Conclusions A common polymorphism in the WS gene GTF2I associated with reduced social anxiety predicts decreased threat-related amygdala reactivity, which mediates an association between genotype and increased warmth in women. These results are consistent with reduced threat-related amygdala reactivity in WS and suggest that common variation in GTF2I contributes to broader variability in socioemotional brain function and behavior, with implications for understanding the neurogenetic bases of WS as well as social anxiety. PMID:26853120

  11. Amygdala Reactivity and Anterior Cingulate Habituation Predict Posttraumatic Stress Disorder Symptom Maintenance After Acute Civilian Trauma.

    Science.gov (United States)

    Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J

    2017-06-15

    Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    Directory of Open Access Journals (Sweden)

    Prescilla Perrichon

    2017-07-01

    Full Text Available Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.

  14. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    Science.gov (United States)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance

  15. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    International Nuclear Information System (INIS)

    Bulicek, Miroslav; Haslinger, Jaroslav; Malek, Josef; Stebel, Jan

    2009-01-01

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and to the shape optimization problem

  16. Resilience and amygdala function in older healthy and depressed adults.

    Science.gov (United States)

    Leaver, Amber M; Yang, Hongyu; Siddarth, Prabha; Vlasova, Roza M; Krause, Beatrix; St Cyr, Natalie; Narr, Katherine L; Lavretsky, Helen

    2018-04-25

    Previous studies suggest that low emotional resilience may correspond with increased or over-active amygdala function. Complementary studies suggest that emotional resilience increases with age; older adults tend to have decreased attentional bias to negative stimuli compared to younger adults. Amygdala nuclei and related brain circuits have been linked to negative affect, and depressed patients have been demonstrated to have abnormal amygdala function. In the current study, we correlated psychological resilience measures with amygdala function measured with resting-state arterial spin-labelled (ASL) and blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in older adults with and without depression. Specifically, we targeted the basolateral, centromedial, and superficial nuclei groups of the amygdala, which have different functions and brain connections. High levels of psychological resilience correlated with lower basal levels of amygdala activity measured with ASL fMRI. High resilience also correlated with decreased connectivity between amygdala nuclei and the ventral default-mode network independent of depression status. Instead, lower depression symptoms were associated with higher connectivity between the amygdalae and dorsal frontal networks. Future multi-site studies with larger sample size and improved neuroimaging technologies are needed. Longitudinal studies that target resilience to naturalistic stressors will also be a powerful contribution to the field. Our results suggest that resilience in older adults is more closely related to function in ventral amygdala networks, while late-life depression is related to reduced connectivity between the amygdala and dorsal frontal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. An Evolutionary Model of the Environmental Conditions that Shape the Development of Prosociality

    Directory of Open Access Journals (Sweden)

    Daniel Tumminelli O'Brien

    2014-04-01

    Full Text Available The current review presents a model for how prosocial development is driven by sociocognitive mechanisms that have been shaped by natural selection to translate critical environmental factors into locally adaptive levels of prosociality. This is done through a synthesis of two existing literatures. Evolutionary developmental psychologists have demonstrated a biological basis for the emergence of prosocial behavior early in youth, and work based on social learning theory has explored how social experiences can influence prosociality across development. The model forwarded organizes this latter literature in a way that is specific to how the biological mechanisms underpinning prosociality have evolved. This consists of two main psychological mechanisms. 1 A domain-specific program that is responsive to environmental factors that determine the relative success of different levels of prosociality. It uses the local prevalence of prosocial others (i.e., support and expectations for prosocial behavior (i.e., structure to guide prosocial development. 2 The domain-general process of cultural learning, by which youth adopt local social norms based on the examples of others. Implications and hypotheses are articulated for both the sociocognitive structure of the individual and the role of social contexts.

  18. Solvable single-species aggregation-annihilation model for chain-shaped cluster growth

    International Nuclear Information System (INIS)

    Ke Jianhong; Lin Zhenquan; Zheng Yizhuang; Chen Xiaoshuang; Lu Wei

    2007-01-01

    We propose a single-species aggregation-annihilation model, in which an aggregation reaction between two clusters produces an active cluster and an annihilation reaction produces an inert one. By means of the mean-field rate equation, we respectively investigate the kinetic scaling behaviours of three distinct systems. The results exhibit that: (i) for the general aggregation-annihilation system, the size distribution of active clusters consistently approaches the conventional scaling form; (ii) for the system with the self-degeneration of the cluster's activities, it takes the modified scaling form; and (iii) for the system with the self-closing of active clusters, it does not scale. Moreover, the size distribution of inert clusters with small size takes a power-law form, while that of large inert clusters obeys the scaling law. The results also show that all active clusters will eventually transform into inert ones and the inert clusters of any size can be produced by such an aggregation-annihilation process. This model can be used to mimic the chain-shaped cluster growth and can provide some useful predictions for the kinetic behaviour of the system

  19. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  20. Modeling and development of a twisting wing using inductively heated shape memory alloy actuators

    Science.gov (United States)

    Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.

    2015-04-01

    Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.

  1. Scanning electron microscope measurement of width and shape of 10 nm patterned lines using a JMONSEL-modeled library

    Energy Technology Data Exchange (ETDEWEB)

    Villarrubia, J.S., E-mail: john.villarrubia@nist.gov [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vladár, A.E.; Ming, B. [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kline, R.J.; Sunday, D.F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chawla, J.S.; List, S. [Intel Corporation, RA3-252, 5200 NE Elam Young Pkwy, Hillsboro, OR 97124 (United States)

    2015-07-15

    The width and shape of 10 nm to 12 nm wide lithographically patterned SiO{sub 2} lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.

  2. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    Science.gov (United States)

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.

  3. Neuronal Adaptations during Amygdala-Dependent Learning and Memory : Neuronale aanpassingen tijdens Amygdala-afhankelijk leren en geheugen

    NARCIS (Netherlands)

    B.S. Hosseini (Behdokht)

    2016-01-01

    textabstractThe amygdala, a structure deep in the temporal lobe of the brain, is an essential region for emotional and fearful processing. Neuronal coding in the lateral nucleus of the amygdala (LA) endows the brain with the ability to acquire enduring aversive associations, physically represented

  4. A model considering mechanical anisotropy of magnetic-field-induced superelastic strain in magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, Yuping; Yu, Kai

    2013-01-01

    Highlights: ► The model analyzes mechanical anisotropy of magnetic shape memory alloy. ► The numerical evaluation of Eshelby tensor of shape memory alloy is obtained. ► Interaction energy of magnetic shape memory alloy is analyzed. - Abstract: Under applied mechanical load and magnetic field, a micromechanics-based thermodynamic model taking account of mechanical anisotropy of magnetic shape memory alloys (MSMAs) is developed in this work. Considering the crystallographic and magnetic microstructure, the internal state variables are chosen and the model can capture the magnetic shape memory effect caused by the martensitic variant reorientation process. It is assumed that the Gibbs free energy is consisted of the mechanical potential energy of anisotropic matrix, the Zeeman energy and the magnetocrystalline anisotropy energy in the model. In terms of the balance between the thermodynamic driving force derived from the reduction of Gibbs free energy and the resistive force for the variant reorientation, the kinetic equation is established and the Eshelby tensor of anisotropic MSMAs is then obtained by using numerical evaluation. At last, the effects of the anisotropy on interaction energy and macroscopic strain are discussed. The assumption of isotropy tends to underestimate interaction energy and macroscopic strain. The results considering mechanical anisotropy are in good agreement with the experimental data.

  5. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Science.gov (United States)

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James C., E-mail: jross@bwh.harvard.edu [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States); Kindlmann, Gordon L. [Computer Science Department and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Okajima, Yuka; Hatabu, Hiroto [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Díaz, Alejandro A. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 and Department of Pulmonary Diseases, Pontificia Universidad Católica de Chile, Santiago (Chile); Silverman, Edwin K. [Channing Laboratory, Brigham and Women' s Hospital, Boston, Massachusetts 02215 and Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Washko, George R. [Pulmonary and Critical Care Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts 02215 (United States); Dy, Jennifer [ECE Department, Northeastern University, Boston, Massachusetts 02115 (United States); Estépar, Raúl San José [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Surgical Planning Lab, Brigham and Women' s Hospital, Boston, Massachusetts 02215 (United States); Laboratory of Mathematics in Imaging, Brigham and Women' s Hospital, Boston, Massachusetts 02126 (United States)

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  7. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    International Nuclear Information System (INIS)

    Ross, James C.; Kindlmann, Gordon L.; Okajima, Yuka; Hatabu, Hiroto; Díaz, Alejandro A.; Silverman, Edwin K.; Washko, George R.; Dy, Jennifer; Estépar, Raúl San José

    2013-01-01

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and a novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The proposed

  8. Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder.

    Science.gov (United States)

    Buff, Christine; Brinkmann, Leonie; Bruchmann, Maximilian; Becker, Michael P I; Tupak, Sara; Herrmann, Martin J; Straube, Thomas

    2017-11-01

    Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD. © The Author (2017). Published by Oxford University Press.

  9. Oxytocin reduces amygdala activity, increases social interactions, and reduces anxiety-like behavior irrespective of NMDAR antagonism.

    Science.gov (United States)

    Sobota, Rosanna; Mihara, Takuma; Forrest, Alexandra; Featherstone, Robert E; Siegel, Steven J

    2015-08-01

    Standard dopamine therapies for schizophrenia are not efficacious for negative symptoms of the disease, including asociality. This reduced social behavior may be due to glutamatergic dysfunction within the amygdala, leading to increased fear and social anxiety. Several studies have demonstrated the prosocial effects of oxytocin in schizophrenia patients. Therefore, this study evaluates the effect of subchronic oxytocin on EEG activity in amygdala of mice during performance of the three-chamber social choice and open field tests following acute ketamine as a model of glutamatergic dysfunction. Oxytocin did not restore social deficits introduced by ketamine but did significantly increase sociality in comparison to the control group. Ketamine had no effect on time spent in the center during the open field trials, whereas oxytocin increased overall center time across all groups, suggesting a reduction in anxiety. Amygdala activity was consistent across all drug groups during social and nonsocial behavioral trials. However, oxytocin reduced overall amygdala EEG power during the two behavioral tasks. Alternatively, ketamine did not significantly affect EEG power throughout the tasks. Decreased EEG power in the amygdala, as caused by oxytocin, may be related to both reduced anxiety and increased social behaviors. Data suggest that separate prosocial and social anxiety pathways may mediate social preference. (c) 2015 APA, all rights reserved).

  10. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science