WorldWideScience

Sample records for model-scale unmanned helicopter

  1. Modeling, State Estimation and Control of Unmanned Helicopters

    Science.gov (United States)

    Lau, Tak Kit

    Unmanned helicopters hold both tremendous potential and challenges. Without risking the lives of human pilots, these vehicles exhibit agile movement and the ability to hover and hence open up a wide range of applications in the hazardous situations. Sparing human lives, however, comes at a stiff price for technology. Some of the key difficulties that arise in these challenges are: (i) There are unexplained cross-coupled responses between the control axes on the hingeless helicopters that have puzzled researchers for years. (ii) Most, if not all, navigation on the unmanned helicopters relies on Global Navigation Satellite Systems (GNSSs), which are susceptible to jamming. (iii) It is often necessary to accommodate the re-configurations of the payload or the actuators on the helicopters by repeatedly tuning an autopilot, and that requires intensive human supervision and/or system identification. For the dynamics modeling and analysis, we present a comprehensive review on the helicopter actuation and dynamics, and contributes toward a more complete understanding on the on-axis and off-axis dynamical responses on the helicopter. We focus on a commonly used modeling technique, namely the phase-lag treatment, and employ a first-principles modeling method to justify that (i) why that phase-lag technique is inaccurate, (ii) how we can analyze the helicopter actuation and dynamics more accurately. Moreover, these dynamics modeling and analysis reveal the hard-to-measure but crucial parameters on a helicopter model that require the constant identifications, and hence convey the reasoning of seeking a model-implicit method to solve the state estimation and control problems on the unmanned helicopters. For the state estimation, we present a robust localization method for the unmanned helicopter against the GNSS outage. This method infers position from the acceleration measurement from an inertial measurement unit (IMU). In the core of our method are techniques of the sensor

  2. Sliding mode tracking control for miniature unmanned helicopters

    Directory of Open Access Journals (Sweden)

    Bin Xian

    2015-02-01

    Full Text Available A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter’s dynamic model is divided into two subsystems, such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles’ dynamic effects and external disturbances. The global asymptotic stability (GAS of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportional-integral-derivative (PID and linear-quadratic regulator (LQR cascaded controller in the presence of wind gust disturbances.

  3. Sliding mode tracking control for miniature unmanned helicopters

    Institute of Scientific and Technical Information of China (English)

    Xian Bin; Guo Jianchuan; Zhang Yao; Zhao Bo

    2015-01-01

    A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter’s dynamic model is divided into two subsystems, such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles’ dynamic effects and external disturbances. The global asymptotic stability (GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportional-integral-derivative (PID) and linear-quadratic regulator (LQR) cascaded controller in the presence of wind gust disturbances.

  4. Model Predictive Control for a Small Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Jianfu Du

    2008-11-01

    Full Text Available Kinematical and dynamical equations of a small scale unmanned helicoper are presented in the paper. Based on these equations a model predictive control (MPC method is proposed for controlling the helicopter. This novel method allows the direct accounting for the existing time delays which are used to model the dynamics of actuators and aerodynamics of the main rotor. Also the limits of the actuators are taken into the considerations during the controller design. The proposed control algorithm was verified in real flight experiments where good perfomance was shown in postion control mode.

  5. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  6. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin

    2011-07-01

    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  7. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.

  8. Attitude angle anti-windup control of small size unmanned helicopter

    Science.gov (United States)

    Shao, Taizhou; Long, Haihui; Zhao, Jiankang; Xia, Xuan; Yang, Guang

    2017-01-01

    This paper researches the small-size unmanned helicopter attitude control problem with actuator saturation limit. Traditional approach for this problem is often based on an accurate dynamic model which is complicated and difficult to achieve in engineering. In this paper, we propose an anti-windup PID approach which does not rely on sophicated helicopter dynamic model. The anti-windup PID controller is established by adding a phase-lead compensator to the conventional PID controller. The performance and merits of this proposed controller are exemplified by the simulations between the conventional PID controller and the anti-windup PID controller.

  9. Transverse vibration of the blade for unmanned micro helicopter using rayleigh-ritz method

    Institute of Scientific and Technical Information of China (English)

    Jungang Lü; Jiadao Wang; Darong Chen

    2003-01-01

    A rotor manipulation mechanism for micro unmanned helicopter utilizing the inertia and the elasticity of the rotor is introduced. The lagging motion equation of the rotor blades is established, and then the natural frequencies and mode shapes of the blade for the helicopter are studied by using beam characteristic orthogonal polynomials by the Rayleigh-Ritz method. The variation of natural frequencies with the speed of rotation and the mode shapes at different rotational speeds are plotted. The using of orthogonal polynomials for the bending shapes enables the computation of higher natural frequencies of any order to be accomplished without facing any difficulties.

  10. Small unmanned helicopter's attitude controller by an on-line adaptive fuzzy control system

    Institute of Scientific and Technical Information of China (English)

    GAO Tong-yue; RAO Jin-jun; GONG Zhen-bang; LUO Jun

    2009-01-01

    Since small unmanned helicopter flight attitude control process has strong time-varying characteristics and there are random disturbances, the conventional control methods with unchanged parameters are often unworkable. An on-line adaptive fuzzy control system (AFCS) was designed, in a way that does not depend on a process model of the plant or its approximation in the form of a Jacobian matrix. Neither is it necessary to know the desired response at each instant of time. AFCS implement a simultaneous on-line tuning of fuzzy rules and output scale of fuzzy control system. The two cascade controller design with an inner (attitude controller) and outer controller (navigation controller) of the small unmanned helicopter was proposed. At last, an attitude controller based on AFCS was implemented. The flight experiment showed that the proposed fuzzy logic controller provides quicker response, smaller overshoot, higher precision, robustness and adaptive ability. It satisfies the needs of autonomous flight.

  11. Boosting multi-features with prior knowledge for mini unmanned helicopter landmark detection

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Without sufficient real training data, the data driven classification algorithms based on boosting method cannot solely be utilized to applications such as the mini unmanned helicopter landmark image detection. In this paper, we propose an approach which uses a boosting algorithm with the prior knowledge for the mini unmanned helicopter landmark image detection. The stage forward stagewise additive model of boosting is analyzed, and the approach how to combine it with the prior knowledge model is presented. The approach is then applied to landmark image detection, where the multi-features are boosted to solve a series of problems, such as rotation, noises affected, etc. Results of real flight experiments demonstrate that for small training examples the boosted learning system using prior knowledge is dramatically better than the one driven by data only.

  12. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  13. PHOTOGRAMMETRIC RECORDING OF ANCIENT BUILDINGS BY USING UNMANNED HELICOPTERS – CASES IN CHINA

    Directory of Open Access Journals (Sweden)

    Z. Li

    2012-09-01

    Full Text Available The survey of ancient buildings is complex work. Chinese wooden buildings, with their complex structure and exquisite decorations, pose a great challenge for survey work. Therefore, it is necessary to introduce unmanned-helicopter photogrammetry and laser scanning technology to facilitate the work. This paper uses three cases to explain the application of these new technologies in China's architectural heritage protection and analyzes the special features and main operational techniques of the survey wor k.

  14. Detection of Forward Flight Limitations of Unmanned Helicopters

    OpenAIRE

    Voigt, Andreas; Dauer, Johann; Krenik, Alex; Dittrich, Jörg Steffen

    2016-01-01

    In this paper, a method is proposed to determine the flight envelope limitations for steady forward flight with the purpose of performing a flight envelope expansion. First, the rotary wing system is analyzed. In this paper, an intermeshing rotor configuration, a SwissDrones Dragon 50, is used to demonstrate the approach. Next, relevant limitations of the forward flight are reviewed and analyzed with the help of the Helicopter Overall Simulation Tool (HOST). From this analysis, relevant measu...

  15. Robust Control for Lateral and Longitudinal Channels of Small-Scale Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Bao Feng

    2015-01-01

    Full Text Available Lateral and longitudinal channels are two closely related channels whose control stability influences flight performance of small-scale unmanned helicopters directly. This paper presents a robust control approach for lateral and longitudinal channels in the presence of parameter uncertainties and exogenous disturbances. The proposed control approach is performed by two steps. First, by performing system identification in frequency domain, system model of lateral and longitudinal channels can be accurately identified. Then, a robust H∞ state feedback controller is designed to stabilize the helicopter in lateral and longitudinal channels simultaneously under extraneous disturbances situation. The proposed approach takes advantages that it reduces order of the controller by preestimating some parameters (like flapping angles without sacrificing control accuracy. Numerical results show the reliability and effectiveness of the proposed method.

  16. Chaotic Artificial Bee Colony Algorithm for System Identification of a Small-Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Li Ding

    2015-01-01

    Full Text Available The purpose of this paper is devoted to developing a chaotic artificial bee colony algorithm (CABC for the system identification of a small-scale unmanned helicopter state-space model in hover condition. In order to avoid the premature of traditional artificial bee colony algorithm (ABC, which is stuck in local optimum and can not reach the global optimum, a novel chaotic operator with the characteristics of ergodicity and irregularity was introduced to enhance its performance. With input-output data collected from actual flight experiments, the identification results showed the superiority of CABC over the ABC and the genetic algorithm (GA. Simulations are presented to demonstrate the effectiveness of our proposed algorithm and the accuracy of the identified helicopter model.

  17. Simultaneous State and Parameter Estimation Based Actuator Fault Detection and Diagnosis for an Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Wu Chong

    2015-03-01

    Full Text Available Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD for single-rotor unmanned helicopters (UHs is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs, which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and diagnosis problem is transformed into a general nonlinear estimation one: given control inputs and the measured flight state contaminated by measurement noises, estimate both the flight state and AHCs recursively in each time-step, which is also known as the simultaneous state and parameter estimation problem. The estimated AHCs can further be used for fault tolerant control (FTC. Based on the existing widely used nonlinear estimation methods such as the unscented Kalman filter (UKF and the extended set-membership filter (ESMF, three kinds of adaptive schemes (KF-UKF, MIT-UKF and MIT-ESMF are proposed by our team to improve the actuator FDD performance. A comprehensive comparative study on these different estimation methods is given in detail to illustrate their advantages and disadvantages when applied to unmanned helicopter actuator FDD.

  18. LiDAR data and SAR imagery acquired by an unmanned helicopter for rapid landslide investigation

    Science.gov (United States)

    Kasai, M.; Tanaka, Y.; Yamazaki, T.

    2012-12-01

    When earthquakes or heavy rainfall hits a landslide prone area, initial actions require estimation of the size of damage to people and infrastructure. This includes identifying the number and size of newly collapsed or expanded landslides, and appraising subsequent risks from remobilization of landslides and debris materials. In inapproachable areas, the UAV (Unmanned Aerial Vehicles) is likely to be of greatest use. In addition, repeat monitoring of sites after the event is a way of utilizing UAVs, particularly in terms of cost and convenience. In this study, LiDAR (SkEyesBox MP-1) data and SAR (Nano SAR) imagery, acquired over 0.5 km2 landslide prone area, are presented to assess the practicability of using unmanned helicopters (in this case a 10 year old YAMAHA RMAX G1) in these situations. LiDAR data was taken in July 2012, when tree foliage covered the ground surface. However, imagery was of sufficient quality to identify and measure landslide features. Nevertheless, LiDAR data obtained by a manned helicopter in the same area in August 2008 was more detailed, reflecting the function of the LiDAR scanner. On the other hand, 2 m resolution Nano SAR imagery produced reasonable results to elucidate hillslope condition. A quick method for data processing without loss of image quality was also investigated. In conclusion, the LiDAR scanner and UAV employed here could be used to plan immediate remedial activity of the area, before LiDAR measurement with a manned helicopter can be organized. SAR imagery from UAV is also available for this initial activity, and can be further applied to long term monitoring.

  19. Multivariable Super Twisting Based Robust Trajectory Tracking Control for Small Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Xing Fang

    2015-01-01

    Full Text Available This paper presents a highly robust trajectory tracking controller for small unmanned helicopter with model uncertainties and external disturbances. First, a simplified dynamic model is developed, where the model uncertainties and external disturbances are treated as compounded disturbances. Then the system is divided into three interconnected subsystems: altitude subsystem, yaw subsystem, and horizontal subsystem. Second, a disturbance observer based controller (DOBC is designed based upon backstepping and multivariable super twisting control algorithm to obtain robust trajectory tracking property. A sliding mode observer works as an estimator of the compounded disturbances. In order to lessen calculative burden, a first-order exact differentiator is employed to estimate the time derivative of the virtual control. Moreover, proof of the stability of the closed-loop system based on Lyapunov method is given. Finally, simulation results are presented to illustrate the effectiveness and robustness of the proposed flight control scheme.

  20. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    Science.gov (United States)

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated.

  1. Development of a vision-based ground target detection and tracking system for a small unmanned helicopter

    Institute of Scientific and Technical Information of China (English)

    LIN Feng; LUM Kai-Yew; CHEN Ben M.; LEE Tong H

    2009-01-01

    It is undoubted that the latest trend in the unmanned aerial vehicles (UAVs) community is towards visionbased unmanned small-scale helicopter,utilizing the maneuvering capabilities of the helicopter and the rich information of visual sensors,in order to arrive at a versatile platform for a variety of applications such as navigation,surveillance,tracking,etc.In this paper,we present the development of a visionbased ground target detection and tracking system for a small UAV helicopter.More specifically,we propose a real-time vision algorithm,based on moment invariants and two-stage pattern recognition,to achieve automatic ground target detection.In the proposed algorithm,the key geometry features of the target are extracted to detect and identify the target.Simultaneously,a Kalman filter is used to estimate and predict the position of the target,referred to as dynamic features,based on its motion model.These dynamic features are then combined with geometry features to identify the target in the second-stage of pattern recognition,when geometry features of the target change significantly due to noise and disturbance in the environment.Once the target is identified,an automatic control scheme is utilized to control the pan/tilt visual mechanism mounted on the helicopter such that the identified target is to be tracked at the center of the captured images.Experimental results based on images captured by the small-scale unmanned helicopter,SheLion,in actual flight tests demonstrate the effectiveness and robustness of the overall system.

  2. 3D Digitisation of Large-Scale Unstructured Great Wall Heritage Sites by a Small Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Fucheng Deng

    2017-04-01

    Full Text Available The ancient Great Wall of China has long suffered from damage due to natural factors and human activities. A small low-cost unmanned helicopter system with a laser scanner and a digital camera is developed to efficiently visualize the status of the huge Great Wall area. The goal of the system is to achieve 3D digitisation of the large-scale Great Wall using a combination of fly-hover-scan and flying-scan modes. However, pose uncertainties of the unmanned helicopter could cause mismatching among point clouds acquired by each hovering-scan. This problem would become more severe as the target area becomes larger and more unstructured. Therefore, a hierarchical optimization framework is proposed in this paper to achieve 3D digitisation of the large-scale unstructured Great Wall with unpredictable pose uncertainties of the unmanned helicopter. In this framework, different optimization methodologies are proposed for the fly-hover-scan and flying-scan modes, respectively, because different scan modes would result in different features of point clouds. Moreover, a user-friendly interface based on WebGL has been developed for 3D model visualization and comparison. Experimental results demonstrate the feasibility of the proposed framework for 3D digitisation of the Great Wall segments.

  3. Robust Near-Hovering Flight Controller for Model-Scale Helicopters Via Parametric Approach

    Institute of Scientific and Technical Information of China (English)

    Zhigang Zhou; Yongan Zhang∗

    2015-01-01

    This paper aims to provide a parametric design for robust flight controller of the model⁃scale helicopter. The main contributions lie in two aspects. Firstly, under near⁃hovering condition, a procedure is presented for simplification of the highly nonlinear and under⁃actuated model of the model⁃scale helicopter. This nonlinear system is linearized around the trim values of the chosen flight mode, followed by decomposing this high⁃order linear model into three lower⁃order subsystems according to the coupling properties among channels. After decomposition, the three subsystems are obtained which include the coupling subsystem between the roll ( pitch) motion and the lateral ( longitudinal) motion, the subsystem of the yaw motion and the subsystem of the vertical motion. Secondly, by using eigenstructure assignment, the problem of flight controller design can be converted into solving two optimization problems and the linear robust controllers of these subsystems are designed through solving these optimization problems. Besides, this paper contrasts and analyzed the performances of the LQR controller and the parametric controller. The results demonstrate the effectiveness and the robustness against the parametric perturbations of the parametric controller.

  4. A New Hybrid Control Architecture to Attenuate Large Horizontal Wind Disturbance for a Small-Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Xiaorui Zhu

    2012-07-01

    Full Text Available This paper presents a novel method to attenuate large horizontal wind disturbance for a small‐scale unmanned autonomous helicopter combining wind tunnel‐based experimental data and a backstepping algorithm. Large horizontal wind disturbance is harmful to autonomous helicopters, especially to small ones because of their low inertia and the high cross‐coupling effects among the multiple inputs. In order to achieve more accurate and faster attenuation of large wind disturbance, a new hybrid control architecture is proposed to take advantage of the direct force/moment compensation based on the wind tunnel experimental data. In this architecture, large horizontal wind disturbance is treated as an additional input to the control system instead of a small perturbation around the equilibrium state. A backstepping algorithm is then designed to guarantee the stable convergence of the helicopter to the desired position. The proposed technique is finally evaluated in simulation on the platform, HIROBO Eagle, compared with a traditional wind velocity compensation method.

  5. Helicopter

    NARCIS (Netherlands)

    Van Holten, T.

    2004-01-01

    The invention relates to a helicopter provided with a rotor with at least one rotor blade (5), wherein drive means are provided for actively moving the or each rotor blade up and down during rotation of the rotor, in particular about a flapping hinge (8) thereof, so that moments, applied by the roto

  6. A vision system for landing an unmanned helicopter in a complex environment

    Science.gov (United States)

    Shi, Haiqing; Wang, Hong

    2009-10-01

    We present a vision-based landing algorithm for an autonomous helicopter under complex environment (there are several suspected targets). The algorithm is integrated with algorithms for visual acquisition, recognition of the target and computing the navigation information. In our algorithm, we use international standard landing mark as our landing target. The experiment results demonstrate that our algorithm has the feature of robustness, accuracy and real time. It can meet the actual flight requirements well: the average processing time of a 640×480 image is less than 40ms; the position error is below 5cm in each axis of translation; the angle error is below 3.5°. Based on the algorithm, we win the champion of the aerial robot competition in the 2008 China robot competition and the RoboCup China open.

  7. Distribution of the 134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system

    Science.gov (United States)

    Torii, T.; Nishizawa, Y.

    2015-12-01

    Many radioactive substances were released by the Fukushima Daiichi nuclear power plant accident occurred on March 11, 2011 in the atmosphere. A lot of short half-life nuclides which are 131I, 132Te (132I) and 133I, etc., in addition to longer half-lived nuclides such as 134Cs and 137Cs. The estimated release amount of these nuclides from the reactor 1st to 3rd unit is reported, but it's found to be quite different in the short half-lived nuclides by the reactor units. Because the radioactivity ratio of 134Cs and 137Cs was slight different between the reactor units, it can be considered that the valuable source is obtained by the measurement of 134Cs/137Cs ratio in the environment around the Fukushima Daiichi nuclear power station at the present stage when the nuclides with short half-lives had already decayed. We have measured high-resolution gamma-ray spectrum using an unmanned helicopter equipped with LaBr3(Ce) detector in a 3-km range from the power station which was near to the release source of the radioactive cesium. Because the LaBr3(Ce) detector has high resolution of gamma rays, the discrimination of many nuclides is possible. In addition, there is extremely much number of the data provided by the distribution measurement with the unmanned helicopter. Because a new map was illustrated by the analysis of the 134Cs/137Cs ratio, we report the outline.

  8. Trajectory planning for unmanned helicopter based on Dubins curves%基于Dubins曲线的无人直升机轨迹规划

    Institute of Scientific and Technical Information of China (English)

    吴友谦; 裴海龙

    2011-01-01

    为提高无人直升机的控制性能,提出了一种基于Dubins曲线的轨迹规划算法,并对其各个部分的实现进行了研究和设计.该算法利用Dubins曲线原理对定点飞行任务的两点或者多点目标进行分析计算,寻找出一条最短的飞行路径,从而提高了飞行效率.根据无人直升机系统多变量、非线性和强耦合的特点,采用串级PID方法设计了飞行控制器,该控制器能够修正无人直升机的姿态和位置,从而提高了轨迹规划的稳定性和准确性.最后,以某小型无人直升机为实验平台表明了谊轨迹规划算法和控制器的可行性.%To improve the control performance of an unmanned helicopter, an algorithm of trajectory planning based on Dubins curves is proposed, and the design and implementation of each part of the algorithm are presented. By using the Dubins curve principle to analyze and calculate the two fixed point or multi target of the fixed point flight mission, a shortest flight path is found in the algorithm.According to multivariable, nonlinear and strong coupling features of unmanned helicopter system, a flight controller is designed by using cascade PID method. And the posture and position ofunmanned helicopter system can be corrected by the PID controller. Thereby the stability and accuracy oftrajectory planning are enhanced. Finally, the validity ofthe presented path planning algorithm and controller are demonstrated by experiment in a small unmanned helicopter platform.

  9. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  10. Simulation and Analysis of Unmanned Helicopter Gyro Vibration%无人直升机陀螺减振的仿真与分析

    Institute of Scientific and Technical Information of China (English)

    朱文来; 葛峰

    2014-01-01

    The structure and principle of the gyro vibration are described, by using the finite ele-ment method,the damping effect of unmanned helicopter gyro vibration is studied. By analyzing,the can-tilever size of gyro damping structure is an important factor to affect the damping properties. That provides an effective analyzing method for subsequent mechanical structure vibration study.%简述了陀螺减振结构与原理,通过采用有限元方法对无人直升机陀螺减振结构的减振效果进行了仿真研究,经分析陀螺减振结构的悬臂尺寸是影响减振性能的重要因素,为后续机械结构振动研究提供了一种有效的分析方法。

  11. 电力输电线路无人直升机巡视的应用%Application of Unmanned Helicopter Patrol to Power Transmission Line

    Institute of Scientific and Technical Information of China (English)

    林韩; 林朝辉; 汤明文; 戴礼豪

    2011-01-01

    无人直升机具有不受地形环境限制的优势,可搭载可见光、红外热成像设备准确发现电网的隐患;在灾情发生时或有灾情预警时,无人直升机能够迅速地赶往现场实施灾情监测和辅助救灾指挥;在无灾情时能够实现高效电网巡视,变故障处置为隐患控制,有效提高电网维护工作效率。该技术必将成为应对各种自然灾害以及电网运行、监控、维护的有力工具,体现电网运营单位自主创新能力,革新电网监控手段。%The unmanned helicopter is free from the terrain environment restriction and accurate in detecting the pitfalls of the power grid by means of the loaded visible light and infrared thermal imaging devices. In case of disaster occurrence and warning, unmanned helicopters can quickly fly to the scene to monitor the disaster and assist rescue command; when there is no disaster, it can conduct effective grid patrol to prevent potential faults and improve power network maintenance efficiency. It is certain that this technology, as a high-tech project for power grid operators and a major innovation in grid monitoring technique, will be applied as an effective means to deal with various natural dis- asters, and to assist power network operation, monitoring and maintenance.

  12. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    OpenAIRE

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from ...

  13. Finite Element Analysis and Test on Dynamic Characteristics of Fuselage Frame of Unmanned Helicopter%某无人直升机机身框架动力学计算与试验研究

    Institute of Scientific and Technical Information of China (English)

    谢勤伟; 姜年朝; 周光明; 张逊; 王克选; 张志清

    2012-01-01

    The finite element model of structural dynamics of fuselage frame of unmanned helicopter was established and the natural frequencies and mode shapes of its first 6 orders were obtained. Compared with modal test, the maximum error of calculation was less than 3 %. It shows that the finite element model is correct and accurately reflects the structural dynamics character of the fuselage frame of unmanned helicopter. The computational natural frequencies of frame avoided the natural frequencies of main rotor, tail blade and engine and can meet the request of dynamic of unmanned helicopter. The dynamic analysis method based on finite element analyses, which combines verification test and modal modification, can effectively guarantee the accuracy of the fuselage frame of unmanned helicopter. And it also provides the refrence for finite element dynamic modeling about other structure of unmanned helicopter.%建立某无人直升机机身框架的动力学有限元模型,计算得到前六阶固有频率和振型,与模态试验结果相比较,误差小于3%,验证了有限元模型的正确性,表明该有限元模型能准确地反映该无人直升机框架的结构动力学特性.有限元计算的机身框架固有频率值避开了旋翼、尾桨、发动机主通过频率值,满足动力学设计要求.这种有限元计算、试验验证以及模型修改相结合的动力学分析方法,能保证框架固有特性计算的精确,也为无人直升机其它结构的动力学建模提供借鉴.

  14. Robust non-fragile H∞ controller design method for small-scale unmanned helicopter%小型无人直升机非脆弱鲁棒H∞控制器设计方法研究

    Institute of Scientific and Technical Information of China (English)

    夏慧; 陈庆伟

    2015-01-01

    针对小型无人直升机存在时滞、不确定性及非线性动态问题,提出一种针对小型无人直升机模型具有非线性和时滞的H∞非脆弱鲁棒控制器设计方法。首先将直升机系统描述为具有参数扰动、时滞和非线性项的1个状态方程,然后基于李雅普诺夫方程给出了H∞非脆弱鲁棒控制器存在的充分条件。仿真结果表明该方法设计的控制器具有良好的鲁棒性和非脆弱性。%Considering the delay, uncertainty and nonlinear dynamics of small-scale unmanned helicopters,a robust non-fragile H∞ controller design method for a small-scale unmanned helicopter model is proposed with nonlinearity and time delay. Firstly,the helicopter system is described as a state equation with parameter perturbation,time delay and nonlinear term. Then,sufficient condition for the existence of the H∞ non-fragile robust controller is given based on Lyapunov function. Simulation results validate the robustness and non-fragility of the proposed method.

  15. Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV

    Directory of Open Access Journals (Sweden)

    Samuel Ortega-Farías

    2016-08-01

    Full Text Available A field experiment was carried out to implement a remote sensing energy balance (RSEB algorithm for estimating the incoming solar radiation (Rsi, net radiation (Rn, sensible heat flux (H, soil heat flux (G and latent heat flux (LE over a drip-irrigated olive (cv. Arbequina orchard located in the Pencahue Valley, Maule Region, Chile (35°25′S; 71°44′W; 90 m above sea level. For this study, a helicopter-based unmanned aerial vehicle (UAV was equipped with multispectral and infrared thermal cameras to obtain simultaneously the normalized difference vegetation index (NDVI and surface temperature (Tsurface at very high resolution (6 cm × 6 cm. Meteorological variables and surface energy balance components were measured at the time of the UAV overpass (near solar noon. The performance of the RSEB algorithm was evaluated using measurements of H and LE obtained from an eddy correlation system. In addition, estimated values of Rsi and Rn were compared with ground-truth measurements from a four-way net radiometer while those of G were compared with soil heat flux based on flux plates. Results indicated that RSEB algorithm estimated LE and H with errors of 7% and 5%, respectively. Values of the root mean squared error (RMSE and mean absolute error (MAE for LE were 50 and 43 W m−2 while those for H were 56 and 46 W m−2, respectively. Finally, the RSEB algorithm computed Rsi, Rn and G with error less than 5% and with values of RMSE and MAE less than 38 W m−2. Results demonstrated that multispectral and thermal cameras placed on an UAV could provide an excellent tool to evaluate the intra-orchard spatial variability of Rn, G, H, LE, NDVI and Tsurface over the tree canopy and soil surface between rows.

  16. Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.

    2012-04-01

    Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to

  17. 某无人直升机复杂系统动力学建模及试验验证%Test and Research on Complicated Structure Modeling Techniques of Vibration Analysis for an Unmanned Helicopter

    Institute of Scientific and Technical Information of China (English)

    张志清; 姜年朝; 李湘萍; 周光明; 张逊; 戴勇

    2011-01-01

    The structure of an unmanned helicopter has been studicd, which is complicated and hard to be modeling. The modeling strategies,which divide whole helicopter into main frame,landing gear, tail boom pipe, tail boom tube. and empennage, and perform the study of finite model ing, dynamic test. test - analysis correlation, and model improvement techniques respectively, is employed. On base of that, the improved component models are installed together into whole dynamic model by modeling the intersections among the components.%以某无人直升机复杂结构为研究对象,分别建立主框架、起落架、尾管、尾撑和垂平尾等组件的有限元模型;通过试验,修正各部件的有限元模型,运用MPC技术构建了全机复杂结构的动力学分析模型,最后进行了试验验证.

  18. Helicopter controllability

    OpenAIRE

    Carico, Dean

    1989-01-01

    Approved for public release; distribution is unlimited The concept of helicopter controllability is explained. A background study reviews helicopter development in the U.S. General helicopter configurations, linearized equations of motion, stability, and piloting requirements are discussed. Helicopter flight controls, handling qualities, and associated specification are reviewed. Analytical, simulation and flight test methods for evaluating helicopter automatic flight control systems ar...

  19. 带有差分GPS的多传感器无人直升机航测遥感系统%An unmanned helicopter based mapping system with differential GPS and multi-Sensor

    Institute of Scientific and Technical Information of China (English)

    陈天恩; 长井正彦; 柴崎亮介

    2012-01-01

    Low-altitude UAV( Unmanned Aerial Vehicles) based mapping system is a new type of spatial information acquisition and processing equipment overall the world in recent years. It takes UAV equipped with camera systems, GPS receivers, IMU, laser scanners,automatic flight control systems and other equipments as a platform to obtain ground information in flexible,fast and efficient, precise and accurate, safe, reliable, low operating cost, wide application characteristics, and has been used in the digital city rapid updates , the new rural surveying and mapping support services, emergency disaster relief, etc. It could be taken as an important supplementary means of satellite remote sensing and traditional aerial photography methods. This paper described an unmanned helicopter based mapping system developed by the authors in Japan. The system is equipped with differential GPS and IMU for direct geographic location and orientation with fewer or without ground control points. The onboard laser scanner could be used to collect ground surface model directly georeferenced through the post processed GPS/IMU data and triangulation with the images captured with onboard cameras. The geometric accuracy of the system was verified with actual flight data, and the results showed that the system could be used to map large-scale topographic maps and other areas of application.%本文主要介绍作者在日本研制的一种基于无人直升机平台的多种传感器航测遥感系统,它直接采用GPS和IMU数据进行地理定位定向而不需要地面控制点.通过实飞数据对系统达到的几何精度进行了验证,结果表明该系统可用来测绘大比例尺地形图以及应用于其他相关领域.

  20. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    Directory of Open Access Journals (Sweden)

    Xiangyang Zhou

    2016-03-01

    Full Text Available A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP with multi-sensors applied to an unmanned helicopter (UH-based airborne power line inspection (APLI system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor’s stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks.

  1. Estimation of the Vertical Distribution of Radiocesium in Soil on the Basis of the Characteristics of Gamma-Ray Spectra Obtained via Aerial Radiation Monitoring Using an Unmanned Helicopter.

    Science.gov (United States)

    Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi; Hamamoto, Shoichiro; Nishimura, Taku; Sanada, Yukihisa

    2017-08-17

    After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of gamma-ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. The estimates are based on actual measurement data collected at an extended farm. In this method, the change in the ratio of direct gamma rays to scattered gamma rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples. A vertical distribution map was created on the basis of this ratio using a simple equation derived from the abovementioned correlation. This technique can provide a novel approach for effective selection of high-priority areas that require decontamination.

  2. 用于电力线巡检的大型无人直升机多传感器系统集成设计%Integrated Design on Multi-sensor System of Large Unmanned Helicopter for Electric Power Inspection

    Institute of Scientific and Technical Information of China (English)

    王柯; 蔡艳辉; 彭向阳; 刘正军; 麦晓明; 张金铎

    2016-01-01

    基于电力线路安全巡检需要,设计了集可见光相机、红外热像仪、紫外成像仪、激光扫描仪和定位定姿系统等设备为一体的无人直升机多传感器系统。提出了基于全球定位系统时间系统的高精度后处理软同步方法,实现各个传感器系统的独立、协调同步工作。同时提出基于服务器–客户端软件架构,实现各个传感器控制和数据采集的相互独立,最大限度提高传感器系统工作的安全性和可靠性。多传感器集成的无人机巡检试验结果显示,该系统能够在单次飞行中同步获取多波段、多种类型的巡检数据,数据之间具有强相关性,可以用于多源数据联合诊断分析,满足电力线路安全隐患多要素自动诊断的需要。%Based on requirements for safe inspection on electric power lines,a kind of multi-sensor system of unmanned heli-copter which includes visible light camera,infrared imager,ultraviolet imager,laser scanner,positioning and orientation system (POS),and so on is designed. Meanwhile,a high-precision and post-process soft synchronization method based on global positioning system (GPS)is proposed for realizing independent,coordinate and synchronous work of each sensor sys-tem. Software structure based on server-customer is designed to realize mutual independence of each sensor control and data acquisition,and furthest improve security and reliability of the sensor system. Experimental results of inspection of the multi-sensor integrated unmanned helicopter indicate that this system could obtain multi-wave and polytype inspection data at the same time in one single flying,and there is strong correlation among data which could be used for united diagnosis and a-nalysis on multi-source data and satisfy requirement for automatic diagnosis on multi-factor in potential safe hazards of elec-tric power lines.

  3. Small-Scale Helicopter Automatic Autorotation: Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit o

  4. Stiffness of Flapping Hinge of Small Scaled Unmanned Helicopter%某小型无人直升机挥舞约束铰设计

    Institute of Scientific and Technical Information of China (English)

    马相林; 张呈林

    2012-01-01

    The stiffness of flapping hinge is studied, which contributes to the vibration level through theoretical analysis and experiment. A calculation model of forces which act on the rotor shaft is established to analyze the vibration on helicopter structure. Three different hardness rubbers are chosen as the flapping hinge constraint material, and vibration tests are carried out to find out the influence of the stiffness of flapping hinge. The results show that the increase of stiffness of flapping hinge will reduce the 1 fi vibration.%通过理论分析和试验验证了旋翼挥舞约束铰刚度对机体1Ω振动水平的影响.以某小型无人直升机跷跷板式旋翼系统为研究对象,建立旋翼轴受力分析模型,分析了挥舞约束铰刚度对机体1Ω振动水平的影响.选择3种不同硬度的橡胶作为挥舞铰约束材料,分别进行了旋翼试验台振动测试试验,通过测量旋翼试验台振动量间接判断约束铰材料对机体振动水平的影响.分析和试验结果表明,增加跷跷板式旋翼挥舞约束铰刚度有利于降低机体1Ω振动水平.

  5. Cooperative Object Corner Detection Algorithm for Visual Landing of Unmanned Helicopter%无人直升机视觉着舰中合作目标角点检测算法

    Institute of Scientific and Technical Information of China (English)

    郝帅; 程咏梅; 马旭; 赵建涛

    2013-01-01

    舰载无人直升机自主着舰视觉导航在拍摄图像时,存在大尺度、角度畸变,使得合作目标角点难以检测,提出一种基于SIFT的分区双向匹配角点检测算法。设计了一种非对称彩色合作目标(由红色背板、绿色的H形和三角形组成),利用色彩信息对合作目标进行分割裁剪、识别,并分别对基准裁剪图和实拍裁剪图提取SIFT特征。为了提高SIFT特征匹配的实时性和准确性,提出了分区双向匹配策略。首先求取基准和实拍裁剪图中H形、小三角形重心以及H形上距离三角形重心最近的边缘点,以这三对匹配点求取基准图和实拍图间的粗略仿射模型。将基准裁剪图中的SIFT特征点经过该模型变换得到实拍裁剪图中的映射点,以每个映射点为圆心,以裁剪图宽度的1/4为半径将其分区,匹配时只选择每个映射点区域内的 SIFT特征匹配点。同理,对基准裁剪图也进行分区处理。然后通过双向匹配及RANSAC算法剔除错误的匹配对,利用正确的匹配对完成基准图和实拍图仿射变换的精确模型。最后,将基准图中标定好的角点经过仿射变换获取实拍图中合作目标的角点位置。实验结果表明,该算法不仅精度高、鲁棒性强,而且具有较好的实时性。%It is difficult to detect the cooperative object corner of the real-time image shot by the visual navigation system of a carrier-based unmanned helicopter because of the serious distortion of scale and angle .Therefore we propose a partitioned and bidirectional corner matching algorithm based on the scale invariant feature transform ( SIFT) .We design an asymmetric cooperative object which comprises red back , green H target and triangle .We use the color information of the cooperative object to segment and cut it from its background and then extract the SIFT features of a reference cutting image and a real-time cutting image

  6. Flying control of small-type helicopter by detecting its in-air natural features

    Directory of Open Access Journals (Sweden)

    Chinthaka Premachandra

    2015-05-01

    Full Text Available Control of a small type helicopter is an interesting research area in unmanned aerial vehicle development. This study aims to detect a more typical helicopter unequipped with markers as a means by which to resolve the various issues of the prior studies. Accordingly, we propose a method of detecting the helicopter location and pose through using an infrastructure camera to recognize its in-air natural features such as ellipse traced by the rotation of the helicopter's propellers. A single-rotor system helicopter was used as the controlled airframe in our experiments. Here, helicopter location is measured by detecting the main rotor ellipse center and pose is measured following relationship between the main rotor ellipse and the tail rotor ellipse. Following these detection results we confirmed the hovering control possibility of the helicopter through experiments.

  7. A Practical Approach to Obstacle Field Route Planning for Unmanned Rotorcraft

    Science.gov (United States)

    Howlet, Jason K.; Schulein, Greg; Mansur, M. Hossein

    2004-01-01

    Autonomous helicopter operations in the near-earth environment will require robust and efficient obstacle field route planning. A method for obstacle field route planning is presented, which is composed of a mesh generation phase, a graph search phase, and a route refinement phase. The method mixes optimization and heuristics to obtain a satisfactory solution quickly. Simulations based on an unmanned helicopter model are presented.

  8. Adaptable formations utilizing heterogeneous unmanned systems

    Science.gov (United States)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  9. Unmanned aircraft systems

    Science.gov (United States)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  10. 小型无人直升机纵横角动态耦合辨识建模%Identification Modeling of Coupling Between Longitudinal and Lateral Angular Dynamics for Small-Scale Unmanned Helicopter

    Institute of Scientific and Technical Information of China (English)

    夏慧; 陈庆伟; 王冠林; 朱纪洪

    2012-01-01

    针对小型无人直升机耦合建模问题提出了一种频域解耦辨识建模方法,该方法通过处理针对耦合辨识的实验数据得到指定频域范围内被辨识耦合的频域特性,对频域特性进行拟合从而获得耦合模型.提出了适用于多输入输出(MIMO)系统的频域特性计算方法,定义了一种复合相干函数并证明其能够用于表达在耦合通道辨识中输入输出的相关性.基于该方法,对一种小型无人直升机在悬停状态的纵横角动态耦合模型进行了辨识,并将耦合模型加入到直升机仿真模型中考察其对模型预测精度的影响.模型预测输出与实际输出的比较表明,相较于普通模型,考虑了耦合动态的仿真模型能够更为精确地预测实际输出.%A decoupled identification modeling method in frequency domain is presented to identify the coupled model for a small-scale unmanned rotorcraft. The frequency characteristic in the specified frequency range of the identified coupled dynamic model is obtained by calculating the experimental data, and the coupled dynamic model is obtained by fitting the frequency characteristic. The frequency characteristic calculation method is proposed for the MIMO (multiple-input multiple-output) system, and a multiple coherence function is defined and it is proved that it can be used to express the correlation between inputs and outputs in coupled-channel identification. The longitudinal and lateral angular dynamics coupled model of a small-scale hovering unmanned rotorcraft is identified based on this method, and its influence on rotorcraft simulation model's precision is investigated by adding the coupled model to the rotorcraft simulation model. The comparison between the model prediction output and the actual output shows that the simulation model considering the coupled dynamics can predict the outputs with higher precision than the general model.

  11. Laser Energy Transmission to a Small-Unmanned Aerial Vehicle

    Science.gov (United States)

    Takeda, Kazuya; Kawashima, Nobuki; Yabe, Kyoichi

    A laser energy transmission system for a small-unmanned airplane(Kite-plane) has been developed and a long-time flight demonstration was done successfully in Osaka dome stadium (baseball stadium) at an altitude of 50 m. This test flight shows that it can be practically applied for the surveillance flight in natural disaster such as earthquakes, floods etc. In order to increase the horizontal range keeping the low altitude, an application to a helicopter flight is undertaken.

  12. Detection of small UAV helicopters using micro-Doppler

    Science.gov (United States)

    Tahmoush, David

    2014-05-01

    The detection of small unmanned aerial vehicles (UAVs) using radar can be challenging due to the small radar cross section and the presence of false targets such as birds. We present the initial results of micro-Doppler radar data collected on a small helicopter at G-band and compare the results to previously measured birds. The resulting signature differences can be used to help discriminate small UAVs from naturally occurring moving clutter such as birds.

  13. Helicopter human factors

    Science.gov (United States)

    Hart, Sandra G.

    1988-01-01

    The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.

  14. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    Science.gov (United States)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  15. Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    2010-06-01

    INTRODUCTION For quite some time, mathematicians have struggled with a reliable method for solving optimal control problems with complicated nonlinear...problems have several fundamental differences from the computation of PDEs. Solving optimal control problems asks for the collective and...and differentiations. These are all critical pieces for solving optimal control problems . The derivative of ( )Nix t at the LGL node kt is

  16. DESIGN OF H INFINITY CONTROLLERS FOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    PAVANI VEMURI

    2014-09-01

    Full Text Available The objective is to provide efficacious methods for the design of flight controllers for remotely piloted helicopters, which have guaranteed performance and prescribed multivariable loop structures. The problem of stabilization of an autonomous helicopter in hover configuration subject to external disturbances is addressed. When the problem involves dynamic constraints, a simplified outputfeedback (OPFB design procedure is employed to obtain the desired performance. An efficient algorithm is taken to evaluateOPFB gains, which do not require initial stabilizing gains for computation. Helicopter dynamics do not dissociate and hence the design of the flight controllers with an intuitive and desirable structure is ambiguous. Shaping filters are added that improve the performance, yield guaranteed robustness and speed of response. The salient feature of design is that it does not include the presence of noise, however, it has been verified that the control is an efficient method for controlling of unmanned helicopters in the presence of noise and robustness of the design has been verified by taking different real time uncertainties. Also it has been observed that has performed its control faster with reasonable accuracy.

  17. Hazardous Particle Detection via Unmanned Air Vehicles: Optimal Placement of Sensors in Forward Flight

    Science.gov (United States)

    2010-01-20

    hazard detection in the atmosphere by unmanned air vehicles (UAV). Specifically, the study seeks to discover if and where the placement of sensors on UAV’s can maximize the volume of space that is brought into contact with the sensor. A hybrid gridfree/finite volume numerical flow simulation methodology that is adept at modeling complex flow scenarios provides the basis for the analysis. This study focuses on the use of an unmanned helicopter in collecting particle data. Clear evidence is found that the judicious placement of sensors on the UAV can profoundly affect

  18. 78 FR 65180 - Airworthiness Directives; MD Helicopters, Inc., Helicopters

    Science.gov (United States)

    2013-10-31

    ... condition, vibration, loss of tail rotor pitch control, and loss of directional control of the helicopter...-047-AD; Amendment 39-17606; AD 2013-19-24] RIN 2120-AA64 Airworthiness Directives; MD Helicopters, Inc., Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We...

  19. 78 FR 27867 - Airworthiness Directives; MD Helicopters Inc. Helicopters

    Science.gov (United States)

    2013-05-13

    ..., leading to vibration, loss of tail rotor pitch control, and subsequent loss of tail rotor and helicopter... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; MD Helicopters Inc. Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...

  20. Unmanned and Unarmed

    DEFF Research Database (Denmark)

    Kristensen, Kristian Søby; Pradhan-Blach, Flemming; Schaub Jr, Gary John

    Unmanned aerial vehicles (UAVs) are being integrated into the military forces of Western states, including Denmark. How should the Danish government proceed when considering investments in UAVs? Although airpower and UAVs have substantially shaped the Western paradigm for the use of force...... Denmark decide to procure larger unmanned systems, such as Reapers or Global Hawks, it should cooperate with Allies to purchase, operate, and integrate these capabilities as smoothly as possible and mitigate these risks. It should also establish a joint unit dedicated to house, train, educate, and operate...

  1. Unmanned and Unarmed

    DEFF Research Database (Denmark)

    Kristensen, Kristian Søby; Pradhan-Blach, Flemming; Schaub Jr, Gary John

    Unmanned aerial vehicles (UAVs) are being integrated into the military forces of Western states, including Denmark. How should the Danish government proceed when considering investments in UAVs? Although airpower and UAVs have substantially shaped the Western paradigm for the use of force...... Denmark decide to procure larger unmanned systems, such as Reapers or Global Hawks, it should cooperate with Allies to purchase, operate, and integrate these capabilities as smoothly as possible and mitigate these risks. It should also establish a joint unit dedicated to house, train, educate, and operate...

  2. Research and Development of Unmanned Aviation Vehicle System for Disaster Countermeasures

    OpenAIRE

    2013-01-01

    The authors developed low cost unmanned helicopter, real time video data transmitting system and a new type flying robots. The effectiveness is confirmed by real field experiment tests. Hazard map for disaster countermeasures is made on the basis of data obtained by the aviation vehicle system. The hazard map is delivered directly to a smart phone and a tablet PC. Therefore residents can keep track of disaster information quickly and accurately.

  3. GARTEUR Helicopter Cooperative Research

    OpenAIRE

    Pahlke, Klausdieter

    2010-01-01

    This paper starts with an overview about the general structure of the Group for Aeronautical Research and Technology in EURope (GARTEUR). The focus is on the activities related to rotorcraft which are managed in the GARTEUR Helicopter Group of Responsables (HC GoR). The research activities are carried out in so-called Action Groups. Out of the 5 Action Groups which ended within the last four years results generated in the Helicopter Action Groups HC(AG14) “Methods for Refinement of Structural...

  4. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    OpenAIRE

    Zhenyu Yu; Kenzo Nonami; Jinok Shin; Demian Celestino

    2007-01-01

    Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV) to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The abovetheground height sensing is based on a 3D vision system. We have designed a simple planefitting method for e...

  5. Terrain and Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Kevin Kochersberger

    2012-07-01

    Full Text Available Recent events have highlighted the need for unmanned remote sensing in dangerous areas, particularly where structures have collapsed or explosions have occurred, to limit hazards to first responders and increase their efficiency in planning response operations. In the case of the Fukushima nuclear reactor explosion, an unmanned helicopter capable of obtaining overhead images, gathering radiation measurements, and mapping both the structural and radiation content of the environment would have given the response team invaluable data early in the disaster, thereby allowing them to understand the extent of the damage and areas where dangers to personnel existed. With this motivation, the Unmanned Systems Lab at Virginia Tech has developed a remote sensing system for radiation detection and aerial imaging using a 90 kg autonomous helicopter and sensing payloads for the radiation detection and imaging operations. The radiation payload, which is the sensor of focus in this paper, consists of a scintillating type detector with associated software and novel search algorithms to rapidly and effectively map and locate sources of high radiation intensity. By incorporating this sensing technology into an unmanned aerial vehicle system, crucial situational awareness can be gathered about a post-disaster environment and response efforts can be expedited. This paper details the radiation mapping and localization capabilities of this system as well as the testing of the various search algorithms using simulated radiation data. The various components of the system have been flight tested over a several-year period and a new production flight platform has been built to enhance reliability and maintainability. The new system is based on the Aeroscout B1-100 helicopter platform, which has a one-hour flight endurance and uses a COFDM radio system that gives the helicopter an effective range of 7 km.

  6. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  7. Design and implementation of a GPS-aided inertial navigation system for a helicopter UAV

    Science.gov (United States)

    Kastelan, David R.

    Helicopter unmanned aerial vehicles (UAVs) benefit from vertical takeoff and landing, hover, low-speed, and cruising flight capabilities. This versatility has the expense of nonlinear, unstable, and underactuated system dynamics. These challenges and numerous potential applications make the helicopter UAV an interesting testbed for nonlinear control. A platform for such development has been established in the Applied Nonlinear Controls Lab (ANCL). A miniature helicopter was augmented with a manual/autonomous takeover system and the ANCL Avionics. This payload contains a global positioning system (GPS) receiver, inertial sensors, and communications and computing hardware. Allan variance analysis of inertial sensor data enabled the derivation of a GPS-aided inertial navigation system that was implemented on the ANCL Avionics. This extended Kalman filter (EKF)-based algorithm estimates vehicle position, velocity, and attitude necessary for system identification tasks and control system feedback. Performance validation of this algorithm was demonstrated in simulation and in experimental ground and flight tests.

  8. Identification, control and visually-guided behavior for a model helicopter

    Science.gov (United States)

    Saripalli, Srikanth

    Research on unmanned aerial vehicles is motivated by applications where human intervention is impossible, risky or expensive e.g. hazardous material recovery, traffic monitoring, disaster relief support, military operations etc. Due to its vertical take-off, landing and hover capabilities, a helicopter is an attractive platform for such applications. There are significant challenges to building an autonomous robotic helicopter - these span the areas of system identification, low-level control, state estimation, and planning. Towards the goal of fully-autonomous helicopters this thesis makes the following contributions. A continuous-discrete extended Kalman filter has been developed that combines inertial data with GPS and compass data to provide estimates of the 6DOF state of the helicopter. Using this filter a model for the helicopter has been identified based on frequency response techniques. The model has been validated in flight tests on a small helicopter testbed (1.6 m rotor diameter) at speeds upto 5 m/s. Based on evidence from this model a decoupled low-level controller has been developed which is embedded in a control architecture suitable for visually-guided navigation. As a novel application, we show how such a controller can be used to perform trajectory following on the helicopter where the desired trajectories are typical spacecraft landing trajectories, and the only controls available are thrusters. This in effect, produces a low-cost testbed for testing spacecraft landing and hazard avoidance on a planetary surface. Finally, we develop and extensively experimentally characterize algorithms for vision-based autonomous landing, object tracking, and sensor deployment.

  9. Helicopter Human Factors

    Science.gov (United States)

    Hart, Sandra G.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    Even under optimal conditions, helicopter flight is a most demanding form of human-machine interaction, imposing continuous manual, visual, communications, and mental demands on pilots. It is made even more challenging by small margins for error created by the close proximity of terrain in NOE flight and missions flown at night and in low visibility. Although technology advances have satisfied some current and proposed requirements, hardware solutions alone are not sufficient to ensure acceptable system performance and pilot workload. However, human factors data needed to improve the design and use of helicopters lag behind advances in sensor, display, and control technology. Thus, it is difficult for designers to consider human capabilities and limitations when making design decisions. This results in costly accidents, design mistakes, unrealistic mission requirements, excessive training costs, and challenge human adaptability. NASA, in collaboration with DOD, industry, and academia, has initiated a program of research to develop scientific data bases and design principles to improve the pilot/vehicle interface, optimize training time and cost, and maintain pilot workload and system performance at an acceptable level. Work performed at Ames, and by other research laboratories, will be reviewed to summarize the most critical helicopter human factors problems and the results of research that has been performed to: (1) Quantify/model pilots use of visual cues for vehicle control; (2) Improve pilots' performance with helmet displays of thermal imagery and night vision goggles for situation awareness and vehicle control; (3) Model the processes by which pilots encode maps and compare them to the visual scene to develop perceptually and cognitively compatible electronic map formats; (4) Evaluate the use of spatially localized auditory displays for geographical orientation, target localization, radio frequency separation; (5) Develop and flight test control

  10. Helicopter Human Factors

    Science.gov (United States)

    Hart, Sandra G.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    Even under optimal conditions, helicopter flight is a most demanding form of human-machine interaction, imposing continuous manual, visual, communications, and mental demands on pilots. It is made even more challenging by small margins for error created by the close proximity of terrain in NOE flight and missions flown at night and in low visibility. Although technology advances have satisfied some current and proposed requirements, hardware solutions alone are not sufficient to ensure acceptable system performance and pilot workload. However, human factors data needed to improve the design and use of helicopters lag behind advances in sensor, display, and control technology. Thus, it is difficult for designers to consider human capabilities and limitations when making design decisions. This results in costly accidents, design mistakes, unrealistic mission requirements, excessive training costs, and challenge human adaptability. NASA, in collaboration with DOD, industry, and academia, has initiated a program of research to develop scientific data bases and design principles to improve the pilot/vehicle interface, optimize training time and cost, and maintain pilot workload and system performance at an acceptable level. Work performed at Ames, and by other research laboratories, will be reviewed to summarize the most critical helicopter human factors problems and the results of research that has been performed to: (1) Quantify/model pilots use of visual cues for vehicle control; (2) Improve pilots' performance with helmet displays of thermal imagery and night vision goggles for situation awareness and vehicle control; (3) Model the processes by which pilots encode maps and compare them to the visual scene to develop perceptually and cognitively compatible electronic map formats; (4) Evaluate the use of spatially localized auditory displays for geographical orientation, target localization, radio frequency separation; (5) Develop and flight test control

  11. World helicopter market study

    Science.gov (United States)

    Cleary, B.; Pearson, R. W.; Greenwood, S. W.; Kaplan, L.

    1978-01-01

    The extent of the threat to the US helicopter industry posed by a determined effort by foreign manufacturers, European companies in particular, to supply their own domestic markets and also to penetrate export markets, including the USA is assessed. Available data on US and world markets for civil and military uses are collated and presented in both graphic and tabular form showing the past history of production and markets and, where forecasts are available, anticipated future trends. The data are discussed on an item-by-item basis and inferences are drawn in as much depth as appears justified.

  12. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes

    Science.gov (United States)

    McGonigle, A. J. S.; Aiuppa, A.; Giudice, G.; Tamburello, G.; Hodson, A. J.; Gurrieri, S.

    2008-03-01

    We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d-1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d-1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydrothermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.

  13. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  14. Autonomous Hovering Flight of a Small Helicopter

    Science.gov (United States)

    Ohkura, Akihiro; Tokutake, Hiroshi; Sunada, Shigeru

    During the 20th century, aircraft were only used for transportation. If aircraft can be made small and lightweight, however, they can become tools to assist in everyday life. We developed a small, lightweight co-axial helicopter with a rotor diameter of about 30cm. The mechanisms for varying cyclic pitch of the upper and lower rotors, which are used in the coaxial helicopter for entertainment, are adopted in our develop helicopter. Our developed helicopter is equipped with a flight control system for the attitude and position, which is composed of a micro computer and some sensors. And the helicopter can make autonomous hovering flight just measuring the height and the distances from the walls. The weight of the helicopter is no more than 200g and this helicopter is the lightest helicopter for an autonomous hovering flight among the helicopters where all control systems are onboard, as far as the authors know.

  15. Vertebral pain in helicopter pilots

    Science.gov (United States)

    Auffret, R.; Delahaye, R. P.; Metges, P. J.; VICENS

    1980-01-01

    Pathological forms of spinal pain engendered by piloting helicopters were clinically studied. Lumbalgia and pathology of the dorsal and cervical spine are discussed along with their clinical and radiological signs and origins.

  16. The evolution of helicopters

    Science.gov (United States)

    Chen, R.; Wen, C. Y.; Lorente, S.; Bejan, A.

    2016-07-01

    Here, we show that during their half-century history, helicopters have been evolving into geometrically similar architectures with surprisingly sharp correlations between dimensions, performance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the constructal law, which accounts for the engine efficiency trend and the proportionality between "motor" size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoretical body of research the evolutionary design of all technologies [A. Bejan, The Physics of Life: The Evolution of Everything (St. Martin's Press, New York, 2016)].

  17. THE UNMANNED MISSION AVIONICS TEST HELICIOPTER – A FLEXIBLE AND VERSATILE VTOL-UAS EXPERIMENTAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. H.-W. Schulz

    2012-09-01

    Full Text Available civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT, its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR. It is integrated by ESG together with the industrial partner SWISS UAV.

  18. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging tec

  19. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2008-11-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The abovetheground height sensing is based on a 3D vision system. We have designed a simple planefitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a twostage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  20. Unmanned Maritime Systems Incremental Acquisition Approach

    Science.gov (United States)

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION...REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH 5. FUNDING...explore and understand the issues involved in the DOD’s acquisition process for Unmanned Maritime Systems (UMS) in order to recommend a new acquisition

  1. Sensors in Unmanned Robotic Vehicle

    Directory of Open Access Journals (Sweden)

    B. Rohini

    2008-05-01

    Full Text Available Unmanned tracked vehicles are developed for deployment in dangerous zones that are notsafe for human existence. These vehicles are to be fitted with various sensors for safe manoeuvre.Wide range of sensors for vehicle control, vision, and navigation are employed. The main purposeof the sensors is to infer the intended parameter precisely for further utilisation. Software isinseparable part of the sensors and plays major role in scaling, noise reduction, and fusion.Sensor fusion is normally adapted to enhance the decision-making. Vehicle location  andorientation can be sensed through global positioning system, accelerometer, gyroscope, andcompass. The unmanned vehicle can be navigated with the help of CCD camera, radar, lidar,ultrasonic sensor, piezoelectric sensor, microphone, etc.  Proximity sensors like capacitive andRF proximity detectors can detect obstacles in close vicinity.  This paper presents an overviewof sensors normally deployed in unmanned tracked vehicles.

  2. Handbook of unmanned aerial vehicles

    CERN Document Server

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  3. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  4. Natural interaction for unmanned systems

    Science.gov (United States)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  5. Civil helicopter flight research. [for CH-53 helicopter

    Science.gov (United States)

    Snyder, W. J.; Schoultz, M. B.

    1976-01-01

    The paper presents a description of the NASA CH-53 Civil Helicopter Research Aircraft and discusses preliminary results of the aircraft flight research performed to evaluate factors and requirements for future helicopter transport operations. The CH-53 equipped with a 16-seat airline-type cabin and instrumented for flight research studies in noise, vibration, handling qualities, passenger acceptance, fuel utilization, terminal area maneuvers, and gust response. Predicted fuel usage for typical short-haul missions is compared with actual fuel use. Pilot ratings for an IFR handling quality task for three levels of stability augmentation are presented, and the effects of internal noise, vibration, and motion on passenger acceptance are discussed. Future planned CH-53 flight research within the Civil Helicopter Technology Program is discussed.

  6. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas

    2011-01-01

    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  7. [Back ache in helicopter pilots].

    Science.gov (United States)

    Colak, S; Jovelić, S; Manojlović, J

    1992-01-01

    Due to low back pain (LBP) and harmful effects of flying, questionnaires were sent to 71 helicopter pilots of the experimental group, 22 mechanics helicopter flyers and to the control group of 28 air-traffic controllers. The prevalence of LBP was the highest in helicopter pilots, then in helicomechanics and air-traffic controllers (53%, 50% and 36%). Effects of exposure to vibration, body posture and working load have not contributed significantly to the occurrence of LBP. LBP has not lead to an important difference in the strength of the back musculature, body mass index and spondylosis, that is, scoliosis. The necessity of further study of LBP and maintaining of specific preventive measures are indicated.

  8. RISK DEFINITION IN CIVIL UNMANNED AVIATION

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-12-01

    Full Text Available Objective: The risks in unmanned civil aviation are considered as one of the most important. In the article is proved applicability of ensuring the flight safety of aircraft and considered the basic risks of manned civil aviation. Methods: Analyzed statistical data on aviation accidents, organized probabilities distribution of aviation accidents for manned and unmanned civil aviation to identify factors that influence the occurrence of emergency situations in manned and unmanned aviation. Results: We proposed typology of risk components in civil aviation and systematized methods and techniques to reduce risks. Over the analogies defined possible risks, their causes and remedies in civil unmanned aircraft. Weight coefficients distribution was justified between risk types for development of recommendations on risk management in unmanned civil aviation. Discussion: We found that the most probable risk in manned civil aviation is the human factor, organization of air traffic control, design flaws of unmanned aviation system as a whole, as well as maintenance of unmanned aviation system.

  9. The helicopter - some ergonomic factors.

    Science.gov (United States)

    Lovesey, E J

    1975-09-01

    Helicopter pilots are some of the hardest working human operators, because of the machine's inherant instability and control problems. This article covers some aspects where ergonomists might help to improve the overall system. After considering basic differences between helicopters and fixed wing aircraft, the author examines controls, where there are prospects of using miniature hand levers; cockpit vision and displays with particular reference to night and instrument flying; seating and vibration where the effects of protective clothing and harnesses are considered; and cabin noise from the engine, transmission and intercom systems. Finally, he assesses pilot activity using cine film techniques for different types of flight.

  10. 77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-05-22

    ... Textron (BHT) Model 412, 412EP, and 412CF helicopters. This proposed AD is prompted by a reported failure... delay. We may change this proposal in light of the comments we receive. Discussion BHT has received a... develop on other products of the same type design. Related Service Information We reviewed BHT ASB 412-11...

  11. 77 FR 68055 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-11-15

    ... are adopting a new airworthiness directive (AD) for Bell Helicopter Textron (BHT) Model 412, 412EP... 39 to include an AD that would apply to certain serial-numbered BHT Model 412, 412EP, and 412CF... AD and the Service Information The BHT ASBs require compliance within 100 hours of flight time for...

  12. 78 FR 9793 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2013-02-12

    ..., Aerospace Engineer, FAA, Rotorcraft Directorate, Rotorcraft Certification Office, 2601 Meacham Blvd., Fort... helicopters, are susceptible to the same type of cracking because they are of similar design and manufacture... first. This AD does not require you to report a cracked fitting to the Rotorcraft Certification...

  13. 78 FR 1730 - Airworthiness Directives; Bell Helicopter Textron Inc. Helicopters

    Science.gov (United States)

    2013-01-09

    ...: We are adopting a new airworthiness directive (AD) for the Bell Helicopter Textron Inc. (BHTI) Model... (connector) can deteriorate, causing a short in the connector that may lead to a fire in the starter... short in the connector that may lead to a fire in the starter/generator, smoke in the cockpit...

  14. 78 FR 65195 - Airworthiness Directives; MD Helicopters, Inc. (MDHI) Helicopters

    Science.gov (United States)

    2013-10-31

    ... other helicopters of the same type designs and that air safety and the public interest require adopting... rotor blade (MRB) retention bolts (bolts) installed. This AD requires a daily check of the position of... (ASB SB900-116). ASB SB900-116 specifies a repetitive check of the blade retention bolts, part number...

  15. Smart actuation for helicopter rotorblades

    NARCIS (Netherlands)

    Paternoster, A.R.A.; Loendersloot, R.; Boer, de A.; Akkerman, R.; Berselli, G.; Vertechy, R.; Vassura, G.

    2012-01-01

    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight, th

  16. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  17. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  18. Smart actuation for helicopter rotorblades

    NARCIS (Netherlands)

    Paternoster, Alexandre; Loendersloot, Richard; de Boer, Andries; Akkerman, Remko; Berselli, G.; Vertechy, R.; Vassura, G.

    2012-01-01

    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight,

  19. Military display market segment: helicopters

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2004-09-01

    The military display market is analyzed in terms of one of its segments: helicopter displays. Parameters requiring special consideration, to include luminance ranges, contrast ratio, viewing angles, and chromaticity coordinates, are examined. Performance requirements for rotary-wing displays relative to several premier applications are summarized. Display sizes having aggregate defense applications of 5,000 units or greater and having DoD applications across 10 or more platforms, are tabulated. The issue of size commonality is addressed where distribution of active area sizes across helicopter platforms, individually, in groups of two through nine, and ten or greater, is illustrated. Rotary-wing displays are also analyzed by technology, where total quantities of such displays are broken out into CRT, LCD, AMLCD, EM, LED, Incandescent, Plasma and TFEL percentages. Custom, versus Rugged commercial, versus commercial off-the-shelf designs are contrasted. High and low information content designs are identified. Displays for several high-profile military helicopter programs are discussed, to include both technical specifications and program history. The military display market study is summarized with breakouts for the helicopter market segment. Our defense-wide study as of March 2004 has documented 1,015,494 direct view and virtual image displays distributed across 1,181 display sizes and 503 weapon systems. Helicopter displays account for 67,472 displays (just 6.6% of DoD total) and comprise 83 sizes (7.0% of total DoD) in 76 platforms (15.1% of total DoD). Some 47.6% of these rotary-wing applications involve low information content displays comprising just a few characters in one color; however, as per fixed-wing aircraft, the predominant instantiation involves higher information content units capable of showing changeable graphics, color and video.

  20. An unmanned search and rescue mission

    Science.gov (United States)

    Novaro Mascarello, Laura; Quagliotti, Fulvia; Bertini, Mario

    2016-04-01

    The Remotely Piloted Aircraft Systems (RPAS) are becoming more and more powerful and innovative and they have an increased interest in civil applications, in particular, after natural hazard phenomena. The RPAS is useful in search and rescue missions in high mountain where scenarios are unfriendly and the use of helicopters is often not profitable. First, the unmanned configuration is safer because there is no hazards for human life that is not on board. Moreover, it is cheaper due to the use of electric propulsion instead of internal combustion engine and to its small dimensions and weights. Finally, the use of the RPAS is faster while the helicopter is often not available because is involved in other missions or it cannot be used if the search mission is in impervious scenario, such as forests with thick vegetation. For instance, the RPAS can be used after an avalanche when victims have little time to be saved before the death by hypothermia. In most conditions, the body maintains a healthy temperature. However, if it is exposed to cold temperatures, especially with a high cooling factor from wind and high humidity, for extended periods, the control mechanisms of the body may not be able to maintain a normal body temperature. When you lose more heat than the body can generate, it takes over hypothermia, defined as a body temperature below 35° C. Wet clothing, fall into cold water or not adequately cover themselves during the cold season, are all factors that can increase the chances of hypothermia. Signs and symptoms (tremor, slurred speech, breathing abnormally slow, cold and pale skin, loss of coordination, fatigue, lethargy or apathy, confusion or memory loss) usually develop slowly. People with hypothermia typically experience a gradual loss of mental acuity and physical capacity, and realize that you have need of emergency medical care. For these reasons, the use of an RPAS could be crucial for the survival of disappeared people in high mountain. In

  1. Bespilotne letjelice : Unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Vlado Jurić

    2016-12-01

    Full Text Available Bespilotne letjelice imaju širok spektar uporabe, i svrha im svakim danom sve više dobiva na značaju. Konstrukcija im se poboljšava, pronalaze se materijali koji su optimalniji za obavljanje funkcija s kojima se trebaju suočiti. Pravna regulativa za bespilotne letjelice do 150 kg težine na polijetanju (MTOW se razlikuje od države do države. : Unmanned aerial vehicles have a wide range of applications, and their purpose is every day more important. Construction has been improving, finding the materials that are optimal for carrying out the functions which need to be cope with. Legal regulations for unmanned aircrafts up to 150 kg take-off weight (MTOW varies from country to country.

  2. Initial Study of an Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Science.gov (United States)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  3. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned Aerial Vehicles (UAVs) are assuming more numerous and increasingly important roles in global environmental and atmospheric research. There is a...

  4. Unmanned aircraft systems as wingmen

    Science.gov (United States)

    Garcia, Richard; Barnes, Laura; Fields, MaryAnne

    2010-04-01

    This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control, dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group surveillance.

  5. 78 FR 34958 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell), Model Helicopters

    Science.gov (United States)

    2013-06-11

    ... 412CF helicopter or on a Model 412 or 412EP helicopter with a (BHT-412-SI-62) slope landing kit, P/N 412... installed on a Model 412 or 412EP helicopter with a (BHT-412-SI-62) slope landing kit, P/N 412-704-012-101...

  6. 78 FR 23688 - Airworthiness Directives; Bell Helicopter Textron Canada Inc. Helicopters

    Science.gov (United States)

    2013-04-22

    ... Bell Helicopter Textron Canada Inc. (BHT) Model 206A, 206B, and 206L helicopters. This proposed AD...-2012-19), to correct an unsafe condition for certain serial numbered BHT Model 206A, 206B, and 206L... Information BHT has issued Alert Service Bulletin (ASB) No. 206-11-127 for Model 206A and 206B helicopters and...

  7. 78 FR 54751 - Airworthiness Directives; Bell Helicopter Textron Canada Inc. Helicopters

    Science.gov (United States)

    2013-09-06

    ... new airworthiness directive (AD) for certain Bell Helicopter Textron Canada Inc. (BHT) Model 206A... 14 CFR part 39 to include an AD that would apply to BHT Model 206A and 206B helicopters, all serial... assembly) part number (P/N) 206-375-017-101 installed and BHT Model 206L helicopters, S/N 45001 through...

  8. Helicopter vibration reduction using robust control

    OpenAIRE

    Mannchen, Thomas

    2003-01-01

    This dissertation presents a control law for helicopters to reduce vibration and to increase damping using individual blade control. H-infinity control synthesis is used to develop a robust controller usable in different operating conditions with different helicopter flight speeds. The control design is applied in simulation to the four-blade BO 105 helicopter rotor, which is equipped with an individual blade control system, where the pitch rod links are replaced by hydraulic actuators, allow...

  9. Lytic spondylolisthesis in helicopter pilots.

    Science.gov (United States)

    Froom, P; Froom, J; Van Dyk, D; Caine, Y; Ribak, J; Margaliot, S; Floman, Y

    1984-06-01

    Trauma to the back from the force of chronic stress is thought to be an etiologic factor in isthmic spondylolisthesis (SLL). The relationship of first degree spondylolisthesis to low back pain (LBP) is controversial. We compare the prevalence of SLL in helicopter pilots who are subject to strong vibrational forces, with other airforce personnel. Helicopter pilots had more than a four times higher prevalence of SLL (4.5%) than did cadets (1.0%) and transport pilots (0.9%). Low back pain was more frequent in pilots with SLL than in those without this lesion but in no case was the pain disabling or the defect progressive. We conclude that SLL may be induced by vibrational forces and although SLL is associated with LBP, the pain was little clinical significance.

  10. When is the helicopter faster? A comparison of helicopter and ground ambulance transport times.

    Science.gov (United States)

    Diaz, Marco A; Hendey, Gregory W; Bivins, Herbert G

    2005-01-01

    A retrospective analysis of 7,854 ground ambulance and 1,075 helicopter transports was conducted. The 911-hospital arrival intervals for three transport methods were compared: ground, helicopter dispatched simultaneously with ground unit, and helicopter dispatched nonsimultaneously after ground unit response. Compared with ground transports, simultaneously dispatched helicopter transports had significantly shorter 911-hospital arrival intervals at all distances greater than 10 miles from the hospital. Nonsimultaneously dispatched helicopter transport was significantly faster than ground at distances greater than 45 miles, and simultaneous helicopter dispatch was faster than nonsimultaneous at virtually all distances. Ground transport was significantly faster than either air transport modality at distances less than 10 miles from the hospital. Ground ambulance transport provided the shortest 911-hospital arrival interval at distances less than 10 miles from the hospital. At distances greater than 10 miles, simultaneously dispatched air transport was faster. Nonsimultaneous dispatched helicopter transport was faster than ground if greater than 45 miles from the hospital.

  11. Analysis of Unmanned Systems in Military Logistics

    Science.gov (United States)

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. ANALYSIS OF UNMANNED SYSTEMS IN......these systems by using archival analysis and case studies. Finally, we addressed recommendations on the current and future uses of unmanned systems in

  12. International Conference on Intelligent Unmanned Systems (ICIUS)

    CERN Document Server

    Kartidjo, Muljowidodo; Yoon, Kwang-Joon; Budiyono, Agus; Autonomous Control Systems and Vehicles : Intelligent Unmanned Systems

    2013-01-01

    The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers ...

  13. Unmanned Mobile Monitoring for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, YoungSoo; Park, JongWon; Kim, TaeWon; Jeong, KyungMin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Severe accidents at nuclear power plant have led to significant consequences to the people, the environment or the facility. Therefore, the appropriate response is required for the mitigation of the accidents. In the past, most of responses were performed by human beings, but it was dangerous and risky. In this paper, we proposed unmanned mobile system for the monitoring of nuclear accident in order to response effectively. For the integrity of reactor cooling and containment building, reactor cooling pipe and hydrogen distribution monitoring with unmanned ground vehicle was designed. And, for the safety of workers, radiation distribution monitoring with unmanned aerial vehicle was designed. Unmanned mobile monitoring system was proposed to respond nuclear accidents effectively. Concept of reinforcing the integrity of RCS and containment building, and radiation distribution monitoring were described. RCS flow measuring, hydrogen distribution measuring and radiation monitoring deployed at unmanned vehicle were proposed. These systems could be a method for the preparedness of effective response of nuclear accidents.

  14. Unmanned aerial vehicles in astronomy

    Science.gov (United States)

    Biondi, Federico; Magrin, Demetrio; Ragazzoni, Roberto; Farinato, Jacopo; Greggio, Davide; Dima, Marco; Gullieuszik, Marco; Bergomi, Maria; Carolo, Elena; Marafatto, Luca; Portaluri, Elisa

    2016-07-01

    In this work we discuss some options for using Unmanned Aerial Vehicles (UAVs) for daylight alignment activities and maintenance of optical telescopes, relating them to a small numbers of parameters, and tracing which could be the schemes, requirements and benefits for employing them both at the stage of erection and maintenance. UAVs can easily reach the auto-collimation points of optical components of the next class of Extremely Large Telescopes. They can be equipped with tools for the measurement of the co-phasing, scattering, and reflectivity of segmented mirrors or environmental parameters like C2n and C2T to characterize the seeing during both the day and the night.

  15. Micro-unmanned aerodynamic vehicle

    Science.gov (United States)

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  16. Study of Helicopter Roll Control Effectiveness Criteria.

    Science.gov (United States)

    1986-04-01

    variety of helicopter configurations and control system types , and a wide range of flight tasks and maneuvers. The basis of the experimental design...represent a wide range of basic helicopter rotor hub and airframe designs and flight control system types . It was intended to generally limit

  17. Pneumatic boot for helicopter rotor deicing

    Science.gov (United States)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  18. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems

    Science.gov (United States)

    De Gregorio, F.

    2017-08-01

    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  19. 78 FR 23692 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-04-22

    ... in excessive vibration of the helicopter and loss of control of the helicopter. (c) Comments Due Date... Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM... AS350B, BA, B1, B2, B3, and D, and Model AS355E, F, F1, F2, and N helicopters with certain tail rotor...

  20. Helicopter Noise And Noise Abatement Procedures

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2004-03-01

    Full Text Available The helicopter generated noise at and around the airports islower than the noise generated by aeroplanes, since their numberof operations, i. e. the number of takeoffs and landings ismuch lower than the takeoffs and landings of the aeroplanes.Out of some hundred operations a day, helicopters participatewith approximately 15%, but the very impact of noise is by nomeans negligible, since the number of helicopter flights aboveurban areas is constantly increasing.This paper attempts to analyse this phenomenon and thetype of helicopter generated noise, its negative impacts, to explainthe flight procedures and the operative procedures duringtakeoff, landing and overflight of helicopters in operations inthe vicinity and outside airports, as well as the methods of measuringand determining the limit of noise [eve~ and the resultingproblems.

  1. Design of a radiation surveillance unit for an unmanned aerial vehicle.

    Science.gov (United States)

    Kurvinen, K; Smolander, P; Pöllänen, R; Kuukankorpi, S; Kettunen, M; Lyytinen, J

    2005-01-01

    This paper describes a prototype of a compact environmental radiation surveillance instrument designed for a Ranger unmanned aerial vehicle. The instrument, which can be used for tracking a radioactive plume, mapping fallout and searching for point sources, consists of three different detector types (GM, NaI(Tl) and CZT) and an air sampling unit. In addition to the standard electronics for data acquisition, the system contains an onboard computer, a GPS receiver and environmental sensors, all enclosed in a single housing manufactured of fiberglass-reinforced composite material. The data collected during the flight is transmitted in real-time to the ground station via a TETRA radio network. The radiation surveillance unit is an independent module and as such can be used in, for example, airplanes, helicopters and cars.

  2. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    Science.gov (United States)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  3. Vision-Based Unmanned Aerial Vehicle Navigation Using Geo-Referenced Information

    Science.gov (United States)

    Conte, Gianpaolo; Doherty, Patrick

    2009-12-01

    This paper investigates the possibility of augmenting an Unmanned Aerial Vehicle (UAV) navigation system with a passive video camera in order to cope with long-term GPS outages. The paper proposes a vision-based navigation architecture which combines inertial sensors, visual odometry, and registration of the on-board video to a geo-referenced aerial image. The vision-aided navigation system developed is capable of providing high-rate and drift-free state estimation for UAV autonomous navigation without the GPS system. Due to the use of image-to-map registration for absolute position calculation, drift-free position performance depends on the structural characteristics of the terrain. Experimental evaluation of the approach based on offline flight data is provided. In addition the architecture proposed has been implemented on-board an experimental UAV helicopter platform and tested during vision-based autonomous flights.

  4. Vision-Based Unmanned Aerial Vehicle Navigation Using Geo-Referenced Information

    Directory of Open Access Journals (Sweden)

    Gianpaolo Conte

    2009-01-01

    Full Text Available This paper investigates the possibility of augmenting an Unmanned Aerial Vehicle (UAV navigation system with a passive video camera in order to cope with long-term GPS outages. The paper proposes a vision-based navigation architecture which combines inertial sensors, visual odometry, and registration of the on-board video to a geo-referenced aerial image. The vision-aided navigation system developed is capable of providing high-rate and drift-free state estimation for UAV autonomous navigation without the GPS system. Due to the use of image-to-map registration for absolute position calculation, drift-free position performance depends on the structural characteristics of the terrain. Experimental evaluation of the approach based on offline flight data is provided. In addition the architecture proposed has been implemented on-board an experimental UAV helicopter platform and tested during vision-based autonomous flights.

  5. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small, modular dropsonde launcher is being developed for Unmanned Aerial Vehicles (UAVs). Some critical measurement needs can only be satisfied by in-situ...

  6. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Science.gov (United States)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  7. Unmanned Aircraft Systems - Digital Elevation Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS National Unmanned Aircraft Systems (UAS) Project Office utilizes UAS technology for collecting remote sensing data on a local scale. Typical UAS projects...

  8. Tactical Unmanned Airlift: A Business Case Study

    Science.gov (United States)

    2010-06-01

    manned aircraft. The Honorable Randy Babbitt , FAA Administrator, in an interview with the author on January 7, 2010, listed his leading concerns on...UASs mingling with manned aircraft. Mr. Babbitt’s concerns with unmanned aircraft may be summed up in one word: safety ( Babbitt , 2010). In a...speech at the Aerospace Industry Association’s (AIA) Board of Governors Meeting on November 18, 2009, Mr. Babbitt asserted “unmanned aircraft systems

  9. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  10. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Science.gov (United States)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  11. UNMANNED AERIAL VEHICLES IMAGERY FOR MONITORING INTRUDER IN A (DENSE TERRAIN WAR ZONE

    Directory of Open Access Journals (Sweden)

    K. Suresh Kumar

    2010-09-01

    Full Text Available This paper presents the practicality of using embedding devices to autonomously fly a remote controlled helicopter which can be used in Defence. The goal of the paper is to maintain a stable hover using cheap embedding devices when used on an inexpensive small helicopter. We discuss various design decisions and challenges concerning hardware, software, and image processing algorithms. The problem of unmanned flight proved more difficult than expected, but the paper served well as a proof-of-concept that truly autonomous flight could be obtained using mounted Camera and embedded devices. Through the use of mounted sensors, the embedded device responds to the environment and corrects its flight in real time. Development of a suitable lightweight system in which a sensor is airborne for carrying out surveillance by GSM (Mobile communication. The sensor should remain airborne for a minimum of 2 minutes at a minimum height of 30 meter and above to do imaging of a proportionate area below.Recognizable real time video information should be transmitted to the ground receiver point suitably located in the observation area. Sensor should be able to detect man-sized objects in above-mentioned conditions. Proposed solution should take up design of configuration and identification of suitable options for sensor, data link, groundobservation & control points and other support system(s. System configuration details comprising of sensor, data link, observation, data processing mechanism and support system should form part of the design.

  12. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  13. Progress in helicopter infrared signature suppression

    Directory of Open Access Journals (Sweden)

    Zhang Jingzhou

    2014-04-01

    Full Text Available Due to their low-attitude and relatively low-speed fight profiles, helicopters are subjected to serious threats from radio, infrared (IR, visual, and aural detection and tracking. Among these threats, infrared detection and tracking are regarded as more crucial for the survivability of helicopters. In order to meet the requirements of infrared stealth, several different types of infrared suppressor (IRS for helicopters have been developed. This paper reviews contemporary developments in this discipline, with particular emphasis on infrared signature suppression, advances in mixer-ejectors and prediction for helicopters. In addition, several remaining challenges, such as advanced IRS, emissivity optimization technique, helicopter infrared characterization, etc., are proposed, as an initial guide and stimulation for future research. In the future, the comprehensive infrared suppression in the 3–5 μm and 8–14 μm bands will doubtfully become the emphasis of helicopter stealth. Multidisciplinary optimization of a complete infrared suppression system deserves further investigation.

  14. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    Science.gov (United States)

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  15. Helicopter response to atmospheric turbulence

    Science.gov (United States)

    Riaz, J.; Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.

    1992-01-01

    A new time-domain method for simulating cyclostationary turbulence as seen by a translating and rotating blade element has recently been developed for the case of one-dimensional spectral distribution. This paper extends the simulation method to the cases of two- and three-dimensional spectral distributions and presents validation results for the two-dimensional case. The statistics of an isolated rigid blade flapping response to turbulence are computed using a two-dimensional spectral representation of the von Karman turbulence model, and the results are compared with those obtained using the conventional space-fixed turbulence analysis. The new turbulence simulation method is used for predicting the Black Hawk helicopter response to atmospheric turbulence.

  16. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  17. Envelope protection systems for piloted and unmanned rotorcraft

    Science.gov (United States)

    Sahani, Nilesh A.

    Performance and agility of rotorcraft can be improved using envelope protection systems (or carefree maneuvering systems), which allow the aircraft to use the full flight envelope without risk of exceeding structural or controllability limits. Implementation of such a system can be divided into two necessary parts: "Limit Prediction" which detects the impending violation of the limit parameter, and "Limit Avoidance" where a preventive action is taken in the form of pilot cueing or autonomous limiting. Depending upon the underlying flight control system, implementation of the envelope limiting system was categorized into two different structures: "Inceptor Constraint Architecture" and "Command Limiting Architecture". The Inceptor Constraint Architecture is applicable to existing rotorcraft with conventional flight control system where control input proportionally affects control surfaces. The relationship between control input and limit parameter is complex which requires advanced algorithms for predicting impending limit violations. This research focuses on limits that exceed in transient response. A new algorithm was developed for predicting transient response using non-linear functions of measured aircraft states. The functions were generated off-line using simulation data from a non-real-time simulation, model to demonstrate the procedure for extracting them from flight test data. Modern rotorcraft flight control systems are designed to accurately track certain aircraft states like roll and pitch attitudes which are either specified as command inputs in unmanned rotorcraft or mapped to control stick in piloted aircrafts. In the Command Limiting Architecture applicable to these systems, performance constraints were generated on the command input corresponding to the envelope limit. To simulate this flight control system, an adaptive model inversion controller was applied to a non-linear, blade element simulation model of a helicopter. The controller generated

  18. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2011-01-01

    Full Text Available Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs since there is no human pilot that can react to any abnormal situation. Due to size and cost limitations, redundant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be installed in small UAVs. Therefore, other approaches like analytical redundancy should be used to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault detection and diagnosis system for small autonomous helicopters based on analytical redundancy. Fault detection is accomplished by evaluating any significant change in the behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The observer is obtained from input-output experimental data with the Observer/Kalman Filter Identification (OKID method. The OKID method is able to identify the system and an observer with properties similar to a Kalman filter, directly from input-output experimental data. Results are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither system matrices nor sensor and process noise covariance matrices. The system has been tested with real helicopter flight data, and the results compared with other methods.

  19. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2007-03-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The above-the-ground height sensing is based on a 3D vision system. We have designed a simple plane-fitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a two-stage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  20. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  1. US Helicopter Expands Service to Newark Liberty International Airport

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ US Helicopter Corporation ("US Helicopter") (OTC Bulletin Board: USHP) and Continental Airlines (NYSE: CAL)announced a partnership to provide eight-minute shuttle service between Manhattan and Newark Liberty International Airport beginning Dec.18, 2006.

  2. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  3. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles

    Science.gov (United States)

    Shim, Hyunchul

    The Berkeley Unmanned Aerial Vehicle (UAV) research aims to design, implement, and analyze a group of autonomous intelligent UAVs and UGVs (Unmanned Ground Vehicles). The goal of this dissertation is to provide a comprehensive procedural methodology to design, implement, and test rotorcraft-based unmanned aerial vehicles (RUAVs). We choose the rotorcraft as the base platform for our aerial agents because it offers ideal maneuverability for our target scenarios such as the pursuit-evasion game. Aided by many enabling technologies such as lightweight and powerful computers, high-accuracy navigation sensors and communication devices, it is now possible to construct RUAVs capable of precise navigation and intelligent behavior by the decentralized onboard control system. Building a fully functioning RUAV requires a deep understanding of aeronautics, control theory and computer science as well as a tremendous effort for implementation. These two aspects are often inseparable and therefore equally highlighted throughout this research. The problem of multiple vehicle coordination is approached through the notion of a hierarchical system. The idea behind the proposed architecture is to build a hierarchical multiple-layer system that gradually decomposes the abstract mission objectives into the physical quantities of control input. Each RUAV incorporated into this system performs the given tasks and reports the results through the hierarchical communication channel back to the higher-level coordinator. In our research, we provide a theoretical and practical approach to build a number of RUAVs based on commercially available navigation sensors, computer systems, and radio-controlled helicopters. For the controller design, the dynamic model of the helicopter is first built. The helicopter exhibits a very complicated multi-input multi-output, nonlinear, time-varying and coupled dynamics, which is exposed to severe exogenous disturbances. This poses considerable difficulties for

  4. 78 FR 54380 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-09-04

    ..., AS355F1, and AS355F2 helicopters with an autopilot installed; Model AS350B3 helicopters with an autopilot or modification 073252 installed; and Model AS355N and AS355NP helicopters with an autopilot or..., AS350D, AS355E, AS355F, AS355F1, AS355F2, AS355N, and AS355NP helicopters with either an autopilot...

  5. 77 FR 44434 - Airworthiness Directives; Various Restricted Category Helicopters

    Science.gov (United States)

    2012-07-30

    ... State University); Firefly Aviation Helicopter Services (previously Erickson Air-Crane Co.); California... Services (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick Helicopters, Inc... (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick Helicopters, Inc.; Global...

  6. 78 FR 47531 - Airworthiness Directives; Various Restricted Category Helicopters

    Science.gov (United States)

    2013-08-06

    ... Component Overhaul Schedule, Revision 11, dated April 30, 2010, of Bell Helicopter Textron, Inc. (BHTI), BHT... Schedule, Revision 11, dated April 30, 2010, of Bell Helicopter Textron, Inc., BHT-212- MM-1, Revision 13... Helicopter Textron, Inc., BHT-212-MM-1, Revision 13, dated September 16, 2010. (3) For BHTI service...

  7. 78 FR 18230 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-03-26

    ... sides of the helicopter. This AD was prompted by a crack and failure of a cabin vibration damper blade... 2007-SW-053-AD. (a) Applicability This AD applies to Model EC130 B4 helicopters with a cabin vibration..., install a vibration damper casing assembly on both sides of the helicopter by following paragraphs...

  8. Unmanned aerial survey of elephants.

    Directory of Open Access Journals (Sweden)

    Cédric Vermeulen

    Full Text Available The use of a UAS (Unmanned Aircraft System was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2 with a coefficient of variation (CV% of 36.10%. The main drawback of our UAS was its low autonomy (45 min. Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS. The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  9. Unmanned aerial survey of elephants.

    Science.gov (United States)

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  10. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grande

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  11. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  12. ARM Unmanned Aerial Systems Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS for the science missions ARM supports.

  13. Small unmanned aircraft ballistic impact speed

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones.......A study of how smaller unmanned aircraft will fall in case of failure. The aim is to determine the impact speed of a drone givens its general shape and aerodynamic behavior. This will include both CFD simulations and real world test of ballistic drops of smaller drones....

  14. Helicopter industry - early beginnings to now; an outlook on the helicopter market and its major players in the rotorcraft industry

    NARCIS (Netherlands)

    Spranger, L.

    2013-01-01

    The helicopter is probably the most flexible aircraft that we know today. Although its history dates back to around 1500, the first practical helicopter wasn’t manufactured until the 1940s, roughly three decades after the Wright brothers’ first powered human flight. Today, helicopters fulfil a wide

  15. Helicopter stability during aggressive maneuvers

    Science.gov (United States)

    Mohan, Ranjith

    The dissertation investigates helicopter trim and stability during level bank-angle and diving bank-angle turns. The level turn is moderate in that sufficient power is available to maintain level maneuver, and the diving turn is severe where the power deficit is overcome by the kinetic energy of descent. The investigation basically represents design conditions where the peak loading goes well beyond the steady thrust limit and the rotor experiences appreciable stall. The major objectives are: (1) to assess the sensitivity of the trim and stability predictions to the approximations in modeling stall, (2) to correlate the trim predictions with the UH-60A flight test data, and (3) to demonstrate the feasibility of routinely using the exact fast-Floquet periodic eigenvector method for mode identification in the stability analysis. The UH-60A modeling and analysis are performed using the comprehensive code RCAS (Army's Rotorcraft Comprehensive Analysis System). The trim and damping predictions are based on quasisteady stall, ONERA-Edlin (Equations Differentielles Lineaires) and Leishman-Beddoes dynamic stall models. From the correlation with the test data, the strengths and weaknesses of the trim predictions are presented.

  16. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  17. Neuro-optimal control of helicopter UAVs

    Science.gov (United States)

    Nodland, David; Ghosh, Arpita; Zargarzadeh, H.; Jagannathan, S.

    2011-05-01

    Helicopter UAVs can be extensively used for military missions as well as in civil operations, ranging from multirole combat support and search and rescue, to border surveillance and forest fire monitoring. Helicopter UAVs are underactuated nonlinear mechanical systems with correspondingly challenging controller designs. This paper presents an optimal controller design for the regulation and vertical tracking of an underactuated helicopter using an adaptive critic neural network framework. The online approximator-based controller learns the infinite-horizon continuous-time Hamilton-Jacobi-Bellman (HJB) equation and then calculates the corresponding optimal control input that minimizes the HJB equation forward-in-time. In the proposed technique, optimal regulation and vertical tracking is accomplished by a single neural network (NN) with a second NN necessary for the virtual controller. Both of the NNs are tuned online using novel weight update laws. Simulation results are included to demonstrate the effectiveness of the proposed control design in hovering applications.

  18. Workload and operational fatigue in helicopter pilots.

    Science.gov (United States)

    Rotondo, G

    1978-02-01

    In light of the modern aetiopathogenic views, a brief review was made concerning possible causes of operational fatigue to which flying personnel in general are exposed in the exercise of flying activity. The author then describes and analyzes the meaning and importance of the various stressing factors that constitute the physical and psychic workload to which the helicopter pilot is subjected in performing his professional activities. Also analyzed are the influences exercised, both separately and jointly, on the genesis of flight fatigue in helicopter pilots by stressing and fatiguing effects of vibrations, noise, and psycho-emotional and psycho-sensorial factors related to the variety and danger of utilization of this modern aircraft. Such an analytical investigation enables the author to conclude that one must admit that helicopter piloting involves a psycho-physical workload certainly no less than that required by more powerful and faster aircraft.

  19. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  20. CMU's autonomous helicopter explores new territory.

    Science.gov (United States)

    Charles, J.

    1998-10-01

    In the summer of 1998, several members of Carnegie Mellon University's (CMUs) Autonomous Helicopter Project team joined NASA on a multidisciplinary expedition to the Canadian Arctic's Haughton Crater. NASA was willing to travel to such a remote corner of the globe because of its similarity to an even more remote locale - Mars. Researchers are studying the 23-million-year-old meteorite impact crater in the hope of learning more about Mars's environment. While there, they also tested a number of technologies that will enable future exploration of Mars, including CMU's autonomous helicopter.

  1. Prehospital airway management on rescue helicopters in the United Kingdom.

    Science.gov (United States)

    Schmid, M; Mang, H; Ey, K; Schüttler, J

    2009-06-01

    Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.

  2. Middleware requirements for collaborative unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Jawhar, Imad

    2013-01-01

    With the recent advances in the aircraft technologies, software, sensors, and communications; unmanned aerial vehicles (UAVs) can offer a wide range of applications. Some of these applications may involve multiple UAVs that cooperate and collaborate to achieve a common goal. This kind...

  3. Exploring Security Vulnerabilities of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Rodday, Nils Miro; O. Schmidt, de Ricardo; Pras, Aiko

    2016-01-01

    We are currently observing a significant increase in the popularity of Unmanned Aerial Vehicles (UAVs), popularly also known by their generic term drones. This is not only the case for recreational UAVs, that one can acquire for a few hundred dollars, but also for more sophisticated ones, namely pro

  4. U.S. Unmanned Aerial Systems

    Science.gov (United States)

    2012-01-03

    49 Airships ...carry a human operator, use aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable...85 Department of Defense, FY2009–2034 Unmanned Systems Integrated Roadmap (2009), p. 91. 86 For more information on blimps ( airships

  5. Exploring Security Vulnerabilities of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Rodday, Nils Miro; de Oliveira Schmidt, R.; Pras, Aiko

    2016-01-01

    We are currently observing a significant increase in the popularity of Unmanned Aerial Vehicles (UAVs), popularly also known by their generic term drones. This is not only the case for recreational UAVs, that one can acquire for a few hundred dollars, but also for more sophisticated ones, namely pro

  6. Unmanned ground vehicles for integrated force protection

    Science.gov (United States)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  7. Fuzzy logic mode switching in helicopters

    Science.gov (United States)

    Sherman, Porter D.; Warburton, Frank W.

    1993-01-01

    The application of fuzzy logic to a wide range of control problems has been gaining momentum internationally, fueled by a concentrated Japanese effort. Advanced Research & Development within the Engineering Department at Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate how effective fuzzy logic control might be in relation to helicopter operations. The mode switching module in the advanced flight control portion of Sikorsky's motion based simulator was identified as a good candidate problem because it was simple to understand and contained imprecise (fuzzy) decision criteria. The purpose of the switching module is to aid a helicopter pilot in entering and leaving coordinated turns while in flight. The criteria that determine the transitions between modes are imprecise and depend on the varied ranges of three flight conditions (i.e., simulated parameters): Commanded Rate, Duration, and Roll Attitude. The parameters were given fuzzy ranges and used as input variables to a fuzzy rulebase containing the knowledge of mode switching. The fuzzy control program was integrated into a real time interactive helicopter simulation tool. Optimization of the heading hold and turn coordination was accomplished by interactive pilot simulation testing of the handling quality performance of the helicopter dynamic model. The fuzzy logic code satisfied all the requirements of this candidate control problem.

  8. 29 CFR 1910.183 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ... the system with the employees in advance of hoisting the load. This applies to both radio and hand... instruct employees, and shall ensure, that whenever approaching or leaving a helicopter which has its... employer shall ensure its use by employees receiving the load. Personal protective equipment shall...

  9. Neuroevolutionary reinforcement learning for generalized helicopter control

    NARCIS (Netherlands)

    Koppejan, R.; Whiteson, S.

    2009-01-01

    Helicopter hovering is an important challenge problem in the field of reinforcement learning. This paper considers several neuroevolutionary approaches to discovering robust controllers for a generalized version of the problem used in the 2008 Reinforcement Learning Competition, in which wind in the

  10. Multicenter observational prehospital resuscitation on helicopter study.

    Science.gov (United States)

    Holcomb, John B; Swartz, Michael D; DeSantis, Stacia M; Greene, Thomas J; Fox, Erin E; Stein, Deborah M; Bulger, Eileen M; Kerby, Jeffrey D; Goodman, Michael; Schreiber, Martin A; Zielinski, Martin D; O'Keeffe, Terence; Inaba, Kenji; Tomasek, Jeffrey S; Podbielski, Jeanette M; Appana, Savitri N; Yi, Misung; Wade, Charles E

    2017-07-01

    Earlier use of in-hospital plasma, platelets, and red blood cells (RBCs) has improved survival in trauma patients with severe hemorrhage. Retrospective studies have associated improved early survival with prehospital blood product transfusion (PHT). We hypothesized that PHT of plasma and/or RBCs would result in improved survival after injury in patients transported by helicopter. Adult trauma patients transported by helicopter from the scene to nine Level 1 trauma centers were prospectively observed from January to November 2015. Five helicopter systems had plasma and/or RBCs, whereas the other four helicopter systems used only crystalloid resuscitation. All patients meeting predetermined high-risk criteria were analyzed. Patients receiving PHT were compared with patients not receiving PHT. Our primary analysis compared mortality at 3 hours, 24 hours, and 30 days, using logistic regression to adjust for confounders and site heterogeneity to model patients who were matched on propensity scores. Twenty-five thousand one hundred eighteen trauma patients were admitted, 2,341 (9%) were transported by helicopter, of which 1,058 (45%) met the highest-risk criteria. Five hundred eighty-five of 1,058 patients were flown on helicopters carrying blood products. In the systems with blood available, prehospital median systolic blood pressure (125 vs 128) and Glasgow Coma Scale (7 vs 14) was significantly lower, whereas median Injury Severity Score was significantly higher (21 vs 14). Unadjusted mortality was significantly higher in the systems with blood products available, at 3 hours (8.4% vs 3.6%), 24 hours (12.6% vs 8.9%), and 30 days (19.3% vs 13.3%). Twenty-four percent of eligible patients received a PHT. A median of 1 unit of RBCs and plasma were transfused prehospital. Of patients receiving PHT, 24% received only plasma, 7% received only RBCs, and 69% received both. In the propensity score matching analysis (n = 109), PHT was not significantly associated with mortality

  11. IMPACT OF AN UNDERSLUNG LOAD ON A HELICOPTER CONTROLLABILITY

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article is aimed at finding the causes of controllability variations of a helicopter while transporting sling load.The maximum angular acceleration taken by the helicopter at similar controller displacement at different flight speeds was taken as a quantity characteristic of controllability efficiency to study the load impact on the helicopter cont- rollability.This article offers research results obtained with the use of the НеliСargо software. This software has proven to be a great tool for integrated research of the impact of an underslung load on the parameters of a helicopter controllability, and allows carrying out an analysis of the impact of an underslung load on the parameters of controllability under its dyna- mic behavior.The performed computational experiments have shown that the helicopter maximum angular acceleration with an underslung load significantly rises, as compared to a helicopter without cargo or a helicopter carrying the same load inside the cargo compartment. The data obtained during computational experiments corresponds to the results of analytical computations, and is in line with the literature based on the experience of helicopter flight operations.The cause of the variation in the helicopter controllability parameters during transportation of an underslung load has been found, that is - the underslung load considerably increases the main rotor thrust, due to sling load, as compared to a helicopter without cargo. When compared to a helicopter carrying a load inside the cargo compartment, this increased efficiency is mainly attributed to the fact that a helicopter with an underslung load has lower rotational inertia, since the load is not inside the cargo compartment, but outside.The obtained results can be used to improve flight manuals and flight personnel training publications, which could play a significant part in ensuring flight safety and security, and increasing the operational efficiency of

  12. Vision enhanced navigation for unmanned systems

    Science.gov (United States)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  13. International Symposium on Unmanned Aerial Vehicles

    CERN Document Server

    Oh, Paul; Piegl, Les

    2009-01-01

    Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as ...

  14. Precision wildlife monitoring using unmanned aerial vehicles

    OpenAIRE

    Jarrod C. Hodgson; Baylis, Shane M.; Rowan Mott; Ashley Herrod; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count pre...

  15. GPS Based Autonomous Flight Control System for an Unmanned Airship

    Directory of Open Access Journals (Sweden)

    Vishnu G Nair,

    2014-01-01

    Full Text Available An unmanned airship, also known as a Unmanned aircraft System (UAS or a remotely piloted aircraft is a machine which functions either by the remote control of a navigator or pilot. The unmanned airship uses the autonomous flight, navigation and guidance based on the telemetry command of ground station. The Autonomous Flight Control System (AFCS [1] plays a key role in achieving the given requirements and missions. This paper introduces the overall design architecture of the hardware and software of the flight control systems in a 50m long unmanned airship

  16. Using Multiple Unmanned Systems for a Site Security Task

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Curtis W. Nielsen; Mark D. McKay; Derek C. Wadsworth; Ryan C. Hruska; John A. Koudelka

    2009-04-01

    Unmanned systems are often used to augment the ability of humans to perform challenging tasks. While the value of individual unmanned vehicles have been proven for a variety of tasks, it is less understood how multiple unmanned systems should be used together to accomplish larger missions such as site security. The purpose of this paper is to discuss efforts by researchers at the Idaho National Laboratory (INL) to explore the utility and practicality of operating multiple unmanned systems for a site security mission. This paper reviews the technology developed for a multi-agent mission and summarizes the lessons-learned from a technology demonstration.

  17. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    dampen swing. Simulations and flight tests show the effectiveness of the input shaping applied to a small scale autonomous helicopter slung load system. Both simulations and flight verifications shows significant slung load swing reduction using the proposed trajectory shaping over over flight without......This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes...

  18. 78 FR 16200 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-03-14

    ..., AS355F1, AS355F2, AS355N, and AS355NP helicopters with either an autopilot or certain modifications..., AS350B2, AS350C, AS350D, AS350D1, AS355E, AS355F, AS355F1, and AS355F2 helicopters with an autopilot installed; (2) Model AS350B3 helicopters with an autopilot or modification 073252 installed; and (3)...

  19. High-performance computers for unmanned vehicles

    Science.gov (United States)

    Toms, David; Ettinger, Gil J.

    2005-10-01

    The present trend of increasing functionality onboard unmanned vehicles is made possible by rapid advances in high-performance computers (HPCs). An HPC is characterized by very high computational capability (100s of billions of operations per second) contained in lightweight, rugged, low-power packages. HPCs are critical to the processing of sensor data onboard these vehicles. Operations such as radar image formation, target tracking, target recognition, signal intelligence signature collection and analysis, electro-optic image compression, and onboard data exploitation are provided by these machines. The net effect of an HPC is to minimize communication bandwidth requirements and maximize mission flexibility. This paper focuses on new and emerging technologies in the HPC market. Emerging capabilities include new lightweight, low-power computing systems: multi-mission computing (using a common computer to support several sensors); onboard data exploitation; and large image data storage capacities. These new capabilities will enable an entirely new generation of deployed capabilities at reduced cost. New software tools and architectures available to unmanned vehicle developers will enable them to rapidly develop optimum solutions with maximum productivity and return on investment. These new technologies effectively open the trade space for unmanned vehicle designers.

  20. Pilot ejection, parachute, and helicopter crash injuries.

    Science.gov (United States)

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. 2014.

  1. A cable detection lidar system for helicopters

    Science.gov (United States)

    Grossmann, Benoist; Capbern, Alain; Defour, Martin; Fertala, Remi

    1992-01-01

    Helicopters in low-level flight are endangered by power lines or telephone wires, especially when flying at night and under poor visibility conditions. In order to prevent 'wire strike', Thomson has developed a lidar system consisting of a pulsed diode laser emitting in the near infrared region (lambda = 0.9 microns). The HOWARD (Helicopter Obstacle Warning and Detection) System utilizes a high repetition rate diode laser (PRE = 20 KHz) along with counter-rotating prisms for laser beam deflection with a total field of view of 30 degrees. This system was successfully field tested in 1991. HOWARD can detect one inch wires at ranges up to 200 meters. We are presently in the process of developing a flyable compact lidar system capable of detection ranges in the order of 400 meters.

  2. Helicopter crew/passenger vibration sensitivity -

    Science.gov (United States)

    Gabel, R.; Reed, D. A.

    1972-01-01

    Helicopter crew and passenger vibration sensitivity are presented. Pilot subjective ratings are established for discrete frequencies and the impact of combinations of harmonic frequencies is examined. A passenger long term comfort level and a short term limit are defined for discrete frequencies and compared with pilot ratings. The results show reasonable agreement between pilot and passenger. Subjective comfort levels obtained for mixed frequency environments clearly demonstrate the need for a multi-frequency criterion.

  3. Detection And Avoidance Of Obstacles By Helicopters

    Science.gov (United States)

    Cheng, Victor H. L.; Sridhar, Banavar

    1992-01-01

    Report discusses problems relevant to control subsystems enabling helicopters on nap-of-the-Earth flight paths to detect and avoid obstacles automatically. Indicates similarities between this and obstacle-avoidance problem of industrial mobile robots. Two approaches extend two-dimensional obstacle-avoidance concept to three dimensions. First involves direct search of three-dimensional range-map data for indications of openings between obstacles. Second involves compression of data into two-dimensional map for path search.

  4. Stabilization of Externally Slung Helicopter Loads

    Science.gov (United States)

    1974-08-01

    maximum slir^ Loao weighting and " vertical bounce ." The last question provides information on multi-point suspension of external 1oads. PHASE...an allowable cargo load, and vertical bounce . 110 Maximum Sling Load Weight The maximum sling load lifted by a CH-47B helicopter under...changes were made in their flying technique except for very smooth flight control inputs when lifting an ACL. Vertical Bounce Fifteen of the forty Army

  5. Subjective evaluation of helicopter blade slap noise

    Science.gov (United States)

    Galloway, W. J.

    1978-01-01

    Several methods for adjusting EPNL to account for its underestimate of judged annoyance are applied to eight helicopter flyover noise signatures having various degrees of blade slap. A proposal for an impulsive noise correlation procedure based on a digital analysis of the flyover signal is investigated. When all data are combined, the proposal is little better than simply adding an arbitrary fixed adjustment of 3 decibels to EPNL.

  6. Analysis of muscle fatigue in helicopter pilots.

    Science.gov (United States)

    Balasubramanian, Venkatesh; Dutt, Ashwani; Rai, Shobhit

    2011-11-01

    Helicopter pilots espouse ergonomically unfavourable postures and endure vibration which result in low back pain. The objective of this study was to investigate the effects of a helicopter flight on pilots back and shoulder muscles using surface Electromyography (sEMG) analysis. This study also correlates low back pain symptoms from Rehabilitation Bioengineering Group Pain Scale (RBGPS) questionnaire with muscle fatigue rates obtained. RBGPS was administered on 20 Coast Guard helicopter pilots. sEMG was acquired before and after flight from erector spinae and trapezius muscles in 8 of these 20 pilots. Statistical analysis of time and frequency domain parameters indicated significant fatigue in right trapezius muscle due to flying. Muscle fatigue correlated with average duration of flight (r² = 0.913), total service as pilot (r² = 0.825), pain (r² = 0.463) and total flying hours (r² = 0.507). However, muscle fatigue weakly correlated with Body Mass Index (BMI) (r² = 0.000144) and age (r² = 0.033).

  7. The unmanned aerial vehicle; a small history of violence

    NARCIS (Netherlands)

    De Koning, R.V.

    2013-01-01

    At Aerospace Engineering, one can hardly miss the Unmanned Aerial Vehicle (UAV). Many commercial purposes have been investigated in recent years. Also, unmanned reconnaissance and combat aircraft attract more interest; in hazardous regions, small aircraft can be deployed to do risky, but necessary j

  8. Integrating the Unmanned Aircraft System into the National Airspace System

    Science.gov (United States)

    2011-06-18

    and the ground control system. The ground control system is comprised of several integrated components to include: avionics , fuel, navigation...accessed January 15, 2011). U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035: Eyes of the Army. Fort Rucker, Ala .: U.S. Army Unmanned Aircraft

  9. EyeRobot TBI unmanned TelePresence reconnaissance mission

    NARCIS (Netherlands)

    Breejen, E. den; Jansen, C.

    2008-01-01

    There is an increasing use of unmanned systems in military operations. Effective use of unmanned ground vehicles (UGVs) for counter IED and reconnaissance tasks under battlefield conditions has been reported. For operations in urban environment, good real time situational awareness for the operator

  10. Unmanned Systems Integrated Roadmap, FY2013-2038

    Science.gov (United States)

    2014-01-01

    UGS must meet. Those environments could include being thrown or launched, climbing hills or stairs , and hopping and landing upright. The technologies...Persistent Resilience ......................................................................................................... 61 4.5.1 Size, Weight ...unmanned systems are inherently more persistent based on significantly better fuel/ weight ratios, unmanned systems’ design schema can be better optimized

  11. Manned-Unmanned Teaming of Aircraft - Literature Search

    Science.gov (United States)

    2013-12-01

    restricted to 2003 2013. Literature searches were conducted in eight databases Aerospace and High Technology, Scopus , NTIS, Inspec, Compendex, DTIC, Jane’si...Buddy Unmanned wingman Manned-Unmanned Teaming Dec 2013 Page 35 of 37 7.1.2 Sources Online databases • Scopus • Aerospace and High Technology

  12. Applicability of Unmanned Aerial Systems to Homeland Defense Missions

    Science.gov (United States)

    2006-12-01

    criticism after bungled and untimely responses to Hurricane Hugo in 1988 and the Loma Prieta earthquake in 1989. However, a 1991 GAO study...1 A. EFFECTIVE USE OF UNMANNED AERIAL SYSTEMS ........................1 B. HISTORY OF UNMANNED AERIAL SYSTEMS AND...assistance was invaluable. xiv THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. EFFECTIVE USE OF

  13. EyeRobot TBI unmanned TelePresence reconnaissance mission

    NARCIS (Netherlands)

    Breejen, E. den; Jansen, C.

    2008-01-01

    There is an increasing use of unmanned systems in military operations. Effective use of unmanned ground vehicles (UGVs) for counter IED and reconnaissance tasks under battlefield conditions has been reported. For operations in urban environment, good real time situational awareness for the operator

  14. Students design unmanned drone to take action against terrorist activity

    OpenAIRE

    Nystrom, Lynn A.

    2010-01-01

    In less than two years, an unmanned aircraft search and rescue competition will be happening in a remote area in Australia. Kevin Kochersberger, director of the Unmanned System Lab at Virginia Tech, says he hopes to take a student design team and believes they have an excellent shot at winning the $50,000 prize money.

  15. The unmanned aerial vehicle; a small history of violence

    NARCIS (Netherlands)

    De Koning, R.V.

    2013-01-01

    At Aerospace Engineering, one can hardly miss the Unmanned Aerial Vehicle (UAV). Many commercial purposes have been investigated in recent years. Also, unmanned reconnaissance and combat aircraft attract more interest; in hazardous regions, small aircraft can be deployed to do risky, but necessary

  16. Optimal Deployment of Unmanned Aerial Vehicles for Border Surveillance

    Science.gov (United States)

    2014-06-01

    and intercept intruders that are trying to trespass a border. These intruders can include terrorists, drug traffickers, smugglers, illegal immigrants ...intruders can include terrorists, drug traffickers, smugglers, illegal immigrants , and others who represent a threat to national interests. Unmanned...traffickers, smugglers, illegal immigrants , and others who represent a threat to national interests. Unmanned aerial vehicles (UAVs) allow a modernization

  17. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  18. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    Science.gov (United States)

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-06-16

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone.

  19. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    Science.gov (United States)

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  20. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Antonio Moccia

    2012-01-01

    Full Text Available This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  1. Real time corner detection for miniaturized electro-optical sensors onboard small unmanned aerial systems.

    Science.gov (United States)

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d'Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  2. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs

    Directory of Open Access Journals (Sweden)

    Henry Cruz

    2016-06-01

    Full Text Available This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI, developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs, with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone.

  3. 78 FR 44043 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-07-23

    ... unsafe condition is likely to exist or develop on other products of the same type design. Related Service....3 Flight Envelope, Item 2 Temperature Limits, of the helicopter's Rotorcraft Flight Manual (RFM... Operating Limitations Section of the helicopter's Rotorcraft Flight Manual (RFM) by making pen and...

  4. Power harvesting using piezoelectric materials: applications in helicopter rotors

    NARCIS (Netherlands)

    Jong, de P.H.

    2013-01-01

    The blades of helicopters are heavily loaded and are critical components. Failure of any one blade will lead to loss of the aircraft. Currently, the technical lifespan of helicopter blades is calculated using a worst-case operation scenario. The consequence is that a blade that may be suitable for,

  5. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  6. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4 st...

  7. Helicopter Emergency Medical Services: effects, costs and benefits

    NARCIS (Netherlands)

    A.N. Ringburg (Akkie)

    2009-01-01

    textabstractAdvanced prehospital medical care with air transport was introduced in the Netherlands in May 1995. The fi rst helicopter Mobile Medical Team, also called Helicopter Emergency Medical Service (HEMS) was a joint venture initiative of the VU Medical Center in Amsterdam and the Algemene Ned

  8. 77 FR 54796 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-09-06

    ... 26, 2010, which specifies installing two siliconed glass wool sleeves over both forward main rotor... the continued airworthiness of these helicopters. ] Costs of Compliance We estimate that this AD will.... Required parts cost $212, for a total cost of $297 for each helicopter. Based upon these costs, we...

  9. Model Tests on the Economy and Effectiveness of Helicopter Propellers

    Science.gov (United States)

    Munk, Max M

    1925-01-01

    The average velocity of helicopter blades relative to the air is greater than that of airplane wings. The helicopter may turn out to be more economical than the airplane wing for extreme velocities of horizontal flight, the airplane then requiring a very great speed range.

  10. 78 FR 59298 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-09-26

    ... pilot of a Eurocopter Model AS350 helicopter felt slight vibrations in the pedal unit in flight. A few minutes later, the vibration level increased and the pilot carried out a precautionary autorotation... neutral position. If the helicopter is fitted with a T/R load compensator, discharge the accumulator...

  11. 77 FR 58925 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-09-25

    ... during an inspection of a Model AS- 365 helicopter equipped with a 10-blade TRH. This AD requires... likely to exist or develop on other helicopters of these same type designs. Related Service Information... of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures...

  12. Sleep and Alertness in North Sea Helicopter Operations

    NARCIS (Netherlands)

    Simons, M.; Wilschut, E.S.; Valk, P.J.L.

    2011-01-01

    Introduction : Dutch North Sea helicopter operations are characterized by multiple sector flights to offshore platforms under difficult environmental conditions. In the context of a Ministry of Transport program to improve safety levels of helicopter operations, we assessed effects of pre-duty

  13. Transitioning Unmanned Technologies for Earth Science Applications

    Science.gov (United States)

    Wardell, L. J.; Douglas, J.

    2008-12-01

    Development of small unmanned aerial systems (UAS) has progressed dramatically in recent years along with miniaturization of sensor technology. This confluence of development paths has resulted in greater capability in smaller, less expensive platforms allowing research to be performed where manned airborne platforms are impractical or dangerous. Recent applications include small UAS for studies involving hurricanes, volcanic activity, sea ice changes, glacier melt, biological monitoring of land and sea species, wildfire monitoring, and others. However, the majority of UAS employed in these investigations were originally developed for non-civilian applications and many of the required interfaces are locked behind proprietary specifications, requiring expensive customization by the manufacturer to transform a military UAS into one suitable for civilian work. A small UAS for scientific research should be standards-based, low-cost, user friendly, field serviceable, and be designed to accept a range of payloads. The AV8R UAS is one example of an unmanned system that has been developed for specific application to earth observation missions. This system is designed to be operated by the user with difficult environmental conditions and field logistics in mind. Numerous features and innovations that advance this technology as a research tool as well as its planned science missions will be presented. Most importantly, all interfaces to the system required for successful design and integration of various payloads will be openly available. The environment of open, standards based development allow the small technologies companies that serve as the backbone for much of the technology development to participate in the rapid development of industry capabilities. This is particularly true with UAS technologies. Programs within the USA such as the STTR foster collaborations with small businesses and university researchers. Other innovations related to autonomous unmanned systems

  14. Networked Unmanned Aerial Vehicle Teams (NUAVT)

    Science.gov (United States)

    Ryan, Jack; Hanson, Curt; Jacobson, Steve

    2006-01-01

    A partnership between the NASA Ames Research Center and the NASA Dryden Flight Research Center (DFRC) explored the ability of small unmanned aircraft to support forest fire fighting using teaming behavior. The Networked UAV Teams project flight tested mission planning algorithms for multi-UAV cooperative transit, area search, and waypoint time-of-arrival that might someday allow the early detection of developing forest fires and support the gathering of images and atmospheric samples to help improve predictions of the future behavior of established fires.

  15. Adaptive control of an unmanned aerial vehicle

    Science.gov (United States)

    Nguen, V. F.; Putov, A. V.; Nguen, T. T.

    2017-01-01

    The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.

  16. Delivery of Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  17. Autonomous unmanned air vehicles (UAV) techniques

    Science.gov (United States)

    Hsu, Ming-Kai; Lee, Ting N.

    2007-04-01

    The UAVs (Unmanned Air Vehicles) have great potentials in different civilian applications, such as oil pipeline surveillance, precision farming, forest fire fighting (yearly), search and rescue, boarder patrol, etc. The related industries of UAVs can create billions of dollars for each year. However, the road block of adopting UAVs is that it is against FAA (Federal Aviation Administration) and ATC (Air Traffic Control) regulations. In this paper, we have reviewed the latest technologies and researches on UAV navigation and obstacle avoidance. We have purposed a system design of Jittering Mosaic Image Processing (JMIP) with stereo vision and optical flow to fulfill the functionalities of autonomous UAVs.

  18. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully.

  19. DESIGN OPTIMISATION OF AN UNMANNED UNDERWATER VEHICLE

    Directory of Open Access Journals (Sweden)

    FIRDAUS ABDULLAH

    2007-08-01

    Full Text Available The results of fluid flow simulation around an unmanned underwater vehicle (UUV are presented in this paper. The UUV represents a small submarine for underwater search and rescue operation, which suits the local river conditions. The flow simulation was performed with a commercially available computational fluid dynamics package, Star-CD. The effects of the UUV geometry on the velocity and pressure distributions on the UUV surface were discussed for Re=500,000 and 3,000,000. The discussion led to an improved design of the UUV with a smoother velocity profile around the UUV body.

  20. Developments and challenges for autonomous unmanned vehicles

    CERN Document Server

    Finn, Anthony

    2010-01-01

    It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and

  1. Intelligent Unmanned Explorer for Deep Space Exploration

    CERN Document Server

    Kubota, T

    2008-01-01

    asteroids or comets have received remarkable attention in the world. In small body explorations, especially, detailed in-situ surface exploration by tiny rover is one of effective and fruitful means and is expected to make strong contributions towards scientific studies. JAXA ISAS is promoting MUSES C mission, which is the worlds first sample and return attempt to or from the near earth asteroid. Hayabusa spacecraft in MUSES C mission took the tiny rover, which was expected to perform the in-situ surface exploration by hopping. This paper describes the system design, mobility and intelligence of the developed unmanned explorer. This paper also presents the ground experimental results and the flight results.

  2. Unmanned Surface Combatant Considerations for Concept Exploration

    Science.gov (United States)

    2011-06-01

    the Journal of Field Robotics, August 2010. However, adapting this technology will have to take into consideration the larger size of the USC...at 55 ° C ~ 50 kW at 90 ° C 1 Energy efficiency ~ 82% Fire Protection 50 m 3 room size up to several 1,000 m 3 Energy Natural gas / biogas ...R.W.G. and Freire, P.E.M. “Unmanned cargo ships: a 2020 vision?” Journal of Marine Engineering and Technology: Part B: Proceedings of the IMarEST

  3. A Simplified Mobile Ad Hoc Network Structure for Helicopter Communication

    Directory of Open Access Journals (Sweden)

    Abdeldime Mohamed Salih Abdelgader

    2016-01-01

    Full Text Available There are a number of volunteer and statutory organizations who are capable of conducting an emergency response using helicopters. Rescue operations require a rapidly deployable high bandwidth network to coordinate necessary relief efforts between rescue teams on the ground and helicopters. Due to massive destruction and loss of services, ordinary communication infrastructures may collapse in these situations. Consequently, information exchange becomes one of the major challenges in these circumstances. Helicopters can be also employed for providing many services in rugged environments, military applications, and aerial photography. Ad hoc network can be used to provide alternative communication link between a set of helicopters, particularly in case of significant amount of data required to be shared. This paper addresses the ability of using ad hoc networks to support the communication between a set of helicopters. A simplified network structure model is presented and extensively discussed. Furthermore, a streamlined routing algorithm is proposed. Comprehensive simulations are conducted to evaluate the proposed routing algorithm.

  4. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  5. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  6. Effectiveness of helicopter versus ground ambulance services for interfacility transport.

    Science.gov (United States)

    Arfken, C L; Shapiro, M J; Bessey, P Q; Littenberg, B

    1998-10-01

    Helicopters provide rapid interfacility transport, but the effect on patients is largely unknown. Patients requested to be transported between facilities by helicopter were followed prospectively to determine survival, disability, health status, and health care utilization. A total of 1,234 patients were transported by the primary aeromedical company; 153 patients were transported by ground and 25 patients were transported by other aeromedical services because of weather or unavailability of aircraft. There were no differences at 30 days for survivors in disability, health status, or health care utilization. Nineteen percent of helicopter-transported patients died compared with 15% of those transported by ground (p=0.21). The patients transported by helicopter did not have improved outcomes compared with patients transported by ground. These data argue against a large advantage of helicopters for interfacility transport. A randomized trial is needed to address these issues conclusively.

  7. 75 FR 5681 - Airworthiness Directives; Bell Helicopter Textron, Inc. Model 205B and 212 Helicopters

    Science.gov (United States)

    2010-02-04

    ..., Rotorcraft Directorate, Rotorcraft Certification Office, 2601 Meacham Blvd., Fort Worth, Texas 76137... condition is likely to exist or develop on other helicopters of the same type design. Therefore, this AD is... 39.19. Contact the Manager, Rotorcraft Certification Office, ATTN: Michael Kohner, Aviation...

  8. 77 FR 64439 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model Helicopters

    Science.gov (United States)

    2012-10-22

    ... warning system. For helicopters with a single or dual Automatic Flight Control System (AFCS) with a Flight... attitude direction indicators airspeed indicators; Leak testing the pilot pitot static system; and Power-up... with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices...

  9. 78 FR 56148 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Science.gov (United States)

    2013-09-12

    ...-2009-32, dated July 24, 2009, issued by Transport Canada Civil Aviation (TCCA), which is the aviation authority for Canada, to correct an unsafe condition for the specified Bell model ] helicopters. TCCA... operation in the United States. Pursuant to our bilateral agreement with Canada, TCCA has notified us of...

  10. 77 FR 5423 - Airworthiness Directives; Bell Helicopter Textron Canada, Limited (Bell) Helicopters

    Science.gov (United States)

    2012-02-03

    ... turbine outlet temperature (TOT) indicator over-temperature warning light, when illuminated, created glare... while using night vision goggles and to prevent subsequent loss of control of the helicopter. DATES: We.... Department of Transportation, Docket Operations, M-30, West Building Ground Floor, Room W12-140, 1200 New...

  11. 77 FR 36389 - Airworthiness Directives; Bell Helicopter Textron Canada, Limited, Helicopters

    Science.gov (United States)

    2012-06-19

    ... over-temperature warning light, when illuminated, created glare and reflections that could degrade the... prevent subsequent loss of control of the helicopter. DATES: This AD is effective July 24, 2012. ADDRESSES..., Southwest Region, 2601 Meacham Blvd., Room 663, Fort Worth, Texas 76137. Examining the AD Docket: You may...

  12. 75 FR 62639 - Air Ambulance and Commercial Helicopter Operations, Part 91 Helicopter Operations, and Part 135...

    Science.gov (United States)

    2010-10-12

    ...--Nautical mile NTSB--National Transportation Safety Board NVG--Night vision goggles NVIS--Night-vision... ambulances have varying situational- awareness technology (such as night vision goggles, HTAWS, radio... during night conditions as four common factors in helicopter air ambulance accidents. A review...

  13. 76 FR 2607 - Airworthiness Directives; MD Helicopters, Inc. (MDHI) Model MD900 Helicopters

    Science.gov (United States)

    2011-01-14

    ... System (VSCS) switches and turning off the autopilot (AP/SAS) switch; pulling certain AP/SAS circuit... flight to VFR, prohibiting use of the autopilot, and making changes to the RFM. For all helicopters, the...) Turn ON both VSCS switches. (b) If installed, de-energize the autopilot (AP/SAS) as follows:...

  14. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir

    2016-01-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB...

  15. THE DIRECT GEOREFERENCING APPLICATION AND PERFORMANCE ANALYSIS OF UAV HELICOPTER IN GCP-FREE AREA

    Directory of Open Access Journals (Sweden)

    C. F. Lo

    2015-08-01

    Full Text Available There are many disasters happened because the weather changes extremely in these years. To facilitate applications such as environment detection or monitoring becomes very important. Therefore, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG based Unmanned Aerial Vehicle (UAV helicopter photogrammetric platform where an Inertial Navigation System (INS/Global Navigation Satellite System (GNSS integrated Positioning and Orientation System (POS system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP. The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 meter with 100 meter flight height. The positioning accuracy in the z axis is less than 10 meter. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP generation, and feature point measurements, is less than 1 hour.

  16. DISCUSSION AND PRACTICAL ASPECTS ON CONTROL ALLOCATION FOR A MULTI-ROTOR HELICOPTER

    Directory of Open Access Journals (Sweden)

    G. J. J. Ducard

    2012-09-01

    Full Text Available This paper presents practical methods to improve the flight performance of an unmanned multi-rotor helicopter by using an efficient control allocation strategy. The flying vehicle considered is an hexacopter. It is indeed particularly suited for long missions and for carrying a significant payload such as all the sensors needed in the context of cartography, photogrammetry, inspection, surveillance and transportation. Moreover, a stable flight is often required for precise data recording during the mission. Therefore, a high performance flight control system is required to operate the UAV. However, the flight performance of a multi-rotor vehicle is tightly dependent on the control allocation strategy that is used to map the virtual control vector v = [T, L, M, N ]T composed of the thrust and the torques in roll, pitch and yaw, respectively, to the propellers' speed. This paper shows that a control allocation strategy based on the classical approach of pseudo-inverse matrix only exploits a limited range of the vehicle capabilities to generate thrust and moments. Thus, in this paper, a novel approach is presented, which is based on a weighted pseudo-inverse matrix method capable of exploiting a much larger domain in v. The proposed control allocation algorithm is designed with explicit laws for fast operation and low computational load, suitable for a small microcontroller with limited floating-point operation capability.

  17. Sensing Hazards with Operational Unmanned Technology

    Science.gov (United States)

    Hood, R. E.

    2016-12-01

    The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.

  18. Dual field combination for unmanned video surveillance

    Science.gov (United States)

    Sarrabezolles, Louise; Manzanera, Antoine; Hueber, Nicolas; Perrot, Maxime; Raymond, Pierre

    2017-05-01

    Unmanned systems used for threat detection and identification are still not efficient enough for monitoring autonomously the battlefield. The limitation on size and energy makes those systems unable to use most state- of-the-art computer vision algorithms for recognition. The bio-inspired approach based on the humans peripheral and foveal visions has been reported as a way to combine recognition performance and computational efficiency. As a low resolution camera observes a large zone and detects significant changes, a second camera focuses on each event and provides a high resolution image of it. While such biomimetic existing approaches usually separate the two vision modes according to their functionality (e.g. detection, recognition) and to their basic primitives (i.e. features, algorithms), our approach uses common structures and features for both peripheral and foveal cameras, thereby decreasing the computational load with respect to the previous approaches. The proposed approach is demonstrated using simulated data. The outcome proves particularly attractive for real time embedded systems, as the primitives (features and classifier) have already proven good performances in low power embedded systems. This first result reveals the high potential of dual views fusion technique in the context of long duration unmanned video surveillance systems. It also encourages us to go further into miming the mechanisms of the human eye. In particular, it is expected that adding a retro-action of the fovea towards the peripheral vision will further enhance the quality and efficiency of the detection process.

  19. Unmanned vehicle mobility: Limits of autonomous navigation

    Science.gov (United States)

    McCormac, A. W.; Hanna, D. M.; McFee, J.

    Considerable research is being conducted on the development of unmanned vehicles for military and civilian applications, particularly for hostile environments. It is desirable to produce a vehicle which can select its own route, not requiring remote navigation, but then it would be required to sense its surroundings. Although imaging systems and modern computers make this possible, the extreme data processing demands usually make it impractical. It is suggested that an inverse relationship exists between vehicle mobility and the complexity of the autonomous navigation system required for an unmanned vehicle. An overview of vehicle navigation is presented which shows the degree to which navigation is affected by increasing inherent mobility. If the inherent mobility of a vehicle is greatly enhanced, the scene image processing requirements and navigational computations are greatly simplified. This means the vehicle path selection and speed and steering adjustments may be made more quickly, resulting in higher vehicle speeds whenever possible. Combined with reduced deviation from the intended path, this would greatly increase the speed of the vehicle from one given point to another, suggesting that high speed autonomous navigation may be feasible.

  20. Sea Ice Mapping using Unmanned Aerial Systems

    Science.gov (United States)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  1. Mini Rukma Vimana Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    T. V. Vineeta

    2014-10-01

    Full Text Available Taking advantage of ancient Indian Knowledge of Vimanas, the Mini Rukma Vimana Unmanned Air Vehicle designs make a several advantages for many purposes as mentioned. The MRV UAV concept is proposed mainly to create VTOL, the lift fans configuration similar to Rukma vimana, hence the name Mini Rukma vimana Unmanned Air Vehicle. Lift fans are the main part of the MRV UAV. They can be used to go through mountainous regions. And fans are preferred other than wings for Vertical takeoff. The lift fans configuration is similar to Rukma vimana Mentioned in Vimanika shasthra. Based on Analysis for VTOL, UAVs are having lift fans embedded in Wings. But MRV UAV has simpler configuration, enabling the UAV to lift off with fans provided at the top of the UAV directly connected to the base of UAV with the help of Ducts. The Direction control can be achieved by operating the maneuvering fans acting as propellers, the UAV can move 360 degrees in at mid air in single position. Using the MRV UAV, the missions become much more simpler and easier to be carried out.

  2. Is helicopter evacuation effective in rural trauma transport?

    Science.gov (United States)

    Rose, Melanie K; Cummings, G R; Rodning, Charles B; Brevard, Sid B; Gonzalez, Richard P

    2012-07-01

    Helicopter transport for trauma remains controversial because its appropriate utilization and efficacy with regard to improved survival is unproven. The purpose of this study was to assess rural trauma helicopter transport utilization and effect on patient survival. A retrospective chart review over a 2-year period (2007-2008) was performed of all rural helicopter and ground ambulance trauma patient transports to an urban Level I trauma center. Data was collected with regard to patient mortality and Injury Severity Score (ISS). Miles to the Level I trauma center were calculated from the point where helicopter or ground ambulance transport services initiated contact with the patient to the Level I trauma center. During the 2-year period, 1443 rural trauma patients were transported by ground ambulance and 1028 rural trauma patients were transported by helicopter. Of the patients with ISS of 0 to 10, 471 patients were transported by helicopter and 1039 transported by ground. There were 465 (99%) survivors with ISS 0 to 10 transported by helicopter with an average transport distance of 34.6 miles versus 1034 (99.5%) survivors with ISS 0 to 10 who were transported by ground an average of 41.0 miles. Four hundred and twenty-one patients with ISS 11 to 30 were transported by helicopter an average of 33.3 miles with 367 (87%) survivors versus a 95 per cent survival in 352 patients with ISS 11 to 30 who were transported by ground an average of 39.9 miles. One hundred and thirty-six patients with ISS > 30 were transported by helicopter an average of 32.8 miles with 78 (57%) survivors versus a 69 per cent survival in 52 patients with ISS > 30 who were transported by ground an average of 33.0 miles. Helicopter transport does not seem to improve survival in severely injured (ISS > 30) patients. Helicopter transport does not improve survival and is associated with shorter travel distances in less severely injured (ISS < 10) patients in rural areas. This data questions effective

  3. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  4. Flight Operations Noise Tests of Eight Helicopters

    Science.gov (United States)

    1985-08-01

    DF -EPENr FLIL3HT ALTITUDES AT VARk10US FIrlE. CI OFTHE L I HE FILOT B LLOON WIND t4H1A, 1 4 .EN- F ER1OLIC"’L~ L)URIN& EACH TESI DtAY, INDLUDES...8217, HELICOPTER: AGUSTi i(,t TEST DATE: --󈧏/84 OFERAT ON : LEVEL FLYOVER (1000 FT. D 145 LY.S (LEFT SIDE) ,RI3HT cIDE ’ EVENT OK’ 1000 50’ 5C0’ 1000’ 2000

  5. General equilibrium characteristics of a dual-lift helicopter system

    Science.gov (United States)

    Cicolani, L. S.; Kanning, G.

    1986-01-01

    The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

  6. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  7. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available are governed by the Civil Aviation Authority (CAA) under the terms of an interim policy1. This policy?s paragraph 4.3 describes the process for obtaining a Certificate of Waiver or Authorisation. There is also provision for the issuance of an airworthiness... experience as Designated Flight Examiner for the South African Civil Aviation Authority, and on his three- year project to analyse the strategic development of required technologies to facilitate unmanned aircraft operations in civil airspace. II...

  8. Compound cycle engine for helicopter application

    Science.gov (United States)

    Castor, Jere; Martin, John; Bradley, Curtiss

    1987-01-01

    The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.

  9. Helicopter pilot back pain: a preliminary study.

    Science.gov (United States)

    Shanahan, D F; Reading, T E

    1984-02-01

    Because of the high prevalence of back pain experienced by U.S. Army helicopter pilots, a study was conducted to ascertain the feasibility of reproducing these symptoms in the laboratory. A mock-up of a UH-1H seat and control configuration was mounted to a multi-axis vibration simulator (MAVS). Eleven subjects were tested on the apparatus for two 120-min periods. During one period, the MAVS was programmed to reproduce vibrations recorded from a UH-1H in cruise flight. The subjects received no vibration during the other test period. All subjects reported back pain which they described as identical to the pain they experience during flight, during one or more of their test periods. There was no statistical difference between the vibration and nonvibration test conditions (p greater than 0.05) in terms of time of onset of pain or intensity of pain as measured by a visual analog scale. It appears the vibration at the frequencies and amplitudes tested plays little or no role in the etiology of the back symptoms reported by these pilots. It is proposed that the primary etiological factor for these symptoms is the poor posture pilots are obliged to assume for extended periods while operating helicopters.

  10. Scalable autonomous operations of unmanned assets

    Science.gov (United States)

    Jung, Sunghun

    Although there have been great theoretical advances in the region of Unmanned Aerial Vehicle (UAV) autonomy, applications of those theories into real world are still hesitated due to unexpected disturbances. Most of UAVs which are currently used are mainly, strictly speaking, Remotely Piloted Vehicles (RPA) since most works related with the flight control, sensor data analysis, and decision makings are done by human operators. To increase the degree of autonomy, many researches are focused on developing Unmanned Autonomous Aerial Vehicle (UAAV) which can takeoff, fly to the interested area by avoiding unexpected obstacles, perform various missions with decision makings, come back to the base station, and land on by itself without any human operators. To improve the performance of UAVs, the accuracies of position and orientation sensors are enhanced by integrating a Unmanned Ground Vehicle (UGV) or a solar compass to a UAV; Position sensor accuracy of a GPS sensor on a UAV is improved by referencing the position of a UGV which is calculated by using three GPS sensors and Weighted Centroid Localization (WCL) method; Orientation sensor accuracy is improved as well by using Three Pixel Theorem (TPT) and integrating a solar compass which composed of nine light sensors to a magnetic compass. Also, improved health management of a UAV is fulfilled by developing a wireless autonomous charging station which uses four pairs of transmitter and receiver magnetic loops with four robotic arms. For the software aspect, I also analyze the error propagation of the proposed mission planning hierarchy to achieve the safest size of the buffer zone. In addition, among seven future research areas regarding UAV, this paper mainly focuses on developing algorithms of path planning, trajectory generation, and cooperative tactics for the operations of multiple UAVs using GA based multiple Traveling Salesman Problem (mTSP) which is solved by dividing into m number of Traveling Salesman

  11. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  12. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  13. Optimal Tracking Controller Design for a Small Scale Helicopter

    Institute of Scientific and Technical Information of China (English)

    Agus Budiyono; Singgih S. Wibowo

    2007-01-01

    A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed.The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.

  14. Planning German Army Helicopter Maintenance and Mission Assignment

    Science.gov (United States)

    1994-03-01

    LIMROW - 0, SOLPRINT = OFF ,DECIMALS - 2 RESLIM - 500000, ITERLIM = 150000, OPTCR = 0.15, SEED = 3141 OPTION LP - XA , RMIP = XA . MIP - XA...1; MODEL HELICOPTER /ALL/; SOLVE HELICOPTER USING RMIP MINIMIZING COST; * iterative solving LOOP(CI, LOOP (H. LOOP(E, IF CZ.L(H,E) GT 0.95 ,Z.FX(H,E...Y.FXCH,T) - 0 ); LOOP(E $ S(T,E), IF (Y.L(H.T) EQ 1 , Z.FPC(H,E) - 0 X.FX(H,T) - 0);) ;) SOLVE HELICOPTER USIN4G RMIP MINIMIZI12NG COST; ) SOLVE

  15. A parametric analysis of visual approaches for helicopters

    Science.gov (United States)

    Moen, G. C.; Dicarlo, D. J.; Yenni, K. R.

    1976-01-01

    A flight investigation was conducted to determine the characteristic shapes of the altitude, ground speed, and deceleration profiles of visual approaches for helicopters. Two hundred thirty-six visual approaches were flown from nine sets of initial conditions with four types of helicopters. Mathematical relationships were developed that describe the characteristic visual deceleration profiles. These mathematical relationships were expanded to develop equations which define the corresponding nominal ground speed, pitch attitude, pitch rate, and pitch acceleration profiles. Results are applicable to improved helicopter handling qualities in terminal area operations.

  16. Simulating effectiveness of helicopter evasive manoeuvres to RPG attack

    Science.gov (United States)

    Anderson, D.; Thomson, D. G.

    2010-04-01

    The survivability of helicopters under attack by ground troops using rocket propelled grenades has been amply illustrated over the past decade. Given that an RPG is unguided and it is infeasible to cover helicopters in thick armour, existing optical countermeasures are ineffective - the solution is to compute an evasive manoeuvre. In this paper, an RPG/helicopter engagement model is presented. Manoeuvre profiles are defined in the missile approach warning sensor camera image plane using a local maximum acceleration vector. Required control inputs are then computed using inverse simulation techniques. Assessments of platform survivability to several engagement scenarios are presented.

  17. Study of the helicopter blade running elevation measurement system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter's security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, the design of the measurement system and analysis of the measurement precision.

  18. Precision wildlife monitoring using unmanned aerial vehicles.

    Science.gov (United States)

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  19. Precision wildlife monitoring using unmanned aerial vehicles

    Science.gov (United States)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  20. Responsibility practices and unmanned military technologies.

    Science.gov (United States)

    Noorman, Merel

    2014-09-01

    The prospect of increasingly autonomous military robots has raised concerns about the obfuscation of human responsibility. This papers argues that whether or not and to what extent human actors are and will be considered to be responsible for the behavior of robotic systems is and will be the outcome of ongoing negotiations between the various human actors involved. These negotiations are about what technologies should do and mean, but they are also about how responsibility should be interpreted and how it can be best assigned or ascribed. The notion of responsibility practices, as the paper shows, provides a conceptual tool to examine these negotiations as well as the interplay between technological development and the ascription of responsibility. To illustrate the dynamics of responsibility practices the paper explores how the introduction of unmanned aerial vehicles has led to (re)negotiations about responsibility practices, focusing particularly on negotiations within the US Armed Forces.

  1. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  2. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  3. Risk Assessment for an Unmanned Merchant Ship

    Directory of Open Access Journals (Sweden)

    Ø.J. Rødseth

    2015-09-01

    Full Text Available The MUNIN project is doing a feasibility study on an unmanned bulk carrier on an intercontinental voyage. To develop the technical and operational concepts, MUNIN has used a risk-based design method, based on the Formal Safety Analysis method which is also recommended by the International Mari-time Organization. Scenario analysis has been used to identify risks and to simplify operational scope. Systematic hazard identification has been used to find critical safety and security risks and how to address these. Technology and operational concept testing is using a hypothesis-based test method, where the hypotheses have been created as a result of the risk assessment. Finally, the cost-benefit assessment will also use results from the risk assessment. This paper describes the risk assessment method, some of the most important results and also describes how the results have been or will be used in the different parts of the project.

  4. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  5. Unmanned Aircraft Systems Integration in the National Airspace System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  6. A Recursive Receding Horizon Planning for Unmanned Vehicles

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a recursive receding horizon path planning algorithm for unmanned vehicles in nonuniform environments. In the proposed algorithm, the map is...

  7. The feasibility of counting songbirds using unmanned aerial vehicles

    National Research Council Canada - National Science Library

    Andrew M Wilson; Janine Barr; Megan Zagorski

    2017-01-01

    .... We propose that combining bioacoustic monitoring with unmanned aerial vehicle (UAV) technology could reduce some of these biases and allow bird surveys to be conducted in less accessible areas...

  8. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  9. Unmanned Aerial Vehicle Diode Laser Sensor for Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, lightweight, and low power diode laser sensor will be developed for atmospheric methane detection on small unmanned aerial vehicles (UAVs). The physical...

  10. 76 FR 66609 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model 407 and 427 Helicopters

    Science.gov (United States)

    2011-10-27

    ...) of this AD. Table A Helicopter model Servo P/N Servo prefix ``HR,'' S/N 407 41011300-101 (BHT 206-076-062- Less than 807. 105). 41011400-101 (BHT 206-076-062- Less than 2248. 107). 427 41011300-101 (BHT 206-076-062- Less than 807. 111). 41011700-101 (BHT 206-076-062- Less than 230. 109). (c) Before...

  11. Unique Aspects of Flight Testing Unmanned Aircraft Systems

    Science.gov (United States)

    2010-04-01

    High Altitude Endurance HCI Human Computer Interface INS Inertial Navigation System IR Infrared JITC Joint Interoperability Testing Command...highlighting some of the unique aspects of flight testing unmanned air vehicle systems. It is intended to provide a practical set of guidelines in support of...of unmanned aviation systems, it is especially important that even minor changes to the baseline code be carefully reviewed, and that regression

  12. Unmanned vehicles for maritime spill response case study: Exercise Cathach.

    Science.gov (United States)

    Dooly, Gerard; Omerdic, Edin; Coleman, Joseph; Miller, Liam; Kaknjo, Admir; Hayes, James; Braga, Jóse; Ferreira, Filipe; Conlon, Hugh; Barry, Hugh; Marcos-Olaya, Jesús; Tuohy, Thomas; Sousa, João; Toal, Dan

    2016-09-15

    This paper deals with two aspects, namely a historical analysis of the use of unmanned vehicles (UAVs ROVs, AUVs) in maritime spill incidents and a detailed description of a multi-agency oil and HNS incident response exercise involving the integration and analysis of unmanned vehicles environmental sensing equipment. The exercise was a first in terms of the level of robotic systems deployed to assist in survey, surveillance and inspection roles for oil spills and harmful and noxious substances.

  13. Fuzzy Technique Tracking Control for Multiple Unmanned Ships

    OpenAIRE

    Ramzi Fraga; Liu Sheng

    2013-01-01

    A Fuzzy logic control law is presented and implemented for trajectory tracking of multiple under actuated autonomous surface vessels. In this study, an individual unmanned ship is used to be the leader that tracks the desired path; other unmanned ships are used to be the followers which track the leader only by using its position. A fuzzy controller was implemented for the ship leader position with a constant velocity; however, the ship follower needed a fuzzy controller for the position and ...

  14. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes...... of the system by shaping the reference trajectory using robust input shaping. It is developed as part of an integrated adaptive control system consisting of state estimator, feedforward, and feedback controller capable of simultaneously preventing swing in the slung load from helicopter motion and actively...... dampen swing. Simulations and flight tests show the effectiveness of the input shaping applied to a small scale autonomous helicopter slung load system. Both simulations and flight verifications shows significant slung load swing reduction using the proposed trajectory shaping over over flight without...

  15. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  16. Dynamics Analysis of Close-coupling Multiple Helicopters System

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhigang; Lu Tiansheng

    2008-01-01

    The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary. Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.

  17. Helicopter noise exposure curves for use in environmental impact assessment

    Science.gov (United States)

    Newman, J. S.; Rickley, E. J.; Bland, T. L.

    1982-11-01

    This report establishes the current (1982) FAA helicopter noise data base for use in environmental impact assessment. The report sets out assumptions, methodologies, and techniques used in arriving at noise-exposure-versus-distance relationships. Noise data are provided for 15 helicopters, including five flight regimes each: takeoff, approach, level flyover, hover in-ground-effect (HIGE) and hover out-of-ground effect (HOGE). When possible, level flyover data are presented for a variety of airspeeds. Sound exposure level (SEL) is provided for all operational modes except hover. In the case of hover operations (both HOGE and HIGE), the maximum A-Weighted Sound Level (LAM) is identified as a function of distance. The report also includes a discussion of helicopter performance characteristics required for full computer modeling of helicopter/heliport noise exposure.

  18. The Use of Commercial Remote Sensing Predicting Helicopter Brownout Conditions

    Science.gov (United States)

    2007-09-01

    landing. 4 Figure 2. Soil caught in rotor downwash, start of brownout (from Brownout California soil resource lab) . A second issue ...Sensing in Predicting Helicopter Brownout Conditions. September 2006 (Top Secret). Tan, Kim H., First Edition, Enviromental Soil Science Marcel

  19. Helicopter transmission arrangements with split-torque gear trains

    Science.gov (United States)

    White, G.

    1983-01-01

    As an alternative to component development, the case for improved drive-train configuration is argued. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes.

  20. 78 FR 40956 - Airworthiness Directives; Eurocopter Deutschland (Eurocopter) Helicopters

    Science.gov (United States)

    2013-07-09

    ... comments to the U.S. Department of Transportation, Docket Operations, M-30, West Building Ground Floor... helicopters in the air ambulance and offshore operations industries. Since an unsafe condition exists that...

  1. A Computational Tool for Helicopter Rotor Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of...

  2. BASIC PRINCIPLES FOR THE MODERN CLASSIFICATION OF UNMANNED AVIATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2012-12-01

    Full Text Available  In view of the basic contemporary classification criteria attempted the classification of unmanned aircraft systems have been attempted  on the basis of available scientific and technical potential, of their applications features,  and prospects for development of information and the aircraft manufacturing technologies. Based on the global trends analysis of unmanned aircraft systems development in determining the prospects for development of unmanned aircraft systems as a class has been discussed the need to use a single general classification system features that reflects the level of functional independence of the aircraft belonging to the UAS and takes into account not only the level of technical excellence, but also the level of development information and logistics systems. The formation principles of unmanned aircraft systems and complexes have been considered due to the UAC development problems, including the issues of the complex architectonics, its full composition, unmanned aircraft controlling methods, and the procedures for the unmanned aviation complex use as a whole taking into account the peculiarities the different UAVs categories application.

  3. An Investigation of Multiple Unmanned Aircraft Systems Control from the Cockpit of an AH-64 Apache Helicopter

    Science.gov (United States)

    2014-12-01

    workload equally among different robots. Dynamic and temporary hierarchies were developed for task auctions when time constraints between tasks were...Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 2004 Sep 20–24; New Orleans, LA. San Francisco (CA): SAGE Journals; c2004. Also...a dynamic control task. Ergonomics .1999;(42):462–492. Fern L, Shively RJ. A comparison of varying levels of automation on the supervisory control of

  4. Unmanned vehicle technology for networked non-line-of-sight sensing applications

    Science.gov (United States)

    Gates, Miguel; Pepper, Gary; Mitra, Atindra K.; Hu, Colin; Zein-Sabatto, Saleh; Rogers, Tamara; Selmic, Rastko; Hamdan, Elrasheed; Malkani, Mohan

    2010-04-01

    We discuss the development, design, implementation, and demonstration of a robotic UGV (Unmanned Ground Vehicle) system for networked and non-line-of-sight sensing applications. Our development team is comprised of AFRL Summer Interns, University Faculty, and Personnel from AFRL. The system concept is based on a previously published technique known as "Dual-UAV Tandems for Indirect Operator-Assisted Control" [1]. This architecture is based on simulating a Mini-UAV Helicopter with a building-mounted camera and simulating a low-flying QuadRotor Helicopter with a Robotics UGV. The Robotics UGV is fitted with a custom-designed sensor boom and a surrogate chem/bio (Carbon Monoxide) PCB sensor extracted from a COTS (Commercial-Off-The-Shelf) product. The CO Sensor apparatus is co-designed with the sensor boom and is fitted with a transparent covering for protection and to promote CO (surrogate chem/bio) flow onto the sensor. The philosophy behind this non-line-of-sight system is to relay video of the UGV to an Operator station for purposes of investigating "Indirect Operator-Assisted Control" of the UGV via observation of the relayed EO video at the operator station. This would serve as a sensor fusion, giving the operator visual cues of the chemical under detection, enabling him to position the UGV in areas of higher concentration. We recorded this data, and analyzed the best approach given a test matrix of multiple scenarios, with the goal of determining the feasibility of using this layered sensing approach and the system accuracy in open field tests. For purposes of collecting scientific data with this system, we developed a Test (data collection) Matrix with following three parameters: 1. Chem/Bio detection level with side-looking sensor boom and slowly traversing UGV; 2. Chem/Bio detection level with panning sensor boom and slowly traversing UGV; 3. Chem/Bio detection level with forward-looking sensor boom and operator-assisted steering based on onboard wind vane

  5. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  6. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4 st...... the estimator is verified using flight data and it is shown that it is capable of reliably estimating the slung load states....

  7. VH-92A Presidential Helicopter (VH-92A)

    Science.gov (United States)

    2015-12-01

    HMX- 1) and support the President worldwide and the Vice President primarily inside the National Capital Region. Mission tasking encompasses two (2...operations) NCR - National Capital Region NM - Nautical Mile OCONUS - Outside the Continental United States SE - Support Equipment VH-92A December 2015...Factor: 19% of Total Aircraft Inventory (TAI) Squadrons: Marine Helicopter Squadron One (HMX-1) Helicopters per (active) squadron: 16 Monthly Flight

  8. Helicopter Flight Control Research - A Demanding Application of Piloted Simulation.

    Science.gov (United States)

    1986-01-01

    Sigma-8 digital computer (used to run the aircraft mathematical model) and an Applied Dynamics AD-4 analogue computer (used principally as a flexible...interface to cockpit instruments, and for motion and visual systems operation) (Fig 4). The first helicopter simulation to use a digital aircraft...34 Control Technology for helicopters. For fixed-wing aircraft, impresive claims were being made for electrically (and later optically) signalled control

  9. The scope of back pain in Navy helicopter pilots

    OpenAIRE

    Phillips, Andrea S.

    2011-01-01

    Approved for public release; distribution is unlimited. Human Systems Integration Report This thesis investigates issues such as long hours in the cockpit, ineffective seat padding, Night Vision Goggle (NVG) use, and the constant vibrations involved in flying rotary wing aircraft. Pain is subjective and severity is difficult to compare between individuals. Does back pain affect safety of flight? In the military helicopter aviator community, 60-80% of helicopter pilots are estimated ...

  10. Aircrew-aircraft integration issues in future US Army helicopters

    Science.gov (United States)

    Hartzell, E. J.; Aiken, E. W.; Voorhees, J. W.

    1984-01-01

    Some human factors research issues, the resolution of which will be vital to the successful operation of future military helicopters are reviewed. Understanding and reducing the helicopter pilot's workload is examined by a diverse program directed at answering some of the more fundamental questions relating to the transfer displays and interactions between pilot and automated systems. The results of three experimental studies which address the issues of display control compatibility, characteristics of integrated controllers, and voice systems are presented.

  11. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    results of the current analysis and in Mouton et al., 2015, is the relative cost -effectiveness between the CH-47D and the Mi-17v5. In the previous...helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost -effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of

  12. Development of adaptive helicopter seat systems for aircrew vibration mitigation

    Science.gov (United States)

    Chen, Yong; Wickramasinghe, Viresh; Zimcik, David G.

    2008-03-01

    Helicopter aircrews are exposed to high levels of whole body vibration during flight. This paper presents the results of an investigation of adaptive seat mount approaches to reduce helicopter aircrew whole body vibration levels. A flight test was conducted on a four-blade helicopter and showed that the currently used passive seat systems were not able to provide satisfactory protection to the helicopter aircrew in both front-back and vertical directions. Long-term exposure to the measured whole body vibration environment may cause occupational health issues such as spine and neck strain injuries for aircrew. In order to address this issue, a novel adaptive seat mount concept was developed to mitigate the vibration levels transmitted to the aircrew body. For proof-of-concept demonstration, a miniature modal shaker was properly aligned between the cabin floor and the seat frame to provide adaptive actuation authority. Adaptive control laws were developed to reduce the vibration transmitted to the aircrew body, especially the helmet location in order to minimize neck and spine injuries. Closed-loop control test have been conducted on a full-scale helicopter seat with a mannequin configuration and a large mechanical shaker was used to provide representative helicopter vibration profiles to the seat frame. Significant vibration reductions to the vertical and front-back vibration modes have been achieved simultaneously, which verified the technical readiness of the adaptive mount approach for full-scale flight test on the vehicle.

  13. Identification of helicopter rotor dynamic models

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.

    1983-01-01

    A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.

  14. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1984-01-01

    Several recent helicopter vibration reduction research programs are described. Results of studies of blade design parameters in rotor vibratory response and of an advanced blade design for reduced vibration are examined. An optimization approach to develop a general automated procedure for rotor blade design is described, and analytical results for an articulated rotor operating at a steady 160 kt flight condition are reported. The use of a self-adaptive controller to implement higher harmonic control in closed-loop fashion is addressed, and a computer simulation used to evaluate and compare the performance of alternative algorithms included in the generic active controller is discussed. Results are presented for steady level flight conditions, short-duration maneuvers, blade stresses and rotor performance, blade-appended aeroelastic devices, vibratory airloads, wake-induced blade airloads, and airloads from blade motions, the interaction of rotor and fuselage, and the interaction of rotor and empennage.

  15. Robustness of mission plans for unmanned aircraft

    Science.gov (United States)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  16. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  17. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    Science.gov (United States)

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  18. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  19. Computational analysis of unmanned aerial vehicle (UAV)

    Science.gov (United States)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  20. Closed cycle propulsion for small unmanned aircraft

    Science.gov (United States)

    Hays, Thomas Chadwick

    This study evaluates the merit of closed cycle propulsion systems for use in unmanned systems. The complexity and added weight of closed cycle engines is offset by benefits in high altitude performance, operation in polluted air environments, multi-fuel operation, and potential for flight in low oxygen environments using generic thermal heat sources. Although most closed thermal cycles cannot match the efficiency and power density potential of internal combustion engines (ICE) and turbomachines in aircraft propulsion applications, the addition of design requirements regarding noise output, and operation at high altitude results in IC and CC engine's performance becoming much more comparable. Muffling devices increase backpressure on internal combustion engines thereby reducing power output and efficiency. Multi stage turbo supercharging for operation at high altitude can in some cases increase efficiency of ICE's, but at the result of significant additional complexity and cost that also reduces practical reliability because of the often intricate mechanisms involved. It is in these scenarios that closed cycle engines offer a comparable performance alternative that may prove to be simpler, cheaper, and more reliable than high altitude or low noise internal combustion or turbomachine propulsion systems.

  1. Sunglint Detection for Unmanned and Automated Platforms

    Directory of Open Access Journals (Sweden)

    Oliver Zielinski

    2012-09-01

    Full Text Available We present an empirical quality control protocol for above-water radiometric sampling focussing on identifying sunglint situations. Using hyperspectral radiometers, measurements were taken on an automated and unmanned seaborne platform in northwest European shelf seas. In parallel, a camera system was used to capture sea surface and sky images of the investigated points. The quality control consists of meteorological flags, to mask dusk, dawn, precipitation and low light conditions, utilizing incoming solar irradiance (ES spectra. Using 629 from a total of 3,121 spectral measurements that passed the test conditions of the meteorological flagging, a new sunglint flag was developed. To predict sunglint conspicuous in the simultaneously available sea surface images a sunglint image detection algorithm was developed and implemented. Applying this algorithm, two sets of data, one with (having too much or detectable white pixels or sunglint and one without sunglint (having least visible/detectable white pixel or sunglint, were derived. To identify the most effective sunglint flagging criteria we evaluated the spectral characteristics of these two data sets using water leaving radiance (LW and remote sensing reflectance (RRS. Spectral conditions satisfying ‘mean LW (700–950 nm < 2 mW∙m−2∙nm−1∙Sr−1’ or alternatively ‘minimum RRS (700–950 nm < 0.010 Sr−1’, mask most measurements affected by sunglint, providing an efficient empirical flagging of sunglint in automated quality control.

  2. An unmanned ground vehicle for landmine remediation

    Science.gov (United States)

    Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly

    2004-09-01

    Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.

  3. Identification Schemes for Unmanned Excavator Arm Parameters

    Institute of Scientific and Technical Information of China (English)

    Yahya H. Zweiri

    2008-01-01

    Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.

  4. UNMANNED AERIAL VEHICLE IN CADASTRAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Manyoky

    2012-09-01

    Full Text Available This paper presents the investigation of UAVs (Unmanned Aerial Vehicles for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial. However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  5. Unmanned Aerial Vehicles unique cost estimating requirements

    Science.gov (United States)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  6. Unmanned Aerial Vehicle Domain: Areas of Research

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan Demir

    2015-07-01

    Full Text Available Unmanned aerial vehicles (UAVs domain has seen rapid developments in recent years. As the number of UAVs increases and as the missions involving UAVs vary, new research issues surface. An overview of the existing research areas in the UAV domain has been presented including the nature of the work categorised under different groups. These research areas are divided into two main streams: Technological and operational research areas. The research areas in technology are divided into onboard and ground technologies. The research areas in operations are divided into organization level, brigade level, user level, standards and certifications, regulations and legal, moral, and ethical issues. This overview is intended to serve as a starting point for fellow researchers new to the domain, to help researchers in positioning their research, identifying related research areas, and focusing on the right issues.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 319-329, DOI: http://dx.doi.org/10.14429/dsj.65.8631

  7. Guidance and control for unmanned ground vehicles

    Science.gov (United States)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  8. Visual signature reduction of unmanned aerial vehicles

    Science.gov (United States)

    Zhong, Z. W.; Ma, Z. X.; Jayawijayaningtiyas; Ngoh, J. H. H.

    2016-10-01

    With the emergence of unmanned aerial vehicles (UAVs) in multiple tactical defence missions, there was a need for an efficient visual signature suppression system for a more efficient stealth operation. One of our studies experimentally investigated the visual signature reduction of UAVs achieved through an active camouflage system. A prototype was constructed with newly developed operating software, Cloak, to provide active camouflage to the UAV model. The reduction of visual signature was analysed. Tests of the devices mounted on UAVs were conducted in another study. A series of experiments involved testing of the concept as well as the prototype. The experiments were conducted both in the laboratory and under normal environmental conditions. Results showed certain degrees of blending with the sky to create a camouflage effect. A mini-UAV made mostly out of transparent plastic was also designed and fabricated. Because of the transparency of the plastic material, the visibility of this UAV in the air is very small, and therefore the UAV is difficult to be detected. After re-designs and tests, eventually a practical system to reduce the visibility of UAVs viewed by human observers from the ground was developed. The system was evaluated during various outdoor tests. The scene target-to-background lightness contrast and the scene target-to-background colour contrast of the adaptive control system prototype were smaller than 10% at a stand-off viewing distance of 20-50 m.

  9. Vibration energy harvesting for unmanned aerial vehicles

    Science.gov (United States)

    Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Unmanned aerial vehicles (UAVs) are a critical component of many military operations. Over the last few decades, the evolution of UAVs has given rise to increasingly smaller aircraft. Along with the development of smaller UAVs, termed mini UAVs, has come issues involving the endurance of the aircraft. Endurance in mini UAVs is problematic because of the limited size of the fuel systems that can be incorporated into the aircraft. A large portion of the total mass of many electric powered mini UAVs, for example, is the rechargeable battery power source. Energy harvesting is an attractive technology for mini UAVs because it offers the potential to increase their endurance without adding significant mass or the need to increase the size of the fuel system. This paper investigates the possibility of harvesting vibration and solar energy in a mini UAV. Experimentation has been carried out on a remote controlled (RC) glider aircraft with a 1.8 m wing span. This aircraft was chosen to replicate the current electric mini UAVs used by the military today. The RC glider was modified to include two piezoelectric patches placed at the roots of the wings and a cantilevered piezoelectric beam installed in the fuselage to harvest energy from wing vibrations and rigid body motions of the aircraft, as well as two thin film photovoltaic panels attached to the top of the wings to harvest energy from sunlight. Flight testing has been performed and the power output of the piezoelectric and photovoltaic devices has been examined.

  10. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  11. R-Gator: an unmanned utility vehicle

    Science.gov (United States)

    Moorehead, Stewart J.; Wellington, Carl K.; Paulino, Heidi; Reid, John F.

    2010-04-01

    The R-Gator is an unmanned ground vehicle built on the John Deere 6x4 M-Gator utility vehicle chassis. The vehicle is capable of operating in urban and off-road terrain and has a large payload to carry supplies, wounded, or a marsupial robot. The R-Gator has 6 modes of operation: manual driving, teleoperation, waypoint, direction drive, playback and silent sentry. In direction drive the user specifies a direction for the robot. It will continue in that direction, avoiding obstacles, until given a new direction. Playback allows previously recorded paths, from any other mode including manual, to be played back and repeated. Silent sentry allows the engine to be turned off remotely while cameras, computers and comms remain powered by batteries. In this mode the vehicle stays quiet and stationary, collecting valuable surveillance information. The user interface consists of a wearable computer, monocle and standard video game controller. All functions of the R-Gator can be controlled by the handheld game controller, using at most 2 button presses. This easy to use user interface allows even untrained users to control the vehicle. This paper details the systems developed for the R-Gator, focusing on the novel user interface and the obstacle detection system, which supports safeguarded teleoperation as well as full autonomous operation in off-road terrain. The design for a new 4-wheel, independent suspension chassis version of the R-Gator is also presented.

  12. Sea State Estimation Using Model-scale DP Measurements

    DEFF Research Database (Denmark)

    H. Brodtkorb, Astrid; Nielsen, Ulrik D.; J. Sørensen, Asgeir

    2015-01-01

    Complex marine operations are moving further from shore, into deeper waters, and harsher environments. The operating hours of a vessel are weather dependent, and good knowledge of the prevailing weather conditions may ensure cost-efficient and safe operations. This paper considers the estimation...... of the peak wave frequency of the on-site sea state based on the vessel’s motion in waves. A sea state can be described by significant wave height, peak wave frequency, wave direction, and often wind speed and direction are added as well. The signal-based algorithm presented in this paper is based on Fourier...... transforms of the vessel response in heave, roll and pitch. The measurements are used directly to obtain an estimate of the peak frequency of the waves. Experimental results from model-scale offshore ship runs at the Marine Cybernetics Laboratory (MCLab) at NTNU demonstrate the performance of the proposed...

  13. Simulation validation and flight prediction of UH-60A Black Hawk helicopter/slung load characteristics

    OpenAIRE

    Tyson, Peter H.

    1999-01-01

    Helicopter/slung load systems are two body systems in which the slung load adds its rigid body dynamics, aerodynamics, and sling stretching dynamics to the helicopter. The slung load can degrade helicopter handling qualities and reduce the flight envelope of the helicopter. Confirmation of system stability parameters and envelope is desired, but flight test evaluation is time consuming and costly. A simulation model validated for handling quality assessments would significantly reduce resourc...

  14. Cloud-based distributed control of unmanned systems

    Science.gov (United States)

    Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.

    2015-05-01

    Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).

  15. Marine TACAIR Challenge 2020: Team the Joint Strike Fighter with the Next Unmanned Aircraft System

    Science.gov (United States)

    2010-05-05

    35. "Oh, we know it’s the game changer!" they remark in jest. Though sarcastic in expression, their experience bears tmth in that any single system...a1.·ea of operations. The UAS CONOPS briefly mentions terms such as manned-unmanned teaming ( MUT ), cross cueing, and information fusion. JSF...tactical unmanned aircraft system MEU - Marine expeditionary unit MUM manned-unmanned MUT - manned-unmanned team(ing) NSFS - naval surface fire

  16. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    Science.gov (United States)

    2013-12-13

    Meteorological Conditions ISR Intelligence, Surveillance, and Reconnaissance NVGs Night Vision Goggles UCAR Unmanned Combat Armed Rotorcraft U.S. United...Army The U.S. Army first became interested in unmanned rotary-wing aircraft in 2004 and established the Unmanned Combat Armed Rotorcraft ( UCAR ...program.14 Both Northrop Grumman and Kaman were the lead contractors for the unmanned rotary prototype. The UCAR was designed to be an autonomous strike

  17. Helicopter Parenting: The Effect of an Overbearing Caregiving Style on Peer Attachment and Self-Efficacy

    Science.gov (United States)

    van Ingen, Daniel J.; Freiheit, Stacy R.; Steinfeldt, Jesse A.; Moore, Linda L.; Wimer, David J.; Knutt, Adelle D.; Scapinello, Samantha; Roberts, Amber

    2015-01-01

    Helicopter parenting, an observed phenomenon on college campuses, may adversely affect college students. The authors examined how helicopter parenting is related to self-efficacy and peer relationships among 190 undergraduate students ages 16 to 28 years. Helicopter parenting was associated with low self-efficacy, alienation from peers, and a lack…

  18. 78 FR 52410 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2013-08-23

    ..., separation of tail rotor parts, severe vibration, and subsequent loss of control of the helicopter. DATES... Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., MBB-BK 117 B-1, MBB-BK-117 B-2, and MBB-BK 117 C-1 helicopters to require inspections for corrosion...

  19. 77 FR 52265 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2012-08-29

    ... rotor parts, severe vibration, and subsequent loss of control of the helicopter. You may obtain further... vibration, and subsequent loss of control of the helicopter. (c) Compliance You are responsible for... Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ] ACTION: Notice of...

  20. 78 FR 12651 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2013-02-25

    ... a crack. Following increased ground vibrations in a Model A 109E helicopter, another crack was... each start of the helicopter engines, allowing an owner/operator (pilot) to check the T/R blade for a.... Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...

  1. 78 FR 40055 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2013-07-03

    .... We also estimate that it would take about 3 work-hours per helicopter to rework the top cable cutter... helicopter to rework the top cable cutter assembly, $9,085 per helicopter to replace the top cable cutter... WSPS upper installation, P/N 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N...

  2. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    Science.gov (United States)

    2010-01-01

    ....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... assignment, for hospital emergency medical evacuation service helicopter operations unless that assignment... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency...

  3. Response of Flight Nurses in a Simulated Helicopter Environment.

    Science.gov (United States)

    Kaniecki, David M; Hickman, Ronald L; Alfes, Celeste M; Reimer, Andrew P

    The purpose of this study was to determine if a helicopter flight simulator could provide a useful educational platform by creating experiences similar to those encountered by actual flight nurses. Flight nurse (FN) and non-FN participants completed a simulated emergency scenario in a flight simulator. Physiologic and psychological stress during the simulation was measured using heart rate and perceived stress scores. A questionnaire was then administered to assess the realism of the flight simulator. Subjects reported that the overall experience in the flight simulator was comparable with a real helicopter. Sounds, communications, vibrations, and movements in the simulator most approximated those of a real-life helicopter environment. Perceived stress levels of all participants increased significantly from 27 (on a 0-100 scale) before simulation to 51 at the peak of the simulation and declined thereafter to 28 (P simulation to 54 at the peak of the simulation and declined thereafter to 30 (P simulation to 49 at the peak of the simulation and declined thereafter to 25 (P simulation. FNs' heart rates increased significantly from 77 before simulation to 100 at the peak of the simulation and declined thereafter to 72 (P simulation of a critical care scenario in a high-fidelity helicopter flight simulator can provide a realistic helicopter transport experience and create physiologic and psychological stress for participants. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  4. Square tracking sensor for autonomous helicopter hover stabilization

    Science.gov (United States)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  5. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  6. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Jaegyu Jang

    2015-11-01

    Full Text Available The Ground-based Radio Navigation System (GRNS is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo. In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services SC (special committee-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP or fluctuations in the received signal quality.

  7. Mission Planning for Unmanned Aircraft with Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær

    Unmanned aircraft invokes different feelings in people. Some see ruthless killing machines, other see a potential for fast and cheap distribution of goods, yet other see flexible and convenient emergency rescue drones. Regardless, advances and miniaturization in motors, sensors, and computer...... processing power have taken the unmanned aircraft from being a military application to the commercial sector and even into the hands of hobbyists. Still, the enthusiastic interest in the new technology and its prospective advantages overshadows the fact that it mainly sees application where the aircraft...... are mostly under human command, just like remote controlled planes have been for years. Actually the revolution of the drones is not so much a revolution of the unmanned aircraft as it is a digital control revolution. Only a few years ago, hopeful remote-control pilots had to invest countless hours...

  8. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned Systems

    Science.gov (United States)

    Munoz, Cesar; Narkawicz, Anthony; Hagen, George; Upchurch, Jason; Dutle, Aaron; Consiglio, Maria; Chamberlain, James

    2015-01-01

    This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the US Air Force Research Laboratory, MIT Lincoln Laboratory, and NASA. The DAIDALUS reference implementation is currently under consideration for inclusion in the appendices to the Minimum Operational Performance Standards for Unmanned Aircraft Systems presently being developed by RTCA Special Committee 228.

  9. Motion synchronization in unmanned aircrafts formation control with communication delays

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2013-03-01

    This paper proposes a formation control strategy for unmanned aircrafts using a virtual structure. Cross coupled sliding mode controllers are introduced to cope with uncertainties in the attitude measurement systems of the unmanned aircrafts and unmeasurable bounded external disturbances such as wind effects, and also to provide motion synchronization in the multi-agent system. This motion synchronization strategy improves the agents convergence to their desired positions, and this is useful for a multi-agent system with faulty agents. Moreover, the proposed motion synchronization strategy is not restricted to specific communication topologies, and sufficient conditions are provided to guarantee the multi-agent system stability in the presence of communication delays. Numerical simulations are presented for a team of five unmanned aircrafts to make a pentagon formation and confirm the accepted performance of the proposed control strategy.

  10. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  11. Radiation surveillance using an unmanned aerial vehicle.

    Science.gov (United States)

    Pöllänen, Roy; Toivonen, Harri; Peräjärvi, Kari; Karhunen, Tero; Ilander, Tarja; Lehtinen, Jukka; Rintala, Kimmo; Katajainen, Tuure; Niemelä, Jarkko; Juusela, Marko

    2009-02-01

    Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where (137)Cs fallout from the Chernobyl accident is 23-45 kBq m(-2). A 3-GBq (137)Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h(-1) and data acquisition interval of 1s. Respective response for (192)Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 microSv h(-1), which gives for the activity concentration of (131)I less than 1 kB qm(-3). Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2-0.7 m(3)h(-1) at a flight speed of 70 km h(-1) depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as (239)Pu, is of the order of 0.2 Bq m(-3) or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as (137)Cs and (131)I are of the order of 1 Bq m(-3).

  12. Observing river stages using unmanned aerial vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  13. Radiation surveillance using an unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, Roy [STUK-Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland)], E-mail: roy.pollanen@stuk.fi; Toivonen, Harri; Peraejaervi, Kari; Karhunen, Tero; Ilander, Tarja [STUK-Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland); Lehtinen, Jukka [Senya Ltd. Rekitie 7A, 00950 Helsinki (Finland); Rintala, Kimmo; Katajainen, Tuure; Niemelae, Jarkko; Juusela, Marko [Patria Systems Oy, Naulakatu 3, FI-33100 (Finland)

    2009-02-15

    Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where {sup 137}Cs fallout from the Chernobyl accident is 23-45 kBq m{sup -2}. A 3-GBq {sup 137}Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h{sup -1} and data acquisition interval of 1 s. Respective response for {sup 192}Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 {mu}Sv h{sup -1}, which gives for the activity concentration of {sup 131}I less than 1 kBq m{sup -3}. Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2-0.7 m{sup 3} h{sup -1} at a flight speed of 70 km h{sup -1} depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as {sup 239}Pu, is of the order of 0.2 Bq m{sup -3} or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as {sup 137}Cs and {sup 131}I are of the order of 1 Bq m{sup -3}.

  14. Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades

    Science.gov (United States)

    Bergeot, B.; Bellizzi, S.; Cochelin, B.

    2017-03-01

    This paper investigates the passive control of a rotor instability named helicopter Ground Resonance (GR). The passive device consists of a set of essential cubic nonlinear absorbers named Nonlinear Energy Sinks (NES) each of them positioned on a blade. A dynamic model reproducing helicopter GR instability is presented and transformed to a time-invariant nonlinear system using a multi-blade coordinate transformation based on Fourier transform mapping the dynamic state variables into a non-rotating reference frame. Combining complexification, slow/fast partition of the dynamics and averaging procedure, a reduced model is obtained which allowed us to use the so-called geometric singular perturbation analysis to characterize the steady state response regimes. As in the case of a NES attached to the fuselage, it is shown that under suitable conditions, GR instability can be completely suppressed, partially suppressed through periodic response or strongly modulated response. Relevant analytical results are compared, for validation purposes, to direct integration of the reference and reduced models.

  15. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  16. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  17. Condition Monitoring for Helicopter Data. Appendix A

    Science.gov (United States)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  18. A VORTEX MODEL OF A HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2009-06-01

    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  19. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Geoffrey [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  20. Stabilization of Unmanned Air Vehicles Over Wireless Communication Channels

    Directory of Open Access Journals (Sweden)

    Qingquan Liu

    2013-03-01

    Full Text Available This paper addresses the stabilization problem for unmanned air vehicles over digital and wireless communication channels with time delay. In particular, the case with band-limited channels is considered. An observer-based state feedback control policy is employed to stabilize the linear control system of unmanned air vehicles. A sufficient condition on the minimum data rate for mean square stabilization is derived, and a new quantization, coding, and control policy is presented. Simulation results show the validity of the proposed scheme.

  1. Perspectives on Unmanned Aircraft Classification for Civil Airworthiness Standards

    Science.gov (United States)

    Maddalon, Jeffrey M.; Hayhurst, Kelly J.; Koppen, Daniel M.; Upchurch, Jason M.; Morris, A. Terry; Verstynen, Harry A.

    2013-01-01

    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. This paper provides observations related to how the current regulations for classifying manned aircraft could apply to UAS.

  2. Mission Planning for Unmanned Aircraft with Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær

    Unmanned aircraft invokes different feelings in people. Some see ruthless killing machines, other see a potential for fast and cheap distribution of goods, yet other see flexible and convenient emergency rescue drones. Regardless, advances and miniaturization in motors, sensors, and computer...... are mostly under human command, just like remote controlled planes have been for years. Actually the revolution of the drones is not so much a revolution of the unmanned aircraft as it is a digital control revolution. Only a few years ago, hopeful remote-control pilots had to invest countless hours...

  3. Fuzzy Technique Tracking Control for Multiple Unmanned Ships

    Directory of Open Access Journals (Sweden)

    Ramzi Fraga

    2013-01-01

    Full Text Available A Fuzzy logic control law is presented and implemented for trajectory tracking of multiple under actuated autonomous surface vessels. In this study, an individual unmanned ship is used to be the leader that tracks the desired path; other unmanned ships are used to be the followers which track the leader only by using its position. A fuzzy controller was implemented for the ship leader position with a constant velocity; however, the ship follower needed a fuzzy controller for the position and the forward velocity. Simulation results show that the fuzzy method presents an interesting robustness against the environmental disturbances and effective tracking results.

  4. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  5. Evaluation of ride quality prediction methods for operational military helicopters

    Science.gov (United States)

    Leatherwood, J. D.; Clevenson, S. A.; Hollenbaugh, D. D.

    1984-01-01

    The results of a simulator study conducted to compare and validate various ride quality prediction methods for use in assessing passenger/crew ride comfort within helicopters are presented. Included are results quantifying 35 helicopter pilots' discomfort responses to helicopter interior noise and vibration typical of routine flights, assessment of various ride quality metrics including the NASA ride comfort model, and examination of possible criteria approaches. Results of the study indicated that crew discomfort results from a complex interaction between vibration and interior noise. Overall measures such as weighted or unweighted root-mean-square acceleration level and A-weighted noise level were not good predictors of discomfort. Accurate prediction required a metric incorporating the interactive effects of both noise and vibration. The best metric for predicting crew comfort to the combined noise and vibration environment was the NASA discomfort index.

  6. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-01-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  7. A hybrid model of a subminiature helicopter in horizontal turn

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Gong Zhenbang; Liu Liang

    2007-01-01

    A hybrid model of a subminiature helicopter in horizontal turn is presented. This model is based on a mechanism model and its compensated neural network (NN). First, the nonlinear dynamics of a subminiature helicopter is established. Through the linearization of the nonlinear dynamics on a trim point, the linear time-invariant mechanism model in horizontal turn is obtained. Then a diagonal recursive neural network is used to compensate the model error between the mechanism model and the nonlinear model, thus the hybrid model of a subminiature helicopter in horizontal turn is achieved. Simulation results show that the hybrid model has higher accuracy than the mechanism model and the obtained compensated-NN has good generalization capability.

  8. Development and evaluation of a generic active helicopter vibration controller

    Science.gov (United States)

    Davis, M. W.

    1984-01-01

    A computerized generic active controller is developed, which alleviates helicopter vibration by closed-loop implementation of higher harmonic control (HHC). In the system, the higher harmonic blade pitch is input through a standard helicopter swashplate; for a four-blade helicopter rotor the 4/rev vibration in the rotorcraft is minimized by inducing cyclic pitch motions at 3, 4, and 5/rev in the rotating system. The controller employs the deterministic, cautious, and dual control approaches and two linear system models (local and global), as well as several methods of limiting control. Based on model testing, performed at moderate to high values of forward velocity and rotor thrust, reductions in the rotor test apparatus vibration from 75 to 95 percent are predicted, with HHC pitch amplitudes of less than one degree. Good performance is also noted for short-duration maneuvers.

  9. Modelling and Daisy Chaining Control Allocation of a Multirotor Helicopter with a Single Tilting Rotor

    Directory of Open Access Journals (Sweden)

    Robert Porter

    2016-11-01

    Full Text Available This paper presents the development and implementation of a single tilting rotor multirotor helicopter. A single tilting rotor multirotor helicopter is proposed that allows for decoupled lateral acceleration and attitude states. A dynamics model of the proposed multirotor helicopter is established to enable control system development. A control system architecture and daisy chaining-based control allocation scheme is developed and implemented. The control architecture facilitates the control of decoupled lateral accelerations and attitudes. Further, a computational and experimental analysis is undertaken and offers evidence that the proposed multirotor helicopter and control system architecture enables the multirotor helicopter to achieve lateral accelerations without requiring attitude actuation.

  10. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    Science.gov (United States)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  11. Helicopter air resonance modeling and suppression using active control

    Science.gov (United States)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  12. Identification of Helicopter Rigid Body Dynamics from Flight Data.

    Directory of Open Access Journals (Sweden)

    Jatinder Singh

    1998-01-01

    Full Text Available This paper discusses helicopter modelling and identification related aspects. By applying thesystem identification methodology, longitudinal and lateral-directional rigid body helicopter dynamics are identified from flight data. Aerodynamic parameters from single input excitation as wellas multimanoeuver evaluation are estimated utilising output-error approach. The formulatedmathematical models yield adequate fit to measured time histories. Results obtained from the proof-of-match for model validation indicate that the identified derivatives can satisfactorily predictlongitudinal dynamics to a given arbitrary input. It is further demonstrated for the present study thatlateral body dynamics can be adequately predicted by including cross-coupling terms in the estimation model.

  13. Flying Unmanned Aircraft: A Pilot's Perspective

    Science.gov (United States)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  14. Observing snow cover using unmanned aerial vehicle

    Science.gov (United States)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  15. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed posit

  16. UNMANNED AERIAL VEHICLE USE FOR WOOD CHIPS PILE VOLUME ESTIMATION

    Directory of Open Access Journals (Sweden)

    M. Mokroš

    2016-06-01

    Full Text Available The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000. We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993. We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  17. High throughput phenotyping using an unmanned aerial vehicle

    Science.gov (United States)

    Field trials are expensive and labor-intensive to carry out. Strategies to maximize data collection from these trials will improve research efficiencies. We have purchased a small unmanned aerial vehicle (AEV) to collect digital images from field plots. The AEV is remote-controlled and can be guided...

  18. Dead Slow: Unmanned Aerial Vehicles Loitering in Battlespace

    Science.gov (United States)

    Blackmore, Tim

    2005-01-01

    Unmanned (or Uninhabited) Aerial Vehicles are a key part of the American military's so-called revolution in military affairs (RMA) as practiced over Iraq. They are also part of the drive to shift agency away from humans and toward machines. This article considers the ways in which humans have, in calling on high technologies to distance them from…

  19. Diagnosis of airspeed measurement faults for unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2014-01-01

    Airspeed sensor faults are common causes for incidents with unmanned aerial vehicles with pitot tube clogging or icing being the most common causes. Timely diagnosis of such faults or other artifacts in signals from airspeed sensing systems could potentially prevent crashes. This paper employs...

  20. Decision-making for unmanned flight in icing conditions

    NARCIS (Netherlands)

    Armanini, S.F.; Polak, M.; Gautrey, J.E.; Lucas, A.; Whidborne, J.F.

    2015-01-01

    With the increased use of unmanned aerial systems (UAS) for civil and commercial applications, there is a strong demand for new regulations and technology that will eventually permit for the integration of UAS in unsegregated airspace. This requires new technology to ensure sufficient safety and a s

  1. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  2. Optimal event handling by multiple unmanned aerial vehicles

    NARCIS (Netherlands)

    Roo, de Martijn; Frasca, Paolo; Carloni, Raffaella

    2016-01-01

    This paper proposes a control architecture for a fleet of unmanned aerial vehicles that is responsible for handling the events that take place in a given area. The architecture guarantees that each event is handled by the required number of vehicles in the shortest time, while the rest of the fleet

  3. Mechatronic design of a robotic manipulator for unmanned aerial vehicles

    NARCIS (Netherlands)

    Fumagalli, M.; Stramigioli, S.; Carloni, R.

    2016-01-01

    The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator realize

  4. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  5. Developing Performance Measures for Manned-Unmanned Teaming Skills

    Science.gov (United States)

    2015-02-01

    a new concept (Stewart, 1985; Stewart, Dohme, & Nullmeyer, 1999). For the past two decades, performance measures have been within the capabilities...that flight training grades alone may not be a valid predictor of future aviator performance in the unit. For instance, Bales, Rickus, and Ambler...Research Report 1983 Developing Performance Measures for Manned-Unmanned Teaming Skills John E. Stewart and

  6. Unmanned Aerial Vehicle Use for Wood Chips Pile Volume Estimation

    Science.gov (United States)

    Mokroš, M.; Tabačák, M.; Lieskovský, M.; Fabrika, M.

    2016-06-01

    The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000). We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993). We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  7. CADASTRAL AUDIT AND ASSESSMENTS USING UNMANNED AERIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    K. Cunningham

    2012-09-01

    Full Text Available Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR laser scanners, and now synthetic aperture radar (SAR. At the University of Alaska Fairbanks (UAF, we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  8. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    Science.gov (United States)

    Eid, B. M.; Chebil, J.; Albatsh, F.; Faris, W. F.

    2013-12-01

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment.

  9. Emerging Trends in China’s Development of Unmanned Systems

    Science.gov (United States)

    2015-01-01

    UUV prototype (Beijing University of Aeronautics and Astronautics); Haiyan glider-type UUV (Tianjin Univer- sity); bionic flapping-wing UUV (College of...analyst: “UAVs will increasingly become ‘ tip of the spear’ in modern conflict.”34 Yet this assessment seemingly neglects the fact that many unmanned

  10. The Test and Evaluation of Unmanned and Autonomous Systems

    Science.gov (United States)

    2008-12-01

    SUBTITLE The Test and Evaluation of Unmanned and Autonomous Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...adaptive behavior. Only by instituting positive feedback and negative feedback test frameworks, can these systems be sustained through intergenerational

  11. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  12. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  13. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  14. Operators of Air Force Unmanned Aircraft Systems: Breaking Paradigms

    Science.gov (United States)

    2009-01-01

    the op­ portunity to fly means even more to them than their professional military service.35 Lt Col James Dawkins nicely sums up the cultural...Association, San Diego, CA, 22 March 2006). 36. Lt Col James C. Dawkins , “Unmanned Combat Aerial Vehicles: Examining the Political, Moral, and So­

  15. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Science.gov (United States)

    2012-03-09

    ... infrastructure and research needs; and (C) Consult with the National Aeronautics and Space Administration and the... Aeronautics and Space Administration (NASA); (4) Address both civil and public unmanned aircraft systems; (5... be flown using a data link to transmit commands to the aircraft. They may perform a variety of...

  16. Decision-making for unmanned flight in icing conditions

    NARCIS (Netherlands)

    Armanini, S.F.; Polak, M.; Gautrey, J.E.; Lucas, A.; Whidborne, J.F.

    2015-01-01

    With the increased use of unmanned aerial systems (UAS) for civil and commercial applications, there is a strong demand for new regulations and technology that will eventually permit for the integration of UAS in unsegregated airspace. This requires new technology to ensure sufficient safety and a s

  17. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2012-01-01

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The innova

  18. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  19. Mechatronic design of a robotic manipulator for unmanned aerial vehicles

    NARCIS (Netherlands)

    Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2016-01-01

    The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator

  20. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  1. Optimal event handling by multiple unmanned aerial vehicles

    NARCIS (Netherlands)

    de Roo, Martijn; Frasca, Paolo; Carloni, Raffaella

    This paper proposes a control architecture for a fleet of unmanned aerial vehicles that is responsible for handling the events that take place in a given area. The architecture guarantees that each event is handled by the required number of vehicles in the shortest time, while the rest of the fleet

  2. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  3. 14 CFR 136.13 - Helicopter performance plan and operations.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.13 Helicopter performance plan and operations. (a) Each operator must complete a performance plan before...

  4. Designing emergency-medical-service helicopter interiors using virtual manikins.

    Science.gov (United States)

    Michalski, Rafal; Grobelny, Jerzy

    2014-01-01

    Researchers employed digital manikins to determine the space necessary in an emergency-medical-service helicopter to effectively and efficiently conduct life-saving medical procedures. To simulate resuscitation with appropriate digital human models, they used Anthropos ErgoMAX modeling software in the 3D Studio Max environment.

  5. 77 FR 39911 - The New York North Shore Helicopter Route

    Science.gov (United States)

    2012-07-06

    ... consistent with aviation safety. In light of the minimal costs imposed and the substantial number and volume... noted that the helicopter noise interferes with sleep, conversation, and outdoor activities. Still... concerns, at the NPRM stage and now, the action was--and is--not expected to result in more than...

  6. DYNAMICAL VARIABLE STRUCTURE CONTROL OF A HELICOPTER IN VERTICAL FLIGHT

    OpenAIRE

    Sira-Ramirez, Hebertt; Zribi, Mohamed; Ahmad, Shaheen

    1991-01-01

    In this article, a dynamical multivariable discontinuous feedback control strategy of the sliding nlode type is proposed for the altitude stabilization of a nonlinear helicopter model in vertical flight. Vlrhile retaining the basic robustness features associated to sliding mode control policies, the proposed approach also results in smoothed out (i.e., non-chattering) input trajectories and controlled state variable responses.

  7. From Self-Flying Helicopters to Classrooms of the Future

    Science.gov (United States)

    Young, Jeffrey R.

    2012-01-01

    On a summer day four years ago, a Stanford University computer-science professor named Andrew Ng held an unusual air show on a field near the campus. His fleet of small helicopter drones flew under computer control, piloted by artificial-intelligence software that could teach itself to fly after watching a human operator. By the end of the day,…

  8. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-09-13

    ...) Model S-92A helicopter, which proposed revising the Rotorcraft Flight Manual (RFM), Operating... carrying Class D external loads. This Supplemental NPRM is prompted by a recent design approval, which... PROHIBITED.'' That NPRM was prompted by a mistake in the RFM, which allowed ``Class D'' rotorcraft...

  9. Robust Helicopter Stabilization in the Face of Wind Disturbance

    DEFF Research Database (Denmark)

    A. Danapalasingam, Kumeresan; Leth, John-Josef; la Cour-Harbo, Anders

    2010-01-01

    When a helicopter is required to hover with minimum deviations from a desired position without measurements of an affecting persistent wind disturbance, a robustly stabilizing control action is vital. In this paper, the stabilization of the position and translational velocity of a nonlinear...

  10. 77 FR 58971 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters

    Science.gov (United States)

    2012-09-25

    ... cargo compartment shelf without reinforcement per Modification 365P081895. Within 110 hours time-in... install a ] shelf reinforcement kit per helicopter at an average labor rate of $85 per work hour. Required... distinction; and 4. Will not have a significant economic impact, positive or negative, on a substantial...

  11. Ground vibration tests of a helicopter structure using OMA techniques

    Science.gov (United States)

    Ameri, N.; Grappasonni, C.; Coppotelli, G.; Ewins, D. J.

    2013-02-01

    This paper is focused on an assessment of the state-of-the-art of operational modal analysis (OMA) methodologies in estimating modal parameters from output responses on helicopter structures. For this purpose, a ground vibration test was performed on a real helicopter airframe. In the following stages, several OMA techniques were applied to the measured data and compared with the results from typical input-output approach. The results presented are part of a more general research activity carried out in the Group of Aeronautical Research and Technology in Europe (GARTEUR) Action Group 19, helicopter technical activity, whose overall objective is the improvement of the structural dynamic finite element models using in-flight test data. The structure considered is a medium-size helicopter, a time-expired Lynx Mk7 (XZ649) airframe. In order to have a comprehensive analysis, the behaviour of both frequency- and time-domain-based OMA techniques are considered for the modal parameter estimates. An accuracy index and the reliability of the OMA methods with respect to the standard EMA procedures, together with the evaluation of the influence of the experimental setup on the estimate of the modal parameters, will be presented in the paper.

  12. Flight vibrations and bleeding in helicoptered patients with pelvic fracture.

    Science.gov (United States)

    Carchietti, Elio; Cecchi, Adriana; Valent, Francesca; Rammer, Raphael

    2013-01-01

    Depending on their amplitude and frequency, vibrations may facilitate bleeding and worsen the prognosis of patients with pelvic fractures transported by helicopter emergency medical services (HEMS). We measured the range of frequencies and amplitudes of forced vibrations produced by the helicopter used by the HEMS of the Italian Friuli Venezia Giulia region on the pelvis of transported persons. We performed 3 flight tests with 3 different volunteers (mass 70, 80, and 90 kg, respectively) loaded on the helicopter's stretcher and recorded the amplitudes and frequencies of vibrations through a triaxis sensor placed on the HEMS stretcher in the pelvis area. The flight profile planned was identical for each of the 3 iterations. Over the whole flight, the frequencies of vibration were between 26.4 and 53.5 Hz, and the greastest amplitude was 0.035 mm. The vibrations recorded in the helicopter may facilitate bleeding in unstable fractures. In the management of patients with pelvic fractures, HEMS crews should provide prehospital care that includes the use of specific splinting devices in addition to the spinal board, which allows an early immobilization of fractures and the limitation of pelvic motion.

  13. Routing helicopters for crew exchanges on off-shore locations

    NARCIS (Netherlands)

    Sierksma, G.; Tijssen, G.A.

    1998-01-01

    This paper deals with a vehicle routing problem with split demands, namely the problem of determining a flight schedule for helicopters to off-shore platform locations for exchanging crew people employed on these platforms. The problem is formulated as an LP model and solved by means of a column-gen

  14. At Issue: Helicopter Parents and Millennial Students, an Annotated Bibliography

    Science.gov (United States)

    Pricer, Wayne F.

    2008-01-01

    Technological advances have made it easy for parents and children--many of them students--to communicate instantaneously. Devices and technologies such as cell phones, laptops, texting, and e-mail all enable various forms of instant communication. "Helicopter parents" are regarded as very overprotective and overly involved in the affairs of their…

  15. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  16. 77 FR 42971 - Airworthiness Directives; Various Restricted Category Helicopters

    Science.gov (United States)

    2012-07-23

    ... that is removed with a wire brush or steel wool in the threaded portion of the mast. FAA's.... Costs of Compliance We estimate that this AD will affect 80 helicopters of U.S. Registry, and that... Flexibility Act. We prepared an economic evaluation of the estimated costs to comply with this AD and...

  17. 77 FR 14310 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-03-09

    ... No. 29.00.13, dated July 26, 2010 (ASB 29.00.13), which specifies installing two siliconed glass wool... proposed AD does not, as this model is not type certificated in the U.S. Costs of Compliance We estimate that this proposed AD would affect 695 helicopters of U.S. Registry. We estimate that operators...

  18. Aeromechanical Analysis of a Smart Helicopter Rotor in Forward Flight

    Directory of Open Access Journals (Sweden)

    Jacopo Serafini

    2015-02-01

    Full Text Available This paper deals with a smart system integrated into a helicopter blade aimed at giving an anhedral shape to the blade tip region to alleviate the blade-vortex interaction phenomenon that may cause reduced helicopter performance in terms of noise and vibrations. The blade tip morphing is obtained through the joint action of a magneto-rheological fluid (MRF device, a shape-memory alloy ribbons- based (SMA device and a set of concentrated masses properly distributed spanwise. The presence of this smart actuator (particularly the concentrated masses inside the blades modifies the aeromechanical behaviour of the rotor and may be detrimental in terms of hub vibratory loads, pitch control effectiveness and aeroelastic stability. Following a previous literature work concerning with the effectiveness of the smart actuated rotor in hovering conditions, the present paper focuses on the aeromechanical effects due to the inclusion of the smart device in a four-bladed helicopter rotor in forward flight where blade morphing is not needed. Aim of this work is to investigate on the compatibility of the smart system with the required aeromechanical performance of the rotor, highlighting the feasibility of its application on helicopters.

  19. Evaluation of Dutch Helicopter Emergency Medical Services in transporting children

    NARCIS (Netherlands)

    Peters, J.H.; Beekers, C.; Eijk, R.J.R.; Edwards, M.J.; Hoogerwerf, N.

    2014-01-01

    OBJECTIVE: In the Netherlands, helicopter emergency medical services (HEMS) function as an adjunct to paramedic ambulance service delivering hospital-level medical care to a prehospital location. The main goal of Dutch HEMS is to provide on-scene medical expertise and not primarily to serve as trans

  20. 78 FR 17591 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-03-22

    ... elements with 10 micron fuel filter elements at the next scheduled inspection or within 150 flight hours... identification plate, cross out the last two digits (``09'') of the ] existing fuel filter P/N 52-2145-009, and... helicopters to require replacing each forward and aft fuel system 40 micron fuel filter element with a...

  1. Acoustic Helicopter and FW Aircraft Detection and Classification

    NARCIS (Netherlands)

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other

  2. 78 FR 24371 - Airworthiness Directives; Robinson Helicopter Company (Robinson)

    Science.gov (United States)

    2013-04-25

    ... AD is prompted by three accidents that occurred because the fuel shut-off valve was inadvertently... review the referenced service information at the FAA, Office of the Regional Counsel, Southwest Region.... Discussion Three accidents have occurred with R22 helicopters because the lever-handle fuel valve was...

  3. 78 FR 60185 - Airworthiness Directives; Robinson Helicopter Company (Robinson)

    Science.gov (United States)

    2013-10-01

    ... with a newer design fuel shut-off valve. This AD is prompted by three accidents that occurred because... Regional Counsel, Southwest Region, 2601 Meacham Blvd., Room 663, Fort Worth, Texas 76137. Examining the AD... valve with a newly designed fuel shut-off valve. Three accidents have occurred with R22 helicopters...

  4. 77 FR 58973 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-09-25

    ... helicopter nose to drop and hit the ground while the rotor blades are spinning. DATES: We must receive... designs. Related Service Information We reviewed Eurocopter ASB No. 32.00.18, Revision 2, dated July 12... the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for...

  5. 78 FR 63853 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters

    Science.gov (United States)

    2013-10-25

    ... likely to exist or develop on other helicopters of these same type designs. Related Service Information... necessary to modify the log card of the tail rotor blade assembly due to some of the pitch horn part numbers... air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds...

  6. Past applications and future potential of variable stability research helicopters

    Science.gov (United States)

    Hindson, W. S.

    1982-01-01

    The historical development of variable-stability research helicopters and some of their previous applications are presented as a guide for assessing their future potential. The features of three general-purpose rotary-wing flight research aircraft that provide complementary capabilities are described briefly, and a number of future applications are proposed.

  7. 78 FR 24041 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-04-24

    ... removal and inspection is required. The actions are intended to prevent vibration due to a failed bearing, failure of the T/R, and subsequent loss of control of the helicopter. DATES: This AD becomes effective May... identified in this AD, contact American Eurocopter Corporation, 2701 N. Forum Drive, Grand Prairie, TX 75052...

  8. 78 FR 58256 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-09-23

    ... proposed actions are intended to prevent vibration due to a failed bearing, failure of the tail rotor, and subsequent loss of control of the helicopter. DATES: We must receive comments on this proposed AD by November..., contact American Eurocopter Corporation, 2701 N. Forum Drive, Grand Prairie, TX 75052; telephone (972) 641...

  9. Acoustic Helicopter and FW Aircraft Detection and Classification

    NARCIS (Netherlands)

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other targets

  10. 77 FR 16137 - Airworthiness Directives; Eurocopter France Model Helicopters

    Science.gov (United States)

    2012-03-20

    ...-5527) is U.S. Department of Transportation, Docket Operations Office, M-30, West Building Ground Floor... ventilation in the area on the star arm end on ``helicopters operated in hot climatic conditions and/or... a pilot. We omit the phrase ``hot climatic conditions and/or in tropical and damp...

  11. Helicopter collision avoidance and brown-out recovery with HELLAS

    Science.gov (United States)

    Seidel, Christian; Schwartz, Ingo; Kielhorn, Peter

    2008-10-01

    EADS Germany is the world market leader in commercial and military Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Federal Police and Royal Thai Air Force. HELLAS was also successfully evaluated by the Foreign Comparative Test Program (FCT) of the U.S. Army and other governmental agencies. Currently the successor system for military applications, HELLAS-Awareness, is in qualification phase. It will have extended sensor performance, enhanced real-time data processing capabilities and advanced human machine interface (HMI) features. Flight tests on NH90 helicopter have been successfully performed. Helicopter series integration is scheduled to begin from 2009. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate. We will show the HMI representations. This HELLAS system is the basis for a 3 dimensional see-and-remember-system for brown-out recovery. When landing in sandy or dusty areas the downwash of the helicopter rotor causes clouds of visually-restrictive material that can completely obstruct the pilot's outside reference, resulting in a complete loss of situational awareness and spatial orientation of the pilot which can end up in total loss of aircraft control and dangerous accidents. The brown-out recovery system presented here creates an augmented enhanced synthetic vision of the landing area with the surrounding which is based on HELLAS range image data as well as altimeter and inertial reference information.

  12. Eye injury risk associated with remote control toy helicopter blades.

    Science.gov (United States)

    Alphonse, Vanessa D; Kemper, Andrew R; Rowson, Steven; Duma, Stefan M

    2012-01-01

    Eye injuries can be caused by a variety of consumer products and toys. Recently, indoor remote controlled (RC) toy helicopters have become very popular. The purpose of this study is to quantify eye injury risk associated with five commercially available RC toy helicopter blades. An experimental matrix of 25 tests was developed to test five different RC toy helicopter blades at full battery power on six postmortem human eyes. A pressure sensor inserted through the optic nerve measured intraocular pressure. Corneal abrasion was assessed post-impact using fluorescein dye. Intraocular pressure was correlated to injury risk for hyphema, lens damage, retinal damage, and globe rupture using published risk functions. All tests resulted in corneal abrasions; however, no other injuries were observed. The 25 tests produced an increase intraocular pressure between 15.2 kPa and 99.3 kPa (114.3 mmHg and 744.7 mmHg). Calculated blade velocities ranged between 16.0 m/s and 25.4 m/s. Injury risk for hyphema was a maximum of 0.2%. Injury risk for lens damage, retinal damage, and globe rupture was 0.0% for all tests. Blade design parameters such as length and mass did not affect the risk of eye injury. This is the first study to quantify the risk of eye injury from RC toy helicopter blades. While corneal abrasions were observed, more serious eye injuries were neither observed nor predicted to have occurred. Results from this study are critical for establishing safe design thresholds for RC toy helicopter blades so that more serious injuries can be prevented.

  13. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    Science.gov (United States)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  14. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    Science.gov (United States)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  15. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  16. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  17. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    Science.gov (United States)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  18. A Possibility of the Aeromagnetic Survey by a Small Unmanned Aerial Vehicles, Ant-Plane

    Science.gov (United States)

    Funaki, M.

    2004-12-01

    Magnetic surveys by helicopters and airplanes are a useful technique to estimate the geological structure under the ice sheets in Antarctica. However, it is not easy to employ this due to the transportation of the planes, logistic supports, security, and financial problems. Members of Ant-Plane Project have investigated the unmanned aerial vehicles (UAV, Ant-Plane) for the solution of the problems. Recently the aeromagnetic survey is verified by a model airplane navigated by GPS and a magneto-resistant (MR) magnetometer. The airplane (Ant-Plane) consists of 2m wing length, 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 15kg including 2 litter fuels, the MR magnetometer, a video camera and an emergency parachute. The speed is 130 km/h and maximum height is 2000m. The magnetometer system consists of a 3- component MR magnetometer, GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, number of satellite and time are recorded in every second during 3 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown heading of the plane. November 2003 we succeeded the magnetic survey by the Ant-Plane at the slope of Sakurajima Volcano, Kyushu, Japan. The plane rotated 9 times along the programmed route of about 4x1 km, total flight distance of 80 km, keeping the altitude of 700 m. Consequently we obtained almost similar field variation on the route. The maximum deviation of each course was less than 100 m. Therefore, we concluded that the aeromagnetic survey in the relatively large anomaly areas can be performed by Ant-Plane with the MR magnetometer system. Finally the plane flew up 1400m with a video camera to take the photo of active volcano Sakurajima (1117m). It succeeded to take photos of craters through steam from the volcano.

  19. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    Mantas Brazinskas

    2016-10-01

    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  20. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  1. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  2. An efficient navigation-control system for small unmanned aircraft

    Science.gov (United States)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  3. Trends in the development of unmanned marine technology

    Directory of Open Access Journals (Sweden)

    Olejnik Adam

    2016-06-01

    Full Text Available The article constitutes an attempt to identify current tendencies regarding the development of unmanned marine technologies such as unmanned surface and underwater vehicles. The analyses were performed on the basis of available literature, databases on research projects and internet sources. The material has been divided with regard to the location the research was conducted, the following groups being identified: the European Union, the United States of America and Poland. On the basis of the review of objectives and final effects of projects, tendencies in the development of the discussed marine technology have been identified. An interesting result of the review consists in an observation that Polish R&D works in this area are placed within the main identified developmental trends. Unfortunately, their effects are incomparable due to the minuteness of national funds allocated to R&D as opposed to other countries.

  4. Counter unmanned aerial system testing and evaluation methodology

    Science.gov (United States)

    Kouhestani, C.; Woo, B.; Birch, G.

    2017-05-01

    Unmanned aerial systems (UAS) are increasing in flight times, ease of use, and payload sizes. Detection, classification, tracking, and neutralization of UAS is a necessary capability for infrastructure and facility protection. We discuss test and evaluation methodology developed at Sandia National Laboratories to establish a consistent, defendable, and unbiased means for evaluating counter unmanned aerial system (CUAS) technologies. The test approach described identifies test strategies, performance metrics, UAS types tested, key variables, and the necessary data analysis to accurately quantify the capabilities of CUAS technologies. The tests conducted, as defined by this approach, will allow for the determination of quantifiable limitations, strengths, and weaknesses in terms of detection, tracking, classification, and neutralization. Communicating the results of this testing in such a manner informs decisions by government sponsors and stakeholders that can be used to guide future investments and inform procurement, deployment, and advancement of such systems into their specific venues.

  5. Hyperspectral and photogrammetric helicopter-based measurements over western Greenland

    Science.gov (United States)

    Tedesco, M.; Mote, T. L.; Smith, L. C.; Rennermalm, A. K.; Lampkin, D. J.

    2015-12-01

    We discuss the setup and results of an experiment aimed at collecting helicopter-based hyperspectral and photogrammetry measurements over the western Greenland ice sheet (GrIS) for studying the evolution of surface albedo and surface hydrological features. Data were collected during three days at the end of July 2015 concurrently with in-situ hydrological measurements of runoff and discharge of a supraglacial stream (Rio Behar) and along the K-transect up to an elevation of ~ 1500 m a.s.l. Hyperspectral measurements of incoming and outgoing radiation collected at a radiometric resolution of 10 nm were acquired in conjunction with geo-located images by means of a digital camera mounted on the same platform. Gyroscopes and 3-D accelerometers were also used to estimate the relative orientation of the sensors collecting the incoming and outgoing solar radiation. To our knowledge, despite their importance, it is the first time that such measurements have been collected over the Greenland ice sheet from an airborne platform. The sensors were installed inside a pod that was specifically modified for our purpose. The impact of the helicopter on the recorded incoming radiation was characterized by collecting measurements in the absence and presence of the helicopter when the rotors were either off or on. Moreover, the effect of the relative position of the helicopter with respect to the sun's position was also quantified by ad-hoc maneuvers during take off and landing with the helicopter spinning around the main rotor axis. The geo-referenced images collected by our instrument provide an unprecedented ground spatial resolution of ~ 6 cm, hence allowing us to study the spatial distribution of surface hydrological features, such as cryoconite holes, small order streams and cracks developing into larger moulins. Such images were also used to evaluate the application of RGB data to estimate streams and lakes surface area and depths. Our helicopter-based hyperspectral and

  6. Contributions to the dynamics of helicopters with active rotor controls

    Science.gov (United States)

    Malpica, Carlos A.

    This dissertation presents an aeromechanical closed loop stability and response analysis of a hingeless rotor helicopter with a Higher Harmonic Control (HHC) system for vibration reduction. The analysis includes the rigid body dynamics of the helicopter and blade flexibility. The gain matrix is assumed to be fixed and computed off-line. The discrete elements of the HHC control loop are rigorously modeled, including the presence of two different time scales in the loop. By also formulating the coupled rotor-fuselage dynamics in discrete form, the entire coupled helicopter-HHC system could be rigorously modeled as a discrete system. The effect of the periodicity of the equations of motion is rigorously taken into account by converting the system into an equivalent system with constant coefficients and identical stability properties using a time lifting technique. The most important conclusion of the present study is that the discrete elements in the HHC loop must be modeled in any HHC analysis. Not doing so is unconservative. For the helicopter configuration and HHC structure used in this study, an approximate continuous modeling of the HHC system indicates that the closed loop, coupled helicopter-HHC system remains stable for optimal feedback control configurations which the more rigorous discrete analysis shows can result in closed loop instabilities. The HHC gains must be reduced to account for the loss of gain margin brought about by the discrete elements. Other conclusions of the study are: (i) the HHC is effective in quickly reducing vibrations, at least at its design condition, although the time constants associated with the closed loop transient response indicate closed loop bandwidth to be 1 rad/sec on average, thus overlapping with FCS or pilot bandwidths, and raising the issue of potential interactions; (ii) a linearized model of helicopter dynamics is adequate for HHC design, as long as the periodicity of the system is correctly taken into account, i

  7. Classification analysis of vibration data from SH-60B Helicopter Transmission Test Facility

    OpenAIRE

    Anderson, Gregory L.

    1997-01-01

    Approved for public release; distribution is unlimited Health and Usage Monitoring Systems (HUMS) is an emerging technology in helicopter aviation. The United States Navy is evaluating its viability for use on its helicopter fleet. HUMS uses sensors placed throughout the helicopter to monitor and record vibration signals and numerous other aircraft operating parameters. This thesis evaluates the vibration signals recorded by a HUMS system using a statistical technique called tree structure...

  8. Detection of Naturally Occurring Gear and Bearing Faults in a Helicopter Drivetrain

    Science.gov (United States)

    2014-01-01

    Annual Forum, Montreal, Canada, 2002. 3. Samuel, P. D.; Pines, D. J. A Review of Vibration Based Techniques for Helicopter Transmission Diagnostics...Detection of Naturally Occurring Gear and Bearing Faults in a Helicopter Drivetrain by Kelsen E. LaBerge, Eric C. Ames, and Brian D. Dykas...5066 ARL-TR-6795 January 2014 Detection of Naturally Occurring Gear and Bearing Faults in a Helicopter Drivetrain Kelsen E. LaBerge

  9. 无人机在电力线路巡视中的应用%Application of Unmanned Aerial Vehicle in Inspecting Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    汤明文; 戴礼豪; 林朝辉; 王芳东; 宋福根

    2013-01-01

    With the rapid development of Unmanned Aerial Vehicle (UAV), the UAV has made important breakthroughs in remote control, cruising time and flying quality, which provides a very good prospect for UAV' s application in transmission line maintenance. The UAV' s application in inspecting power transmission lines was discussed in detail in this paper in terms of the model selection principle, the patrol mode, the application features of the unmanned helicopter and the fixed-wing UAVs, the flight type and the relay model of the communication link system.%随着无人机技术的飞速发展,无人机在远程遥控、续航时间、飞行品质上有了明显的突破,从而为其在电力作业中的应用提供了良好的发展前景.探讨了无人机在电力线路巡视中的选型原则、巡检模式,概括了电力线路巡检作业中无人直升机和固定翼机应用特点,同时对无人机飞行方式、通信链路系统中继模式、无人机巡检模式进行了深入探讨.对无人机巡检模式的讨论侧重各种不同巡检模式的应用特点及应用特性分析,为不同情况下无人机巡检中继方式的选择提供指导.

  10. The unmanned aerial vehicles in international trade and their regulation

    OpenAIRE

    Iveta Cerna

    2016-01-01

    Objective to review the current situation in production and distribution of unmanned aerial vehicles further ndash UAVs in developed countries as well as the legal regulation issues. Methods abstractlogic summarizing and observation comparative analysis. Results The analysis of international trade in UAVs revealed the leading countries dominating the market Israel the USA and Canada. The leading importers are India UK and France. China and Russian Federation are important ...

  11. Cloud-Based Distributed Control of Unmanned Systems

    Science.gov (United States)

    2015-04-01

    visualization of live data streams (i.e. video), but not on the storage and distribution mechanisms for the collected data. SSC Pacific’s UxV to the Cloud via...capable of storing and distributing the unmanned-vehicle collected data, cloud technologies (e.g. Accumulo) is chosen as the underlying data storage ...infrastructure. 3.1 Accumulo The cloud infrastructure is implemented using Accumulo, which is a distributed key-value based data storage and

  12. Unmanned aerial vehicles: a study of gas turbine application

    OpenAIRE

    Lobik, David P.

    1995-01-01

    A survey of commercially-available gas turbine, spark and compression ignition engines was conducted to evaluate their current and future relative suitability for the DoD's unmanned aerial vehicle (UAV) short and close range program. The effects on performance associated with reducing gas turbine engine size from full scale to UAV dimensions were examined. A small turbo-jet engine (produced in France for remotely piloted vehicles) was procured in order to evaluate what levels of performance, ...

  13. Design of a Smart Unmanned Ground Vehicle for Hazardous Environments

    CERN Document Server

    Chakraborty, Saurav

    2010-01-01

    A smart Unmanned Ground Vehicle (UGV) is designed and developed for some application specific missions to operate predominantly in hazardous environments. In our work, we have developed a small and lightweight vehicle to operate in general cross-country terrains in or without daylight. The UGV can send visual feedbacks to the operator at a remote location. Onboard infrared sensors can detect the obstacles around the UGV and sends signals to the operator.

  14. MANNED OR UNMANNED – DOES THIS REALLY MATTER?

    Directory of Open Access Journals (Sweden)

    B. Neininger

    2012-09-01

    Full Text Available This paper is an attempt to compare, and possibly combine, the capabilities and technologies available for using either small UAS or small manned aircraft, or both, for environmental research applications including geomatics. The paper is emphasising the view that instead of making one or the other platform technology (manned or unmanned the deciding factor for specific applications in an a priori sense, it would be a better approach to evaluate each technology's suitability and merits in terms of ease of use (instrumentation integration, operational aspects, potential restrictions, safety, etc. and also cost-efficiency. As will be shown, in some cases, this might even mean that a combination of manned and unmanned aerial platforms could be the optimum choice for a specific set of tasks. The paper introduces a number of manned and unmanned small aerial platforms and looks at their specific proven and envisaged capabilities for specific tasks. It also introduces the concept of using manned and unmanned aerial platform in tandem, maximising the usefulness of both technologies together for specific tasks. The authors' intent is to encourage a close look at all technologies available today, or in the near future, and to make that the basis for decisions about which ones are the most suitable ones for specific applications or projects. Two field campaigns in which METAIR and ARA have operated their small manned aerial platforms are re-analysed to give an example of the considerations that should be evaluated to decide which platform technology might be the most suitable one for a specific project. One of the projects ("TIPPEX" was flown in 2008 in Northern Australia, while the other one ("MAIOLICA" had flight campaigns in 2009 and 2011 in Switzerland.

  15. Droning on: American strategic myopia toward unmanned aerial systems

    OpenAIRE

    Cabello, Carlos S.

    2013-01-01

    Approved for public release; distribution is unlimited. Throughout the past decade of wars, the U.S. has deployed unmanned aerial systems, commonly referred to as drones, from Africa to Asia collecting intelligence and targeting adversaries. The nation now stands at a crossroad seeking to develop future American drone policy against an evolving threat while at the same time shaping global norms. The past decade of American drone use focused on short-term benefits, intelligence collection a...

  16. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  17. The Problem of Mini-Unmanned Aerial Vehicle Non-Segregated Flight Operations

    Directory of Open Access Journals (Sweden)

    Tone Magister

    2007-11-01

    Full Text Available The paper first illustrates the future civil application opportunitiesfor unmanned aerial vehicles and their unique operationalcapabilities. The expectations of the main stakeholdersare summarized and the main concerns and problem areas ofnon-segregated civil unmanned aerial vehicles flight operationsare identified considering relevant aviation regulatory aspects.The key technologies necessary for a safe unmanned aerial vehiclesoperation are explained. The intention of the paper is tocontribute to finding the optimal approach to the developmentstrategies and safe solution for the integration of today 's and futurecivil unmanned aerial vehicles into the non-segregated airspace.

  18. A Structurally-Integrated Ice Detection and De-Icing System for Unmanned Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned air vehicles (UAVs) are becoming more prevalent for Suborbital Scientific Earth Exploration, which often involves high altitude, long endurance flight...

  19. Integration, Testing, and Analysis of Multispectral Imager on Small Unmanned Aerial System for Skin Detection

    Science.gov (United States)

    2014-03-01

    INTEGRATION, TESTING, AND ANALYSIS OF MULTISPECTRAL IMAGER ON SMALL UNMANNED AERIAL SYSTEM FOR SKIN......12 2.5 Image Registration ................................................................................................16 2.6

  20. Evaluating the Impact of Unrestricted Operation of Unmanned Aircraft Systems in the National Airspace System

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aircraft systems (UAS) can be used for scientific, emergency management, and defense missions, among others. The existing federal air regulations,...

  1. Quantifying ground impact fatality rate for small unmanned aircraft

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2017-01-01

    One of the major challenges of conducting operation of unmanned aircraft, especially operations beyond visual line-of-sight (BVLOS), is to make a realistic and sufficiently detailed risk assessment. An important part of such an assessment is to identify the risk of fatalities, preferably in a qua......One of the major challenges of conducting operation of unmanned aircraft, especially operations beyond visual line-of-sight (BVLOS), is to make a realistic and sufficiently detailed risk assessment. An important part of such an assessment is to identify the risk of fatalities, preferably...... in a quantitative way since this allows for comparison with manned aviation to determine whether an equivalent level of safety is achievable. This work presents a method for quantifying the probability of fatalities resulting from an uncontrolled descent of an unmanned aircraft conducting a BVLOS flight. The method...... is based on a standard stochastic model, and employs a parameterized high fidelity ground impact distribution model that accounts for both aircraft specifications, parameter uncertainties, and wind. The method also samples the flight path to create an almost continuous quantification of the risk...

  2. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  3. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  4. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  5. [Functional dynamics of the pilots of heavy transport helicopters in the course of a flight shift].

    Science.gov (United States)

    Kamenskiĭ, Iu N

    1982-01-01

    Before and after flights about 300 crewmembers of heavy transport helicopters were examined, using psychophysiological and integral methods that yield professionally important information. During a flight shift the health state of helicopter pilots varies via three stages: habituation, initial decline and distinct lassitude, with the latter developing after 5 h flight load. In order to increase human reliability in the pilot-helicopter system, it is advisable to allow 4 h flight time during a flight shift onboard helicopters of the above type. In this case the pilot exposure to vibration effects will also be limited. The paper describes a maximally permissible spectrum of vibration velocity for a 4 h exposure.

  6. A method for determining internal noise criteria based on practical speech communication applied to helicopters

    Science.gov (United States)

    Sternfeld, H., Jr.; Doyle, L. B.

    1978-01-01

    The relationship between the internal noise environment of helicopters and the ability of personnel to understand commands and instructions was studied. A test program was conducted to relate speech intelligibility to a standard measurement called Articulation Index. An acoustical simulator was used to provide noise environments typical of Army helicopters. Speech material (command sentences and phonetically balanced word lists) were presented at several voice levels in each helicopter environment. Recommended helicopter internal noise criteria, based on speech communication, were derived and the effectiveness of hearing protection devices were evaluated.

  7. Modeling, Estimation, and Control of Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten

    This thesis treats the subject of autonomous helicopter slung load flight and presents the reader with a methodology describing the development path from modeling and system analysis over sensor fusion and state estimation to controller synthesis. The focus is directed along two different....... To enable slung load flight capabilities for general cargo transport, an integrated estimation and control system is developed for use on already autonomous helicopters. The estimator uses vision based updates only and needs little prior knowledge of the slung load system as it estimates the length...... of the suspension system together with the system states. The controller uses a combined feedforward and feedback approach to simultaneously prevent exciting swing and to actively dampen swing in the slung load. For the mine detection application an estimator is developed that provides full system state information...

  8. A new approach to helicopter rotor blade research instrumentation

    Science.gov (United States)

    Knight, V. H., Jr.

    1978-01-01

    A rotor-blade-mounted telemetry instrumentation system developed and used in flight tests by the NASA/Langley Research Center is described. The system uses high-speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested using an AH-1G helicopter. The system employs microelectronic PCM multiplexer-digitizer stations located remotely on the blade and in a hub-mounted metal canister. The electronics contained in the canister digitizes up to 16 sensors, formats this data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data is transmitted over an RF link to the ground for real-time monitoring and to the helicopter fuselage for tape recording.

  9. Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

    Directory of Open Access Journals (Sweden)

    Huiliao Yang

    2014-01-01

    Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.

  10. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  11. Lift capability prediction for helicopter rotor blade-numerical evaluation

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  12. Heli/SITAN: A Terrain Referenced Navigation algorithm for helicopters

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, J.

    1990-01-01

    Heli/SITAN is a Terrain Referenced Navigation (TRN) algorithm that utilizes radar altimeter ground clearance measurements in combination with a conventional navigation system and a stored digital terrain elevation map to accurately estimate a helicopter's position. Multiple Model Adaptive Estimation (MMAE) techniques are employed using a bank of single state Kalman filters to ensure that reliable position estimates are obtained even in the face of large initial position errors. A real-time implementation of the algorithm was tested aboard a US Army UH-1 helicopter equipped with a Singer-Kearfott Doppler Velocity Sensor (DVS) and a Litton LR-80 strapdown Attitude and Heading Reference System (AHRS). The median radial error of the position fixes provided in real-time by this implementation was less than 50 m for a variety of mission profiles. 6 refs., 7 figs.

  13. Identification and stochastic control of helicopter dynamic modes

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  14. Noise, vibration and changes in wakefulness during helicopter flight.

    Science.gov (United States)

    Landström, U; Löfstedt, P

    1987-02-01

    The investigation was carried out in cooperation with the helicopter school AF 1 in Boden. Measurements were made in two different types of helicopter, Hkp 3 and Hkp 6. Three different parameters were recorded during the flights: noise, vibrations, and wakefulness. Noise and vibration exposures were mainly correlated to the main rotor energy and frequency. Both types of exposure were dominated by lower frequencies, below 10 Hz. Analyses of wakefulness during long-distance flights, about 4 h, and short-distance flights, less than 2 h, were based on EEG and EKG recordings. As expected the level of wakefulness was influenced by the stress upon the pilots. Take-offs and landings, as well as unexpected events during the flight, were correlated to an increased level of wakefulness. In some cases flying was correlated to a gradual increase of weariness. The correlation between weariness, types of flying, and the external environmental factors of noise and vibration, is also discussed.

  15. Response of the skeletal system to helicopter-unique vibration.

    Science.gov (United States)

    Gearhart, J R

    1978-01-01

    An 18-month prospective skeletal system study was conducted on flying and nonflying personnel relative to chronic low-frequency vibration as experienced in helicopter flight. The aviators were initial entry students in rotary-wing training while the non-flying participants were beginning basic military training. Comparisons were made on the basis of anthropometric measurements, radiological studies, and bone mineral density changes as measured by photon absorption. The bone mineral densitometry showed no significant variation in the aviator group. A short-term 10% demineralization of the distal ulna in the non-flying group was noted immediately following the physical training. The final bone mineral density of basic training subjects returned to the initial level 18 months after the physical training. It was concluded that the helicopter aircrew members under study were exposed to levels of vibration below the threshold of vibration required to produce a measurable change in the skeletal system.

  16. Simulation and Analysis of Crashworthiness of Fuel Tank for Helicopters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Crashworthiness requirement of fuel tanks is one of the important requirements in helicopter designs. The relations among the protection frame, textile layer and rubber layer of the fuel tank are introduced. Two appropriate FE models are established, one is for an uncovered helicopter fuel tank without protection frame, and the other is for fuel tank with protection frame. The dynamic responses of the two types of fuel tanks impinging on the ground with velocities of 17.3 m/s are numerically simulated for the purpose of analyzing energy-absorbing capabilities of the textile layer and protection frame. The feasibility of the current crashworthiness design of the fuel tank is examined though comparing the dynamic response behaviors of the two fuel tanks.

  17. Application of face-gear drives in helicopter transmissions

    Science.gov (United States)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-05-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  18. Application of Face-Gear Drives in Helicopter Transmissions

    Science.gov (United States)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  19. Vibration analysis of the SA349/2 helicopter

    Science.gov (United States)

    Heffernan, Ruth; Precetti, Dominique; Johnson, Wayne

    1991-01-01

    Helicopter airframe vibration is examined using calculations and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitations to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measuring hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific models lead to large reductions in predicted vibration, and to major improvements in the correlations with measured pilot-seat vertical acceleration.

  20. Analysis and correlation of SA349/2 helicopter vibration

    Science.gov (United States)

    Heffernan, Ruth; Precetti, Dominique; Johnson, Wayne

    1991-01-01

    Helicopter airframe vibration is examined using calculation and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitation to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measured hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific modes lead to large reductions in predicted vibration and to major improvements in the correlations with measured pilot seat vertical acceleration.

  1. Feasibility study of a superconducting motor for electrical helicopter propulsion

    Science.gov (United States)

    Simons, C. A. B. A. E.; Sanabria-Walter, C.; Polinder, H.

    2014-05-01

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  2. Fluid mechanics mechanisms in the stall process of helicopters

    Science.gov (United States)

    Young, W. H., Jr.

    1981-01-01

    Recent experimental results from airfoils in the Mach number, Reynolds number, or reduced frequency ranges typical of helicopter rotor blades have identified the most influential flow mechanisms in the dynamic stall process. The importance of secondary shed vortices, downstream wake action, and the flow in the separated region is generally acknowledged but poorly understood. By means of surface pressure cross-correlations and flow field measurements in static stall, several new hypotheses have been generated. It is proposed that vortex shedding may be caused by acoustic disturbances propagating forward in the lower (pressure) surface boundary layer, that wake closure is a misnomer, and that the shed vortex leaves a trail of vorticity that forms a turbulent free shear layer. The known dynamic stall flow mechanisms are reviewed and the potential importance of recently proposed and hypothetical flow phenomena with respect to helicopter blade aeroelastic response are assessed.

  3. NASA and Army Collaboration on Unmanned Systems Presentation to the Association for Unmanned Vehicle Systems International (AUVSI)

    Science.gov (United States)

    Fernandez, Ken

    2008-01-01

    This viewgraph presentation describes the collaborative effort of NASA and the US Army on unmanned systems. The contents include: 1) Robotic/Autonomous Systems Architecture Development; 2) Synergy In Robotics/Autonomous Systems Development; 3) Surface Mobility Systems: Lunar Pylon Network Project; 4) Lunar Pylon Network Enables Multiple Vehicle Operations & Logistics; 5) Surface Mobility Systems: MARCbot IV-N Project Overview; 6) Autonomous Logistics Support Demonstration; and 7) Lunar Network Demonstration and Collaborative Effort.

  4. Everyone has an Unmanned Aircraft: The Control, Deconfliction and Coordination of Unmanned Aircraft in the Future Battlespace

    Science.gov (United States)

    2007-06-01

    John T. Correll, Editor in Chief While this is true, the reality is that those desired effects will require many airborne assets, especially at low...Army in Operation Iraqi Freedom. Fort Leavenworth, KS: Combat Studies Institute Press, 2004. Glade , David B. Unmanned Aerial Vehicles: Implications...Reconnaissance Drones. Fallbrook, CA: Aero Publishers, Inc., 1982. Periodicals Correll, John T. “Recasting the Vision.” Air Force Magazine 83

  5. [Causes of fatigue in civil aviation helicopter crews].

    Science.gov (United States)

    Kamenskiĭ, Iu N

    1981-01-01

    Vibration and noise play an important part in fatiguing crewmembers of helicopters. The exposure to these factors during the flying shift results in an early and marked fatigue of pilots the level of which depends on the vibration effects to a larger extent than on the noise effects. The fatigue is followed by a decline of the psychophysiological parameters characterizing the visual and motor functions as well as the ratio of the basic processes in the central nervous system.

  6. Do Army Helicopter Training Simulators Need Motion Bases?

    OpenAIRE

    McCauley, Michael E.

    2006-01-01

    United States Army Research Institute for the Behavioral and Social Sciences This report reviews the arguments and the evidence regarding the need for simulator motion bases in training helicopter pilots. It discusses flight simulators, perceptual fidelity, history of motion bases, disturbance versus maneuver motion, human motion sensation, and reviews the empirical evidence for the training effectiveness of motion bases. The section on training effectiveness reviews research f...

  7. Classification Trees and the Analysis of Helicopter Vibration Data

    OpenAIRE

    Larson, Harold J.

    1997-01-01

    Health and Usage Monitoring Systems are receiving a great deal of interest, in an attempt to increase the safety and operational readiness of helicopters, and to minimize maintenance costs. These systems monitor (and can record) various flight parameters, pilot conversations, engine exhaust debris, metallic chip detector levels in the lubrication system, rotor track and balance, as well as vibration levels at selected locations throughout the airframe and the power drive system. Vibration lev...

  8. Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design

    Science.gov (United States)

    1974-08-30

    by estimation, compound helicopter performance, to think of the air- plots of effective lift and drag areas and pitching mo- craft as a biplane having...stncural design problems but may produce loads that where are critikal locally. A = presented arms ft’ Ca = drag coefficient, dimensionless F• V = wind speed...groups is to be provided in accordance with MIL-STD- 1374, Part I. The useful load condition shall be as I. W. H. Ballhaus, Clear Design Thinking Using

  9. Physical stressors during neonatal transport: helicopter compared with ground ambulance.

    Science.gov (United States)

    Bouchut, Jean-Christophe; Van Lancker, Eric; Chritin, Vincent; Gueugniaud, Pierre-Yves

    2011-01-01

    This study was undertaken to assess concurrent mechanical stresses from shock, vibration, and noise to which a critically ill neonate is exposed during emergency transfer. For neonates transported by a French specialized emergency medical service, we measured and analyzed 27 physical parameters recorded during typical transport by ambulance and by helicopter. The noninvasive sensors were placed to allow better representation of the exposure of the newborn to the physical constraints. Based on 10 hours of transport by ambulance and 2 hours by helicopter, noise, whole body vibration, rate of turn, acceleration, and pitch were extracted as the five most representative dynamic harshness indicators. A helicopter produces a higher-level but more stable (lower relative dispersion) whole body dynamic exposure than an ambulance, with a mean noise level of 86 ± 1 dBA versus 67 ± 3 dBA, mean whole body vibration of 1 ± 0.1 meter per second squared (m/s(2)) versus 0.4 6 0.2 m/s(2), and acceleration of 1 6 0.05 m/s(2) versus 0.4 6 0.1 m/s(2). A ground ambulance has many more dynamic effects in terms of braking, shock, and impulsive noise than a helicopter (1 impulsive event per 2 minutes vs. 1 per 11 minutes). Our results show significant exposure of the sick neonate to both stationary and impulsive dynamic physical stressors during transportation, particularly in a ground ambulance. The study suggests opportunities to reduce physical stressors during neonatal transport. Copyright © 2011 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  10. Design, Test, and Acceptance Criteria for Helicopter Transparent Enclosures

    Science.gov (United States)

    1978-11-01

    polycarbonate materials were superior to glass in resisting impinge- ment abrasion; apparently due to ductility of the coating which minimized spallation ...square. A hole was drilled in the upright section of each "T" block (see Figure 10) to accommodate a metal pin or holding device correlative to the...shock wave. Transparencies that necessarily enclose large portions of the crew-occupied helicopter areas are particularly susceptible to spallation

  11. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  12. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    Science.gov (United States)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and

  13. Dynamic Analysis of a Helicopter Rotor by Dymore Program

    Science.gov (United States)

    Doğan, Vedat; Kırca, Mesut

    The dynamic behavior of hingeless and bearingless blades of a light commercial helicopter which has been under design process at ITU (İstanbul Technical University, Rotorcraft Research and Development Centre) is investigated. Since the helicopter rotor consists of several parts connected to each other by joints and hinges; rotors in general can be considered as an assembly of the rigid and elastic parts. Dynamics of rotor system in rotation is complicated due to coupling of elastic forces (bending, torsion and tension), inertial forces, control and aerodynamic forces on the rotor blades. In this study, the dynamic behavior of the rotor for a real helicopter design project is analyzed by using DYMORE. Blades are modeled as elastic beams, hub as a rigid body, torque tubes as rigid bodies, control links as rigid bodies plus springs and several joints. Geometric and material cross-sectional properties of blades (Stiffness-Matrix and Mass-Matrix) are calculated by using VABS programs on a CATIA model. Natural frequencies and natural modes of the rotating (and non-rotating) blades are obtained by using DYMORE. Fan-Plots which show the variation of the natural frequencies for different modes (Lead-Lag, Flapping, Feathering, etc.) vs. rotor RPM are presented.

  14. The Vibration Impact Determination of the Helicopter Structural Components

    Directory of Open Access Journals (Sweden)

    Khaksar Zeinab

    2017-01-01

    Full Text Available This paper presents the determination of the vibration impact of the helicopter structural components and skin repairs in terms of frequency characteristics. To address this issue, a 3D Finite Element Method (FEM model of 349 Gazelle helicopter has been developed in ABAQUS and the frequency analysis is conducted. The results on the natural frequencies of the full structure reasonably match with the literature giving confidence in the baseline model. The main advantage of this FEM model is that, it can be used to predict the natural frequencies of the full structure, precisely. In addition, the material properties and conditions of the components can be updated based on the applied conditions during the repair and maintenance period. Thus, the model gives a comprehensive design tool for analysing the frequencies of the helicopter with differing components. The effective variations in the frequency changes due to repair are predicted numerically. The discussion of these results helps in developing leads to improved selection of replacement materials and their properties.

  15. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    Science.gov (United States)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  16. The 3600 hp split-torque helicopter transmission

    Science.gov (United States)

    White, G.

    1985-01-01

    Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.

  17. Computer Modelling of a Tank Battle with Helicopter Support

    Directory of Open Access Journals (Sweden)

    Chatter Singh

    1986-01-01

    Full Text Available The paper attempts to model a tank versus tank battle scenario in which the defender is provided an armed helicopter unit support, against surprise advance of the attacker towards an important place. The stochastic and dynamic nature of the battle system has been handled by means of Monte Carlo simulation. In that activities like move, search, fire, hit and kill are simulated and their effects generated in the model. The game has been repeated for parameters relating to (i fire power (ii mobility (iii intervisibility (iv blind shooting (v defender/attacker force ratio and (vi helicopter unit support with the defender. Then, average numerical effects in each case have been analysed.Although the results are based on tentative data, the. trend seems to suggest that a battalion of Centurion tanks or 2 coys with a helicopter unit support stand fairly good chance to defeat the attack by M-47/48 tanks equivalent to 4 coys. Neyertheless, the methodology provides an effective basis to systematically approach realistic situations and quantitatively assess weapon systems effectiveness under tactical alternatives and battle field environments.

  18. Selected Problems Of Transmission Wear Of The Mi-24 Helicopter

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The hypothesis of mutual, destructive impact of the worn upper bearing of the WR-24 transmission on the Mi-24 helicopter's gearbox was stated. The Mi-24 is the only helicopter operated in Poland, in which the gearbox is mounted outside the main transmission – in the centre of the transmission shaft, between the main gearbox and the tail rotor. Damage to the gears in the gearbox of power generators is equivalent to termination of the tail rotor's drive. Such a termination immediately causes rotation of the body in the direction opposite to the direction of rotation of the main rotor. It is associated with the loss of lift and steering. It may lead to a disaster. Such an incident occurred in January 2011 in Afghanistan – both authors participated in its investigation. The authors, taking into account very good, almost legendary combat properties of the Mi-24, and their research of the specifics of wear and tear of the transmission elements, they think that, first, funds for development and implementation of the drive unit monitoring system should be made available specially for this helicopter. For this purpose, the authors propose to use the FAM-C method. It is characterised with significant ergonomics. Thank to this, multiple kinematic pairs can be observed simultaneously, and, therefore, the relationships between them as well.

  19. Preliminary vibration survey of a suspended full-scale OH-6A helicopter from 0 to 45 HZ

    OpenAIRE

    Harris, John H.

    1996-01-01

    Approved for public release, distribution is unlimited Efforts to establish a helicopter research program in structural dynamics at NPS were greatly enhanced when the U. S. Army donated two OH-6A light observation helicopters. One of the helicopters is reserved for ground vibration testing and dynamics research. Vibration measurements are extremely important in predicting and understanding an aircraft's dynamic behavior and durability. A comparison of a helicopters natural frequencies and ...

  20. A helicopter that flaps its wings: the Ornicopter flaps its wings like a bird to get into the air

    NARCIS (Netherlands)

    Mols, B.

    2003-01-01

    No other type of aircraft is as manoeuvrable as a helicopter. Reverse in full flight, rotate in the air, hover at a standstill, the helicopter can do it all. The police, fire services, medical services, military and civil aviation all use the helicopter for the freedom of flight it offers. However,

  1. 75 FR 48617 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters

    Science.gov (United States)

    2010-08-11

    ... vibration, and subsequent loss of control of the helicopter. Actions and Compliance (e) Before further... Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... directive (AD) for ECD Model MBB-BK 117 C-2 helicopters. This proposed AD results from a...

  2. 75 FR 66657 - Airworthiness Directives; Eurocopter Deutschland GmbH Model MBB-BK 117 C-2 Helicopters

    Science.gov (United States)

    2010-10-29

    ... separation of dynamic weights, severe vibration, and subsequent loss of control of the helicopter. Actions... Deutschland GmbH Model MBB- BK 117 C-2 Helicopters AGENCY: Federal Aviation Administration, DOT. ACTION: Final... Deutschland GmbH (ECD) Model MBB BK 117 C-2 helicopters. This amendment results from a mandatory...

  3. Development and prospect of unmanned aerial vehicles for agricultural production management

    Science.gov (United States)

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  4. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  5. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    Science.gov (United States)

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  6. Cooperative conflict detection and resolution of civil unmanned aerial vehicles in metropolis

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2016-06-01

    Full Text Available Unmanned air vehicles have recently attracted attention of many researchers because of their potential civil applications. A systematic integration of unmanned air vehicles in non-segregated airspace is required that allows safe operation of unmanned air vehicles along with other manned aircrafts. One of the critical issues is conflict detection and resolution. This article proposes to solve unmanned air vehicles’ conflict detection and resolution problem in metropolis airspace. First, the structure of metropolis airspace in the coming future is studied, and the airspace conflict problem between different unmanned air vehicles is analyzed by velocity obstacle theory. Second, a conflict detection and resolution framework in metropolis is proposed, and factors that have influences on conflict-free solutions are discussed. Third, the multi-unmanned air vehicle conflict resolution problem is formalized as a nonlinear optimization problem with the aim of minimizing overall conflict resolution consumption. The safe separation constraint is further discussed to improve the computation efficiency. When the speeds of conflict-involved unmanned air vehicles are equal, the nonlinear safe separation constraint is transformed into linear constraints. The problem is solved by mixed integer convex programming. When unmanned air vehicles are with unequal speeds, we propose to solve the nonlinear optimization problem by stochastic parallel gradient descent–based method. Our approaches are demonstrated in computational examples.

  7. JUSTIFICATION OF CONTROL SYSTEM TYPES OF UNMANNED AERIAL VEHICLE FOR CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Objective: The problem of unmanned aerial vehicle control systems is a complicated issue which requires consideration of the tasks and applications of unmanned aerial vehicles. The typology of control systems combination for civil unmanned aerial vehicle is suggested and justified. Methods: The methodology of the research was based on application of the varieties of the experts method for rationale of the variants of control system combinations for a specific type of unmanned aerial vehicle and the morphological analysis was used to generate the variants of control system combinations. Results: The causes that lead to discrepancies in types of control systems for civil unmanned aerial vehicle are revealed. Compliance between remote radio control application and type of feedback signal are considered. Based on morphological analysis method, 25 variants of combined unmanned aerial vehicle control systems are suggested. Discussion: Regulatory, substantive and technical components of basic unmanned aerial vehicle control systems are considered. The practical experience of the development by Scientific Production Center of Unmanned Aviation “Virazh” is used to demonstrate the applicability of findings.

  8. The availability of unmanned air vehicles: a post-case study

    NARCIS (Netherlands)

    Smith, M.A.J.; Dekker, R.; Kos, J.; Hontelez, J.A.M.

    2001-01-01

    An Unmanned Air Vehicle (UAV) is an unmanned, remotely controlled, small air vehicle. It has an important role in antisurface warfare. This implies over-the-horizon detection, classification, targeting and battle damage assessment. To perform these tasks several UAVs are needed to assist or

  9. Applying Lessons Learned from Space Safety to Unmanned Aerial Vehicle Risk Assessments

    Science.gov (United States)

    Devoid, Wayne E.

    2013-09-01

    This paper will examine the application of current orbital launch risk methodology to assessing risk for unmanned aerial vehicle flights over populated areas. Major differences, such as the added complexity of lifting bodies, accounting for pilots-in-the-loop, and the complexity of using current population data to estimate risk for unmanned aerial vehicles, will be highlighted.

  10. The design, construction and operation of the helicopter underwater escape trainer

    Energy Technology Data Exchange (ETDEWEB)

    Urguhart, A.E.

    1983-09-01

    Civil helicopters hopefully are not likely to be subjected to the possibility of being shot from the skies and descending in an uncontrolled manner. Should a civil helicopter have to ditch, due to some mechanical or electrical failure, it is reasonable to predict that it may do so in a controlled manner, with the pilot either taking the positive decision to ditch the helicopter, or being forced to do so. It is for such controlled or nearly controlled ditchings that training of personnel should be considered. The air-crews involved in flying civil helicopters are not dissimilar to military service personnel, in that they are a disciplined group of professionals qualified and experienced in their business of flying and ditching. However, the offshore worker, being ferried to his place of work, is, in essence, the human cargo forced by necessity to be transported by helicopter. Many offshore employees may not wish to be, or particularly enjoy, being transported over the North Sea by helicopter nevertheless, it is the only viable mode of transport and, with the number of helicopter flights which are currently being undertaken to and from the North Sea installations, it is not being over-pessimistic to foresee the likelihood of a civil helicopter with passengers having to ditch in the sea.

  11. FlyTact : A tactile display improves a helicopter pilot's landing performance in degraded visual environments

    NARCIS (Netherlands)

    Jansen, C.; Wennemers, A.S.; Vos, W.K.; Groen, E.L.

    2008-01-01

    Helicopter landings are more challenging in 'brownout' conditions, in which sand and dust is stirred up by the rotary wing aircraft, obscuring visibility. Safe brownout landings require new sensor and display technologies to provide the pilot with information on helicopter motion. In this respect ta

  12. 78 FR 65163 - Airworthiness Directives; Sikorsky Aircraft Corporation-Manufactured (Sikorsky) Model Helicopters...

    Science.gov (United States)

    2013-10-31

    ... Corporation- Manufactured (Sikorsky) Model Helicopters (Type Certificate Currently Held by Erickson Air-Crane... helicopters (type certificate currently held by Erickson Air-Crane Incorporated (Erickson)). AD 97-19-10..., contact Erickson Air-Crane Incorporated, ATTN: Chris Erickson, Director of Regulatory Compliance, 3100...

  13. 78 FR 31863 - Airworthiness Directives; Sikorsky Aircraft Corporation-Manufactured (Sikorsky) Model Helicopters...

    Science.gov (United States)

    2013-05-28

    ... Corporation- Manufactured (Sikorsky) Model Helicopters (type certificate currently held by Erickson Air-Crane... Corporation-manufactured Model S-64E helicopters (type certificate currently held by Erickson Air-Crane Incorporated (Erickson)). That AD currently requires inspecting and reworking the main gearbox (MGB) assembly...

  14. 78 FR 40063 - Airworthiness Directives; Erickson Air-Crane Incorporated Helicopters (Type Certificate...

    Science.gov (United States)

    2013-07-03

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Erickson Air-Crane... helicopter has been transferred to Erickson Air-Crane Incorporated (Erickson), and expand the applicability to include the similar Erickson Model S-64F helicopters. This proposed AD is prompted by a need to...

  15. 78 FR 15599 - Airworthiness Directives; Sikorsky Aircraft-Manufactured Model S-64F Helicopters

    Science.gov (United States)

    2013-03-12

    ... Model S-64F helicopters, now under the Erickson Air-Crane Incorporated (Erickson) Model S-64F type... service information identified in this AD, contact Erickson Air-Crane Incorporated, ATTN: Chris Erickson... Model S-64F helicopters, now under the Erickson Air-Crane Incorporated Model S-64F type certificate...

  16. Merged Vision and GPS Control of a Semi-Autonomous, Small Helicopter

    Science.gov (United States)

    Rock, Stephen M.

    1999-01-01

    This final report documents the activities performed during the research period from April 1, 1996 to September 30, 1997. It contains three papers: Carrier Phase GPS and Computer Vision for Control of an Autonomous Helicopter; A Contestant in the 1997 International Aerospace Robotics Laboratory Stanford University; and Combined CDGPS and Vision-Based Control of a Small Autonomous Helicopter.

  17. World’s smallest helicopter to fly in da Vinci birthplace

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The world’s smallest one-man helicopter will soon take flight in the birthplace of Leonardo da Vinci, who is credited with having first thought of a vertical-flight machine, its developer said.The 75-kilogram helicopter will make a demonstration flight in the city of Vinci, near Florence, on May 25, according to

  18. Development, documentation and correlation of a NASTRAN vibration model of the AH-1G helicopter airframe

    Science.gov (United States)

    Cronkhite, J. D.

    1976-01-01

    NASTRAN was evaluated for vibration analysis of the helicopter airframe. The first effort involved development of a NASTRAN model of the AH-1G helicopter airframe and comprehensive documentation of the model. The next effort was to assess the validity of the NASTRAN model by comparisons with static and vibration tests.

  19. [Physiokinetic therapy in the prevention of cervical disk arthrosis in helicopter personnel].

    Science.gov (United States)

    Lanciani, P; La Verde, R; Losani, F; Guicciardi, M

    1983-08-25

    Helicopter pilots subjected to "chronic microtraumatism" related to the constant vibration present in this type of aircraft are considered. The most suitable physiokinetic treatment in the prevention of cervical spondylodiscarthrosis is discussed. Spondylodiscarthrosis is the most common and debilitating problem affecting helicopter personnel.

  20. Design of a Helicopter Stability and Control Augmentation System Using Optimal Control Theory.

    Science.gov (United States)

    technique is described for the design of multivariable feedback controllers based upon results in optimal control theory . For a specified performance...helicopter flight envelope. The results show that optimal control theory can be used to design a helicopter stability and control augmentation system