WorldWideScience

Sample records for modeling alternative circuit

  1. A study on the equivalent electric circuit simulation model of DBD streamer and glow alternate discharge

    International Nuclear Information System (INIS)

    Yao, J; Zhang, Z T; Xu, S J; Yu, Q X; Yu, Z; Zhao, J S

    2013-01-01

    This paper presents a dynamic simulating model of the dielectric barrier discharge (DBD), structured as an equivalent electric circuit of the streamer and glow discharge generated alternately in DBD. The main parameters of DBD have been established by means of analysing the structural characteristics of a single discharge cell. An electrical comprehensive Simulink /MATLAB model was developed in order to reveal the interaction of the adjacent two discharge cell. A series of simulations was carried out in order to estimate the key structural parameters that affect the alternate streamer and glow discharge mode. The comparison results of experimental and simulate indicate that there exists a close similarity of the current waveforms graphic. Therefore, we can grasp a deep understanding mechanism of the dielectric barrier discharge and optimize the plasma reactor.

  2. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  3. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  4. The "Brightness Rules" Alternative Conception for Light Bulb Circuits

    Science.gov (United States)

    Bryan, Joel A.; Stuessy, Carol

    2006-01-01

    An alternative conception for the observed differences in light bulb brightness was revealed during an unguided inquiry investigation in which prospective elementary teachers placed identical bulbs in series, parallel, and combination direct current circuits. Classroom observations, document analyses, and video and audio transcriptions led to the…

  5. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    Science.gov (United States)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  6. Electric circuit coupling of a slotted semi-analytical model for induction motors based on harmonic modeling

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Waarma, J.; Lomonova, E.A.

    2014-01-01

    The use of empirically determined coefficients to include the effects of leakage and fringing flux is a large drawback of traditional induction motor (IM) models, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models. As an alternative, Finite Element Analysis (FEA) is

  7. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...

  8. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  9. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    International Nuclear Information System (INIS)

    Mian, Muhammad Umer; Khir, M. H. Md.; Tang, T. B.; Dennis, John Ojur; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.

    2015-01-01

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used

  10. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B. [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Dennis, John Ojur [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Riaz, Kashif; Iqbal, Abid [Faculty of Electronics Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhaw (Pakistan); Bazaz, Shafaat A. [Department of Computer Science, Center for Advance Studies in Engineering, Islamabad (Pakistan)

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  11. Superconducting high current magnetic Circuit: Design and Parameter Estimation of a Simulation Model

    CERN Document Server

    Kiefer, Alexander; Reich, Werner Dr

    The Large Hadron Collider (LHC) utilizes superconducting main dipole magnets that bend the trajectory of the particle beams. In order to adjust the not completely homogeneous magnetic feld of the main dipole magnets, amongst others, sextupole correctcorrector magnets are used. In one of the 16 corrector magnet circuits placed in the LHC, 154 of these sextupole corrector magnets (MCS) are connected in series. This circuit extends on a 3.35 km tunnel section of the LHC. In 2015, at one of the 16 circuits a fault was detected. The simulation of this circuit is helpful for fnding the fault by applying alternating current at different frequencies. Within this Thesis a PSpice model for the simulation of the superconducting corrector magnet circuit was designed. The physical properties of the circuit and its elements were analyzed and implemented. For the magnets and bus-bars, sub-circuits were created which reflect the parasitic effects of electrodynamics and electrostats. The inductance values and capacitance valu...

  12. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  13. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1992-06-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  14. Circuit modeling on polyaniline functionalized nanowire-templated micro-interdigital capacitors for pH sensing

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, A.; Mátéfi-Tempfli, Stefan

    2011-01-01

    This study presents an improved alternative current (ac) circuit modeling of a highly sensitive capacitive pH-sensing element based on polyaniline (PANI) functionalized nanowire-templated micro-interdigited electrodes (NWs μIDEs). While electrical resonance measurements deal with a total equivale...

  15. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  16. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  17. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, M. A. A.

    2016-08-18

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  18. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  19. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...... in the semiconductor industry. Circuit simulation proceeds by using Maxwell’s equations to create a mathematical model of the circuit. The boundary element method is then used to discretize the equations, and the variational form of the equations are then solved on the graph network....

  20. Equivalent Circuit Modeling of Hysteresis Motors

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  1. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.

  2. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Han, Bong Soo; Kim, Seung Hyup

    2016-01-01

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings

  3. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  4. Semiconductor device models for circuit simulation power electronics; Modeles de composants semiconducteurs pour la simulation des circuits en electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Berraies, M.O.

    1998-09-10

    In this thesis, an alternative strategy based on a regional approach to modeling and a new partition of the model library in the simulation is proposed. The main objective is to substitute for the usual concept of `one device, on model` that of an adaptable assembly of a limited number of submodels associated with well-identified regions of semiconductor structures. In other words, the library will only contain the primitive building-blocks of the power device models. This strategy guarantees the compatibility of the various semiconductor models in terms of physical concepts, validity domain, accuracy, homogeneity of parameter identification procedures, similarly of implementation in the simulator. This approach has been applied to PIN diodes and IGBTs for experimental validation. The next step consisted on the simulation of circuit involving several interacting devices. A simple IGBT/PIN diode chopper cell has been chosen. The results obtained compare well with experiment. This demonstrates the consistency of the proposed approach. (author) 43 refs.

  5. Methods and models for accelerating dynamic simulation of fluid power circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aaman, R.

    2011-07-01

    The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation

  6. Arc modelling in SF6 circuit breakers

    International Nuclear Information System (INIS)

    Verite, J.C.; Boucher, T.; Comte, A.; Delalondre, C.; Robin-Jouan, P.; Serres, E.; Texier, V.; Barrault, M.; Chevrier, P.; Fievet, C.

    1995-06-01

    The paper presents the work done by an operator, EDF and two manufacturers to improve the physical models and numerical methods used to simulate the behavior of the plasma and cold gas around it in a breaking chamber of the HV SF6 circuit breaker, during the high-current phase. This work concerns flow phenomena, in particular incorporating compressibility and the study of turbulence, the coupling between these flow phenomena and electromagnetic phenomena, and finally, radiation - which plays an essential role in energy transfer during the high-current phase. For this latter aspect, emission but also absorption were proven to play a major role, and the two were introduced into the models. The paper presents the models developed and the results obtained with them for simulation of two circuit breaker mock-ups (a double-pressure circuit breaker mock-up and a self-expanding and rotating arc circuit breaker mock-up). (author)

  7. The Short Circuit Model of Reading.

    Science.gov (United States)

    Lueers, Nancy M.

    The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…

  8. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  9. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  10. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    Science.gov (United States)

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of

  11. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    Science.gov (United States)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2015-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  12. Application of Circuit Model for Photovoltaic Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Natarajan Pandiarajan

    2012-01-01

    Full Text Available Circuit model of photovoltaic (PV module is presented in this paper that can be used as a common platform by material scientists and power electronic circuit designers to develop better PV power plant. Detailed modeling procedure for the circuit model with numerical dimensions is presented using power system blockset of MATLAB/Simulink. The developed model is integrated with DC-DC boost converter with closed-loop control of maximum power point tracking (MPPT algorithm. Simulation results are validated with the experimental setup.

  13. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    Science.gov (United States)

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Arc modelling in SF{sub 6} circuit breakers

    Energy Technology Data Exchange (ETDEWEB)

    Verite, J.C. [Electricite de France, Clamart (France). Derection des Etudes et Recherches; Boucher, T.; Comte, A. [Electricite de France, Moret sur Loing (France). Direction des Etudes et Recherches; Delalondre, C. [Electricite de France, Chatou (France). Direction des Etudes et Recherches; Robin-Jouan, P.; Serres, E.; Texier, V. [GEC Alsthom, Villeurbanne (France). Direction Technique Haute et Moyenne Tension; Barrault, M.; Chevrier, P.; Fievet, C. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France). Merlin Gerin

    1995-06-01

    The paper presents the work done by an operator, EDF and two manufacturers to improve the physical models and numerical methods used to simulate the behavior of the plasma and cold gas around it in a breaking chamber of the HV SF6 circuit breaker, during the high-current phase. This work concerns flow phenomena, in particular incorporating compressibility and the study of turbulence, the coupling between these flow phenomena and electromagnetic phenomena, and finally, radiation - which plays an essential role in energy transfer during the high-current phase. For this latter aspect, emission but also absorption were proven to play a major role, and the two were introduced into the models. The paper presents the models developed and the results obtained with them for simulation of two circuit breaker mock-ups (a double-pressure circuit breaker mock-up and a self-expanding and rotating arc circuit breaker mock-up). (author) 10 refs.

  15. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal

    2017-01-09

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  16. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal; Fariborzi, Hossein

    2017-01-01

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  17. A perturbation-based model for rectifier circuits

    Directory of Open Access Journals (Sweden)

    Vipin B. Vats

    2006-01-01

    Full Text Available A perturbation-theoretic analysis of rectifier circuits is presented. The governing differential equation of the half-wave rectifier with capacitor filter is analyzed by expanding the output voltage as a Taylor series with respect to an artificially introduced parameter in the nonlinearity of the diode characteristic as is done in quantum theory. The perturbation parameter introduced in the analysis is independent of the circuit components as compared to the method presented by multiple scales. The various terms appearing in the perturbation series are then modeled in the form of an equivalent circuit. This model is subsequently used in the analysis of full-wave rectifier. Matlab simulation results are included which confirm the validity of the theoretical formulations. Perturbation analysis acts a helpful tool in analyzing time-varying systems and chaotic systems.

  18. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  19. Short-Circuit Modeling of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  20. Circuit oriented electromagnetic modeling using the PEEC techniques

    CERN Document Server

    Ruehli, Albert; Jiang, Lijun

    2017-01-01

    This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.

  1. Development of alternating current circuit simulation as essential learning support for senior high school student

    Directory of Open Access Journals (Sweden)

    Mayang Dwinta Trisniarti

    2017-02-01

    Full Text Available In this study an interactive simulation of Alternating Current circuit was developed by using Articulate Storyline 2 and Adobe Flash CS 6 programs. The aim of this study was providing a computer interactive simulation as essential learning support for Senior High School student. One of the most important features of AC circuit simulation is the easily and continuous material to attain learning objectivity and interest toward students. This AC circuit simulation is built to create real-time sine wave graphs so that student could compare the result if the variable were changed gradually. The validation is held through several experts and reviewers due to get obtained through questionnaires. The results of this research could be concluded that AC circuit simulation for Senior High School Physics have good criteria based on user interface, i.e. 50% of respondents rated enough, 16.67% of respondents rated good, and 33.33% of respondents rated very good. Based on maintenance, i.e. 50% of respondents rated enough, 20% of respondents rated good, and 30% of respondents rated very good. Then based on usability, i.e. 6.67% of respondents rated good and 93.33% rated very good. Furthermore, based on understanding, i.e. 6.67% of respondents rated enough, 30% of respondents rated good, and 73.33% of respondents rated very good. The use of AC circuit simulation could improve the senior high school students’ cognitive ability on the Physics’s course, i.e. with the average score increased from 68.67 to 80.5 based on 30 students.

  2. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large......, and rated voltage/current are opposed to shift in time to effect early breaking during the normal operation of the circuit. Therefore, in such cases, a reliable protection required for the other circuit components will not be achieved. The thermo-mechanical models, fatigue analysis and thermo...

  3. Resilience of the quantum Rabi model in circuit QED

    International Nuclear Information System (INIS)

    Manucharyan, Vladimir E; Baksic, Alexandre; Ciuti, Cristiano

    2017-01-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads. (paper)

  4. Lumped element modelling of superconducting circuits with SPICE

    CERN Document Server

    Baveco, Maurice Antoine

    2015-01-01

    In this project research is carried out aimed at benchmarking a general-purpose circuit simulation software tool (”SPICE”). The project lasted for 8 weeks, from 29 June 2015 until 21 August 2015 at Performance Evaluation section at CERN. The goal was to apply it on a model of superconducting magnets, namely the main dipole circuit (RB circuit) of the the LHC (Large Hadron Collider), developed by members of the section. Then the strengths and the flaws of the tool were investigated. Transient effects were the main simulation focus point. In the first stage a simplified RB circuit was modelled in SPICE based on subcircuits. The first results were promising but still not with a perfect agreement. After implementing more detailed subcircuits there is an improvement and promising agreement achieved between SPICE and the results of the paper (PSpice) [2]. In general there are more strengths than drawbacks of simulating with SPICE. For example, it should have a shorter simulation time than PSpice for the same mo...

  5. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, David S [ORNL; Mikkilineni, Aravind K [ORNL; Rose, Derek C [ORNL; Yoginath, Srikanth B [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Judy, Mohsen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  6. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  7. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  8. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  9. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  10. Extended behavioural device modelling and circuit simulation with Qucs-S

    Science.gov (United States)

    Brinson, M. E.; Kuznetsov, V.

    2018-03-01

    Current trends in circuit simulation suggest a growing interest in open source software that allows access to more than one simulation engine while simultaneously supporting schematic drawing tools, behavioural Verilog-A and XSPICE component modelling, and output data post-processing. This article introduces a number of new features recently implemented in the 'Quite universal circuit simulator - SPICE variant' (Qucs-S), including structure and fundamental schematic capture algorithms, at the same time highlighting their use in behavioural semiconductor device modelling. Particular importance is placed on the interaction between Qucs-S schematics, equation-defined devices, SPICE B behavioural sources and hardware description language (HDL) scripts. The multi-simulator version of Qucs is a freely available tool that offers extended modelling and simulation features compared to those provided by legacy circuit simulators. The performance of a number of Qucs-S modelling extensions are demonstrated with a GaN HEMT compact device model and data obtained from tests using the Qucs-S/Ngspice/Xyce ©/SPICE OPUS multi-engine circuit simulator.

  11. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    Science.gov (United States)

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal

  12. Circuit models and SPICE macro-models for quantum Hall effect devices

    International Nuclear Information System (INIS)

    Ortolano, Massimo; Callegaro, Luca

    2015-01-01

    Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided. (paper)

  13. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    Science.gov (United States)

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  14. Combining Different Conceptual Change Methods within Four-Step Constructivist Teaching Model: A Sample Teaching of Series and Parallel Circuits

    Science.gov (United States)

    Ipek, Hava; Calik, Muammer

    2008-01-01

    Based on students' alternative conceptions of the topics "electric circuits", "electric charge flows within an electric circuit", "how the brightness of bulbs and the resistance changes in series and parallel circuits", the current study aims to present a combination of different conceptual change methods within a four-step constructivist teaching…

  15. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  16. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  17. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  18. Electrical circuit model of ITO/AZO/Ge photodetector.

    Science.gov (United States)

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  19. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  20. Lumped-parameters equivalent circuit for condenser microphones modeling.

    Science.gov (United States)

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  1. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    Science.gov (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  2. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  3. Back End of Line Nanorelays for Ultra-low Power Monolithic Integrated NEMS-CMOS Circuits

    KAUST Repository

    Lechuga Aranda, Jesus Javier

    2016-05-01

    Since the introduction of Complementary-Metal-Oxide-Semiconductor (CMOS) technology, the chip industry has enjoyed many benefits of transistor feature size scaling, including higher speed and device density and improved energy efficiency. However, in the recent years, the IC designers have encountered a few roadblocks, namely reaching the physical limits of scaling and also increased device leakage which has resulted in a slow-down of supply voltage and power density scaling. Therefore, there has been an extensive hunt for alternative circuit architectures and switching devices that can alleviate or eliminate the current crisis in the semiconductor industry. The Nano-Electro-Mechanical (NEM) relay is a promising alternative switch that offers zero leakage and abrupt turn-on behaviour. Even though these devices are intrinsically slower than CMOS transistors, new circuit design techniques tailored for the electromechanical properties of such devices can be leveraged to design medium performance, ultra-low power integrated circuits. In this thesis, we deal with a new generation of such devices that is built in the back end of line (BEOL) CMOS process and is an ideal option for full integration with current CMOS transistor technology. Simulation and verification at the circuit and system level is a critical step in the design flow of microelectronic circuits, and this is especially important for new technologies that lack the standard design infrastructure and well-known verification platforms. Although most of the physical and electrical properties of NEM structures can be simulated using standard electronic automation software, there is no report of a reliable behavioural model for NEMS switches that enable large circuit simulations. In this work, we present an optimised model of a BEOL nano relay that encompasses all the electromechanical characteristics of the device and is robust and lightweight enough for VLSI applications that require simulation of thousands of

  4. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  5. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  6. Study of recursive model for pole-zero cancellation circuit

    International Nuclear Information System (INIS)

    Zhou Jianbin; Zhou Wei; Hong Xu; Hu Yunchuan; Wan Xinfeng; Du Xin; Wang Renbo

    2014-01-01

    The output of charge sensitive amplifier (CSA) is a negative exponential signal with long decay time which will result in undershoot after C-R differentiator. Pole-zero cancellation (PZC) circuit is often applied to eliminate undershoot in many radiation detectors. However, it is difficult to use a zero created by PZC circuit to cancel a pole in CSA output signal accurately because of the influences of electronic components inherent error and environmental factors. A novel recursive model for PZC circuit is presented based on Kirchhoff's Current Law (KCL) in this paper. The model is established by numerical differentiation algorithm between the input and the output signal. Some simulation experiments for a negative exponential signal are carried out using Visual Basic for Application (VBA) program and a real x-ray signal is also tested. Simulated results show that the recursive model can reduce the time constant of input signal and eliminate undershoot. (authors)

  7. Electrical circuit model of ITO/AZO/Ge photodetector

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007 (Yun et al., 2016 [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015 [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R–C circuit model using the impedance spectroscopy.

  8. SEB circuit-level model in N-channel power MOSFETs; Modele pour circuits du burnout dans des MOSFETs de puissance de type N

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Schrimpf, R.D.; Massengill, L.; Galloway, K.F. [Vanderbilt Univ., Nashville, TN (United States)

    1999-07-01

    A Single Event Burnout (SEB) circuit model has been developed. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications. (authors)

  9. 30 CFR 75.900-1 - Circuit breakers; location.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit breakers; location. 75.900-1 Section 75.900-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Alternating Current Circuits § 75.900-1 Circuit breakers; location. Circuit breakers used to protect low-and...

  10. A two-layered diffusion model traces the dynamics of information processing in the valuation-and-choice circuit of decision making.

    Science.gov (United States)

    Piu, Pietro; Fargnoli, Francesco; Innocenti, Alessandro; Rufa, Alessandra

    2014-01-01

    A circuit of evaluation and selection of the alternatives is considered a reliable model in neurobiology. The prominent contributions of the literature to this topic are reported. In this study, valuation and choice of a decisional process during Two-Alternative Forced-Choice (TAFC) task are represented as a two-layered network of computational cells, where information accrual and processing progress in nonlinear diffusion dynamics. The evolution of the response-to-stimulus map is thus modeled by two linked diffusive modules (2LDM) representing the neuronal populations involved in the valuation-and-decision circuit of decision making. Diffusion models are naturally appropriate for describing accumulation of evidence over the time. This allows the computation of the response times (RTs) in valuation and choice, under the hypothesis of ex-Wald distribution. A nonlinear transfer function integrates the activities of the two layers. The input-output map based on the infomax principle makes the 2LDM consistent with the reinforcement learning approach. Results from simulated likelihood time series indicate that 2LDM may account for the activity-dependent modulatory component of effective connectivity between the neuronal populations. Rhythmic fluctuations of the estimate gain functions in the delta-beta bands also support the compatibility of 2LDM with the neurobiology of DM.

  11. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-05-01

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  12. Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    1996-01-01

    This paper is an overview of the concepts and methodologies used to predict soft-error rates (SER) due to cosmic and high-energy particle radiation in integrated circuit chips. The paper emphasizes the need for the SER simulation using the actual chip circuit model which includes device, process, and technology parameters as opposed to using either the discrete device simulation or generic circuit simulation that is commonly employed in SER modeling. Concepts such as funneling, event-by-event simulation, nuclear history files, critical charge, and charge sharing are examined. Also discussed are the relative importance of elastic and inelastic nuclear collisions, rare event statistics, and device vs. circuit simulations. The semi-empirical methodologies used in the aerospace community to arrive at SERs [also referred to as single-event upset (SEU) rates] in integrated circuit chips are reviewed. This paper is one of four in this special issue relating to SER modeling. Together, they provide a comprehensive account of this modeling effort, which has resulted in a unique modeling tool called the Soft-Error Monte Carlo Model, or SEMM

  13. Development of circuit model for arcing on solar panels

    International Nuclear Information System (INIS)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V; Sudhakar, M; Sankaran, M; Suresh, E P

    2010-01-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator

  14. A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans

    Science.gov (United States)

    Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon

    2017-01-01

    The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…

  15. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    OpenAIRE

    B. T. Hutsel; P. A. Corcoran; M. E. Cuneo; M. R. Gomez; M. H. Hess; D. D. Hinshelwood; C. A. Jennings; G. R. Laity; D. C. Lamppa; R. D. McBride; J. K. Moore; A. Myers; D. V. Rose; S. A. Slutz; W. A. Stygar

    2018-01-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-en...

  16. Compact physical model of a-IGZO TFTs for circuit simulation

    NARCIS (Netherlands)

    Ghittorelli, M.; Torricelli, F.; Garripoli, C.; Van Der Steen, J.L.J.P.; Gelinck, G.H.; Abdinia, S.; Cantatore, E.; Kovacs-Vajna, Z.M.

    2017-01-01

    Amorphous InGaZnO (a-IGZO) is a candidate material for thin-film transistors (TFTs) owing to its large electron mobility. The development of high functionality circuits requires accurate and efficient circuit simulation that, in turn, is based on compact physical a-IGZO TFTs models. Here we propose

  17. Computer controlled motor vehicle battery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; McAuiliffe, G.N.; Schlageter, G.A.

    1986-04-01

    This patent consists of a motor vehicle having a DC motor, a pedal biased to a released position and depressed by the driver to increase speed. An alternate switching means affects the vehicle speed control, a foot switch is operated by the pedal and operative when the pedal is depressed to close a circuit enabling energization of the alternate switching means. A microprocessor includes a program for controlling operation of the alternate switching means, the foot switch is operative when the pedal is released to open the enabling circuit. The program includes a register which is incremented with each passage of the logic and is responsive to the incremented count in the register to instruct a change in position of the alternate switching means.

  18. SEB circuit-level model in N-channel power MOSFETs

    International Nuclear Information System (INIS)

    Liu, J.; Schrimpf, R.D.; Massengill, L.; Galloway, K.F.

    1999-01-01

    A Single Event Burnout (SEB) circuit model has been developed. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications. (authors)

  19. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about the ...

  20. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  1. Prediction of ionizing radiation effects in integrated circuits using black-box models

    International Nuclear Information System (INIS)

    Williamson, P.W.

    1976-10-01

    A method is described which allows general black-box modelling of integrated circuits as distinct from the existing method of deriving the radiation induced response of the model from actual terminal measurements on the device during irradiation. Both digital and linear circuits are discussed. (author)

  2. Mathematical model of an integrated circuit cooling through cylindrical rods

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Luis Antonio

    2017-01-01

    Full Text Available One of the main challenges in integrated circuits development is to propose alternatives to handle the extreme heat generated by high frequency of electrons moving in a reduced space that cause overheating and reduce the lifespan of the device. The use of cooling fins offers an alternative to enhance the heat transfer using combined a conduction-convection systems. Mathematical model of such process is important for parametric design and also to gain information about temperature distribution along the surface of the transistor. In this paper, we aim to obtain the equations for heat transfer along the chip and the fin by performing energy balance and heat transfer by conduction from the chip to the rod, followed by dissipation to the surrounding by convection. Newton's law of cooling and Fourier law were used to obtain the equations that describe the profile temperature in the rod and the surface of the chip. Ordinary differential equations were obtained and the respective analytical solutions were derived after consideration of boundary conditions. The temperature along the rod decreased considerably from the initial temperature (in contatct with the chip surface. This indicates the benefit of using a cilindrical rod to distribute the heat generated in the chip.

  3. Design structure for in-system redundant array repair in integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  4. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit

  5. Superior model for fault tolerance computation in designing nano-sized circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my [Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  6. Superior model for fault tolerance computation in designing nano-sized circuit systems

    International Nuclear Information System (INIS)

    Singh, N. S. S.; Muthuvalu, M. S.; Asirvadam, V. S.

    2014-01-01

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines

  7. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  8. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  9. Theory and Circuit Model for Lossy Coaxial Transmission Line

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, T. C.; Anderson, C. N.; Clark, R. E.; Gansz-Torres, J.; Rose, D. V.; Welch, Dale Robert

    2017-04-01

    The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.

  10. Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor

    International Nuclear Information System (INIS)

    Taylan, O.; Berberoglu, H.

    2014-01-01

    This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.

  11. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...

  12. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  13. Chaos in Electronic Circuits: Nonlinear Time Series Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert M. [Kennedy Western Univ., Cheyenne, WY (United States)

    2003-07-01

    Chaos in electronic circuits is a phenomenon that has been largely ignored by engineers, manufacturers, and researchers until the early 1990’s and the work of Chua, Matsumoto, and others. As the world becomes more dependent on electronic devices, the detrimental effects of non-normal operation of these devices becomes more significant. Developing a better understanding of the mechanisms involved in the chaotic behavior of electronic circuits is a logical step toward the prediction and prevention of any potentially catastrophic occurrence of this phenomenon. Also, a better understanding of chaotic behavior, in a general sense, could potentially lead to better accuracy in the prediction of natural events such as weather, volcanic activity, and earthquakes. As a first step in this improvement of understanding, and as part of the research being reported here, methods of computer modeling, identifying and analyzing, and producing chaotic behavior in simple electronic circuits have been developed. The computer models were developed using both the Alternative Transient Program (ATP) and Spice, the analysis techniques have been implemented using the C and C++ programming languages, and the chaotically behaving circuits developed using “off the shelf” electronic components.

  14. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  15. Alternative Design Concepts for Multi-Circuit HTS Link Systems

    CERN Document Server

    Ballarino, A

    2011-01-01

    Superconducting cables for power transmission usually contain two conductors for DC application, or three conductors for AC, with high voltage insulation. In contrast, for some applications related to accelerators it is convenient to transfer high currents via superconducting links feeding a number of circuits at relatively low voltage, of the order of a kilovolt, over distances of up to a few hundred meters. For power transmission applications based on cooling via sub-cooled liquid nitrogen, suitable HTS conductors are only available in the form of tape, and a multi-layer variant can be envisaged for the multi-circuit links. However, where cooling to temperatures of the order of 20 K is feasible, MgB2 conductor, available in the form of both tape and wire, can also be envisaged and in the latter case used to assemble round cables. There are, therefore, two distinct topologies - based on the use of wires or tapes - that can be envisaged for use in applications to multi-circuit link systems. In this paper the ...

  16. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    Science.gov (United States)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  17. Equivalent circuit modeling of space charge dominated magnetically insulated transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Kazuki; Nakajima, Mitsuo; Horioka, Kazuhiko

    1997-12-31

    A new equivalent circuit model for space charge dominated MITLs (Magnetically Insulated Transmission Lines) was developed. MITLs under high power operation are dominated with space charge current flowing between anode and cathode. Conventional equivalent circuit model does not account for space charge effects on power flow. The model was modified to discuss the power transportation through the high power MITLs. With this model, it is possible to estimate the effects of space charge current on the power flow efficiency, without using complicated particle code simulations. (author). 3 figs., 3 refs.

  18. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  19. Alternative ceramic circuit constructions for low cost, high reliability applications

    International Nuclear Information System (INIS)

    Modes, Ch.; O'Neil, M.

    1997-01-01

    The growth in the use of hybrid circuit technology has recently been challenged by recent advances in low cost laminate technology, as well as the continued integration of functions into IC's. Size reduction of hybrid 'packages' has turned out to be a means to extend the useful life of this technology. The suppliers of thick film materials technology have responded to this challenge by developing a number of technology options to reduce circuit size, increase density, and reduce overall cost, while maintaining or increasing reliability. This paper provides an overview of the processes that have been developed, and, in many cases are used widely to produce low cost, reliable microcircuits. Comparisons of each of these circuit fabrication processes are made with a discussion of advantages and disadvantages of each technology. (author)

  20. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  1. A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits

    NARCIS (Netherlands)

    Moreau, L.; Aeyels, D.

    2004-01-01

    We study the dynamical equations of nonlinear inductor-capacitor circuits. We present a novel Lagrangian description of the dynamics and provide a variational interpretation, which is based on the maximum principle of optimal control theory. This gives rise to an alternative method for deriving the

  2. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study

    KAUST Repository

    Fan, M.

    2015-03-29

    Parameter estimation is a challenging computational problemin the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter esti- mation of gene circuitmodels fromsuch time-series mRNA data has become an importantmethod for quantitatively dissecting the regulation of gene expression. By focusing on themodeling of gene circuits, we examine here the perform- ance of three types of state-of-the-art parameter estimation methods: population-basedmethods, onlinemethods and model-decomposition-basedmethods. Our results show that certain population-basedmethods are able to generate high- quality parameter solutions. The performance of thesemethods, however, is heavily dependent on the size of the param- eter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, onlinemethods andmodel decomposition-basedmethods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fastmethods with local search as a subsequent refinement procedure can substantially increase the qual- ity of their parameter estimates to the level on par with the best solution obtained fromthe population-basedmethods whilemaintaining high computational speed. These suggest that such hybridmethods can be a promising alternative to themore commonly used population-basedmethods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatorymechanismsmakes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press.

  3. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...... of the temperature on the mechanical resonance frequency is considered and thereby integrated in the final model for long term operations....

  4. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  5. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  6. Theoretical modelling of quantum circuit systems

    International Nuclear Information System (INIS)

    Stiffell, Peter Barry

    2002-01-01

    The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)

  7. Characterization of a piezoelectric MEMS actuator surface toward motion-enabled reconfigurable RF circuits

    Science.gov (United States)

    Tellers, M. C.; Pulskamp, J. S.; Bedair, S. S.; Rudy, R. Q.; Kierzewski, I. M.; Polcawich, R. G.; Bergbreiter, S. E.

    2018-03-01

    As an alternative to highly constrained hard-wired reconfigurable RF circuits, a motion-enabled reconfigurable circuit (MERC) offers freedom from transmission line losses and homogeneous materials selection. The creation of a successful MERC requires a precise mechanical mechanism for relocating components. In this work, a piezoelectric MEMS actuator array is modeled and experimentally characterized to assess its viability as a solution to the MERC concept. Actuation and design parameters are evaluated, and the repeatability of high quality on-axis motion at greater than 1 mm s-1 is demonstrated with little positional error. Finally, an initial proof-of-concept circuit reconfiguration has been demonstrated using off-the-shelf RF filter components. Although initial feasibility tests show filter performance degradation with an additional insertion loss of 0.3 dB per contact, out-of-band rejection degradation as high as 10 dB, and ripple performance reduction from 0.25 dB to 1.5 dB, MERC is proven here as an alternative to traditional approaches used in reconfigurable RF circuit applications.

  8. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  9. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    Science.gov (United States)

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  10. General Voltage Feedback Circuit Model in the Two-Dimensional Networked Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    JianFeng Wu

    2015-01-01

    Full Text Available To analyze the feature of the two-dimensional networked resistive sensor array, we firstly proposed a general model of voltage feedback circuits (VFCs such as the voltage feedback non-scanned-electrode circuit, the voltage feedback non-scanned-sampling-electrode circuit, and the voltage feedback non-scanned-sampling-electrode circuit. By analyzing the general model, we then gave a general mathematical expression of the effective equivalent resistor of the element being tested in VFCs. Finally, we evaluated the features of VFCs with simulation and test experiment. The results show that the expression is applicable to analyze the VFCs’ performance of parameters such as the multiplexers’ switch resistors, the nonscanned elements, and array size.

  11. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  12. VHDL-AMS Simulation Framework for Molecular-FET Device-to-Circuit Modeling and Design

    Directory of Open Access Journals (Sweden)

    Mariagrazia Graziano

    2018-01-01

    Full Text Available We concentrate on Molecular-FET as a device and present a new modular framework based on VHDL-AMS. We have implemented different Molecular-FET models within the framework. The framework allows comparison between the models in terms of the capability to calculate accurate I-V characteristics. It also provides the option to analyze the impact of Molecular-FET and its implementation in the circuit with the extension of its use in an architecture based on the crossbar configuration. This analysis evidences the effect of choices of technological parameters, the ability of models to capture the impact of physical quantities, and the importance of considering defects at circuit fabrication level. The comparison tackles the computational efforts of different models and techniques and discusses the trade-off between accuracy and performance as a function of the circuit analysis final requirements. We prove this methodology using three different models and test them on a 16-bit tree adder included in Pentium 4 that, to the best of our knowledge, is the biggest circuits based on molecular device ever designed and analyzed.

  13. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  14. Computer model of a reverberant and parallel circuit coupling

    Science.gov (United States)

    Kalil, Camila de Andrade; de Castro, Maria Clícia Stelling; Cortez, Célia Martins

    2017-11-01

    The objective of the present study was to deepen the knowledge about the functioning of the neural circuits by implementing a signal transmission model using the Graph Theory in a small network of neurons composed of an interconnected reverberant and parallel circuit, in order to investigate the processing of the signals in each of them and the effects on the output of the network. For this, a program was developed in C language and simulations were done using neurophysiological data obtained in the literature.

  15. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  16. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  17. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  18. Understanding Activation Patterns in Shared Circuits: Toward a Value Driven Model

    Directory of Open Access Journals (Sweden)

    Lisa Aziz-Zadeh

    2018-05-01

    Full Text Available Over the past decade many studies indicate that we utilize our own motor system to understand the actions of other people. This mirror neuron system (MNS has been proposed to be involved in social cognition and motor learning. However, conflicting findings regarding the underlying mechanisms that drive these shared circuits make it difficult to decipher a common model of their function. Here we propose adapting a “value-driven” model to explain discrepancies in the human mirror system literature and to incorporate this model with existing models. We will use this model to explain discrepant activation patterns in multiple shared circuits in the human data, such that a unified model may explain reported activation patterns from previous studies as a function of value.

  19. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  20. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    Science.gov (United States)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator

  1. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    B. T. Hutsel

    2018-03-01

    Full Text Available We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs, double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii electron loss in the MITLs before magnetic insulation has been established; (iii flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv closure of MITL anode-cathode (AK gaps due to expansion of cathode plasma; (v energy loss to MITL conductors operated at high lineal current densities; (vi heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a

  2. A new equivalent circuit model for on-chip spiral transformers in CMOS RFICs

    International Nuclear Information System (INIS)

    Wei Jiaju; Wang Zhigong; Li Zhiqun; Tang Lu

    2012-01-01

    A new compact model has been introduced to model on-chip spiral transformers. Unlike conventional models, which are often a compound of two spiral inductor models (i.e., the combination of two coupled Π or 2-Π sub-circuits), our new model only uses 12 elements to model the whole structure in the form of T topology. The new model is based on the physical meaning, and the process of model derivation is also presented. In addition, a simple parameter extraction procedure is proposed to get the elements' values without any fitting and optimization. In this procedure, a new method has been developed for the parameter extraction of the ladder circuit, which is commonly used to represent the skin effect. In order to verify the model's validity and accuracy, we have compared the simulated and measured self-inductance, quality factor, coupling coefficient and insertion loss, and an excellent agreement has been found over a broad frequency range up to the resonant frequency. (semiconductor integrated circuits)

  3. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2017-01-01

    Full Text Available Early detection of an internal short circuit (ISCr in a Li-ion battery can prevent it from undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based switching model method (SMM is proposed to detect the ISCr in the Li-ion battery. The SMM updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance R I S C f estimates. The open circuit voltage (OCV and the state of charge (SOC are estimated by applying the equivalent circuit model, and by using the recursive least squares algorithm and the relation between OCV and SOC. As a fault index, the R I S C f is estimated from the estimated OCVs and SOCs to detect the ISCr, and used to update the model; this process yields accurate estimates of OCV and R I S C f . Then the next R I S C f is estimated and used to update the model iteratively. Simulation data from a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy of R I S C f estimates to detect the ISCr, thereby helping the battery management system to fulfill early detection of the ISCr.

  4. Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

    Directory of Open Access Journals (Sweden)

    Ruiping Cao

    2014-01-01

    Full Text Available In high-speed applications, MOS current mode logic (MCML is a good alternative. Scaling down supply voltage of the MCML circuits can achieve low power-delay product (PDP. However, the current almost all MCML circuits are realized with dual-rail scheme, where the NMOS configuration in series limits the minimum supply voltage. In this paper, single-rail MCML (SRMCML circuits are described, which can avoid the devices configuration in series, since their logic evaluation block can be realized by only using MOS devices in parallel. The relationship between the minimum supply voltage of the SRMCML circuits and the model parameters of MOS transistors is derived, so that the minimum supply voltage can be estimated before circuit designs. An MCML dynamic flop-flop based on SRMCML is also proposed. The optimization algorithm for near-threshold sequential circuits is presented. A near-threshold SRMCML mode-10 counter based on the optimization algorithm is verified. Scaling down the supply voltage of the SRMCML circuits is also investigated. The power dissipation, delay, and power-delay products of these circuits are carried out. The results show that the near-threshold SRMCML circuits can obtain low delay and small power-delay product.

  5. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    Science.gov (United States)

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  6. Model-based evaluation of the short-circuited tripolar cuff configuration.

    Science.gov (United States)

    Andreasen, Lotte N S; Struijk, Johannes J

    2006-05-01

    Recordings of neural information for use as feedback in functional electrical stimulation are often contaminated with interfering signals from muscles and from stimulus pulses. The cuff electrode used for the neural recording can be optimized to improve the S/I ratio. In this work, we evaluate a model of both the nerve signal and the interfering signals recorded by a cuff, and subsequently use this model to study the signal to interference ratio of different cuff designs and to evaluate a recently introduced short-circuited tripolar cuff configuration. The results of the model showed good agreement with results from measurements in rabbits and confirmed the superior performance of the short-circuited tripolar configuration as compared with the traditionally used tripolar configuration.

  7. Teaching RLC Parallel Circuits in High-School Physics Class

    Science.gov (United States)

    Simon, Alpár

    2015-01-01

    This paper will try to give an alternative treatment of the subject "parallel RLC circuits" and "resonance in parallel RLC circuits" from the Physics curricula for the XIth grade from Romanian high-schools, with an emphasis on practical type circuits and their possible applications, and intends to be an aid for both Physics…

  8. Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape

    International Nuclear Information System (INIS)

    Zhuber-Okrog, K.

    1996-04-01

    This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)

  9. A Cytomorphic Chip for Quantitative Modeling of Fundamental Bio-Molecular Circuits.

    Science.gov (United States)

    2015-08-01

    We describe a 0.35 μm BiCMOS silicon chip that quantitatively models fundamental molecular circuits via efficient log-domain cytomorphic transistor equivalents. These circuits include those for biochemical binding with automatic representation of non-modular and loading behavior, e.g., in cascade and fan-out topologies; for representing variable Hill-coefficient operation and cooperative binding; for representing inducer, transcription-factor, and DNA binding; for probabilistic gene transcription with analogic representations of log-linear and saturating operation; for gain, degradation, and dynamics of mRNA and protein variables in transcription and translation; and, for faithfully representing biological noise via tunable stochastic transistor circuits. The use of on-chip DACs and ADCs enables multiple chips to interact via incoming and outgoing molecular digital data packets and thus create scalable biochemical reaction networks. The use of off-chip digital processors and on-chip digital memory enables programmable connectivity and parameter storage. We show that published static and dynamic MATLAB models of synthetic biological circuits including repressilators, feed-forward loops, and feedback oscillators are in excellent quantitative agreement with those from transistor circuits on the chip. Computationally intensive stochastic Gillespie simulations of molecular production are also rapidly reproduced by the chip and can be reliably tuned over the range of signal-to-noise ratios observed in biological cells.

  10. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  11. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-06-21

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  12. A framework for scalable parameter estimation of gene circuit models using structural information

    KAUST Repository

    Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin

    2013-01-01

    Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.

  13. Modeling the transport of nitrogen in an NPP-2006 reactor circuit

    Science.gov (United States)

    Stepanov, O. E.; Galkin, I. Yu.; Sledkov, R. M.; Melekh, S. S.; Strebnev, N. A.

    2016-07-01

    Efficient radiation protection of the public and personnel requires detecting an accident-initiating event quickly. Specifically, if a heat-exchange tube in a steam generator is ruptured, the 16N radioactive nitrogen isotope, which contributes to a sharp increase in the steam activity before the turbine, may serve as the signaling component. This isotope is produced in the core coolant and is transported along the circulation circuit. The aim of the present study was to model the transport of 16N in the primary and the secondary circuits of a VVER-1000 reactor facility (RF) under nominal operation conditions. KORSAR/GP and RELAP5/Mod.3.2 codes were used to perform the calculations. Computational models incorporating the major components of the primary and the secondary circuits of an NPP-2006 RF were constructed. These computational models were subjected to cross-verification, and the calculation results were compared to the experimental data on the distribution of the void fraction over the steam generator height. The models were proven to be valid. It was found that the time of nitrogen transport from the core to the heat-exchange tube leak was no longer than 1 s under RF operation at a power level of 100% N nom with all primary circuit pumps activated. The time of nitrogen transport from the leak to the γ-radiation detection unit under the same operating conditions was no longer than 9 s, and the nitrogen concentration in steam was no less than 1.4% (by mass) of its concentration at the reactor outlet. These values were obtained using conservative approaches to estimating the leak flow and the transport time, but the radioactive decay of nitrogen was not taken into account. Further research concerned with the calculation of thermohydraulic processes should be focused on modeling the transport of nitrogen under RF operation with some primary circuit pumps deactivated.

  14. Electrical circuit models for performance modeling of Lithium-Sulfur batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Ioan; Teodorescu, Remus

    2015-01-01

    emerging technology for various applications, there is a need for Li-S battery performance model; however, developing such models represents a challenging task due to batteries' complex ongoing chemical reactions. Therefore, the literature review was performed to summarize electrical circuit models (ECMs......) used for modeling the performance behavior of Li-S batteries. The studied Li-S pouch cell was tested in the laboratory in order to parametrize four basic ECM topologies. These topologies were compared by analyzing their voltage estimation accuracy values, which were obtained for different battery...... current profiles. Based on these results, the 3 R-C ECM was chosen and the Li-S battery cell discharging performance model with current dependent parameters was derived and validated....

  15. Classical and quantum stochastic models of resistive and memristive circuits

    Science.gov (United States)

    Gough, John E.; Zhang, Guofeng

    2017-07-01

    The purpose of this paper is to examine stochastic Markovian models for circuits in phase space for which the drift term is equivalent to the standard circuit equations. In particular, we include dissipative components corresponding to both a resistor and a memristor in series. We obtain a dilation of the problem which is canonical in the sense that the underlying Poisson bracket structure is preserved under the stochastic flow. We do this first of all for standard Wiener noise but also treat the problem using a new concept of symplectic noise, where the Poisson structure is extended to the noise as well as the circuit variables, and in particular where we have canonically conjugate noises. Finally, we construct a dilation which describes the quantum mechanical analogue.

  16. Single-server blind quantum computation with quantum circuit model

    Science.gov (United States)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  17. Model development for quantitative evaluation of nuclear fuel cycle alternatives and its application

    International Nuclear Information System (INIS)

    Ko, Won Il

    2000-02-01

    This study addresses the quantitative evaluation of the proliferation resistance and the economics which are important factors of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles, and a fuel cycle cost analysis model was suggested to incorporate various uncertainties in the fuel cycle cost calculation. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. In this model, the proliferation resistance was described an a relative size of the barrier that must be overcome in order to acquire nuclear weapons. Therefore, a larger barriers means that the risk of failure is great, expenditure of resources is large and the time scales for implementation is long. The electromotive force was expressed as the political motivation of the potential proliferators, such as an unauthorized party or a national group to acquire nuclear weapons. The electrical current was then defined as a proliferation resistance index. There are two electrical circuit models used in the evaluation of the proliferation resistance: the series and the parallel circuits. In the series circuit model of the proliferation resistance, a potential proliferator has to overcome all resistance barriers to achieve the manufacturing of the nuclear weapons. This phenomenon could be explained by the fact that the IAEA(International Atomic Energy Agency)'s safeguards philosophy relies on the defense-in-depth principle against nuclear proliferation at a specific facility. The parallel circuit model was also used to imitate the risk of proliferation for

  18. Modeling and analysis of power extraction circuits for passive UHF RFID applications

    International Nuclear Information System (INIS)

    Fan Bo; Dai Yujie; Zhang Xiaoxing; Lue Yingjie

    2009-01-01

    Modeling and analysis of far field power extraction circuits for passive UHF RF identification (RFID) applications are presented. A mathematical model is derived to predict the complex nonlinear performance of UHF voltage multiplier using Schottky diodes. To reduce the complexity of the proposed model, a simple linear approximation for Schottky diode is introduced. Measurement results show considerable agreement with the values calculated by the proposed model. With the derived model, optimization on stage number for voltage multiplier to achieve maximum power conversion efficiency is discussed. Furthermore, according to the Bode-Fano criterion and the proposed model, a limitation on maximum power up range for passive UHF RFID power extraction circuits is also studied.

  19. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  20. The analysis and design of linear circuits

    CERN Document Server

    Thomas, Roland E; Toussaint, Gregory J

    2009-01-01

    The Analysis and Design of Linear Circuits, 6e gives the reader the opportunity to not only analyze, but also design and evaluate linear circuits as early as possible. The text's abundance of problems, applications, pedagogical tools, and realistic examples helps engineers develop the skills needed to solve problems, design practical alternatives, and choose the best design from several competing solutions. Engineers searching for an accessible introduction to resistance circuits will benefit from this book that emphasizes the early development of engineering judgment.

  1. Development of a steady-state calculation model for the KALIMER PDRC(Passive Decay Heat Removal Circuit)

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum

    2003-06-01

    A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models

  2. Students conception and perception of simple electrical circuit

    Science.gov (United States)

    Setyani, ND; Suparmi; Sarwanto; Handhika, J.

    2017-11-01

    This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.

  3. Model Comparison Exercise Circuit Training Game and Circuit Ladder Drills to Improve Agility and Speed

    Directory of Open Access Journals (Sweden)

    Susilaturochman Hendrawan Koestanto

    2017-11-01

    Full Text Available The purpose of this study was to compare: (1 the effect of circuit training game and circuit ladder drill for the agility; (2 the effect of circuit training game and circuit ladder drill on speed; (3 the difference effect of circuit training game and circuit ladder drill for the speed (4 the difference effect of circuit training game and circuit ladder drill on agility. The type of this research was quantitative with quasi-experimental methods. The design of this research was Factorial Design, with analysing data using ANOVA. The process of data collection was done by using 30 meters sprint speed test and shuttle run test during the pretest and posttest. Furthermore, the data was analyzed by using SPSS 22.0 series. Result: The circuit training game exercise program and circuit ladder drill were significant to increase agility and speed (sig 0.000 < α = 0.005 Group I, II, III had significant differences (sig 0.000 < α = 0.005. The mean of increase in speed of group I = 0.20 seconds, group II = 0.31 seconds, and group III = 0.11 seconds. The average increase agility to group I = 0.34 seconds group II = 0.60 seconds, group III = 0.13 seconds. Based on the analysis above, it could be concluded that there was an increase in the speed and agility of each group after being given a training.

  4. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    Science.gov (United States)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  5. A framework for scalable parameter estimation of gene circuit models using structural information.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin

    2013-07-01

    Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary data are available at Bioinformatics online.

  6. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  7. Vacuum circuit breaker postarc current modelling based on the theory of Langmuir probes

    NARCIS (Netherlands)

    Lanen, van E.P.A.; Smeets, R.; Popov, M.; Sluis, van der L.

    2007-01-01

    High-resolution measurements on the postarc current in vacuum circuit breakers (VCBs) reveal a period, immediately following current-zero, in which the voltage remains practically zero. The most widely used model for simulating the interaction between the postarc current with the electrical circuit

  8. Student use of model-based reasoning when troubleshooting an electronic circuit

    Science.gov (United States)

    Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri

    2016-03-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  9. Student use of model-based reasoning when troubleshooting an electric circuit

    Science.gov (United States)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  10. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  11. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Science.gov (United States)

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  12. Structure preserving port-Hamiltonian model reduction of electrical circuits

    NARCIS (Netherlands)

    Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.

    2011-01-01

    This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the

  13. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model

    International Nuclear Information System (INIS)

    Zhang Wenliang; Zhu Yangjun; Tian Xiaoli; Lu Shuojin

    2014-01-01

    A simple equivalent circuit model is proposed according to the device structure of reverse conducting insulated gate bipolar transistors (RC-IGBT). Mathematical derivation and circuit simulations indicate that this model can explain the snap-back effect (including primary snap-back effect, secondary snap-back effect, and reverse snap-back effect) and hysteresis effect perfectly. (semiconductor devices)

  14. Comparison of the AWA lumped-circuit model of electrical discharges with empirical data

    International Nuclear Information System (INIS)

    Maier, W.B. II; Kadish, A.; Robiscoe, R.T.

    1990-01-01

    The authors compare experimental data for three 1.7-m-long transient discharges with an AWA lumped- circuit discharge model in which the arc resistance is taken from the Arc Welder's Ansatz, R a = V*/|I |, where V* is a positive constant and I is the discharge current. In addition to the arc resistance, there is a small series resistance R present in the external circuit. A single value for each of R and V* is deduced from the data, and these values are used to characterize all three discharges. Adequate agreement with the experimental data is obtained; for example, the authors predict the proper number of current reversals for each discharge and abrupt termination of current flow after a finite time. The authors suggest that the AWA lumped circuit provides a better representation of the data than a standard lumped-circuit RLC model and hence is more useful as a tool for prediction and interpretation of discharges

  15. A simple electric circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  16. Graphene-based THz modulator analyzed by equivalent circuit model

    DEFF Research Database (Denmark)

    Xiao, Binggang; Chen, Jing; Xie, Zhiyi

    2016-01-01

    A terahertz (THz) modulator based on graphene is proposed and analysed by use of equivalent transmission line of a homogeneous mediumand the local anisotropic model of the graphene conductivity. The result calculated by the equivalent circuit is consistent with that obtained byFresnel transfer...

  17. An alternative for the LF model

    NARCIS (Netherlands)

    Veldhuis, R.N.J.

    1996-01-01

    An alternative for the Liljencrants-Fant (LF) glottal-pulse model is presented. This alternative is derived from the Rosenberg model, so we have caned it the Rosenberg++ model. It is described by the same set of Tor R parameters as the LF model but has the advantage over the LF model that it is

  18. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  19. Macromodels of digital integrated circuits for program packages of circuit engineering design

    Science.gov (United States)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  20. 30 CFR 75.907 - Design of trailing cables for medium-voltage circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Design of trailing cables for medium-voltage... Medium-Voltage Alternating Current Circuits § 75.907 Design of trailing cables for medium-voltage circuits. [Statutory Provisions] Trailing cables for medium-voltage circuits shall include grounding...

  1. The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    International Nuclear Information System (INIS)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example, upon which the voltage—current relationships (VCRs) between two parallel memristive circuits — a parallel memristor and capacitor circuit (the parallel MC circuit), and a parallel memristor and inductor circuit (the parallel ML circuit) — are investigated. The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters, and the frequency and amplitude of the sinusoidal voltage stimulus. An equivalent circuit model of the memristor is built, upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed, and the results verify the theoretical analysis results

  2. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  3. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    1991-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  4. Air Quality Dispersion Modeling - Alternative Models

    Science.gov (United States)

    Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.

  5. Modelling nonstationary thermohydrodynamic processes in heat-exchange circuits with a two-phase coolant

    International Nuclear Information System (INIS)

    Blinkov, V.N.

    1993-01-01

    This paper presents a mathematical model and a open-quotes fastclose quotes computer program for analyzing nonstationary thermohydrodynamic processes in distributed multi-element circuits containing a two-phase coolant. The author's approach is based on representing the distributed multi-element circuits with the two-phase coolant (such as cooling circuits of the reactor of an atomic power station) in the form of equivalent thermohydrodynamic chains composed of idealized elements with the intrinsic properties of the structure elements of real systems. The author has developed the nomenclature of such conceptual elements for objects which can be modelled; the nomenclature encompasses the control volumes (with a single-phase or two-phase coolant or a moving boundary of boiling/condensation) and the branch lines (type of tube and connections in dependence on the inertia of the coolant being taken into account) for a hydrodynamic submodel and the thermal components and lines for a thermal submodel. The mathematical models which have been developed and the program using them are designated for various forms of calculating slow thermohydrodynamic processes in multi-element coolant circuits in reactors and modeling test stands. The program facilitates calculation of the range of stable operation, detailed studies of stationary and nonstationary modes of operation, and forecasts of effective engineering measures to obtain stability with the aid of microcomputers

  6. Modeling the effects of transcranial magnetic stimulation on cortical circuits.

    Science.gov (United States)

    Esser, Steve K; Hill, Sean L; Tononi, Giulio

    2005-07-01

    Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.

  7. Method and apparatus for in-system redundant array repair on integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc B.; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Ouellette, Michael R.; Strissel, Scott A.

    2007-12-18

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  8. Method and apparatus for in-system redundant array repair on integrated circuits

    Science.gov (United States)

    Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN

    2008-07-29

    Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  9. Evaluation of circuit models for an IPMC (ionic polymer-metal composite) sensor using a parameter estimate method

    International Nuclear Information System (INIS)

    Park, Kiwon; Lee, Hyungki

    2012-01-01

    The present study investigated a sensor system to effectively detect the bending angles applied on an ionic polymer metal composite sensor. Firstly, the amount of net charge produced by the motion of cations was correlated to the bending angle based on the geometric relationship between a flat and a bent IPMC, and the relationship was represented by linear and nonlinear polynomial equations. Secondly, several existing and modified R and C circuit models with a linear charge model were evaluated using the experimental data. Thirdly, the nonlinear charge model was applied to a selected circuit model, and the effectivenesses of the linear and the nonlinear charge models were compared. Finally, the sensor output signal was fed into the inverse model of the identified circuit model to reproduce the bending angles. This paper presents a simple data processing procedure using the inverse transfer function of a selected circuit model that successfully monitored various bending motions of an IPMC sensor.

  10. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  11. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  12. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  13. Design of an improved RCD buffer circuit for full bridge circuit

    Science.gov (United States)

    Yang, Wenyan; Wei, Xueye; Du, Yongbo; Hu, Liang; Zhang, Liwei; Zhang, Ou

    2017-05-01

    In the full bridge inverter circuit, when the switch tube suddenly opened or closed, the inductor current changes rapidly. Due to the existence of parasitic inductance of the main circuit. Therefore, the surge voltage between drain and source of the switch tube can be generated, which will have an impact on the switch and the output voltage. In order to ab sorb the surge voltage. An improve RCD buffer circuit is proposed in the paper. The peak energy will be absorbed through the buffer capacitor of the circuit. The part energy feedback to the power supply, another part release through the resistor in the form of heat, and the circuit can absorb the voltage spikes. This paper analyzes the process of the improved RCD snubber circuit, According to the specific parameters of the main circuit, a reasonable formula for calculating the resistance capacitance is given. A simulation model will be modulated in Multisim, which compared the waveform of tube voltage and the output waveform of the circuit without snubber circuit with the improved RCD snubber circuit. By comparing and analyzing, it is proved that the improved buffer circuit can absorb surge voltage. Finally, experiments are demonstrated to validate that the correctness of the RC formula and the improved RCD snubber circuit.

  14. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  15. Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.

    Science.gov (United States)

    Urrios, Arturo; Gonzalez-Flo, Eva; Canadell, David; de Nadal, Eulàlia; Macia, Javier; Posas, Francesc

    2018-04-20

    Synthetic biology studies aim to develop cellular devices for biomedical applications. These devices, based on living instead of electronic or electromechanic technology, might provide alternative treatments for a wide range of diseases. However, the feasibility of these devices depends, in many cases, on complex genetic circuits that must fulfill physiological requirements. In this work, we explored the potential of multicellular architectures to act as an alternative to complex circuits for implementation of new devices. As a proof of concept, we developed specific circuits for insulin or glucagon production in response to different glucose levels. Here, we show that fundamental features, such as circuit's affinity or sensitivity, are dependent on the specific configuration of the multicellular consortia, providing a method for tuning these properties without genetic engineering. As an example, we have designed and built circuits with an incoherent feed-forward loop architecture (FFL) that can be easily adjusted to generate single pulse responses. Our results might serve as a blueprint for future development of cellular devices for glycemia regulation in diabetic patients.

  16. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  17. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  18. Compensated pulsed alternator

    International Nuclear Information System (INIS)

    Weldon, W.F.; Driga, M.D.; Woodson, H.H.

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak output. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit

  19. 30 CFR 77.902-1 - Fail safe ground check circuits; maximum voltage.

    Science.gov (United States)

    2010-07-01

    ... voltage. 77.902-1 Section 77.902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902-1 Fail safe ground check circuits; maximum voltage. The maximum voltage used for ground check circuits under § 77.902...

  20. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  1. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    Science.gov (United States)

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by

  2. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  3. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  4. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  5. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  6. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  7. Simulation of the Mineração Serra Grande Industrial Grinding Circuit

    Directory of Open Access Journals (Sweden)

    Thiago Oliveira Nunan

    Full Text Available Abstract Increasing throughput during the mining cycle operation frequently generates significant capital gains for a company. However, it is necessary to evaluate plant capacity and expand it for obtaining the required throughput increase. Therefore, studies including different scenarios, installation of new equipment and/or optimization of existing ones are required. This study describes the sampling methodology, sample characterization, modeling and simulation of Mineração Serra Grande industrial grinding circuit, an AngloGold Ashanti company, located in Crixás, State of Goiás, Brazil. The studied scenarios were: (1 adding a third ball mill in series with existing two ball mills, (2 adding a third ball mill in parallel with existing mills, (3 adding a vertical mill in series with existing mills and (4 adding high pressure grinding rolls to existing mills. The four simulations were carried out for designing the respective circuit, assessing the interference with existing equipment and installations, as well as comparing the energy consumption among the selected expansion alternatives. Apart from the HPGR alternative, all other three simulations resulted in the required P80 and capacity. Among the three selected simulations, the Vertimill alternative showed the smallest installed power.

  8. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  9. An Enhanced Random Vibration and Fatigue Model for Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Bruno de Castro Braz

    Full Text Available Abstract Aerospace vehicles are mostly exposed to random vibration loads during its operational lifetime. These harsh conditions excites vibration responses in the vehicles printed circuit boards, what can cause failure on mission functionality due to fatigue damage of electronic components. A novel analytical model to evaluate the useful life of embedded electronic components (capacitors, chips, oscillators etc. mounted on Printed Circuit Boards (PCB is presented. The fatigue damage predictions are calculated by the relative displacement between the PCB and the component, the lead stiffness, as well the natural vibration modes of the PCB and the component itself. Statistical methods are used for fatigue cycle counting. The model is applied to experimental fatigue tests of PCBs available on literature. The analytical results are of the same magnitude order of the experimental findings.

  10. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  11. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  12. Dynamic Model of MR Dampers Based on a Hysteretic Magnetic Circuit

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2018-01-01

    Full Text Available As a key to understand dynamic performances of MR dampers, a comprehensive dynamic magnetic circuit model is proposed in this work on the basis of Ampere’s and Gauss’s laws. It takes into account not only the magnetic saturation, which many existing studies have focused on, but also the magnetic hysteresis and eddy currents in a MR damper. The hysteresis of steel parts of MR dampers is described by Jiles-Atherton (J-A models, and the eddy current is included based on the field separation. Compared with the FEM results, the proposed model is validated in low- and high-frequency studies for the predictions of the magnetic saturation, the hysteresis, and the effect of eddy currents. A simple multiphysics model is developed to demonstrate how to combine the proposed magnetic circuit model with the commonly used Bingham fluid model. The damping force in the high-frequency case obviously lags behind the coil current, which exhibits a hysteresis loop in the current-force plane. The lag of damping force even exists in a low-frequency varying magnetic field and becomes more severe in the presence of eddy currents.

  13. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  14. Active component modeling for analog integrated circuit design. Model parametrization and implementation in the SPICE-PAC circuit simulator

    International Nuclear Information System (INIS)

    Marchal, Xavier

    1992-01-01

    In order to use CAD efficiently in the analysis and design of electronic Integrated circuits, adequate modeling of active non-linear devices such as MOSFET transistors must be available to the designer. Many mathematical forms can be given to those models, such as explicit relations, or implicit equations to be solved. A major requirement in developing MOS transistor models for IC simulation is the availability of electrical characteristic curves over a wide range of channel width and length, including the sub-micrometer range. To account in a convenient way for bulk charge influence on I_D_S = f(V_D_S, V_G_S, v_B_S) device characteristics, all 3 standard SPICE MOS models use an empirical fitting parameter called the 'charge sharing factor'. Unfortunately, this formulation produces models which only describe correctly either some of the short channel phenomena, or some particular operating conditions (low injection, avalanche effect, etc.). We present here a cellular model (CDM = Charge Distributed Model) implemented in the open modular SPICE-PAC Simulator; this model is derived from the 4-terminal WANG charge controlled MOSFET model, using the charge sheet approximation. The CDM model describes device characteristics in ail operating regions without introducing drain current discontinuities and without requiring a 'charge sharing factor'. A usual problem to be faced by designers when they simulate MOS ICs is to find a reliable source of model parameters. Though most models have a physical basis, some of their parameters cannot be easily estimated from physical considerations. It can also happen that physically determined parameters values do not produce a good fit to measured device characteristics. Thus it is generally necessary to extract model parameters from measured transistor data, to ensure that model equations approximate measured curves accurately enough. Model parameters extraction can be done in 2 different ways, exposed in this thesis. The first

  15. Circuit QED lattices: Towards quantum simulation with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian [Institute for Theoretical Physics, ETH Zurich, 8093, Zurich (Switzerland); Koch, Jens [Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208 (United States)

    2013-06-15

    The Jaynes-Cummings model describes the coupling between photons and a single two-level atom in a simplified representation of light-matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes-Cummings-Hubbard model, in which the elementary excitations are polariton quasi-particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non-equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well-controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head-on, is an exciting idea which has served as theorists' playground for a while and is now also starting to catch on in experiments. This review gives a summary of the most recent theoretical proposals and experimental efforts. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Robust control of chaos in Chua's circuit based on internal model principle

    International Nuclear Information System (INIS)

    Lee, Keum W.; Singh, Sahjendra N.

    2007-01-01

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished

  17. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  18. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  19. Modelling of multilayer piezoelectric transducers for echographic applications Equivalent circuits

    International Nuclear Information System (INIS)

    Ramos, A.; Riera, E.; San Emeterio, J.L.; Sanz, P.T.

    1988-01-01

    In this paper, the main equivalent circuits of pulse-echo, single element, multilayer piezoelectric transducers, are analysed. The analogy of matching layers with lossless transmission lines is described. Finally, using the KLM model, the effects of backing and matching layers on the bandwidth and impulse response is analysed. (Author)

  20. Analog circuit design automation for performance

    NARCIS (Netherlands)

    Ning, Zhen-Qiu; Ning, Zhen-Qiu; Kole, Marq; Kole, M.E.; Mouthaan, A.J.; Wallinga, Hans

    1992-01-01

    This paper describes an improved version of the program SEAS (a Simulated Evolution approach for Analog circuit Synthesis), in which an approach for selection of alternatives based on the evaluation of mutation values is developed, and design automafion for high performance comparators is covered.

  1. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure.......2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information...

  2. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment

    Science.gov (United States)

    Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo

    2017-02-01

    Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.

  3. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  4. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  5. Active component modeling for analog integrated circuit design. Model parametrization and implementation in the SPICE-PAC circuit simulator; Modelisation de composants actifs pour la CAO de circuits integres analogiques. Parametrage et implantation de modeles dans le simulateur SPICE-PAC

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, Xavier

    1992-06-19

    In order to use CAD efficiently in the analysis and design of electronic Integrated circuits, adequate modeling of active non-linear devices such as MOSFET transistors must be available to the designer. Many mathematical forms can be given to those models, such as explicit relations, or implicit equations to be solved. A major requirement in developing MOS transistor models for IC simulation is the availability of electrical characteristic curves over a wide range of channel width and length, including the sub-micrometer range. To account in a convenient way for bulk charge influence on I{sub DS} = f(V{sub DS}, V{sub GS}, v{sub BS}) device characteristics, all 3 standard SPICE MOS models use an empirical fitting parameter called the 'charge sharing factor'. Unfortunately, this formulation produces models which only describe correctly either some of the short channel phenomena, or some particular operating conditions (low injection, avalanche effect, etc.). We present here a cellular model (CDM = Charge Distributed Model) implemented in the open modular SPICE-PAC Simulator; this model is derived from the 4-terminal WANG charge controlled MOSFET model, using the charge sheet approximation. The CDM model describes device characteristics in ail operating regions without introducing drain current discontinuities and without requiring a 'charge sharing factor'. A usual problem to be faced by designers when they simulate MOS ICs is to find a reliable source of model parameters. Though most models have a physical basis, some of their parameters cannot be easily estimated from physical considerations. It can also happen that physically determined parameters values do not produce a good fit to measured device characteristics. Thus it is generally necessary to extract model parameters from measured transistor data, to ensure that model equations approximate measured curves accurately enough. Model parameters extraction can be done in 2 different ways, exposed in this thesis

  6. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  7. Operator Spreading in Random Unitary Circuits

    Science.gov (United States)

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2018-04-01

    Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be

  8. Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach

    Directory of Open Access Journals (Sweden)

    Azizian Davood

    2016-12-01

    Full Text Available Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.

  9. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  10. Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory.

    Directory of Open Access Journals (Sweden)

    Shashaank Vattikuti

    2016-05-01

    Full Text Available It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.

  11. Equivalent-circuit model for stacked slot-based 2D periodic arrays of arbitrary geometry for broadband analysis

    Science.gov (United States)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2018-03-01

    The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.

  12. Technology library modeling for information-driven circuit synthesis

    NARCIS (Netherlands)

    Jozwiak, L.; Bieganski, S.J.

    2008-01-01

    Due to weaknesses in circuit synthesis methods used in todaypsilas CAD tools, the opportunities created by modern microelectronic technology cannot effectively be exploited. This paper considers major issues and requirements of circuit synthesis for the nano CMOS technologies, and discusses our new

  13. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    Directory of Open Access Journals (Sweden)

    U. Marschner

    2014-09-01

    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  14. A current-mode multi-valued adder circuit for multi-operand addition

    Science.gov (United States)

    Cini, Ugur; Morgül, Avni

    2011-06-01

    Static CMOS logic circuits have a robust working performance. However, they generate excessive noise when the switching activity is high. Source-coupled logic (SCL) circuits can be an alternative for analogue-friendly design where constant current is driven from the power supply, independent of the switching activity of the circuit. In this work, a compact current-mode multi-operand adder cell, similar to SCL circuits, is designed. The circuit adds up seven input operands using a technique similar to the (7, 3) counter circuit, but with less active elements when compared to a conventional binary (7, 3) counter. The design has comparable power and delay characteristics compared to conventional SCL implementation. The proposed circuit requires only 69 transistors, where 96 transistors are required for the equivalent SCL implementation. Hence the circuit saves on both transistor count and interconnections. The design is optimised for low power operation of high performance arithmetic circuits. The proposed multi-operand adder circuit is designed in UMC 0.18 µm technology. As an example of application, an 8 × 8 bit multiplier circuit is designed and simulated using HSPICE.

  15. Alternative dimensional models of personality disorder

    DEFF Research Database (Denmark)

    Widiger, Thomas A; Simonsen, Erik

    2005-01-01

    The recognition of the many limitations of the categorical model of personality disorder classification has led to the development of quite a number of alternative proposals for a dimensional classification. The purpose of this article is to suggest that future research work toward the integration...... of these alternative proposals within a common hierarchical structure. An illustration of a potential integration is provided using the constructs assessed within existing dimensional models. Suggestions for future research that will help lead toward a common, integrative dimensional model of personality disorder...

  16. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  17. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); Dumortier, Pierre; Lerche, Ernesto [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Helou, Walid [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Collaboration: EUROfusion Consortium

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  18. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Science.gov (United States)

    Durodié, Frédéric; Dumortier, Pierre; Helou, Walid; Křivská, Alena; Lerche, Ernesto

    2015-12-01

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  19. Synthesis of the System Modeling and Signal Detecting Circuit of a Novel Vacuum Microelectronic Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhengguo Shang

    2009-05-01

    Full Text Available A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %.

  20. Modeling and simulation of equivalent circuits in description of biological systems - a fractional calculus approach

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2012-07-01

    Full Text Available Using the fractional calculus approach, we present the Laplace analysis of an equivalent electrical circuit for a multilayered system, which includes distributed elements of the Cole model type. The Bode graphs are obtained from the numerical simulation of the corresponding transfer functions using arbitrary electrical parameters in order to illustrate the methodology. A numerical Laplace transform is used with respect to the simulation of the fractional differential equations. From the results shown in the analysis, we obtain the formula for the equivalent electrical circuit of a simple spectrum, such as that generated by a real sample of blood tissue, and the corresponding Nyquist diagrams. In addition to maintaining consistency in adjusted electrical parameters, the advantage of using fractional differential equations in the study of the impedance spectra is made clear in the analysis used to determine a compact formula for the equivalent electrical circuit, which includes the Cole model and a simple RC model as special cases.

  1. Equivalent circuit modelling of integrated traveling-wave optical modulator in InP foundry platform

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper we present an electro-optical model for traveling-wave modulator devices utilizing measurement-based equivalent circuit model extraction in conjunction with microwave CAD simulation techniques. Model verification is performed with frequencydomain and time-domain characterization of an

  2. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Lo

    2016-08-01

    Full Text Available Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor neural circuit mechanism with discrimination in perception.

  3. 30 CFR 75.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... Medium-Voltage Alternating Current Circuits § 75.902 Low- and medium-voltage ground check monitor circuits. [Statutory Provisions] On or before September 30, 1970, low- and medium-voltage resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor...

  4. An action-learning model to assist Circuit Teams to support School ...

    African Journals Online (AJOL)

    We report on the construction of a theoretical model to assist Circuit Teams to support School Management Teams of underperforming high schools towards whole-school development in which these improvement plans play a central role. We followed an action research design, employing qualitative data generation and ...

  5. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  6. Testing multi-alternative decision models with non-stationary evidence.

    Science.gov (United States)

    Tsetsos, Konstantinos; Usher, Marius; McClelland, James L

    2011-01-01

    Recent research has investigated the process of integrating perceptual evidence toward a decision, converging on a number of sequential sampling choice models, such as variants of race and diffusion models and the non-linear leaky competing accumulator (LCA) model. Here we study extensions of these models to multi-alternative choice, considering how well they can account for data from a psychophysical experiment in which the evidence supporting each of the alternatives changes dynamically during the trial, in a way that creates temporal correlations. We find that participants exhibit a tendency to choose an alternative whose evidence profile is temporally anti-correlated with (or dissimilar from) that of other alternatives. This advantage of the anti-correlated alternative is well accounted for in the LCA, and provides constraints that challenge several other models of multi-alternative choice.

  7. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits

    Science.gov (United States)

    2018-01-01

    Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures—recurrent connections, shared feed-forward projections, and shared gain fluctuations—on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing. PMID:29408930

  8. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2018-02-01

    Full Text Available Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures-recurrent connections, shared feed-forward projections, and shared gain fluctuations-on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing.

  9. Parameter Sensitivity of High–Order Equivalent Circuit Models Of Turbine Generator

    Directory of Open Access Journals (Sweden)

    T. Niewierowicz–Swiecicka

    2010-01-01

    Full Text Available This work shows the results of a parametric sensitivity analysis applied to a state–space representation of high–order two–axis equivalent circuits (ECs of a turbo generator (150 MVA, 120 MW, 13.8 kV y 50 Hz. The main purpose of this study is to evaluate each parameter impact on the transient response of the analyzed two–axis models –d–axis ECs with one to five damper branches and q–axis ECs from one to four damper branches–. The parametric sensitivity concept is formulated in a general context and the sensibility function is established from the generator response to a short circuit condition. Results ponder the importance played by each parameter in the model behavior. The algorithms were design within MATLAB® environment. The study gives way to conclusions on electromagnetic aspects of solid rotor synchronous generators that have not been previously studied. The methodology presented here can be applied to any other physical system.

  10. Analysis and Evaluation of Statistical Models for Integrated Circuits Design

    Directory of Open Access Journals (Sweden)

    Sáenz-Noval J.J.

    2011-10-01

    Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.

  11. Modeling in fast dynamics of accidents in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Robbe, M.F.

    2003-12-01

    Two kinds of accidents, liable to occur in the primary circuit of a Pressurized Water Reactor and involving fast dynamic phenomena, are analyzed. The Loss Of Coolant Accident (LOCA) is the accident used to define the current PWR. It consists in a large-size break located in a pipe of the primary circuit. A blowdown wave propagates through the circuit. The pressure differences between the different zones of the reactor induce high stresses in the structures of the lower head and may degrade the reactor core. The primary circuit starts emptying from the break opening. Pressure decreases very quickly, involving a large steaming. Two thermal-hydraulic simulations of the blowdown phase of a LOCA are computed with the Europlexus code. The primary circuit is represented by a pipe-model including the hydraulic peculiarities of the circuit. The main differences between both computations concern the kind of reactor, the break location and model, and the initialization of the accidental operation. Steam explosion is a hypothetical severe accident liable to happen after a core melting. The molten part of the core (called corium) falls in the lower part of the reactor. The interaction between the hot corium and the cold water remaining at the bottom of the vessel induces a massive and violent vaporization of water, similar to an explosive phenomenon. A shock wave propagates in the vessel. what can damage seriously the neighbouring structures or drill the vessel. This work presents a synthesis of in-vessel parametrical studies carried out with the Europlexus code, the linkage of the thermal-hydraulic code Mc3d dedicated to the pre-mixing phase with the Europlexus code dealing with the explosion, and finally a benchmark between the Cigalon and Europlexus codes relative to the Vulcano mock-up. (author)

  12. Electrical circuit modeling of reversed field pinches

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1988-02-01

    Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab

  13. Modeling and simulation of single-event effect in CMOS circuit

    International Nuclear Information System (INIS)

    Yue Suge; Zhang Xiaolin; Zhao Yuanfu; Liu Lin; Wang Hanning

    2015-01-01

    This paper reviews the status of research in modeling and simulation of single-event effects (SEE) in digital devices and integrated circuits. After introducing a brief historical overview of SEE simulation, different level simulation approaches of SEE are detailed, including material-level physical simulation where two primary methods by which ionizing radiation releases charge in a semiconductor device (direct ionization and indirect ionization) are introduced, device-level simulation where the main emerging physical phenomena affecting nanometer devices (bipolar transistor effect, charge sharing effect) and the methods envisaged for taking them into account are focused on, and circuit-level simulation where the methods for predicting single-event response about the production and propagation of single-event transients (SETs) in sequential and combinatorial logic are detailed, as well as the soft error rate trends with scaling are particularly addressed. (review)

  14. Memristor-based nanoelectronic computing circuits and architectures

    CERN Document Server

    Vourkas, Ioannis

    2016-01-01

    This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied t...

  15. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  16. An electrical circuit model for simulation of indoor radon concentration.

    Science.gov (United States)

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  17. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  18. A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu

    2005-01-01

    Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model

  19. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  20. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    Science.gov (United States)

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  1. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  2. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  3. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  4. Mobile Learning Based Worked Example in Electric Circuit (WEIEC) Application to Improve the High School Students' Electric Circuits Interpretation Ability

    Science.gov (United States)

    Yadiannur, Mitra; Supahar

    2017-01-01

    This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…

  5. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  6. Building and validation of a prognostic model for predicting extracorporeal circuit clotting in patients with continuous renal replacement therapy.

    Science.gov (United States)

    Fu, Xia; Liang, Xinling; Song, Li; Huang, Huigen; Wang, Jing; Chen, Yuanhan; Zhang, Li; Quan, Zilin; Shi, Wei

    2014-04-01

    To develop a predictive model for circuit clotting in patients with continuous renal replacement therapy (CRRT). A total of 425 cases were selected. 302 cases were used to develop a predictive model of extracorporeal circuit life span during CRRT without citrate anticoagulation in 24 h, and 123 cases were used to validate the model. The prediction formula was developed using multivariate Cox proportional-hazards regression analysis, from which a risk score was assigned. The mean survival time of the circuit was 15.0 ± 1.3 h, and the rate of circuit clotting was 66.6 % during 24 h of CRRT. Five significant variables were assigned a predicting score according to the regression coefficient: insufficient blood flow, no anticoagulation, hematocrit ≥0.37, lactic acid of arterial blood gas analysis ≤3 mmol/L and APTT R (2) = 0.232; P = 0.301). A risk score that includes the five above-mentioned variables can be used to predict the likelihood of extracorporeal circuit clotting in patients undergoing CRRT.

  7. A Plastic Cortico-Striatal Circuit Model of Adaptation in Perceptual Decision

    Directory of Open Access Journals (Sweden)

    Pao-Yueh eHsiao

    2013-12-01

    Full Text Available The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA system that modulates spike-timing dependent plasticity. We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject’s preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment.

  8. Complex dynamics of memristive circuits: Analytical results and universal slow relaxation

    Science.gov (United States)

    Caravelli, F.; Traversa, F. L.; Di Ventra, M.

    2017-02-01

    Networks with memristive elements (resistors with memory) are being explored for a variety of applications ranging from unconventional computing to models of the brain. However, analytical results that highlight the role of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices. This power law is also universal, namely independent of the topology of the underlying graph but dependent only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an approximate solution of the dynamics, which is tested against a specific network topology. These results suggest a much richer dynamics of memristive networks than previously considered.

  9. Fault Modeling and Testing for Analog Circuits in Complex Space Based on Supply Current and Output Voltage

    Directory of Open Access Journals (Sweden)

    Hongzhi Hu

    2015-01-01

    Full Text Available This paper deals with the modeling of fault for analog circuits. A two-dimensional (2D fault model is first proposed based on collaborative analysis of supply current and output voltage. This model is a family of circle loci on the complex plane, and it simplifies greatly the algorithms for test point selection and potential fault simulations, which are primary difficulties in fault diagnosis of analog circuits. Furthermore, in order to reduce the difficulty of fault location, an improved fault model in three-dimensional (3D complex space is proposed, which achieves a far better fault detection ratio (FDR against measurement error and parametric tolerance. To address the problem of fault masking in both 2D and 3D fault models, this paper proposes an effective design for testability (DFT method. By adding redundant bypassing-components in the circuit under test (CUT, this method achieves excellent fault isolation ratio (FIR in ambiguity group isolation. The efficacy of the proposed model and testing method is validated through experimental results provided in this paper.

  10. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2014-01-01

    Full Text Available We present a homotopy continuation method (HCM for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  11. Application of Powell's optimization method to surge arrester circuit models' parameters

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Stathopulos, I.A. [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens (Greece); Vita, V.; Ekonomou, L.; Chatzarakis, G.E. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2010-08-15

    Powell's optimization method has been used for the evaluation of the surge arrester models parameters. The proper modelling of metal-oxide surge arresters and the right selection of equivalent circuit parameters are very significant issues, since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters' dynamic behavior. The proposed approach selects optimum arrester model equivalent circuit parameter values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer. Application of the method in performed on a 120 kV metal oxide arrester. The use of the obtained optimum parameter values reduces significantly the relative error between the simulated and manufacturer's peak residual voltage value, presenting the effectiveness of the method. (author)

  12. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  13. Examining Pedestrian Injury Severity Using Alternative Disaggregate Models

    DEFF Research Database (Denmark)

    Abay, Kibrom Araya

    2013-01-01

    This paper investigates the injury severity of pedestrians considering detailed road user characteristics and alternative model specification using a high-quality Danish road accident data. Such detailed and alternative modeling approach helps to assess the sensitivity of empirical inferences...... to the choice of these models. The empirical analysis reveals that detailed road user characteristics such as crime history of drivers and momentary activities of road users at the time of the accident provides an interesting insight in the injury severity analysis. Likewise, the alternative analytical...... specification of the models reveals that some of the conventionally employed fixed parameters injury severity models could underestimate the effect of some important behavioral attributes of the accidents. For instance, the standard ordered logit model underestimated the marginal effects of some...

  14. Computer simulation model of reflex e-beam systems coupled to an external circuit

    International Nuclear Information System (INIS)

    Jungwirth, K.; Stavinoha, P.

    1982-01-01

    Dynamics of ions and relativistic electrons in various high-voltage reflexing systems (reflex diodes and triodes) was investigated numerically by means of 1 1/2-dimensional PIC simulation model OREBIA. Its perfected version OREBIA-REX also accounts for system coupling to an external power source circuit, thus yielding the currents and applied voltage self-consistently. Various modes of operation of reflex diode and triode were studied using both models. It is shown that neglecting the influence of the external circuit can lead to seve--re overestimation of both ion currents and electron accumulation rates. In coupled systems with ions repeated collapses of impedance due to electron-ion relaxation processes are observed. The current and voltage pulses calculated for several reflex diodes and triodes with and without ions are presented. (J.U.)

  15. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  16. Leaching of gold and silver from printed circuit board of mobile phones

    OpenAIRE

    Petter,Patrícia Melo Halmenschlager; Veit,Hugo Marcelo; Bernardes,Andréa Moura

    2015-01-01

    Nowadays there is a wide variety of models, sizes and configurations of mobile phones available for consumption. After the life cycle of this equipment, the recycling and reuse of the precious metals found in the printed circuit boards (PCB) of the mobile phones are principal objectives. Thus, the objective of this work was to characterize the gold and silver present in a PCB and develop a recycling route using alternative reagents for cyanide, such as sodium and ammonium thiosulfate. These r...

  17. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-09-01

    Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

  18. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  19. Design of Strain-Compensated Epitaxial Layers Using an Electrical Circuit Model

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2017-12-01

    The design of heterostructures that exhibit desired strain characteristics is critical for the realization of semiconductor devices with improved performance and reliability. The control of strain and dislocation dynamics requires an understanding of the relaxation processes associated with mismatched epitaxy, and the starting point for this analysis is the equilibrium strain profile, because the difference between the actual strain and the equilibrium value determines the driving force for dislocation glide and relaxation. Previously, we developed an electrical circuit model approach for the equilibrium analysis of semiconductor heterostructures, in which an epitaxial layer may be represented by a stack of subcircuits, each of which involves an independent current source, a resistor, an independent voltage source, and an ideal diode. In this work, we have applied the electrical circuit model to study the strain compensation mechanism and show that, for a given compositionally uniform device layer with fixed mismatch and layer thickness, a buffer layer may be designed (in terms of thickness and mismatch) to tailor the strain in the device layer. A special case is that in which the device layer will exhibit zero residual strain in equilibrium (complete strain compensation). In addition, the application of the electrical circuit analogy enables the determination of exact expressions for the residual strain characteristics of both the buffer and device layers in the general case where the device layer may exhibit partial strain compensation. On the basis of this framework, it is possible to develop design equations for the tailoring of the strain in a device layer grown on a uniform composition buffer.

  20. Equivalent circuit analysis of terahertz metamaterial filters

    KAUST Repository

    Zhang, Xueqian

    2011-01-01

    An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.

  1. Robust control of chaos in Chua's circuit based on internal model principle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keum W. [Department of Electrical and Computer Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4026 (United States); Singh, Sahjendra N. [Department of Electrical and Computer Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4026 (United States)]. E-mail: sahaj@ee.unlv.edu

    2007-03-15

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished.

  2. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  3. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    Science.gov (United States)

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  4. Computer-aided engineering of semiconductor integrated circuits

    Science.gov (United States)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  5. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... amplifier architectures. In addition, distortion analysis and power combining techniques are considered. Another key element in most microwave systems is a signal generator. It forms the heart of all kinds of communication and radar systems. The fourth part of this book is dedicated to signal generators...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...

  6. Modeling and Measurements of Alternating Magnetic Signatures of Ships

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wu

    2015-03-01

    Full Text Available The alternating electric and magnetic fields are new contributors to the global electromagnetic silencing of ships. Thus, modeling and measurements of alternating magnetic signatures should be a research priority in maritime engineering. In this paper, an alternating horizontal electric dipole is adopted to model the electromagnetic fields related with corrosion. Formulas for alternating magnetic fields generated in shallow sea by horizontal electric dipole are derived based on an air-sea-seabed three-layered model and a numerical computer is also applied. In addition, the alternating magnetic fields of a ship are measured using a tri-axis fluxgate magnetometer fixed in a swaying platform. The characteristics of these fields are analyzed. Finally, the equivalent dipole moment of the trial ship is predicted by contrasting the model results and the observed data.

  7. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    International Nuclear Information System (INIS)

    Pardo, D; Grajal, J

    2015-01-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology. (paper)

  8. Switching phenomena in high-voltage circuit breakers

    International Nuclear Information System (INIS)

    Nakanishi, K.

    1991-01-01

    The topics covered in this book include: general problems concerning current interruption, the physical arc model, and miscellaneous types of modern switching apparatus, such as gas circuit breakers, gas-insulated switch-gear, vacuum circuit breakers and high-voltage direct-current circuit breakers

  9. An improved electrical and thermal model of a microbolometer for electronic circuit simulation

    Science.gov (United States)

    Würfel, D.; Vogt, H.

    2012-09-01

    The need for uncooled infrared focal plane arrays (IRFPA) for imaging systems has increased since the beginning of the nineties. Examples for the application of IRFPAs are thermography, pedestrian detection for automotives, fire fighting, and infrared spectroscopy. It is very important to have a correct electro-optical model for the simulation of the microbolometer during the development of the readout integrated circuit (ROIC) used for IRFPAs. The microbolometer as the sensing element absorbs infrared radiation which leads to a change of its temperature due to a very good thermal insulation. In conjunction with a high temperature coefficient of resistance (TCR) of the sensing material (typical vanadium oxide or amorphous silicon) this temperature change results in a change of the electrical resistance. During readout, electrical power is dissipated in the microbolometer, which increases the temperature continuously. The standard model for the electro-optical simulation of a microbolometer includes the radiation emitted by an observed blackbody, radiation emitted by the substrate, radiation emitted by the microbolometer itself to the surrounding, a heat loss through the legs which connect the microbolometer electrically and mechanically to the substrate, and the electrical power dissipation during readout of the microbolometer (Wood, 1997). The improved model presented in this paper takes a closer look on additional radiation effects in a real IR camera system, for example the radiation emitted by the casing and the lens. The proposed model will consider that some parts of the radiation that is reflected from the casing and the substrate is also absorbed by the microbolometer. Finally, the proposed model will include that some fraction of the radiation is transmitted through the microbolometer at first and then absorbed after the reflection at the surface of the substrate. Compared to the standard model temperature and resistance of the microbolometer can be

  10. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  11. Quantum-circuit model of Hamiltonian search algorithms

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm

  12. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits

    Science.gov (United States)

    Lan, Chunbo; Tang, Lihua; Harne, Ryan L.

    2018-05-01

    Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.

  13. A programming language for composable DNA circuits.

    Science.gov (United States)

    Phillips, Andrew; Cardelli, Luca

    2009-08-06

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.

  14. Design of analog integrated circuits and systems

    CERN Document Server

    Laker, Kenneth R

    1994-01-01

    This text is designed for senior or graduate level courses in analog integrated circuits or design of analog integrated circuits. This book combines consideration of CMOS and bipolar circuits into a unified treatment. Also included are CMOS-bipolar circuits made possible by BiCMOS technology. The text progresses from MOS and bipolar device modelling to simple one and two transistor building block circuits. The final two chapters present a unified coverage of sample-data and continuous-time signal processing systems.

  15. The design of a new model circuit for image acquisition from nuclear medicine

    International Nuclear Information System (INIS)

    Zhang Nan; Jin Yongjie

    1995-01-01

    A new practical model of image acquisition circuit is given. It can be applied to data acquisition system of γ camera from nuclear medicine directly. Its idea also can be applied to some image acquisition system of nuclear event

  16. Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps

    Science.gov (United States)

    Nuryanto Budisusila, Eka; Arifin, Bustanul

    2017-04-01

    The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.

  17. Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Christiansen, Anne M; Wang, Xia; Song, Seongho; Herman, James P

    2016-07-01

    A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.

  18. Big bang nucleosynthesis - The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  19. Modeling a verification test system for mixed-signal circuits

    NARCIS (Netherlands)

    San Segundo Bello, D.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    In contrast to the large number of logic gates and storage circuits encountered in digital networks, purely analog networks usually have relatively few circuit primitives (operational amplifiers and so on). The complexity lies not in the number of building blocks but in the complexity of each block

  20. A model-based exploration of the role of pattern generating circuits during locomotor adaptation.

    Science.gov (United States)

    Marjaninejad, Ali; Finley, James M

    2016-08-01

    In this study, we used a model-based approach to explore the potential contributions of central pattern generating circuits (CPGs) during adaptation to external perturbations during locomotion. We constructed a neuromechanical modeled of locomotion using a reduced-phase CPG controller and an inverted pendulum mechanical model. Two different forms of locomotor adaptation were examined in this study: split-belt treadmill adaptation and adaptation to a unilateral, elastic force field. For each simulation, we first examined the effects of phase resetting and varying the model's initial conditions on the resulting adaptation. After evaluating the effect of phase resetting on the adaptation of step length symmetry, we examined the extent to which the results from these simple models could explain previous experimental observations. We found that adaptation of step length symmetry during split-belt treadmill walking could be reproduced using our model, but this model failed to replicate patterns of adaptation observed in response to force field perturbations. Given that spinal animal models can adapt to both of these types of perturbations, our findings suggest that there may be distinct features of pattern generating circuits that mediate each form of adaptation.

  1. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  2. An Alternative Approach to the Extended Drude Model

    Science.gov (United States)

    Gantzler, N. J.; Dordevic, S. V.

    2018-05-01

    The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.

  3. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  4. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  5. Anti-electromagnetic interference analysis of equivalent circuit of ion channel based on the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Chu, J; Chang, X L; Zhao, M; Man, M H; Wei, M; Yuan, L

    2013-01-01

    With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of b ioelectrical immunity . So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.

  6. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    Science.gov (United States)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the

  7. Alternatives to quintessence model building

    International Nuclear Information System (INIS)

    Avelino, P.P.; Beca, L.M.G.; Pinto, P.; Carvalho, J.P.M. de; Martins, C.J.A.P.

    2003-01-01

    We discuss the issue of toy model building for the dark energy component of the universe. Specifically, we consider two generic toy models recently proposed as alternatives to quintessence models, respectively known as Cardassian expansion and the Chaplygin gas. We show that the former is entirely equivalent to a class of quintessence models. We determine the observational constraints on the latter, coming from recent supernovae results and from the shape of the matter power spectrum. As expected, these restrict the model to a behavior that closely matches that of a standard cosmological constant Λ

  8. First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu

    2016-01-01

    A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.

  9. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    Science.gov (United States)

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Modeling of the Inductance of a Blumlein Circuit Spark Gap

    International Nuclear Information System (INIS)

    Aboites, V; Rendón, L; Hernández, A I; Valdés, E

    2015-01-01

    In this paper we present an analysis of the time-varying inductance in the spark gap of a Blumlein circuit. We assume several mathematical expressions to describe the inductance and compare theoretical and computational calculations with experimental results. The time-varying inductance is approximated by a constant, a straight line and two parables which differ in their concavity. This is the first time to our knowledge, in which the time-varying ignition inductance of a nitrogen laser is modeled

  11. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  12. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  13. Analysis of electronic circuits using digital computers; L'analyse des circuits electroniques par les calculateurs numeriques

    Energy Technology Data Exchange (ETDEWEB)

    Tapu, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [French] Differents programmes ont ete proposes pour l'etude des circuits electroniques a l'aide des calculateurs. On montre comment on peut utiliser le programme ECAP, mis au point par I. B. M., pour etudier le comportement d'un amplificateur operationnel, a differents points de vue: analyse en courant continu, courant alternatif et regime transitoire, optimalisation du gain en boucle ouverte, etude de la fiabilite. (auteur)

  14. Neural reuse of action perception circuits for language, concepts and communication.

    Science.gov (United States)

    Pulvermüller, Friedemann

    2018-01-01

    Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  15. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

    Directory of Open Access Journals (Sweden)

    Carmen A. Bulucea

    2013-03-01

    Full Text Available Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources entail generator circuit-breakers (GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c. circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit

  16. Josephson Circuits as Vector Quantum Spins

    Science.gov (United States)

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  17. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more

  18. Design, Analysis and Test of Logic Circuits Under Uncertainty

    CERN Document Server

    Krishnaswamy, Smita; Hayes, John P

    2013-01-01

    Integrated circuits (ICs) increasingly exhibit uncertain characteristics due to soft errors, inherently probabilistic devices, and manufacturing variability. As device technologies scale, these effects can be detrimental to the reliability of logic circuits.  To improve future semiconductor designs, this book describes methods for analyzing, designing, and testing circuits subject to probabilistic effects. The authors first develop techniques to model inherently probabilistic methods in logic circuits and to test circuits for determining their reliability after they are manufactured. Then, they study error-masking mechanisms intrinsic to digital circuits and show how to leverage them to design more reliable circuits.  The book describes techniques for:   • Modeling and reasoning about probabilistic behavior in logic circuits, including a matrix-based reliability-analysis framework;   • Accurate analysis of soft-error rate (SER) based on functional-simulation, sufficiently scalable for use in gate-l...

  19. Parametric, nonparametric and parametric modelling of a chaotic circuit time series

    Science.gov (United States)

    Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.

    2000-09-01

    The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.

  20. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  1. Large Signal Circuit Model of Two-Section Gain Lever Quantum Dot Laser

    International Nuclear Information System (INIS)

    Horri Ashkan; Mirmoeini Seyedeh Zahra; Faez Rahim

    2012-01-01

    An equivalent circuit model for the design and analysis of two-section gain lever quantum dot (QD) laser is presented. This model is based on the three level rate equations with two independent carrier populations and a single longitudinal optical mode. By using the presented model, the effect of gain lever on QD laser performances is investigated. The results of simulation show that the main characteristics of laser such as threshold current, transient response, output power and modulation response are affected by differential gain ratios between the two-sections

  2. Application of Circuit Simulation Method for Differential Modeling of TIM-2 Iron Uptake and Metabolism in Mouse Kidney Cells

    Directory of Open Access Journals (Sweden)

    Zhijian eXie

    2013-06-01

    Full Text Available Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modelling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS, we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt receptor, T cell immunoglobulin and mucin domain-2 (TIM-2. The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt was 2.17 pmol per million cells. TIM-2 binding probability with iron-loaded HFt was 16.6%. An average of 8.5 minutes was required for the complex of TIM-2 and iron-loaded HFt to form an endosome. The endosome containing HFt lasted roughly 2 hours. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.

  3. Variational integrators for electric circuits

    International Nuclear Information System (INIS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  4. An equivalent circuit approach to the modelling of the dynamics of dye sensitized solar cells

    DEFF Research Database (Denmark)

    Bay, L.; West, K.

    2005-01-01

    A model that can be used to interpret the response of a dye-sensitized photo electrode to intensity-modulated light (intensity modulated voltage spectroscopy, IMVS and intensity modulated photo-current spectroscopy, IMPS) is presented. The model is based on an equivalent circuit approach involvin...

  5. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  6. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  7. Dynamic pulse difference circuit

    International Nuclear Information System (INIS)

    Erickson, G.L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry is disclosed which comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter

  8. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    Science.gov (United States)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  9. Assessment and modelling of switching technologies for application in HVDC-circuit breakers

    OpenAIRE

    Lund, Johan

    2011-01-01

    A key element for future DC-grids is a DC circuit breaker that in case of a short circuit fault reliably can turn off a short circuit current. AC circuit breakers are well known components that has been in use for a long time in AC-grids. The AC circuit breaker is designed to interrupt the current at its natural current zero crossings. In DC grids such does not exists, therefore AC breakers can not be directly applied in DC grids. Different concepts and technologies to solve this problem is a...

  10. Modelling response times in multi-alternative categorization with TVA

    DEFF Research Database (Denmark)

    Blurton, Steven Paul; Kyllingsbæk, Søren; Bundesen, Claus

    , such as trial-to-trial variation in the Poisson processing rates and an extension of the random walk to n-alternatives. In an empirical test of the model we fitted the random walk model to data of a binary and a four-alternative orientation discrimination task. In both cases, the model predictions closely...

  11. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    Directory of Open Access Journals (Sweden)

    M. Kotzev

    2017-09-01

    Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  12. Comparison of Parametrization Techniques for an Electrical Circuit Model of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values...

  13. Sub-Circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems

    Science.gov (United States)

    2008-12-16

    of Defense, or the United States Government . AFIT/GCO/ENG/09-02 Sub-circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems... unicorns and random programs”. Communications and Computer Networks, 24–30. 2005. 87 Vita Eric D. Simonaire graduated from Granite Baptist Church School in...Service to attend the Air Force Institute of Technol- ogy in 2007. Upon graduation, he will serve the federal government in an Information Assurance

  14. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Research on uranium resource models. Part IV. Logic: a computer graphics program to construct integrated logic circuits for genetic-geologic models. Progress report

    International Nuclear Information System (INIS)

    Scott, W.A.; Turner, R.M.; McCammon, R.B.

    1981-01-01

    Integrated logic circuits were described as a means of formally representing genetic-geologic models for estimating undiscovered uranium resources. The logic circuits are logical combinations of selected geologic characteristics judged to be associated with particular types of uranium deposits. Each combination takes on a value which corresponds to the combined presence, absence, or don't know states of the selected characteristic within a specified geographic cell. Within each cell, the output of the logic circuit is taken as a measure of the favorability of occurrence of an undiscovered deposit of the type being considered. In this way, geological, geochemical, and geophysical data are incorporated explicitly into potential uranium resource estimates. The present report describes how integrated logic circuits are constructed by use of a computer graphics program. A user's guide is also included

  16. SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  17. On-chip remote charger model using plasmonic island circuit

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We propose the remote charger model using the light fidelity (LiFi transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10−11 AW−1, with the gold height of 1.0 µm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.

  18. Inter digital transducer modelling through Mason equivalent circuit model

    DEFF Research Database (Denmark)

    Mishra, Dipti; Singh, Abhishek; Hussain, Dil muhammed Akbar

    2016-01-01

    ) is projected which is well-suited with a broadly cast-off universal resolution circuit simulator SPICE built-in out with the proficiency to simulate the negative capacitances and inductances. The investigation is done to prove the straightforwardness of establishing the frequency and time domain physical...

  19. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The 6.9 kV/2.3 kV 400 kVA-class single-phase YBCO model transformer with the YBCO tape with copper tape was manufactured for short-circuit current test. Short-circuit test was performed and the short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. The transformer withstood short-circuit current. We are planning to turn the result into a consideration of a 66 kV/6.9 kV-20 MVA-class three-phase superconducting transformer. We are developing an elemental technology for 66 kV/6.9 kV 20 MVA-class power transformer with YBCO conductors. The protection of short-circuit technology is one of the elemental technologies for HTS transformer. Since short-circuit current is much higher than critical current of YBCO tape, there is a possibility that superconducting characteristics may be damaged during short-circuit period. We made a conductor to compose the YBCO tape with copper tape. We manufactured 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer using this conductor and performed short-circuit current test. The short-circuit current of primary winding was 346 A which was about six times larger than the rated current. The I-V characteristics of the winding did not change before and after the test. We may consider this conductor withstands short-circuit current.

  20. Electro-thermal modeling of high power IGBT module short-circuits with experimental validation

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2015-01-01

    A novel Insulated Gate Bipolar Transistor (IGBT) electro-thermal modeling approach involving PSpice and ANSYS/Icepak with both high accuracy and simulation speed has been presented to study short-circuit of a 1.7 kV/1 kA commercial IGBT module. The approach successfully predicts the current...

  1. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  2. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. METHODS: Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. RESULTS: Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. CONCLUSIONS: The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit

  3. Towards a modeling synthesis of two or three-dimensional circuits through substrate coupling and interconnections

    CERN Document Server

    Gontrand, Christian

    2014-01-01

    The number of transistors in integrated circuits doubles every two years, as stipulated by Moore's law, and this has been the driving force for the huge development of the microelectronics industry in the past 50 years - currently advanced to the nanometric scale.This e-book is dedicated to electronic noises and parasites, accounting for issues involving substrate coupling and interconnections, in the perspective of the 3D integration: a second track for enhancing integration, also compatible with Moore's law. This reference explains the modeling of 3D circuits without delving into the latest

  4. Alternative models for academic family practices

    Directory of Open Access Journals (Sweden)

    Yarnall Kimberly SH

    2006-03-01

    Full Text Available Abstract Background The Future of Family Medicine Report calls for a fundamental redesign of the American family physician workplace. At the same time, academic family practices are under economic pressure. Most family medicine departments do not have self-supporting practices, but seek support from specialty colleagues or hospital practice plans. Alternative models for academic family practices that are economically viable and consistent with the principles of family medicine are needed. This article presents several "experiments" to address these challenges. Methods The basis of comparison is a traditional academic family medicine center. Apart of the faculty practice plan, our center consistently operated at a deficit despite high productivity. A number of different practice types and alternative models of service delivery were therefore developed and tested. They ranged from a multi-specialty office arrangement, to a community clinic operated as part of a federally-qualified health center, to a team of providers based in and providing care for residents of an elderly public housing project. Financial comparisons using consistent accounting across models are provided. Results Academic family practices can, at least in some settings, operate without subsidy while providing continuity of care to a broad segment of the community. The prerequisites are that the clinicians must see patients efficiently, and be able to bill appropriately for their payer mix. Conclusion Experimenting within academic practice structure and organization is worthwhile, and can result in economically viable alternatives to traditional models.

  5. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    Science.gov (United States)

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  6. Alternative models of DSM-5 PTSD: Examining diagnostic implications.

    Science.gov (United States)

    Murphy, Siobhan; Hansen, Maj; Elklit, Ask; Yong Chen, Yoke; Raudzah Ghazali, Siti; Shevlin, Mark

    2018-04-01

    The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed models. This study aimed to generate PTSD prevalence estimates derived from the 7 alternative factor models and assess whether pre-established risk factors associated with PTSD (e.g., transportation accidents and sexual victimisation) produce consistent risk estimates. Seven alternative models were estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n = 481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit with statistical superiority for the Externalising Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models, with substantial variation emerging for sexual victimisation. These findings have important implications for research and practice and highlight that more research attention is needed to examine the diagnostic implications emerging from the alternative models of PTSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  8. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  9. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan

    2015-10-26

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  10. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.

    2015-01-01

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  11. An equivalent circuit model of supercapacitors for applications in wireless sensor networks

    Science.gov (United States)

    Yang, Hengzhao; Zhang, Ying

    2011-04-01

    Energy harvesting technologies have been extensively researched to develop long-lived wireless sensor networks. To better utilize the harvested energy, various energy storage systems are proposed. A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance (VLR) to characterize the self-discharge process. The voltage and temperature dependence of the VLR values is also discussed. Results show that the VLR model is more accurate than the energy recursive equation (ERE) models for short term wireless sensor network applications.

  12. Statistical modeling implicates neuroanatomical circuit mediating stress relief by ‘comfort’ food

    Science.gov (United States)

    Ulrich-Lai, Yvonne M.; Christiansen, Anne M.; Wang, Xia; Song, Seongho; Herman, James P.

    2015-01-01

    A history of eating highly-palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30% sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such ‘comfort’ foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala - medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological data sets. PMID:26246177

  13. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  14. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-01-01

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian

  15. Baryon density in alternative BBN models

    International Nuclear Information System (INIS)

    Kirilova, D.

    2002-10-01

    We present recent determinations of the cosmological baryon density ρ b , extracted from different kinds of observational data. The baryon density range is not very wide and is usually interpreted as an indication for consistency. It is interesting to note that all other determinations give higher baryon density than the standard big bang nucleosynthesis (BBN) model. The differences of the ρ b values from the BBN predicted one (the most precise today) may be due to the statistical and systematic errors in observations. However, they may be an indication of new physics. Hence, it is interesting to study alternative BBN models, and the possibility to resolve the discrepancies. We discuss alternative cosmological scenarios: a BBN model with decaying particles (m ∼ MeV, τ ∼ sec) and BBN with electron-sterile neutrino oscillations, which permit to relax BBN constraints on the baryon content of the Universe. (author)

  16. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied

  17. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  18. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  19. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  20. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  1. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  2. Modeling in fast dynamics of accidents in the primary circuit of PWR type reactors; Modelisation en dynamique rapide d'accidents dans le circuit primaire des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F

    2003-12-01

    Two kinds of accidents, liable to occur in the primary circuit of a Pressurized Water Reactor and involving fast dynamic phenomena, are analyzed. The Loss Of Coolant Accident (LOCA) is the accident used to define the current PWR. It consists in a large-size break located in a pipe of the primary circuit. A blowdown wave propagates through the circuit. The pressure differences between the different zones of the reactor induce high stresses in the structures of the lower head and may degrade the reactor core. The primary circuit starts emptying from the break opening. Pressure decreases very quickly, involving a large steaming. Two thermal-hydraulic simulations of the blowdown phase of a LOCA are computed with the Europlexus code. The primary circuit is represented by a pipe-model including the hydraulic peculiarities of the circuit. The main differences between both computations concern the kind of reactor, the break location and model, and the initialization of the accidental operation. Steam explosion is a hypothetical severe accident liable to happen after a core melting. The molten part of the core (called corium) falls in the lower part of the reactor. The interaction between the hot corium and the cold water remaining at the bottom of the vessel induces a massive and violent vaporization of water, similar to an explosive phenomenon. A shock wave propagates in the vessel. what can damage seriously the neighbouring structures or drill the vessel. This work presents a synthesis of in-vessel parametrical studies carried out with the Europlexus code, the linkage of the thermal-hydraulic code Mc3d dedicated to the pre-mixing phase with the Europlexus code dealing with the explosion, and finally a benchmark between the Cigalon and Europlexus codes relative to the Vulcano mock-up. (author)

  3. Student generated assignments about electrical circuits in a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on

  4. A fast circuit analysis program based on microcomputer

    International Nuclear Information System (INIS)

    Hu Guoji

    1988-01-01

    A fast circuit analysis program (FCAP) is introduced. The program may be used to analyse DC operating point, frequency and transient response of fast circuit. The feature is that the model of active element is not specified. Users may choose one of many equivalent circuits. Written in FORTRAN 77, FCAP can be run on IBM PC and its compatible computers. It can be used as an assistant tool of analysis and design for fast circuits

  5. Analysis of electronic circuits using digital computers

    International Nuclear Information System (INIS)

    Tapu, C.

    1968-01-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [fr

  6. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  7. Biologically based neural circuit modelling for the study of fear learning and extinction

    Science.gov (United States)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  8. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Arun Kaintura

    2018-02-01

    Full Text Available Advances in manufacturing process technology are key ensembles for the production of integrated circuits in the sub-micrometer region. It is of paramount importance to assess the effects of tolerances in the manufacturing process on the performance of modern integrated circuits. The polynomial chaos expansion has emerged as a suitable alternative to standard Monte Carlo-based methods that are accurate, but computationally cumbersome. This paper provides an overview of the most recent developments and challenges in the application of polynomial chaos-based techniques for uncertainty quantification in integrated circuits, with particular focus on high-dimensional problems.

  9. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    Science.gov (United States)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-12-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  10. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  11. The electrocardiogram as an electronic filter and why ac circuits are important for pre-health physics students

    Science.gov (United States)

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.

  12. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    Science.gov (United States)

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Evaluation of the corrosion, reactivity and chemistry control aspects for the selection of an alternative coolant in the secondary circuit of sodium fast reactors

    International Nuclear Information System (INIS)

    Brissonneau, L.; Simon, N.; Balbaud-Celerier, F.; Courouau, J.L.; Martinelli, L.; Grabon, V.; Capitaine, A.; Conocar, O.; Blat, M.

    2009-01-01

    Full text of publication follows: Sodium Fast Reactors are promising fourth generation reactors as they can contribute to reduce resource demand in uranium and considerably reduce waste level due to their fast spectrum. However, progress can be obtained for these reactors on the investment cost and on safety improvement. To achieve these goals, one of the innovative solutions consists in eliminating the reaction of sodium with water in the steam generators, by replacing the sodium in the secondary circuit by another coolant. A work group composed of experts from CEA, Areva NP and EdF was in charge to evaluate several alternative coolants as Heavy Liquid Metals (HLM), nitrate salts and hydroxide mixtures, through a multi-criteria analysis. Three important criteria for the selection of one coolant are its 'Interactions with the structures', and its 'chemistry control', and 'Reactivity with fluids' which are strongly correlated. The assessment, mainly based on the state-of-art from published literature on these points, is detailed in this paper. The mechanisms of corrosion of steels by the HLM depend on the oxygen content. For Pb-Bi, it has been modelled for oxidation and release domains. The corrosion of steels by nitrate salts presents similarity with the oxidation induced by HLM. The highly corrosive hydroxide mixture requires the use of nickel base alloys, for which oxidation and mass transfer are nevertheless significant. The HLM requires a fine regulation of oxygen content, through measurements and control systems, both to prevent lead oxide precipitation at high level and release corrosion at low level. Nitrate salts decompose into nitrites at sufficiently high temperature, which might induce pressure build-up in the circuit. The hydroxides must be kept under reducing atmosphere to lower the corrosion rate. Though these coolants are relatively inert to air and water, one of the main drawbacks of HLM and nitrate salts are their reactivity with sodium. Bismuth

  14. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна

    2007-01-01

    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  16. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  17. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  18. Multi-valued logic circuits using hybrid circuit consisting of three gates single-electron transistors (TG-SETs) and MOSFETs.

    Science.gov (United States)

    Shin, SeungJun; Yu, YunSeop; Choi, JungBum

    2008-10-01

    New multi-valued logic (MVL) families using the hybrid circuits consisting of three gates single-electron transistors (TG-SETs) and a metal-oxide-semiconductor field-effect transistor (MOSFET) are proposed. The use of SETs offers periodic literal characteristics due to Coulomb oscillation of SET, which allows a realization of binary logic (BL) circuits as well as multi-valued logic (MVL) circuits. The basic operations of the proposed MVL families are successfully confirmed through SPICE circuit simulation based on the physical device model of a TG-SET. The proposed MVL circuits are found to be much faster, but much larger power consumption than a previously reported MVL, and they have a trade-off between speed and power consumption. As an example to apply the newly developed MVL families, a half-adder is introduced.

  19. Trading speed and accuracy by coding time: a coupled-circuit cortical model.

    Directory of Open Access Journals (Sweden)

    Dominic Standage

    2013-04-01

    Full Text Available Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.

  20. Evaluation and comparison of alternative fleet-level selective maintenance models

    International Nuclear Information System (INIS)

    Schneider, Kellie; Richard Cassady, C.

    2015-01-01

    Fleet-level selective maintenance refers to the process of identifying the subset of maintenance actions to perform on a fleet of repairable systems when the maintenance resources allocated to the fleet are insufficient for performing all desirable maintenance actions. The original fleet-level selective maintenance model is designed to maximize the probability that all missions in a future set are completed successfully. We extend this model in several ways. First, we consider a cost-based optimization model and show that a special case of this model maximizes the expected value of the number of successful missions in the future set. We also consider the situation in which one or more of the future missions may be canceled. These models and the original fleet-level selective maintenance optimization models are nonlinear. Therefore, we also consider an alternative model in which the objective function can be linearized. We show that the alternative model is a good approximation to the other models. - Highlights: • Investigate nonlinear fleet-level selective maintenance optimization models. • A cost based model is used to maximize the expected number of successful missions. • Another model is allowed to cancel missions if reliability is sufficiently low. • An alternative model has an objective function that can be linearized. • We show that the alternative model is a good approximation to the other models

  1. Applications of VLSI circuits to medical imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  2. Electronic circuit encyclopedia 2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho

    1992-10-15

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  3. Electronic circuit encyclopedia 2

    International Nuclear Information System (INIS)

    Park, Sun Ho

    1992-10-01

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  4. High theory/mass markets: Newsweek magazine and the circuits of medical culture.

    Science.gov (United States)

    Lewis, Bradley

    2007-01-01

    Medicine is driven by much more than science and reason (ethics); it is also driven by the circuits of culture within which it operates. This article examines how postmodern theory deconstructs standard ideals of science and reason and allows medical humanities scholars to better contextualize the world of medicine. As such, postmodern theory provides an invaluable tool for understanding the circuits of popular culture and medicine's place within these circuits. Using a recent issue of Newsweek magazine devoted to health and technology to illustrate the main points, this essay argues that contemporary popular influences on medicine are deeply problematic, and that through an appreciation of the dynamics of culture, medical humanities scholars can join the struggle over medical culture. This perspective allows medical humanities to make important contributions toward alternative circuits of medical representation, consumption, and identification.

  5. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  6. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits

    OpenAIRE

    Arun Kaintura; Tom Dhaene; Domenico Spina

    2018-01-01

    Advances in manufacturing process technology are key ensembles for the production of integrated circuits in the sub-micrometer region. It is of paramount importance to assess the effects of tolerances in the manufacturing process on the performance of modern integrated circuits. The polynomial chaos expansion has emerged as a suitable alternative to standard Monte Carlo-based methods that are accurate, but computationally cumbersome. This paper provides an overview of the most recent developm...

  7. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  8. Development of simulated and ovine models of extracorporeal life support to improve understanding of circuit-host interactions.

    Science.gov (United States)

    Shekar, Kiran; Fung, Yoke L; Diab, Sara; Mullany, Daniel V; McDonald, Charles I; Dunster, Kimble R; Fisquet, Stephanie; Platts, David G; Stewart, David; Wallis, Steven C; Smith, Maree T; Roberts, Jason A; Fraser, John F

    2012-06-01

    Extracorporeal life support (ECLS) is a lifesaving technology that is being increasingly used in patients with severe cardiorespiratory failure. However, ECLS is not without risks. The biosynthetic interface between the patient and the circuit can significantly alter inflammation, coagulation, pharmacokinetics and disposition of trace elements. The relative contributions of the pump, disease and patient in propagating these alterations are difficult to quantify in critically ill patients with multiple organ failure. To design a model where the relevance of individual components could be assessed, in isolation and in combination. Four ECLS models were developed and tested - an in-vitro simulated ECLS circuit; and ECLS in healthy sheep, sheep with acute lung injury (ALI), and sheep with ALI together with transfusion of old or new blood. Successful design of in-vitro and in-vivo models. We successfully conducted multiple experiments in the simulated circuits and ECLS runs in healthy and ALI sheep. We obtained preliminary data on inflammation, coagulation, histology, pharmacokinetics and trace element disposition during ECLS. The establishment of in-vitro and in-vivo models provides a powerful means for enhancing knowledge of the pathophysiology associated with ECLS and identification of key factors likely to influence patient outcomes. A clearer description of the contribution of disease and therapeutic interventions may allow improved design of equipment, membranes, medicines and physiological goals for improved patient care.

  9. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  10. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  11. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  12. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  13. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  14. The role of alternative Polyadenylation in regulation of rhythmic gene expression.

    Science.gov (United States)

    Ptitsyna, Natalia; Boughorbel, Sabri; El Anbari, Mohammed; Ptitsyn, Andrey

    2017-08-04

    Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering

  15. Simulating the JET ITER-like Antenna circuit

    International Nuclear Information System (INIS)

    Van Eester, D.; Lerche, E.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Vrancken, M.; Argouarch, A.; Blackman, T.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M.; Wooldridge, E.; Whitehurst, A.; Goulding, R. H.

    2009-01-01

    A set of simulation/interpretation tools based on transmission line theory and on the RF model developed by M. Vrancken has been developed to study the ITER-like Antenna (ILA) at JET. For given tuning element settings, the unique solution of the equations governing the ILA circuit requires solving a system of coupled linear equations relating the voltages and currents at the antenna straps and other key locations. This computation allows cross-checking predicted values against measured experimental ones. Further more, a minimization procedure allows improving the correspondence with the quantities measured in the circuit during shots, thus coping with unavoidable errors arising from uncertainties in the measurements or from inaccuracies in the adopted RF model. Typical applications are e.g. fine-tuning of the second-stage of the ILA circuit for increased ELM-resilience, cross-checking the calibration of the measurements throughout the circuit and predicting the antenna performance and matching conditions in new plasma scenarios.

  16. Physically-insightful equivalent circuit models for electromagnetic periodic structures

    Science.gov (United States)

    Mesa, F.; Rodríguez-Berral, R.; Medina, F.

    2018-02-01

    In this presentation it will be discussed how to obtain analytical or quasi-analytical equivalent circuits to deal with periodic structures such as frequency selective surfaces and/or metasurfaces. Both the topology and the values of the involved elements of these circuits are obtained from a basic rationale to solve the corresponding integral equation. This procedure, besides providing a very efficient analysis/design tool, allows for a good physical insight into the operating mechanisms of the structure in contrast with the almost blind numerical scheme of commercial simulators.

  17. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  18. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  19. Development of a RF large signal MOSFET model, based on an equivalent circuit, and comparison with the BSIM3v3 compact model.

    NARCIS (Netherlands)

    Vandamme, E.P.; Schreurs, D.; Dinther, van C.H.J.; Badenes, G.; Deferm, L.

    2002-01-01

    The improved RF performance of silicon-based technologies over the years and their potential use in telecommunication applications has increased the research in RF modelling of MOS transistors. Especially for analog circuits, accurate RF small signal and large signal transistor models are required.

  20. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  1. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  2. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  3. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  4. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    Science.gov (United States)

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.

  5. Output signal analysis for a variation of the R-C passive elements in a 4-2 mA R-L-C equivalent circuit modeling under a high temperature accident condition in NPPs

    International Nuclear Information System (INIS)

    Kil-Mo, Koo; Sang-Baik, Kim; Hee-Dong, Kim; Gyu-Tae, Kim

    2007-01-01

    An electrical signal should be checked to see whether it lies within its expected electrical range when there is a doubtful condition. The normal signal level for pressure, flow, level and resistance temperature detector sensors is 4-20 mA in most industrial process controls. In the case of an abnormal signal level from an instrument under a severe accident condition, it is necessary to obtain a more accurate signal validation to operate a system in a control room in NPPs. Diagnostics and analysis for some abnormal signals have been performed through an important equivalent circuits modeling for passive elements under severe accident conditions. Unlike the design basis accidents, there are some inherent uncertainties for the instrumentation capabilities under severe accident conditions. In this paper, to implement a diagnostic analysis for an equivalent circuits modeling, a kind of linked LabVIEW program for each PSpice and MULTI-SIM code is introduced as a one body order system, which can obtain some abnormal signal patterns by a special function such as an advanced simulation tool for each PSpice and Multi-SIM code as a means of a function for a PC based ASSA (Abnormal Signal Simulation Analyzer) module. The output signal can be analyzed by a comparative analysis of each PSpice and Multi-SIM code for a 4-20 mA circuit modeling which is by a composition of an R-L-C passive circuit as an alternating range of the elements for the temperature accident condition. In this simulation, a new simulator through an analysis of the important equivalent circuits modeling has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of each PSpice code and a Multi-SIM engine code as an engine tool is exported to the in-put file of the LabVIEW code. There are 3 main function units of the ASSA module, the first one is individual PSpice and Multi-SIM engine code units to comprise an equivalent circuit element, the second one is the

  6. Comparison of decay heat exchangers placing in the primary circuit of pool type fast reactor

    International Nuclear Information System (INIS)

    Birbraer, P.N.; Gorbunov, V.S.; Zotov, V.G.; Kuzavkov, N.G.; Pykhonin, V.A.; Sobolev, V.A.; Ryzhov, V.A.

    1993-01-01

    Description of two alternative arrangements of decay beat exchangers (DHXs) in the fast reactor tank is presented: in 'hot' cavity and in 'cold' cavity. The results of calculation for the two alternative arrangements as regards static and dynamic parameters in the primary circuit on 1-D program are given. (author)

  7. Adapting Evaluations of Alternative Payment Models to a Changing Environment.

    Science.gov (United States)

    Grannemann, Thomas W; Brown, Randall S

    2018-04-01

    To identify the most robust methods for evaluating alternative payment models (APMs) in the emerging health care delivery system environment. We assess the impact of widespread testing of alternative payment models on the ability to find credible comparison groups. We consider the applicability of factorial research designs for assessing the effects of these models. The widespread adoption of alternative payment models could effectively eliminate the possibility of comparing APM results with a "pure" control or comparison group unaffected by other interventions. In this new environment, factorial experiments have distinct advantages over the single-model experimental or quasi-experimental designs that have been the mainstay of recent tests of Medicare payment and delivery models. The best prospects for producing definitive evidence of the effects of payment incentives for APMs include fractional factorial experiments that systematically vary requirements and payment provisions within a payment model. © Health Research and Educational Trust.

  8. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    Science.gov (United States)

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  9. Effects of circuit training as alternative to usual physiotherapy after stroke: randomised controlled trial

    NARCIS (Netherlands)

    van de Port, I.G.L.; Wevers, L.E.G.; Lindeman, E.; Kwakkel, G.

    2012-01-01

    Objective: To analyse the effect of task oriented circuit training compared with usual physiotherapy in terms of self reported walking competency for patients with stroke discharged from a rehabilitation centre to their own home. Design: Randomised controlled trial with follow-up to 24 weeks.

  10. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  11. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  12. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  13. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ''best alternatives'': Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases

  14. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  15. Test model of the fast thyristor circuit breaker, for TORE SUPRA

    International Nuclear Information System (INIS)

    Bareyt, B.; Leloup, C.; Rijnoudt, E.

    1984-01-01

    The tokamak TORE SUPRA, permits, owing to the toroidal superconducting coils and to the poloidal field system performances, long discharges (30 s and more), for a plasma current of typically 2 MA. The poloidal field system uses the magnetic energy initially stored, for the ignition and the fast rise of the plasma current, by forcing the primary current to flow through a resistor after breaking the main rectifier current by a fast thyristor circuit breaker. In order to test the technical capabilities of such a breaker system made of fast thyristors, in series and in parallel, after a single thyristor test model T1 the series arrangement was studied on a 24 thyristor test model T2 and the parallel arrangement problems, led the manufacturer CGEE Alsthom, to build a new test model T3. (author)

  16. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  17. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  18. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  19. Micro-relay technology for energy-efficient integrated circuits

    CERN Document Server

    Kam, Hei

    2015-01-01

    This book describes the design of relay-based circuit systems from device fabrication to circuit micro-architectures. This book is ideal for both device engineers as well as circuit system designers and highlights the importance of co-design across design hierarchies when optimizing system performance (in this case, energy-efficiency). This book is ideal for researchers and engineers focused on semiconductors, integrated circuits, and energy efficient electronics. This book also: ·         Covers microsystem fabrication, MEMS device design, circuit design, circuit micro-architecture, and CAD ·         Describes work previously done in the field and also lays the groundwork and criteria for future energy-efficient device and system design ·         Maximizes reader insights into the design and modeling of micro-relay, micro-relay reliability, integrated circuit design with micro-relays, and more

  20. Nucleic acids for the rational design of reaction circuits.

    Science.gov (United States)

    Padirac, Adrien; Fujii, Teruo; Rondelez, Yannick

    2013-08-01

    Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  2. Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  3. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jian-wei Yang

    2015-01-01

    Full Text Available Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs, such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1 Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2 Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.

  4. Modelling of spray evaporation and penetration for alternative fuels

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressu...

  5. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  6. Electronic zero-point fluctuation forces inside circuit components

    Science.gov (United States)

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  7. Electronic zero-point fluctuation forces inside circuit components.

    Science.gov (United States)

    Shahmoon, Ephraim; Leonhardt, Ulf

    2018-04-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies.

  8. RF microwave circuit design for wireless applications

    CERN Document Server

    Rohde, Ulrich L

    2012-01-01

    Provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling the newest IC technologies Revised and completely updated, RF/Microwave Circuit Design for Wireless Applications, Second Edition is a unique, state-of-the-art guide to wireless integrated circuit design that provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling even the newest IC technologies. It emphasizes practical design solutions for high-performance devices and circuitry, incorporating ample exa

  9. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  10. Dynamic simulation of natural convection bypass two-circuit cycle refrigerator-freezer and its application Part I: Component models

    International Nuclear Information System (INIS)

    Ding Guoliang; Zhang Chunlu; Lu Zhili

    2004-01-01

    In order to reduce the greenhouse gas emissions, efficient household refrigerator/freezers (RFs) are required. Bypass two-circuit cycle RFs with one compressor are proved to be more efficient than two-evaporator in series cycle RFs. In order to study the characteristics and improve the design of bypass two-circuit cycle RFs, a dynamic model is developed in this paper. In part I, the mathematic models of all components are presented, considering not only the accuracy of the models but also the computation stability and speed to solve the models. An efficiency model that requires a single calorimeter data point at the standard test condition is employed for compressor. A multi-zone model is employed for condenser and for evaporator, with its wall thermal capacity considered by effective metal method. The approximate integral analytic model is employed for adiabatic capillary tube, and the effective inlet enthalpy method is used to transfer the non-adiabatic capillary tube to adiabatic capillary tube. The z-transfer function model is employed for cabinet load calculation

  11. Interrogating the topological robustness of gene regulatory circuits by randomization.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    2017-03-01

    Full Text Available One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE, for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT, from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression.

  12. Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout

    International Nuclear Information System (INIS)

    Sun Ya-Bin; Li Xiao-Jin; Zhang Jin-Zhong; Shi Yan-Ling

    2017-01-01

    In this paper, we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors (HBTs) with a CBE layout, where we consider the distributed effects along the base region. The actual device structure is divided into three parts: a link base region under a spacer oxide, an intrinsic transistor region under the emitter window, and an extrinsic base region. Each region is considered as a two-port network, and is composed of a distributed resistance and capacitance. We solve the admittance parameters by solving the transmission-line equation. Then, we obtain the small-signal equivalent circuit depending on the reasonable approximations. Unlike previous compact models, in our proposed model, we introduce an additional internal base node, and the intrinsic base resistance is shifted into this internal base node, which can theoretically explain the anomalous change in the intrinsic bias-dependent collector resistance in the conventional compact model. (paper)

  13. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.

    Science.gov (United States)

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu

    2014-02-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.

  14. Superconducting quantum circuits theory and application

    OpenAIRE

    Deng, Xiuhao

    2015-01-01

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...

  15. Four quadrant control circuit for a brushless three-phase dc motor

    Science.gov (United States)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  16. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Science.gov (United States)

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  17. Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model

    International Nuclear Information System (INIS)

    Friedman, Alex

    2005-01-01

    The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density. A recent note by R. J. Briggs suggests that a 'sheath helix' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from first principles without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed

  18. Drosophila olfactory memory: single genes to complex neural circuits.

    Science.gov (United States)

    Keene, Alex C; Waddell, Scott

    2007-05-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.

  19. Electronic circuit design with HEP computational tools

    International Nuclear Information System (INIS)

    Vaz, Mario

    1996-01-01

    CPSPICE is an electronic circuit statistical simulation program developed to run in a parallel environment under UNIX operating system and TCP/IP communications protocol, using CPS - Cooperative Processes Software , SPICE program and CERNLIB software package. It is part of a set of tools being develop, intended to help electronic engineers to design, model and simulate complex systems and circuits for High Energy Physics detectors, based on statistical methods, using the same software and methodology used by HEP physicists for data analysis. CPSPICE simulates electronic circuits by Monte Carlo method, through several different processes running simultaneously SPICE in UNIX parallel computers or workstation farms. Data transfer between CPS processes for a modified version of SPICE2G6 is done by RAM memory, but can also be done through hard disk files if no source files are available for the simulator, and for bigger simulation outputs files. Simulation results are written in a HBOOK file as a NTUPLE, to be examined by HBOOK in batch model or graphics, and analyzed by statistical procedures available. The HBOOK file be stored on hard disk for small amount of data, or into Exabyte tape file for large amount of data. HEP tools also helps circuit or component modeling, like MINUT program from CERNLIB, that implements Nelder and Mead Simplex and Gradient with or without derivatives algorithms, and can be used for design optimization.This paper presents CPSPICE program implementation. The scheme adopted is suitable to make parallel other electronic circuit simulators. (author)

  20. Alternative Public Service Delivery Models in Health, Water and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The literature on public service delivery alternatives has to date been highly localized, sector specific and lacking in methodological consistency. This project seeks to analyze health, water and electricity delivery models in Africa, Asia and Latin America in order to identify and document successful alternatives to ...

  1. General Tokamak Circuit Simulation Program-GTCSP

    International Nuclear Information System (INIS)

    Matsukawa, Makoto; Miura, Yushi; Aoyagi, Tetsuo.

    1997-05-01

    General Tokamak Circuit Simulation Program (GTCSP) was originally developed for the design work of JT-60 Power Supply System in JAERI. Therefore the prepared models (components) to be analyzed are generator, thyristor converter and coils. This is one of the unique points of GTCSP in comparison with other conventional electric circuit analysis program, because they make a circuit from the small devices such as resister, coil, condenser, transistor and so on. However, GTCSP is also clearly conventional because it is possible to construct an electric circuit freely with the prepared components. Moreover, a similar function could be realized by addition a new component to GTCSP. This report is assumed to be used as an User Manual of the GTCSP, not only to present the development and the analytical functions. Then some useful examples are described, and how to get graphic outputs are also mentioned. (author)

  2. Attention and normalization circuits in macaque V1

    Science.gov (United States)

    Sanayei, M; Herrero, J L; Distler, C; Thiele, A

    2015-01-01

    Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. PMID:25757941

  3. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  4. The elusive memristor: properties of basic electrical circuits

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, Yogesh N; Wolf, Stephen J [Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: yojoglek@iupui.edu

    2009-07-15

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux {phi} in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

  5. The elusive memristor: properties of basic electrical circuits

    International Nuclear Information System (INIS)

    Joglekar, Yogesh N; Wolf, Stephen J

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux φ in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students

  6. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  7. Scale model test on a novel 400 kV double-circuit composite pylon

    DEFF Research Database (Denmark)

    Wang, Qian; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    This paper investigates lightning shielding performance of a novel 400 kV double-circuit composite pylon, with the method of scale model test. Lightning strikes to overhead lines were simulated by long-gap discharges between a high voltage electrode with an impulse voltage and equivalent conductors...... around the pylon is discussed. Combined test results and striking distance equation in electro-geometric model, the approximate maximum lightning current that can lead to shielding failure is calculated. Test results verify that the unusual negative shielding angle of - 60° in the composite pylon meets...... requirement and the shielding wires provide acceptable protection from lightning strikes....

  8. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  9. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  10. Circuits of Labour: A Labour Theory of the iPhone Era

    Directory of Open Access Journals (Sweden)

    Jack Linchuan Qiu

    2014-09-01

    Full Text Available This paper questions the binary of material and immaterial labour in the information era. Instead, we propose a “circuits of labour” model, a holistic framework that helps connect various concepts and traditions in the study of labour and ICT (information and communication technology. Inspired by du Gay et al’s “circuit of culture”, we argue conventional frameworks need to be synthesized and updated to reflect fundamental changes and persisting issues of labor in our contemporary era, of which the iPhone is emblematic. On the one hand, our model consists of formal circuits, in which hierarchical domination is imposed by capital over the body of labour. On the other hand, it consists of informal circuits where relationships are defined communally between embodied practices and social and communicative capital. The informal and formal circuits of labour are “short-circuited” by survival labour and ‘playbour’, meaning either circuit may absorb productive energy from the other. This article then uses the case of Foxconn, the world’s largest electronic manufacturer that also produces iPhones, to illustrate the usefulness of the “circuits of labour” model. We finally discuss the broader implications and questions for future research.

  11. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties

    Science.gov (United States)

    Zhang, Xi; Lu, Jinling; Yuan, Shifei; Yang, Jun; Zhou, Xuan

    2017-03-01

    This paper proposes a novel parameter identification method for the lithium-ion (Li-ion) battery equivalent circuit model (ECM) considering the electrochemical properties. An improved pseudo two-dimension (P2D) model is established on basis of partial differential equations (PDEs), since the electrolyte potential is simplified from the nonlinear to linear expression while terminal voltage can be divided into the electrolyte potential, open circuit voltage (OCV), overpotential of electrodes, internal resistance drop, and so on. The model order reduction process is implemented by the simplification of the PDEs using the Laplace transform, inverse Laplace transform, Pade approximation, etc. A unified second order transfer function between cell voltage and current is obtained for the comparability with that of ECM. The final objective is to obtain the relationship between the ECM resistances/capacitances and electrochemical parameters such that in various conditions, ECM precision could be improved regarding integration of battery interior properties for further applications, e.g., SOC estimation. Finally simulation and experimental results prove the correctness and validity of the proposed methodology.

  12. Computer modelling the potential benefits of amines in NPP Bohunice secondary circuit

    International Nuclear Information System (INIS)

    Fountain, M.J.; Smiesko, I.

    1998-01-01

    The use of computer modelling of PWR and WWER secondary circuit chemistry was already demonstrated in the past. The model was used to illustrate the technical and economic advantages, compared with ammonia, of using an 'advanced', high basicity, low volatility amines to raise the liquid phase pH(T) in the moisture separator and other areas swept by wet steam. Since the 1995, this technique has been successfully applied to a number of power plants and the computer model has been progressively developed. This paper describes the preliminary results of an ongoing assessment being carried out for the VVER 440 plants at Bohunice. The work for Bohunice is being funded by the 'Know How Fund', a department in the British Government's Foreign and Commonwealth Office. (J.P.N.)

  13. Analogy for Drude’s free electron model to promote students’ understanding of electric circuits in lower secondary school

    Directory of Open Access Journals (Sweden)

    Maria José BM de Almeida

    2014-09-01

    Full Text Available Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude’s free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students’ understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students’ understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students’ predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  14. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    Science.gov (United States)

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  15. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    Science.gov (United States)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  16. [Mathematical apparatus of the circuit theory in modeling of heat transfer upon extreme heating of an organism].

    Science.gov (United States)

    2010-01-01

    The mathematical model of heat transfer in whole-body hyperthermia, developed earlier by the author, has been refined using the mathematical apparatus of the circuit theory. The model can be used to calculate the temperature of each organ, which can increase the efficacy and safety of the immersion-convection technique of whole-body hyperthermia.

  17. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  18. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  19. Towards a mathematical theory of cortical micro-circuits.

    Directory of Open Access Journals (Sweden)

    Dileep George

    2009-10-01

    Full Text Available The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM, can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  20. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  1. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  2. Simulation of pulsed-ionizing-radiation-induced errors in CMOS memory circuits

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1987-01-01

    Effects of transient ionizing radiation on complementary metal-oxide-semiconductor (CMOS) memory circuits was studied by computer simulation. Simulation results have uncovered the dominant mechanism leading to information loss (upset) in dense (CMOS) circuits: rail span collapse. This effect is the catastrophic reduction in the local power supply at a RAM cell location due to the conglomerate radiation-induced photocurrents from all other RAM cells flowing through the power-supply-interconnect distribution. Rail-span collapse leads to reduced RAM cell-noise margins and can predicate upset. Results show that rail-span collapse in the dominant pulsed radiation effect in many memory circuits, preempting local circuit responses to the radiation. Several techniques to model power-supply noise, such as that arising from rail span collapse, are presented in this work. These include an analytical model for design optimization against these effects, a hierarchical computer-analysis technique for efficient power bus noise simulation in arrayed circuits, such as memories, and a complete circuit-simulation tool for noise margin analysis of circuits with arbitrary topologies

  3. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  4. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  5. An algorithmic approach to solving polynomial equations associated with quantum circuits

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zinin, M.V.

    2009-01-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2

  6. One-way quantum computing in superconducting circuits

    Science.gov (United States)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  7. A trust region approach with multivariate Padé model for optimal circuit design

    Science.gov (United States)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  8. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman; Lee, Yi-Kuen

    2011-01-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  9. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman

    2011-02-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  10. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  11. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built

  12. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  13. Primary circuit iodine model addition to IMPAIR-3

    Energy Technology Data Exchange (ETDEWEB)

    Osetek, D J; Louie, D L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S; Cripps, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.

  14. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  15. On-line diagnosis of inter-turn short circuit fault for DC brushed motor.

    Science.gov (United States)

    Zhang, Jiayuan; Zhan, Wei; Ehsani, Mehrdad

    2018-06-01

    Extensive research effort has been made in fault diagnosis of motors and related components such as winding and ball bearing. In this paper, a new concept of inter-turn short circuit fault for DC brushed motors is proposed to include the short circuit ratio and short circuit resistance. A first-principle model is derived for motors with inter-turn short circuit fault. A statistical model based on Hidden Markov Model is developed for fault diagnosis purpose. This new method not only allows detection of motor winding short circuit fault, it can also provide estimation of the fault severity, as indicated by estimation of the short circuit ratio and the short circuit resistance. The estimated fault severity can be used for making appropriate decisions in response to the fault condition. The feasibility of the proposed methodology is studied for inter-turn short circuit of DC brushed motors using simulation in MATLAB/Simulink environment. In addition, it is shown that the proposed methodology is reliable with the presence of small random noise in the system parameters and measurement. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    Science.gov (United States)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  17. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  18. Source-synchronous networks-on-chip circuit and architectural interconnect modeling

    CERN Document Server

    Mandal, Ayan; Mahapatra, Rabi

    2014-01-01

    This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks.  The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized.  Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.   • Describes novel methods for high-speed network-on-chip (NoC) design; • Enables readers to understand NoC design from both circuit and architectural levels; • Provides circuit-level details of the NoC (including clocking, router design), along with a high-speed, resonant clocking style which is used in the NoC; • Includes architectural simulations of the NoC, demonstrating significantly superior performance over the state-of-the-art.

  19. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

    Science.gov (United States)

    Weinberger, Leor S; Shenk, Thomas

    2007-01-01

    Animal viruses (e.g., lentiviruses and herpesviruses) use transcriptional positive feedback (i.e., transactivation) to regulate their gene expression. But positive-feedback circuits are inherently unstable when turned off, which presents a particular dilemma for latent viruses that lack transcriptional repressor motifs. Here we show that a dissipative feedback resistor, composed of enzymatic interconversion of the transactivator, converts transactivation circuits into excitable systems that generate transient pulses of expression, which decay to zero. We use HIV-1 as a model system and analyze single-cell expression kinetics to explore whether the HIV-1 transactivator of transcription (Tat) uses a resistor to shut off transactivation. The Tat feedback circuit was found to lack bi-stability and Tat self-cooperativity but exhibited a pulse of activity upon transactivation, all in agreement with the feedback resistor model. Guided by a mathematical model, biochemical and genetic perturbation of the suspected Tat feedback resistor altered the circuit's stability and reduced susceptibility to molecular noise, in agreement with model predictions. We propose that the feedback resistor is a necessary, but possibly not sufficient, condition for turning off noisy transactivation circuits lacking a repressor motif (e.g., HIV-1 Tat). Feedback resistors may be a paradigm for examining other auto-regulatory circuits and may inform upon how viral latency is established, maintained, and broken.

  20. Full Scope Modeling and Analysis on the Secondary Circuit of Chinese Large-Capacity Advanced PWR Based on RELAP5 Code

    Directory of Open Access Journals (Sweden)

    Dao-gang Lu

    2015-01-01

    Full Text Available Chinese large-capacity advanced PWR under construction in China is a new and indispensable reactor type in the developing process of NPP fields. At the same time of NPP construction, accident sequences prediction and operators training are in progress. Since there are some possible events such as feedwater pumps trip in secondary circuit may lead to severe accident in NPP, training simulators and engineering simulators of CI are necessary. And, with an increasing proportion of nuclear power in China, NPP will participate in regulating peak load in power network, which requires accuracy calculation and control of secondary circuit. In order to achieve real-time and full scope simulation in the power change transient and accident scenarios, RELAP5/MOD 3.4 code has been adopted to model the secondary circuit for its advantage of high calculation accuracy. This paper describes the model of steady state and turbine load transient from 100% to 40% of secondary circuit using RELAP5 and provides a reasonable equivalent method to solve the calculation divergence problem caused by dramatic two-phase condition change while guaranteeing the heat transfer efficiency. The validation of the parameters shows that all the errors between the calculation values and design values are reasonable and acceptable.

  1. 30 CFR 77.902 - Low- and medium-voltage ground check monitor circuits.

    Science.gov (United States)

    2010-07-01

    ... medium-voltage resistance grounded systems to portable and mobile equipment shall include a fail safe... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage ground check monitor... OF UNDERGROUND COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.902 Low- and...

  2. Simulation of a turbine trip transient at Embalse NPP with full-circuit CATHENA model

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, A., E-mail: arabiti@na-sa.com.ar [Nucleoelectrica Argentina S.A., Embalse Nuclear Power Plant, Engineering Management Branch, Embalse (Argentina); Parrondo, A., E-mail: aparrondo@na-sa.com.ar [Nucleoelectrica Argentina S.A., Engineering Management, Buenos Aires (Argentina); Serrano, P., E-mail: pserrano@na-sa.com.ar [Nucleoelectrica Argentina S.A., Licensing Coordination Branch, Atucha II Project Branch (Unidad de Gestion), Buenos Aires (Argentina); Sablayrolles, A.; Damiani, H., E-mail: asablayrolles@na-sa.com.ar, E-mail: hdamiani@na-sa.com.ar [Nucleoelectrica Argentina S.A., Embalse Nuclear Power Plant, Embalse Life Extension Project Management, Embalse (Argentina)

    2015-07-01

    Embalse NPP is carrying on a Periodic Safety Review to deal with its life extension. This review includes tasks like Deterministic Analysis review for the Final Safety Analysis Report. In 2011, NA-SA (Nucleoelectrica Argentina S.A.) issued a first CATHENA full-circuit model representing the current plant. This model is used in this work. The simulation presented here corresponds to a turbine trip that occurred at Embalse NPP. Consistency between the simulation and the real event is demonstrated. Furthermore, NASA is currently performing Safety Analysis with a new model developed jointly with AECL and Candu Energy which includes post refurbishment changes and other improvements. (author)

  3. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  4. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    Science.gov (United States)

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  5. Teacher Preferences for Alternative School Site Administrative Models

    Science.gov (United States)

    Hewitt, Paul M.; Denny, George S.; Pijanowski, John C.

    2012-01-01

    Public school teachers with high leadership potential who stated that they had no interest in being school principals were surveyed on their attitudes about six alternative school site administrative organizational models. Of the 391 teachers surveyed, 53% identified the Co-Principal model as the preferred school site administrative structure. In…

  6. Logic analysis and verification of n-input genetic logic circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    . In this paper, we present an approach to analyze and verify the Boolean logic of a genetic circuit from the data obtained through stochastic analog circuit simulations. The usefulness of this analysis is demonstrated through different case studies illustrating how our approach can be used to verify the expected......Nature is using genetic logic circuits to regulate the fundamental processes of life. These genetic logic circuits are triggered by a combination of external signals, such as chemicals, proteins, light and temperature, to emit signals to control other gene expressions or metabolic pathways...... accordingly. As compared to electronic circuits, genetic circuits exhibit stochastic behavior and do not always behave as intended. Therefore, there is a growing interest in being able to analyze and verify the logical behavior of a genetic circuit model, prior to its physical implementation in a laboratory...

  7. Open circuit voltage durability study and model of catalyst coated membranes at different humidification levels

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada); Abouatallah, Rami; Beydokhti, Natasha [Hydrogenics Corporation, 5985 McLaughlin Road, Mississauga, Ontario (Canada)

    2010-11-01

    Fuel cell material durability is an area of extensive research today. Chemical degradation of the ionomer membrane is one important degradation mechanism leading to overall failure of fuel cells. This study examined the effects of relative humidity on the chemical degradation of the membrane during open circuit voltage testing. Five Gore trademark PRIMEA {sup registered} series 5510 catalyst coated membranes were degraded at 100%, 75%, 50%, and 20% RH. Open circuit potential and cumulative fluoride release were monitored over time. Additionally scanning electron microscopy images were taken at end of the test. The results showed that with decreasing RH fluoride release rate increased as did performance degradation. This was attributed to an increase in gas crossover with a decrease in RH. Further, it is also shown that interruptions in testing may heavily influence cumulative fluoride release measurements where frequent stoppages in testing will cause fluoride release to be underestimated. SEM analysis shows that degradation occurred in the ionomer layer close to the cathode catalyst. A chemical degradation model of the ionomer membrane was used to model the results. The model was able to predict fluoride release trends, including the effects of interruptions, showing that changes in gas crossover with RH could explain the experimental results. (author)

  8. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    Directory of Open Access Journals (Sweden)

    Leon Chua

    2012-03-01

    Full Text Available A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

  9. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  10. Simulation and experimental study on lithium ion battery short circuit

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2016-01-01

    Highlights: • Both external and internal short circuit tests were performed on Li-ion batteries. • An electrochemical–thermal model with an additional nail site heat source is presented. • The model can accurately simulate the temperature variations of non-venting batteries. • The model is reliable in predicting the occurrence and start time of thermal runaway. • A hydrogel cooling system proves its strength in preventing battery thermal runaway. - Abstract: Safety is the first priority in lithium ion (Li-ion) battery applications. A large portion of electrical and thermal hazards caused by Li-ion battery is associated with short circuit. In this paper, both external and internal short circuit tests are conducted. Li-ion batteries and battery packs of different capacities are used. The results indicate that external short circuit is worse for smaller size batteries due to their higher internal resistances, and this type of short can be well managed by assembling fuses. In internal short circuit tests, higher chance of failure is found on larger capacity batteries. A modified electrochemical–thermal model is proposed, which incorporates an additional heat source from nail site and proves to be successful in depicting temperature changes in batteries. Specifically, the model is able to estimate the occurrence and approximate start time of thermal runaway. Furthermore, the effectiveness of a hydrogel based thermal management system in suppressing thermal abuse and preventing thermal runaway propagation is verified through the external and internal short tests on batteries and battery packs.

  11. Simulation of Higher-Order Electrical Circuits with Stochastic Parameters via SDEs

    Directory of Open Access Journals (Sweden)

    BRANCIK, L.

    2013-02-01

    Full Text Available The paper deals with a technique for the simulation of higher-order electrical circuits with parameters varying randomly. The principle consists in the utilization of the theory of stochastic differential equations (SDE, namely the vector form of the ordinary SDEs. Random changes of both excitation voltage and some parameters of passive circuit elements are considered, and circuit responses are analyzed. The voltage and/or current responses are computed and represented in the form of the sample means accompanied by their confidence intervals to provide reliable estimates. The method is applied to analyze responses of the circuit models of optional orders, specially those consisting of a cascade connection of the RLGC networks. To develop the model equations the state-variable method is used, afterwards a corresponding vector SDE is formulated and a stochastic Euler numerical method applied. To verify the results the deterministic responses are also computed by the help of the PSpice simulator or the numerical inverse Laplace transforms (NILT procedure in MATLAB, while removing random terms from the circuit model.

  12. Active quenching circuit for a InGaAs single-photon avalanche diode

    International Nuclear Information System (INIS)

    Zheng Lixia; Wu Jin; Xi Shuiqing; Shi Longxing; Liu Siyang; Sun Weifeng

    2014-01-01

    We present a novel gated operation active quenching circuit (AQC). In order to simulate the quenching circuit a complete SPICE model of a InGaAs SPAD is set up according to the I–V characteristic measurement results of the detector. The circuit integrated with aROIC (readout integrated circuit) is fabricated in an CSMC 0.5 μm CMOS process and then hybrid packed with the detector. Chip measurement results show that the functionality of the circuit is correct and the performance is suitable for practical system applications. (semiconductor integrated circuits)

  13. Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis

    Science.gov (United States)

    Kim, Juhyun; Salvador, Manuel; Saunders, Elizabeth; González, Jaime; Avignone-Rossa, Claudio

    2016-01-01

    The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation. PMID:27903818

  14. Universal programmable quantum circuit schemes to emulate an operator

    Energy Technology Data Exchange (ETDEWEB)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos [Department of Computer Science, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre [Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Doha (Qatar)

    2012-12-21

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  15. Universal programmable quantum circuit schemes to emulate an operator

    International Nuclear Information System (INIS)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; Kais, Sabre

    2012-01-01

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix–which can be non-unitary–in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e −iHt for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  16. SR 97. Alternative models project. Stochastic continuum modelling of Aberg

    International Nuclear Information System (INIS)

    Widen, H.; Walker, D.

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10 -4 m/yr and a median F-ratio of 3.3 x 10 5 yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study

  17. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Darcy, Eric; Veje, Christian

    2017-01-01

    This paper presents a novel model for analyzing the thermal runaway in Li-ion battery cells with an internal short circuit device implanted in the cell. The model is constructed using Arrhenius formulations for representing the self-heating chemical reactions and the State of Charge. The model...

  18. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  19. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  20. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  1. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  2. Attention and normalization circuits in macaque V1.

    Science.gov (United States)

    Sanayei, M; Herrero, J L; Distler, C; Thiele, A

    2015-04-01

    Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.

    Science.gov (United States)

    Huh, Junghwan; Na, Junhong; Ha, Jeong Sook; Kim, Sangtae; Kim, Gyu Tae

    2011-08-01

    Electrical contacts between the nanomaterial and metal electrodes are of crucial importance both from fundamental and practical points of view. We have systematically compared the influence of contact properties by dc and EIS (Electrochemical impedance spectroscopy) techniques at various temperatures and environmental atmospheres (N(2) and 1% O(2)). Electrical behaviors are sensitive to the variation of Schottky barriers, while the activation energy (E(a)) depends on the donor states in the nanowire rather than on the Schottky contact. Equivalent circuits in terms of dc and EIS analyses could be modeled by Schottky diodes connected with a series resistance and parallel RC circuits, respectively. These results can facilitate the electrical analysis for evaluating the nanowire electronic devices with Schottky contacts.

  4. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  5. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  6. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation

    Science.gov (United States)

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.

    2013-01-01

    A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands, and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable’s motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286

  7. Insulated transcriptional elements enable precise design of genetic circuits.

    Science.gov (United States)

    Zong, Yeqing; Zhang, Haoqian M; Lyu, Cheng; Ji, Xiangyu; Hou, Junran; Guo, Xian; Ouyang, Qi; Lou, Chunbo

    2017-07-03

    Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.

  8. The imperative for emergency medicine to create its own alternative payment model.

    Science.gov (United States)

    Medford-Davis, Laura N

    2017-06-01

    Seven years after the Affordable Care Act legislated Alternative Payment Models, it is time for Emergency Medicine to find its place within this value-based trend by developing its own Alternative Payment Model. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An alternative to the standard model

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-01-01

    We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models

  10. Modelling, analysis, and acceleration of a printed circuit board ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    discuss lead time reduction in a qualitative way with illustrative case studies. Krishnan ... industry practices, and research questions that should drive new methods and computer ... There are three types of printed circuit boards available today.

  11. Experimental pulse synchronisation of two chaotic circuits

    CERN Document Server

    Fortuna, L; Rizzo, A

    2003-01-01

    In this work a novel synchronisation scheme for chaotic systems is presented. Taking inspiration from the system decomposition approach, the master and slave are connected via a switch which allows to alternate the signal fed into the slave between the master signal and the slave signal itself. The switching frequency has been taken into account as a control parameter to characterise the synchronisation properties of the system. Experimental results, performed on real Chua's circuits, confirm the validity of the approach, emphasising the fact that synchronisation is achieved for switching frequencies greater than a certain threshold.

  12. Experimental pulse synchronisation of two chaotic circuits

    International Nuclear Information System (INIS)

    Fortuna, L.; Frasca, M.; Rizzo, A.

    2003-01-01

    In this work a novel synchronisation scheme for chaotic systems is presented. Taking inspiration from the system decomposition approach, the master and slave are connected via a switch which allows to alternate the signal fed into the slave between the master signal and the slave signal itself. The switching frequency has been taken into account as a control parameter to characterise the synchronisation properties of the system. Experimental results, performed on real Chua's circuits, confirm the validity of the approach, emphasising the fact that synchronisation is achieved for switching frequencies greater than a certain threshold

  13. A physical based equivalent circuit modeling approach for ballasted InP DHBT multi-finger devices at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Midili, Virginio; Squartecchia, Michele; Johansen, Tom Keinicke

    2016-01-01

    equivalent circuit description. In the first approach, the EM simulations of contact pads and ballasting network are combined with the small-signal model of the intrinsic device. In the second approach, the ballasting network is modeled with lumped components derived from physical analysis of the layout...

  14. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  15. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  16. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  17. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  18. Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis

    Directory of Open Access Journals (Sweden)

    Dafen Chen

    2016-10-01

    Full Text Available A battery model that has the capability of analyzing the internal non-uniformity of local state variables, including the state of charge (SOC, temperature and current density, is proposed in this paper. The model is built using a set of distributed parameter equivalent circuits. In order to validate the accuracy of the model, a customized battery with embedded T-type thermocouple sensors inside the battery is tested. The simulated temperature conforms well with the measured temperature at each test point, and the maximum difference is less than 1 °C. Then, the model is applied to analyze the evolution processes of local state variables’ distribution inside the battery during the discharge process. The simulation results demonstrate drastic distribution changes of the local state variables inside the battery during the discharge process. The internal non-uniformity is originally caused by the resistance of positive and negative foils, while also influenced by the change rate of open circuit voltage and the total resistance of the battery. Hence, the factors that affect the distribution of the local state variables are addressed.

  19. Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Marchisio, Mario Andrea, E-mail: marchisio@hit.edu.cn [School of Life Science and Technology, Harbin Institute of Technology, Harbin (China)

    2014-10-06

    Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment care to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.

  20. Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits

    International Nuclear Information System (INIS)

    Marchisio, Mario Andrea

    2014-01-01

    Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment care to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.