WorldWideScience

Sample records for model-based feedback control

  1. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper

    2014-01-01

    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...

  2. Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model

    Science.gov (United States)

    Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-01-01

    This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.

  3. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    Science.gov (United States)

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  4. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  5. Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2017-01-01

    This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical and experimen...... derived in part I. Results show further suppression of resonant vibrations when using the feedback-controlled or active lubrication, overweighting the reduction already achieved with hybrid lubrication, thus improving the whole machine dynamic performance.......This is part II of a twofold paper series dealing with the design and implementation of model-based controllers meant for assisting the hybrid and developing the feedback-controlled lubrication regimes in active tilting pad journal bearings (active TPJBs). In both papers theoretical...... and experimental analyses are presented with focus on the reduction of rotor lateral vibration. This part is devoted to synthesising model-based LQG optimal controllers (LQR regulator + Kalman Filter) for the feedback-controlled lubrication and is based upon the mathematical model of the rotor-bearing system...

  6. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  7. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  8. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    Science.gov (United States)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  9. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong

    2015-05-01

    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  10. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  11. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  12. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  13. Sensitivity to plant modelling uncertainties in optimal feedback control of sound radiation from a panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1997-01-01

    Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...

  14. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  15. Modeling T cell antigen discrimination based on feedback control of digital ERK responses.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available T-lymphocyte activation displays a remarkable combination of speed, sensitivity, and discrimination in response to peptide-major histocompatibility complex (pMHC ligand engagement of clonally distributed antigen receptors (T cell receptors or TCRs. Even a few foreign pMHCs on the surface of an antigen-presenting cell trigger effective signaling within seconds, whereas 1 x 10(5-1 x 10(6 self-pMHC ligands that may differ from the foreign stimulus by only a single amino acid fail to elicit this response. No existing model accounts for this nearly absolute distinction between closely related TCR ligands while also preserving the other canonical features of T-cell responses. Here we document the unexpected highly amplified and digital nature of extracellular signal-regulated kinase (ERK activation in T cells. Based on this observation and evidence that competing positive- and negative-feedback loops contribute to TCR ligand discrimination, we constructed a new mathematical model of proximal TCR-dependent signaling. The model made clear that competition between a digital positive feedback based on ERK activity and an analog negative feedback involving SH2 domain-containing tyrosine phosphatase (SHP-1 was critical for defining a sharp ligand-discrimination threshold while preserving a rapid and sensitive response. Several nontrivial predictions of this model, including the notion that this threshold is highly sensitive to small changes in SHP-1 expression levels during cellular differentiation, were confirmed by experiment. These results combining computation and experiment reveal that ligand discrimination by T cells is controlled by the dynamics of competing feedback loops that regulate a high-gain digital amplifier, which is itself modulated during differentiation by alterations in the intracellular concentrations of key enzymes. The organization of the signaling network that we model here may be a prototypic solution to the problem of achieving

  16. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  17. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  18. A population-feedback control based algorithm for well trajectory optimization using proxy model

    Directory of Open Access Journals (Sweden)

    Javad Kasravi

    2017-04-01

    Full Text Available Wellbore instability is one of the concerns in the field of drilling engineering. This phenomenon is affected by several factors such as azimuth, inclination angle, in-situ stress, mud weight, and rock strength parameters. Among these factors, azimuth, inclination angle, and mud weight are controllable. The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required (GMMPR. Genetic algorithm (GA was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required (MMPR. The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area (NYZA. To reduce computation expenses, an artificial neural network (ANN was used as a proxy (surrogate model to approximate the behavior of the actual wellbore model. The methodology was applied to a directional well in southwestern Iranian oilfield. The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4% for elastoplastic method, and 22% for conventional elastic solution.

  19. Model-based dynamic resistive wall mode identification and feedback control in the DIII-D tokamak

    International Nuclear Information System (INIS)

    In, Y.; Kim, J.S.; Edgell, D.H.; Strait, E.J.; Humphreys, D.A.; Walker, M.L.; Jackson, G.L.; Chu, M.S.; Johnson, R.; La Haye, R.J.; Okabayashi, M.; Garofalo, A.M.; Reimerdes, H.

    2006-01-01

    A new model-based dynamic resistive wall mode (RWM) identification and feedback control algorithm has been developed. While the overall RWM structure can be detected by a model-based matched filter in a similar manner to a conventional sensor-based scheme, it is significantly influenced by edge-localized-modes (ELMs). A recent study suggested that such ELM noise might cause the RWM control system to respond in an undesirable way. Thus, an advanced algorithm to discriminate ELMs from RWM has been incorporated into this model-based control scheme, dynamic Kalman filter. Specifically, the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] resistive vessel wall was modeled in two ways: picture frame model or eigenmode treatment. Based on the picture frame model, the first real-time, closed-loop test results of the Kalman filter algorithms during DIII-D experimental operation are presented. The Kalman filtering scheme was experimentally confirmed to be effective in discriminating ELMs from RWM. As a result, the actuator coils (I-coils) were rarely excited during ELMs, while retaining the sensitivity to RWM. However, finding an optimized set of operating parameters for the control algorithm requires further analysis and design. Meanwhile, a more advanced Kalman filter based on a more accurate eigenmode model has been developed. According to this eigenmode approach, significant improvement in terms of control performance has been predicted, while maintaining good ELM discrimination

  20. Including model uncertainty in the model predictive control with output feedback

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.

    2002-01-01

    Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.

  1. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  2. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    Science.gov (United States)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  3. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  4. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  5. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  6. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  7. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  8. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

    Energy Technology Data Exchange (ETDEWEB)

    De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

    2008-03-15

    In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

  9. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi

    2008-01-01

    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  10. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  11. Active feedback control of kink modes in tokamaks: 3D VALEN modeling and HBT-EP experiments

    International Nuclear Information System (INIS)

    Maurer, D.A.

    2002-01-01

    Significant progress in the development of active feedback control as a robust technique for the suppression of the wall stabilized external kink or resistive wall mode (RWM) in tokamaks has been achieved through a combination of modeling and experiments. Results from the 3D feedback modeling code VALEN, which serves as the primary analysis and feedback control design tool for RWM studies on the HBT-EP and DIII-D experiments, are in good agreement with observations. VALEN modeling of proposed advanced control system designs on HBT-EP, DIII-D, NSTX, and FIRE are predicted to approach the ideal wall beta limit in agreement with design principles based on simple single mode analytic theory of RWM feedback control. Benchmark experiments on HBT-EP have shown suppression of plasma disruption at rational edge q values using active feedback control in agreement with model predictions. In addition, the observation in HBT-EP of the plasma amplification of static resonant magnetic fields in plasmas marginally stable to the RWM is in agreement with theory. (author)

  12. Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard

    This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...

  13. A model-based approach to predict muscle synergies using optimization: application to feedback control

    Directory of Open Access Journals (Sweden)

    Reza eSharif Razavian

    2015-10-01

    Full Text Available This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e. they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems. This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

  14. A model-based approach to predict muscle synergies using optimization: application to feedback control.

    Science.gov (United States)

    Sharif Razavian, Reza; Mehrabi, Naser; McPhee, John

    2015-01-01

    This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e., they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems). This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort) in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

  15. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  16. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen

    2014-09-01

    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  17. Modeling of low frequency dynamics of a smart system and its state feedback based active control

    Science.gov (United States)

    Kant, Mohit; Parameswaran, Arun P.

    2018-01-01

    Major physical systems/structures suffer from unwanted vibrations. For efficient working of such systems, these vibrations have to be controlled. In this paper, mathematical modeling of an aluminum cantilever beam with bonded multiple piezoelectric patches which act as the disturbance generator, sensor as well as control actuator has been presented. This piezoelectric laminate cantilever beam is assumed to be vibrating in a single degree of freedom i.e. in the flexural mode only and the corresponding state space models have been derived analytically using the finite element technique. Dominant modes of flexural vibration are identified from the frequency response of the developed model of the system and finally a state feedback controller based on pole placement technique is designed to actively suppress the vibrations. Through numerous simulations as well as experimental validation, the effectiveness of the active controller in damping the vibrations at various excitation frequencies as well as frequency ranges along the flexural mode is established.

  18. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  19. Dynamics of nonlinear feedback control

    NARCIS (Netherlands)

    Snippe, H.P.; Hateren, J.H. van

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain

  20. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  1. Design of EAST LHCD high power supply feedback control system based on PLC

    International Nuclear Information System (INIS)

    Hu Huaichuan; Shan Jiafang

    2009-01-01

    Design of EAST LHCD -35kV/5.6MW high power supply feedback control system based on PLC is described. Industrial computer and PLC are used to control high power supply in the system. PID arithmetic is adopted to achieve the feedback control of voltage of high power supply. Operating system is base on real-time operating system of QNX. Good controlling properties and reliable protective properties of the feedback control system are proved by the experiment results. (authors)

  2. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  3. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Sedigh, Ali Khaki

    2009-01-01

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  4. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  5. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    Science.gov (United States)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  6. Control oriented system analysis and feedback control of a numerical sawtooth instability model

    NARCIS (Netherlands)

    Witvoet, G.; Westerhof, E.; Steinbuch, M.; Baar, de M.R.; Doelman, N.J.; Prater, R.

    2010-01-01

    A combined Porcelli-Kadomtsev numerical sawtooth instability model is analyzed using control oriented identification techniques. The resulting discrete time linear models describe the system’s behavior from crash to crash and is used in the design of a simple discrete time feedback controller, which

  7. Developments in model-based optimization and control distributed control and industrial applications

    CERN Document Server

    Grancharova, Alexandra; Pereira, Fernando

    2015-01-01

    This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...

  8. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  9. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    Steinhagen, Ralph

    2007-01-01

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  10. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  11. Feedback control in deep drawing based on experimental datasets

    Science.gov (United States)

    Fischer, P.; Heingärtner, J.; Aichholzer, W.; Hortig, D.; Hora, P.

    2017-09-01

    In large-scale production of deep drawing parts, like in automotive industry, the effects of scattering material properties as well as warming of the tools have a significant impact on the drawing result. In the scope of the work, an approach is presented to minimize the influence of these effects on part quality by optically measuring the draw-in of each part and adjusting the settings of the press to keep the strain distribution, which is represented by the draw-in, inside a certain limit. For the design of the control algorithm, a design of experiments for in-line tests is used to quantify the influence of the blank holder force as well as the force distribution on the draw-in. The results of this experimental dataset are used to model the process behavior. Based on this model, a feedback control loop is designed. Finally, the performance of the control algorithm is validated in the production line.

  12. Adjusting kinematics and kinetics in a feedback-controlled toe walking model

    Directory of Open Access Journals (Sweden)

    Olenšek Andrej

    2012-08-01

    Full Text Available Abstract Background In clinical gait assessment, the correct interpretation of gait kinematics and kinetics has a decisive impact on the success of the therapeutic programme. Due to the vast amount of information from which primary anomalies should be identified and separated from secondary compensatory changes, as well as the biomechanical complexity and redundancy of the human locomotion system, this task is considerably challenging and requires the attention of an experienced interdisciplinary team of experts. The ongoing research in the field of biomechanics suggests that mathematical modeling may facilitate this task. This paper explores the possibility of generating a family of toe walking gait patterns by systematically changing selected parameters of a feedback-controlled model. Methods From the selected clinical case of toe walking we identified typical toe walking characteristics and encoded them as a set of gait-oriented control objectives to be achieved in a feedback-controlled walking model. They were defined as fourth order polynomials and imposed via feedback control at the within-step control level. At the between-step control level, stance leg lengthening velocity at the end of the single support phase was adaptively adjusted after each step so as to facilitate gait velocity control. Each time the gait velocity settled at the desired value, selected intra-step gait characteristics were modified by adjusting the polynomials so as to mimic the effect of a typical therapeutical intervention - inhibitory casting. Results By systematically adjusting the set of control parameters we were able to generate a family of gait kinematic and kinetic patterns that exhibit similar principal toe walking characteristics, as they were recorded by means of an instrumented gait analysis system in the selected clinical case of toe walking. We further acknowledge that they to some extent follow similar improvement tendencies as those which one can

  13. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    Science.gov (United States)

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  14. Beam closed orbit feedback based on PID control

    International Nuclear Information System (INIS)

    Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang

    2013-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  15. Control and diagnostic uses of feedback

    International Nuclear Information System (INIS)

    Sen, A. K.

    2000-01-01

    Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics

  16. Multi-model MPC with output feedback

    Directory of Open Access Journals (Sweden)

    J. M. Perez

    2014-03-01

    Full Text Available In this work, a new formulation is presented for the model predictive control (MPC of a process system that is represented by a finite set of models, each one corresponding to a different operating point. The general case is considered of systems with stable and integrating outputs in closed-loop with output feedback. For this purpose, the controller is based on a non-minimal order model where the state is built with the measured outputs and the manipulated inputs of the control system. Therefore, the state can be considered as perfectly known and, consequently, there is no need to include a state observer in the control loop. This property of the proposed modeling approach is convenient to extend previous stability results of the closed loop system with robust MPC controllers based on state feedback. The controller proposed here is based on the solution of two optimization problems that are solved sequentially at the same time step. The method is illustrated with a simulated example of the process industry. The rigorous simulation of the control of an adiabatic flash of a multi-component hydrocarbon mixture illustrates the application of the robust controller. The dynamic simulation of this process is performed using EMSO - Environment Model Simulation and Optimization. Finally, a comparison with a linear MPC using a single model is presented.

  17. Fuzzy model-based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Van Den Durpel, L.; Ruan, D.

    1994-01-01

    The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project

  18. Research of Active Power Filter Modeling with Grid Impedance in Feedback Linearization and Quasi-Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Zeyu Shi

    2017-01-01

    Full Text Available Active power filter (APF is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.

  19. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  20. Feedback Control for a Smart Wheelchair Trainer Based on the Kinect Sensor

    Science.gov (United States)

    Darling, Aurelia McLaughlin

    This thesis describes a Microsoft Kinect-based feedback controller for a robot-assisted powered wheelchair trainer for children with a severe motor and/or cognitive disability. In one training mode, "computer gaming" mode, the wheelchair is allowed to rotate left and right while the children use a joystick to play video games shown on a screen in front of them. This enables them to learn the use of the joystick in a motivating environment, while experiencing the sensation and dynamics of turning in a safe setting. During initial pilot testing of the device, it was found that the wheelchair would creep forward while children were playing the games. This thesis presents a mathematical model of the wheelchair dynamics that explains the origin of the creep as a center of gravity offset from the wheel axis or a mismatch of the torques applied to the chair. Given these possible random perturbations, a feedback controller was developed to cancel these effects, correcting the system creep. The controller uses a Microsoft Kinect sensor to detect the distance to the screen displaying the computer game, as well as the left-right position (parallel parking concept) with respect to the screen, and then adjusts the wheel torque commands based on this measurement. We show through experimental testing that this controller effectively stops the creep. An added benefit of the feedback controller is that it approximates a washout filter, such as those used in aircraft simulators, to convey a more realistic sense of forward/backward motion during game play.

  1. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  2. Dynamic Output Feedback Based Active Decentralized Fault-Tolerant Control for Reconfigurable Manipulator with Concurrent Failures

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI technique, the decentralized proportional-integral observer (DPIO is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence of H∞ fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.

  3. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    Science.gov (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  4. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  5. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum

    2008-01-01

    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model

  6. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    Science.gov (United States)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  7. Composite control for raymond mill based on model predictive control and disturbance observer

    Directory of Open Access Journals (Sweden)

    Dan Niu

    2016-03-01

    Full Text Available In the raymond mill grinding process, precise control of operating load is vital for the high product quality. However, strong external disturbances, such as variations of ore size and ore hardness, usually cause great performance degradation. It is not easy to control the current of raymond mill constant. Several control strategies have been proposed. However, most of them (such as proportional–integral–derivative and model predictive control reject disturbances just through feedback regulation, which may lead to poor control performance in the presence of strong disturbances. For improving disturbance rejection, a control method based on model predictive control and disturbance observer is put forward in this article. The scheme employs disturbance observer as feedforward compensation and model predictive control controller as feedback regulation. The test results illustrate that compared with model predictive control method, the proposed disturbance observer–model predictive control method can obtain significant superiority in disturbance rejection, such as shorter settling time and smaller peak overshoot under strong disturbances.

  8. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-01-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical. (paper)

  9. Spectrum optimization-based chaotification using time-delay feedback control

    International Nuclear Information System (INIS)

    Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong

    2012-01-01

    Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.

  10. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  11. The fast correction coil feedback control system

    International Nuclear Information System (INIS)

    Coffield, F.; Caporaso, G.; Zentler, J.M.

    1989-01-01

    A model-based feedback control system has been developed to correct beam displacement errors in the Advanced Test Accelerator (ATA) electron beam accelerator. The feedback control system drives an X/Y dipole steering system that has a 40-MHz bandwidth and can produce ±300-Gauss-cm dipole fields. A simulator was used to develop the control algorithm and to quantify the expected performance in the presence of beam position measurement noise and accelerator timing jitter. The major problem to date has been protecting the amplifiers from the voltage that is inductively coupled to the steering bars by the beam. 3 refs., 8 figs

  12. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

    International Nuclear Information System (INIS)

    Yan Zhenya; Yu Pei

    2007-01-01

    In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

  13. A model for educational feedback based on clinical communication skills strategies: beyond the "feedback sandwich".

    Science.gov (United States)

    Milan, Felise B; Parish, Sharon J; Reichgott, Michael J

    2006-01-01

    Feedback is an essential tool in medical education, and the process is often difficult for both faculty and learner. There are strong analogies between the provision of educational feedback and doctor-patient communication during the clinical encounter. Relationship-building skills used in the clinical setting-Partnership, Empathy, Apology, Respect, Legitimation, Support (PEARLS)-can establish trust with the learner to better manage difficult feedback situations involving personal issues, unprofessional behavior, or a defensive learner. Using the stage of readiness to change (transtheoretical) model, the educator can "diagnose" the learner's stage of readiness and employ focused interventions to encourage desired changes. This approach has been positively received by medical educators in faculty development workshops. A model for provision of educational feedback based on communication skills used in the clinical encounter can be useful in the medical education setting. More robust evaluation of the construct validity is required in actual training program situations.

  14. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....

  15. Shared internal models for feedforward and feedback control.

    Science.gov (United States)

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  16. A generic model for camera based intelligent road crowd control ...

    African Journals Online (AJOL)

    This research proposes a model for intelligent traffic flow control by implementing camera based surveillance and feedback system. A series of cameras are set minimum three signals ahead from the target junction. The complete software system is developed to help integrating the multiple camera on road as feedback to ...

  17. Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design

    International Nuclear Information System (INIS)

    Wang Jing; Gao Jinfeng; Ma Xikui

    2007-01-01

    This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method

  18. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    International Nuclear Information System (INIS)

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used

  19. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  20. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  1. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  2. State-feedback control of fuzzy discrete-event systems.

    Science.gov (United States)

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  3. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  4. Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions

    International Nuclear Information System (INIS)

    Hong-Bin, Zhang; Jian-Wei, Xia; Yong-Bin, Yu; Chuang-Yin, Dang

    2010-01-01

    This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results

  5. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  6. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik

    2014-01-01

    Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  7. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  8. Mobile robot nonlinear feedback control based on Elman neural network observer

    Directory of Open Access Journals (Sweden)

    Khaled Al-Mutib

    2015-12-01

    Full Text Available This article presents a new approach to control a wheeled mobile robot without velocity measurement. The controller developed is based on kinematic model as well as dynamics model to take into account parameters of dynamics. These parameters related to dynamic equations are identified using a proposed methodology. Input–output feedback linearization is considered with a slight modification in the mathematical expressions to implement the dynamic controller and analyze the nonlinear internal behavior. The developed controllers require sensors to obtain the states needed for the closed-loop system. However, some states may not be available due to the absence of the sensors because of the cost, the weight limitation, reliability, induction of errors, failure, and so on. Particularly, for the velocity measurements, the required accuracy may not be achieved in practical applications due to the existence of significant errors induced by stochastic or cyclical noise. In this article, Elman neural network is proposed to work as an observer to estimate the velocity needed to complete the full state required for the closed-loop control and account for all the disturbances and model parameter uncertainties. Different simulations are carried out to demonstrate the feasibility of the approach in tracking different reference trajectories in comparison with other paradigms.

  9. Modeling Single-Phase Inverter and Its Decentralized Coordinated Control by Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Renke Han

    2014-01-01

    Full Text Available It is a very crucial problem to make a microgrid operated reasonably and stably. Considering the nonlinear mathematics model of inverter established in this paper, the input-output feedback linearization method is used to transform the nonlinear mathematics model of inverters to a linear tracking synchronization and consensus regulation control problem. Based on the linear mathematics model and multiagent consensus algorithm, a decentralized coordinated controller is proposed to make amplitudes and angles of voltages from inverters be consensus and active and reactive power shared in the desired ratio. The proposed control is totally distributed because each inverter only requires local and one neighbor’s information with sparse communication structure based on multiagent system. The hybrid consensus algorithm is used to keep the amplitude of the output voltages following the leader and the angles of output voltage as consensus. Then the microgrid can be operated more efficiently and the circulating current between DGs can be effectively suppressed. The effectiveness of the proposed method is proved through simulation results of a typical microgrid system.

  10. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  11. Model-based power control strategy development of a fuel cell hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Haitao, Yun [School of Automobile and Traffic, Qingdao Technological University, Qingdao Shandong 266033 (China); School of Automobile, Tongji University, ShangHai 201804 (China); Yulan, Zhao [School of Automobile and Traffic, Qingdao Technological University, Qingdao Shandong 266033 (China); Zechang, Sun; Gang, Wan [School of Automobile, Tongji University, ShangHai 201804 (China)

    2008-06-01

    An integrated procedure for math modeling and power control strategy design for a fuel cell hybrid vehicle (FCHV) is presented in this paper. Dynamic math model of the powertrain is constructed firstly, which includes four modules: fuel cell engine, DC/DC inverter, motor-driver, and power battery. Based on the mathematic model, a power control principle is designed, which uses full-states closed-loop feedback algorithm. To implement full-states feedback, a Luenberger state observer is designed to estimate open circuit voltage (OCV) of the battery, which make the control principle not sensitive to the battery SOC (state of charge) estimated error. Full-states feedback controller is then designed through analyzing step responding of the powertrain and test data. At last of the paper, the results of simulation and field test are illustrated. The results show that the power control strategy designed takes into account the performance and economy characteristics of components of the FCHV powertrain and achieves the control object excellently. (author)

  12. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...

  13. Load management: Model-based control of aggregate power for populations of thermostatically controlled loads

    International Nuclear Information System (INIS)

    Perfumo, Cristian; Kofman, Ernesto; Braslavsky, Julio H.; Ward, John K.

    2012-01-01

    Highlights: ► Characterisation of power response of a population of air conditioners. ► Implementation of demand side management on a group of air conditioners. ► Design of a controller for the power output of a group of air conditioners. ► Quantification of comfort impact of demand side management. - Abstract: Large groups of electrical loads can be controlled as a single entity to reduce their aggregate power demand in the electricity network. This approach, known as load management (LM) or demand response, offers an alternative to the traditional paradigm in the electricity market, where matching supply and demand is achieved solely by regulating how much generation is dispatched. Thermostatically controlled loads (TCLs), such as air conditioners (ACs) and fridges, are particularly suitable for LM, which can be implemented using feedback control techniques to regulate their aggregate power. To achieve high performance, such feedback control techniques require an accurate mathematical model of the TCL aggregate dynamics. Although such models have been developed, they appear too complex to be effectively used in control design. In this paper we develop a mathematical model aimed at the design of a model-based feedback control strategy. The proposed model analytically characterises the aggregate power response of a population of ACs to a simultaneous step change in temperature set points. Based on this model, we then derive, and completely parametrise in terms of the ACs ensemble properties, a reduced-order mathematical model to design an internal-model controller that regulates aggregate power by broadcasting temperature set-point offset changes. The proposed controller achieves high LM performance provided the ACs are equipped with high resolution thermostats. With coarser resolution thermostats, which are typical in present commercial and residential ACs, performance deteriorates significantly. This limitation is overcome by subdividing the population

  14. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  15. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  16. Fuzzy Vector Field Orientation Feedback Control-Based Slip Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-steered Mobile Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2013-04-01

    Full Text Available Skid-steered mobile robots have been widely used in exploring unknown environments and in military applications. In this paper, the tuning fuzzy Vector Field Orientation (FVFO feedback control method is proposed for a four track wheel skid-steered mobile robot (4-TW SSMR using flexible fuzzy logic control (FLC. The extended Kalman filter is utilized to estimate the positions, velocities and orientation angles, which are used for feedback control signals in the FVFO method, based on the AHRS kinematic motion model and velocity constraints. In addition, in light of the wheel slip and the braking ability of the robot, we propose a new method for estimating online wheel slip parameters based on a discrete Kalman filter to compensate for the velocity constraints. As demonstrated by our experimental results, the advantages of the combination of the proposed FVFO and wheel slip estimation methods overcome the limitations of the others in the trajectory tracking control problem for a 4-TW SSMR.

  17. Observer-based output-feedback control to eliminate torsional drill-string vibrations

    NARCIS (Netherlands)

    Vromen, T.G.M.; Wouw, van de N.; Doris, A.; Astrid, P.; Nijmeijer, H.

    2014-01-01

    Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based output-feedback control strategy to eliminate these vibrations. We apply the

  18. Dynamical control of chaos by slave-master feedback

    International Nuclear Information System (INIS)

    Behnia, S.; Akhshani, A.

    2009-01-01

    Techniques for stabilizing unstable state in nonlinear dynamical systems using small perturbations fall into three general categories: feedback, non-feedback schemes, and a combination of feedback and non-feedback. However, the general problem of finding conditions for creation or suppression of chaos still remains open. We describe a method for dynamical control of chaos. This method is based on a definition of the hierarchy of solvable chaotic maps with dynamical parameter as a control parameter. In order to study the new mechanism of control of chaotic process, Kolmogorov-Sinai entropy of the chaotic map with dynamical parameter based on discussion the properties of invariant measure have been calculated and confirmed by calculation of Lyapunov exponents. The introduced chaotic maps can be used as dynamical control.

  19. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  20. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  1. Utilizing measure-based feedback in control-mastery theory: A clinical error.

    Science.gov (United States)

    Snyder, John; Aafjes-van Doorn, Katie

    2016-09-01

    Clinical errors and ruptures are an inevitable part of clinical practice. Often times, therapists are unaware that a clinical error or rupture has occurred, leaving no space for repair, and potentially leading to patient dropout and/or less effective treatment. One way to overcome our blind spots is by frequently and systematically collecting measure-based feedback from the patient. Patient feedback measures that focus on the process of psychotherapy such as the Patient's Experience of Attunement and Responsiveness scale (PEAR) can be used in conjunction with treatment outcome measures such as the Outcome Questionnaire 45.2 (OQ-45.2) to monitor the patient's therapeutic experience and progress. The regular use of these types of measures can aid clinicians in the identification of clinical errors and the associated patient deterioration that might otherwise go unnoticed and unaddressed. The current case study describes an instance of clinical error that occurred during the 2-year treatment of a highly traumatized young woman. The clinical error was identified using measure-based feedback and subsequently understood and addressed from the theoretical standpoint of the control-mastery theory of psychotherapy. An alternative hypothetical response is also presented and explained using control-mastery theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  3. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  4. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  5. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  6. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  7. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  8. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  9. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  10. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    Science.gov (United States)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    There has been considerable interest over the past several years in applying feedback control methods to problems of structural acoustics. One problem of particular interest is the control of sound radiation from aircraft panels excited on one side by a turbulent boundary layer (TBL). TBL excitation appears as many uncorrelated sources acting on the panel, which makes it difficult to find a single reference signal that is coherent with the excitation. Feedback methods have no need for a reference signal, and are thus suited to this problem. Some important considerations for the structural acoustics problem include the fact that the required controller bandwidth can easily extend to several hundred Hertz, so a digital controller would have to operate at a few kilohertz. In addition, aircraft panel structures have a reasonably high modal density over this frequency range. A model based controller must therefore handle the modally dense system, or have some way to reduce the bandwidth of the problem. Further complicating the problem is the fact that the stiffness and dynamic properties of an aircraft panel can vary considerably during flight due to altitude changes resulting in significant resonant frequency shifts. These considerations make the tradeoff between robustness to changes in the system being controlled and controller performance especially important. Recent papers concerning the design and implementation of robust controllers for structural acoustic problems highlight the need to consider both performance and robustness when designing the controller. While robust control methods such as H1 can be used to balance performance and robustness, their implementation is not easy and requires assumptions about the types of uncertainties in the plant being controlled. Achieving a useful controller design may require many tradeoff studies of different types of parametric uncertainties in the system. Another approach to achieving robustness to plant changes is to

  11. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  12. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  13. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    OpenAIRE

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-01-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solv...

  14. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  15. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  16. Video-based peer feedback through social networking for robotic surgery simulation: a multicenter randomized controlled trial.

    Science.gov (United States)

    Carter, Stacey C; Chiang, Alexander; Shah, Galaxy; Kwan, Lorna; Montgomery, Jeffrey S; Karam, Amer; Tarnay, Christopher; Guru, Khurshid A; Hu, Jim C

    2015-05-01

    To examine the feasibility and outcomes of video-based peer feedback through social networking to facilitate robotic surgical skill acquisition. The acquisition of surgical skills may be challenging for novel techniques and/or those with prolonged learning curves. Randomized controlled trial involving 41 resident physicians performing the Tubes (Da Vinci Intuitive Surgical, Sunnyvale, CA) simulator exercise with versus without peer feedback of video-recorded performance through a social networking Web page. Data collected included simulator exercise score, time to completion, and comfort and satisfaction with robotic surgery simulation. There were no baseline differences between the intervention group (n = 20) and controls (n = 21). The intervention group showed improvement in mean scores from session 1 to sessions 2 and 3 (60.7 vs 75.5, P feedback subjects were more comfortable with robotic surgery than controls (90% vs 62%, P = 0.021) and expressed greater satisfaction with the learning experience (100% vs 67%, P = 0.014). Of the intervention subjects, 85% found that peer feedback was useful and 100% found it effective. Video-based peer feedback through social networking appears to be an effective paradigm for surgical education and accelerates the robotic surgery learning curve during simulation.

  17. Feedforward/feedback control synthesis for performance and robustness

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  18. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  19. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    Science.gov (United States)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  20. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    Science.gov (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  1. Identification and robust water level control of horizontal steam generators using quantitative feedback theory

    International Nuclear Information System (INIS)

    Safarzadeh, O.; Khaki-Sedigh, A.; Shirani, A.S.

    2011-01-01

    Highlights: → A robust water level controller for steam generators (SGs) is designed based on the Quantitative Feedback Theory. → To design the controller, fairly accurate linear models are identified for the SG. → The designed controller is verified using a developed novel global locally linear neuro-fuzzy model of the SG. → Both of the linear and nonlinear models are based on the SG mathematical thermal-hydraulic model developed using the simulation computer code. → The proposed method is easy to apply and guarantees desired closed loop performance. - Abstract: In this paper, a robust water level control system for the horizontal steam generator (SG) using the quantitative feedback theory (QFT) method is presented. To design a robust QFT controller for the nonlinear uncertain SG, control oriented linear models are identified. Then, the nonlinear system is modeled as an uncertain linear time invariant (LTI) system. The robust designed controller is applied to the nonlinear plant model. This nonlinear model is based on a locally linear neuro-fuzzy (LLNF) model. This model is trained using the locally linear model tree (LOLIMOT) algorithm. Finally, simulation results are employed to show the effectiveness of the designed QFT level controller. It is shown that it will ensure the entire designer's water level closed loop specifications.

  2. Identification and robust water level control of horizontal steam generators using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Safarzadeh, O., E-mail: O_Safarzadeh@sbu.ac.ir [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of); Khaki-Sedigh, A. [K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shirani, A.S. [Shahid Beheshti University, P.O. Box: 19839-63113, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} A robust water level controller for steam generators (SGs) is designed based on the Quantitative Feedback Theory. {yields} To design the controller, fairly accurate linear models are identified for the SG. {yields} The designed controller is verified using a developed novel global locally linear neuro-fuzzy model of the SG. {yields} Both of the linear and nonlinear models are based on the SG mathematical thermal-hydraulic model developed using the simulation computer code. {yields} The proposed method is easy to apply and guarantees desired closed loop performance. - Abstract: In this paper, a robust water level control system for the horizontal steam generator (SG) using the quantitative feedback theory (QFT) method is presented. To design a robust QFT controller for the nonlinear uncertain SG, control oriented linear models are identified. Then, the nonlinear system is modeled as an uncertain linear time invariant (LTI) system. The robust designed controller is applied to the nonlinear plant model. This nonlinear model is based on a locally linear neuro-fuzzy (LLNF) model. This model is trained using the locally linear model tree (LOLIMOT) algorithm. Finally, simulation results are employed to show the effectiveness of the designed QFT level controller. It is shown that it will ensure the entire designer's water level closed loop specifications.

  3. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  4. Feedback linearizing control of a MIMO power system

    Science.gov (United States)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  5. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  6. Entanglement-assisted quantum feedback control

    Science.gov (United States)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  7. Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map

    International Nuclear Information System (INIS)

    Gritli, Hassène; Belghith, Safya

    2017-01-01

    Highlights: • We study the passive walking dynamics of the compass-gait model under OGY-based state-feedback control. • We analyze local bifurcations via a hybrid Poincaré map. • We show exhibition of the super(sub)-critical flip bifurcation, the saddle-node(saddle) bifurcation and a saddle-flip bifurcation. • An analysis via a two-parameter bifurcation diagram is presented. • Some new hidden attractors in the controlled passive walking dynamics are displayed. - Abstract: In our previous work, we have analyzed the passive dynamic walking of the compass-gait biped model under the OGY-based state-feedback control using the impulsive hybrid nonlinear dynamics. Such study was carried out through bifurcation diagrams. It was shown that the controlled bipedal gait exhibits attractive nonlinear phenomena such as the cyclic-fold (saddle-node) bifurcation, the period-doubling (flip) bifurcation and chaos. Moreover, we revealed that, using the controlled continuous-time dynamics, we encountered a problem in finding, identifying and hence following branches of (un)stable solutions in order to characterize local bifurcations. The present paper solves such problem and then provides a further investigation of the controlled bipedal walking dynamics using the developed analytical expression of the controlled hybrid Poincaré map. Thus, we show that analysis via such Poincaré map allows to follow branches of both stable and unstable fixed points in bifurcation diagrams and hence to explore the complete dynamics of the controlled compass-gait biped model. We demonstrate the generation, other than the conventional local bifurcations in bipedal walking, i.e. the flip bifurcation and the saddle-node bifurcation, of a saddle-saddle bifurcation, a subcritical flip bifurcation and a new type of a local bifurcation, the saddle-flip bifurcation. In addition, to further understand the occurrence of the local bifurcations, we present an analysis with a two-parameter bifurcation

  8. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Hennen, B.A.; Westerhof, E.; De Baar, M.R.; Nuij, P.W.J.M.; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron cyclotron resonance heating and current drive (ECRH/ECCD) with a tearing mode and the stabilization of a mode at a specific width. In order to simulate these control tasks, the time evolution of a tearing mode subject to suppression by ECRH/ECCD and destabilization by a magnetic perturbation field is modelled using the generalized Rutherford equation. The model includes an equilibrium model and an ECRH/ECCD launcher model. The dynamics and static equilibria of this model are analysed. The model is linearized and based on the linearized model, linear feedback controllers are designed and simulated, demonstrating both alignment and width control of tearing modes in TEXTOR. (paper)

  9. Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Directory of Open Access Journals (Sweden)

    R. Vertechy

    2013-01-01

    Full Text Available Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the visco-hyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture.

  10. Uncertainty Modeling and Robust Output Feedback Control of Nonlinear Discrete Systems: A Mathematical Programming Approach

    Directory of Open Access Journals (Sweden)

    Olav Slupphaug

    2001-01-01

    Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.

  11. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    Science.gov (United States)

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  13. Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems

    NARCIS (Netherlands)

    Vromen, T.G.M.; Dai, C.H.; van de Wouw, N.; Oomen, T.A.E.; Astrid, P.; Nijmeijer, H.

    2015-01-01

    The aim of this paper is to design a robust output-feedback controller to eliminate torsional stick-slip vibrations. A multi-modal model of the torsional dynamics with a nonlinear bit-rock interaction model is used. The controller design is based on skewed-μ DK-iteration and the stability of the

  14. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  15. Requirements for active resistive wall mode (RWM) feedback control

    International Nuclear Information System (INIS)

    In, Y; Kim, J S; Chu, M S; Jackson, G L; La Haye, R J; Strait, E J; Liu, Y Q; Marrelli, L; Okabayashi, M; Reimerdes, H

    2010-01-01

    The requirements for active resistive wall mode (RWM) feedback control have been systematically investigated and established using highly reproducible current-driven RWMs in ohmic discharges in DIII-D. The unambiguous evaluation of active RWM feedback control was not possible in previous RWM studies primarily due to the variability of the onset of the pressure-driven RWMs; the stability of the pressure-driven RWM is thought to be sensitive to various passive stabilization mechanisms. Both feedback control specifications and physics requirements for RWM stabilization have been clarified using the current-driven RWMs in ohmic discharges, when little or no passive stabilization effects are present. The use of derivative gain on top of proportional gain is found to be advantageous. An effective feedback control system should be equipped with a power supply with bandwidth greater than the RWM growth rate. It is beneficial to apply a feedback field that is toroidally phase-shifted from the measured RWM phase in the same direction as the plasma current. The efficacy of the RWM feedback control will ultimately be determined by the plasma fluctuations on internal diagnostics, as well as on external magnetics. The proximity of the feedback coils to the plasma appears to be an important factor in determining the effectiveness of the RWM feedback coils. It is desirable that an RWM feedback control system simultaneously handles error field correction at a low frequency, along with direct RWM feedback at a high frequency. There is an indication of the influence of a second least stable RWM, which had been theoretically predicted but never identified in experiments. A preliminary investigation based on active MHD spectroscopic measurement showed a strong plasma response around 400 Hz where the typical plasma response associated with the first least stable RWM was expected to be negligible. Present active feedback control requirements are based on a single mode assumption, so the

  16. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    Science.gov (United States)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  17. Delayed feedback control in quantum transport.

    Science.gov (United States)

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  18. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    Science.gov (United States)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  19. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  20. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  1. Feedback control of persistent-current oscillation based on the atomic-clock technique

    Science.gov (United States)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  2. A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim

    2013-01-01

    The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect...

  3. How Are Feedbacks Represented in Land Models?

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-09-01

    Full Text Available Land systems are characterised by many feedbacks that can result in complex system behaviour. We defined feedbacks as the two-way influences between the land use system and a related system (e.g., climate, soils and markets, both of which are encompassed by the land system. Land models that include feedbacks thus probably more accurately mimic how land systems respond to, e.g., policy or climate change. However, representing feedbacks in land models is a challenge. We reviewed articles incorporating feedbacks into land models and analysed each with predefined indicators. We found that (1 most modelled feedbacks couple land use systems with transport, soil and market systems, while only a few include feedbacks between land use and social systems or climate systems; (2 equation-based land use models that follow a top-down approach prevail; and (3 feedbacks’ effects on system behaviour remain relatively unexplored. We recommend that land system modellers (1 consider feedbacks between land use systems and social systems; (2 adopt (bottom-up approaches suited to incorporating spatial heterogeneity and better representing land use decision-making; and (3 pay more attention to nonlinear system behaviour and its implications for land system management and policy.

  4. [A model for multi-source feedback in postgraduate medical education based on validation and best practise].

    Science.gov (United States)

    Eriksen, Gitte Valsted; Malling, Bente

    2014-04-14

    In Denmark multi-source feedback is used in formative assessment of trainees' performance regarding the roles: communicator, collaborator, professional and manager. A web-based model was developed and evaluated useful, time-effective, acceptable and feasible. The model comprises a validated questionnaire usable in all specialities, personal feedback from an educated feedback facilitator, identification of areas for improvement and a mandatory written plan for the trainees' further professional development. The model is implemented at all hospitals in the Northern Educational Region in Denmark.

  5. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  6. A feedback-based model for CSR assessment and materiality analysis

    OpenAIRE

    Calabrese, Armando; Costa, Roberta; Rosati, Francesco

    2015-01-01

    Current CSR literature offers little insight into how to engage customers and other stakeholders about their CSR expectations and perceptions. The aim of this paper is to propose a model for CSR evaluation and planning based on the classification of customer CSR feedback through the comparison of three aspects of CSR commitment (disclosed, perceived and expected). Although the paper is focused on customers, the model can be applied indifferently to any stakeholder group, thus providing a valu...

  7. Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-09-01

    Full Text Available Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.

  8. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

  9. Design Of Combined Stochastic Feedforward/Feedback Control

    Science.gov (United States)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  10. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  11. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    Science.gov (United States)

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  12. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    Directory of Open Access Journals (Sweden)

    Kwangtaek Kim

    2015-01-01

    Full Text Available Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE, 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user’s gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  13. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  14. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  15. Hierarchical Brokering with Feedback Control Framework in Mobile Device-Centric Clouds

    Directory of Open Access Journals (Sweden)

    Chao-Lieh Chen

    2016-01-01

    Full Text Available We propose a hierarchical brokering architecture (HiBA and Mobile Multicloud Networking (MMCN feedback control framework for mobile device-centric cloud (MDC2 computing. Exploiting the MMCN framework and RESTful web-based interconnection, each tier broker probes resource state of its federation for control and management. Real-time and seamless services were developed. Case studies including intrafederation energy-aware balancing based on fuzzy feedback control and higher tier load balancing are further demonstrated to show how HiBA with MMCN relieves the embedding of algorithms when developing services. Theoretical performance model and real-world experiments both show that an MDC2 based on HiBA features better quality in terms of resource availability and network latency if it federates devices with enough resources distributed in lower tier hierarchy. The proposed HiBA realizes a development platform for MDC2 computing which is a feasible solution to User-Centric Networks (UCNs.

  16. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  17. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles.

    Science.gov (United States)

    Tian, Jiayi; Zhang, Shifeng; Zhang, Yinhui; Li, Tong

    2018-03-01

    Since motion control plant (y (n) =f(⋅)+d) was repeatedly used to exemplify how active disturbance rejection control (ADRC) works when it was proposed, the integral chain system subject to matched disturbances is always regarded as a canonical form and even misconstrued as the only form that ADRC is applicable to. In this paper, a systematic approach is first presented to apply ADRC to a generic nonlinear uncertain system with mismatched disturbances and a robust output feedback autopilot for an airbreathing hypersonic vehicle (AHV) is devised based on that. The key idea is to employ the feedback linearization (FL) and equivalent input disturbance (EID) technique to decouple nonlinear uncertain system into several subsystems in canonical form, thus it would be much easy to directly design classical/improved linear/nonlinear ADRC controller for each subsystem. It is noticed that all disturbances are taken into account when implementing FL rather than just omitting that in previous research, which greatly enhances controllers' robustness against external disturbances. For autopilot design, ADRC strategy enables precise tracking for velocity and altitude reference command in the presence of severe parametric perturbations and atmospheric disturbances only using measurable output information. Bounded-input-bounded-output (BIBO) stable is analyzed for closed-loop system. To illustrate the feasibility and superiority of this novel design, a series of comparative simulations with some prominent and representative methods are carried out on a benchmark longitudinal AHV model. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    Science.gov (United States)

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-10-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.

  19. An improved car-following model with consideration of the lateral effect and its feedback control research

    International Nuclear Information System (INIS)

    Zheng Ya-Zhou; Zheng Peng-Jun; Ge Hong-Xia

    2014-01-01

    A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into account. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones. (general)

  20. Artificial proprioceptive feedback for myoelectric control.

    Science.gov (United States)

    Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush

    2015-05-01

    The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.

  1. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang

    2017-01-01

    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  2. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  3. Feedback control strategies for the Liu chaotic system

    International Nuclear Information System (INIS)

    Zhu Congxu; Chen Zhigang

    2008-01-01

    This Letter proposed three strategies of the dislocated feedback control, enhancing feedback control and speed feedback control of the Liu chaotic system to its unstable equilibrium points. It is found that the coefficients of enhancing feedback control and speed feedback control are smaller than those of ordinary feedback control, so, the complexity and cost of the system control are reduced. Theoretical analysis and numerical simulation are given, revealing the effectiveness of these strategies

  4. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    Science.gov (United States)

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  5. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  6. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  7. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  8. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    Science.gov (United States)

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  9. Model-based active control of a continuous structure subjected to moving loads

    Science.gov (United States)

    Stancioiu, D.; Ouyang, H.

    2016-09-01

    Modelling of a structure is an important preliminary step of structural control. The main objectives of the modelling, which are almost always antagonistic are accuracy and simplicity of the model. The first part of this study focuses on the experimental and theoretical modelling of a structure subjected to the action of one or two decelerating moving carriages modelled as masses. The aim of this part is to obtain a simple but accurate model which will include not only the structure-moving load interaction but also the actuators dynamics. A small scale rig is designed to represent a four-span continuous metallic bridge structure with miniature guiding rails. A series of tests are run subjecting the structure to the action of one or two minicarriages with different loads that were launched along the structure at different initial speeds. The second part is dedicated to model based control design where a feedback controller is designed and tested against the validated model. The study shows that a positive position feedback is able to improve system dynamics but also shows some of the limitations of state- space methods for this type of system.

  10. Semantically Enhanced Online Configuration of Feedback Control Schemes.

    Science.gov (United States)

    Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M

    2018-03-01

    Recent progress toward the realization of the "Internet of Things" has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.

  11. Feedback structure based entropy approach for multiple-model estimation

    Institute of Scientific and Technical Information of China (English)

    Shen-tu Han; Xue Anke; Guo Yunfei

    2013-01-01

    The variable-structure multiple-model (VSMM) approach, one of the multiple-model (MM) methods, is a popular and effective approach in handling problems with mode uncertainties. The model sequence set adaptation (MSA) is the key to design a better VSMM. However, MSA methods in the literature have big room to improve both theoretically and practically. To this end, we propose a feedback structure based entropy approach that could find the model sequence sets with the smallest size under certain conditions. The filtered data are fed back in real time and can be used by the minimum entropy (ME) based VSMM algorithms, i.e., MEVSMM. Firstly, the full Markov chains are used to achieve optimal solutions. Secondly, the myopic method together with particle filter (PF) and the challenge match algorithm are also used to achieve sub-optimal solutions, a trade-off between practicability and optimality. The numerical results show that the proposed algorithm provides not only refined model sets but also a good robustness margin and very high accuracy.

  12. Event-Triggered Output-Feedback Control for Disturbed Linear Systems

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2018-01-01

    Full Text Available In the last few decades, event-triggered control received considerable attention, because of advantages in reducing the resource utilization, such as communication load and processor. In this paper, we propose an event-triggered output-feedback controller for disturbed linear systems, in order to achieve both better resource utilization and disturbance attenuation properties at the same time. Based on our prior work on state-feedback H∞ control for disturbed systems, we propose an approach to design an output-feedback H∞ controller for the system whose states are not completely observable, and a sufficient condition guaranteeing the asymptotic stability and robustness of the system is given in the form of LMIs (Linear Matrix Inequalities.

  13. Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies.

    Science.gov (United States)

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W

    2018-05-01

    On-going developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user but have overlooked the effect of this feedback on internal model development, which is key to improve long-term performance. In this paper, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach) and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable difference. The performance of both strategies was also evaluated using Schmidt's style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency ( ), raw control with raw feedback resulted in stronger internal model development ( ), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.

  14. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  15. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    Science.gov (United States)

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback

  16. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  17. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Science.gov (United States)

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  18. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  19. Vehicle lateral motion regulation under unreliable communication links based on robust H∞ output-feedback control schema

    Science.gov (United States)

    Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan

    2018-05-01

    This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.

  20. Design and Validation of Optimized Feedforward with Robust Feedback Control of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Shaffer, Roman; He Weidong; Edwards, Robert M.

    2004-01-01

    Design applications for robust feedback and optimized feedforward control, with confirming results from experiments conducted on the Pennsylvania State University TRIGA reactor, are presented. The combination of feedforward and feedback control techniques complement each other in that robust control offers guaranteed closed-loop stability in the presence of uncertainties, and optimized feedforward offers an approach to achieving performance that is sometimes limited by overly conservative robust feedback control. The design approach taken in this work combines these techniques by first designing robust feedback control. Alternative methods for specifying a low-order linear model and uncertainty specifications, while seeking as much performance as possible, are discussed and evaluated. To achieve desired performance characteristics, the optimized feedforward control is then computed by using the nominal nonlinear plant model that incorporates the robust feedback control

  1. Interface Prostheses With Classifier-Feedback-Based User Training.

    Science.gov (United States)

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well

  2. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  3. A stage structure pest management model with impulsive state feedback control

    Science.gov (United States)

    Pang, Guoping; Chen, Lansun; Xu, Weijian; Fu, Gang

    2015-06-01

    A stage structure pest management model with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.

  4. Optimal centralized and decentralized velocity feedback control on a beam

    International Nuclear Information System (INIS)

    Engels, W P; Elliott, S J

    2008-01-01

    This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved

  5. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  6. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  7. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  8. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2018-03-01

    Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy.

  9. Nonclassical state generation for linear quantum systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Ohki, Kentaro; Tsumura, Koji; Takeuchi, Reiji

    2017-01-01

    In this paper, we propose a measurement nonlinear feedback control scheme to generate Wigner-function negativity in an optical cavity having dynamics described as a linear quantum system. In general, linear optical quantum systems can be easily constructed with reliable devices; therefore, the idea of constructing the entire system with such an optical system and nonlinear feedback is reasonable for generating Wigner-function negativity. However, existing studies have insufficiently examined the realizability or actual implementation of feedback control, which essentially requires fast responses from the sensors and actuators. In order to solve this problem, we consider the realizable feedback control of the optical phase of a pumping beam supplied to a cavity by using electro-optical modulation, which can be utilized as a fast control actuator. Then, we introduce mathematical models of the feedback-controlled system and evaluate its effect on the generation of the Wigner-function negativity by using numerical simulation. Through various numerical simulations, we show that the proposed feedback control can effectively generate the negativity of the Wigner function. (paper)

  10. Investigation of control system of traction electric drive with feedbacks on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  11. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    Science.gov (United States)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  12. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    Science.gov (United States)

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  13. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  14. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  15. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  16. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    Science.gov (United States)

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A web-based feedback study on optimization-based training and analysis of human decision making

    Directory of Open Access Journals (Sweden)

    Michael Engelhart

    2017-05-01

    Full Text Available The question “How can humans learn efficiently to make decisions in a complex, dynamic, and uncertain environment” is still a very open question. We investigate what effects arise when feedback is given in a computer-simulated microworld that is controlled by participants. This has a direct impact on training simulators that are already in standard use in many professions, e.g., for flight simulators for pilots, and a potential impact on a better understanding of human decision making in general. Our study is based on a benchmark microworld with an economic framing, the IWR Tailorshop. N=94 participants played four rounds of the microworld, each 10 months, via a web interface. We propose a new approach to quantify performance and learning, which is based on a mathematical model of the microworld and optimization. Six participant groups receive different kinds of feedback in a training phase, then results in a performance phase without feedback are analyzed. As a main result, feedback of optimal solutions in training rounds improved model knowledge, early learning, and performance, especially when this information is encoded in a graphical representation (arrows.

  18. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  19. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature

    Directory of Open Access Journals (Sweden)

    Chongjun Yang

    2018-02-01

    Full Text Available Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  20. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature.

    Science.gov (United States)

    Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong

    2018-02-12

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  1. Nonholonomic feedback control among moving obstacles

    Science.gov (United States)

    Armstrong, Stephen Gregory

    A feedback controller is developed for navigating a nonholonomic vehicle in an area with multiple stationary and possibly moving obstacles. Among other applications the developed algorithms can be used for automatic parking of a passenger car in a parking lot with complex configuration or a ground robot in cluttered environment. Several approaches are explored which combine nonholonomic systems control based on sliding modes and potential field methods.

  2. Theoretical and experimental study of Chen chaotic system with notch filter feedback control

    International Nuclear Information System (INIS)

    Ming, Zhang Xiao; Jian-Hua, Peng; Ju-Fang, Chen

    2010-01-01

    Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis. (general)

  3. Feedback control of thermal instability by compression and decompression

    International Nuclear Information System (INIS)

    Okamoto, M.; Hirano, K.; Amano, T.; Ohnishi, M.

    1983-01-01

    Active feedback control of the fusion output power by means of plasma compression-decompression is considered with the purpose of achieving steady-state plasma ignition in a tokamak. A simple but realistic feedback control system is modelled and zero-dimensional energy balance equations are solved numerically by taking into account the errors in the measurements, a procedure that is necessary for the feedback control. It is shown that the control can stabilize the thermal runaway completely and maintain steady-state operation without any significant change in major radius or thermal output power. Linear stability is analysed for a general type of scaling law, and the dependence of the stability conditions on the scaling law is studied. The possibility of load-following operation is considered. Finally, a one-dimensional analysis is applied to the large-aspect-ratio case. (author)

  4. Web/smart phone based control and feedback systems for irrigation systems

    Science.gov (United States)

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  5. Complex fluid network optimization and control integrative design based on nonlinear dynamic model

    International Nuclear Information System (INIS)

    Sui, Jinxue; Yang, Li; Hu, Yunan

    2016-01-01

    In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.

  6. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    International Nuclear Information System (INIS)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-01-01

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425 (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes

  7. A feedback-retransmission based asynchronous frequency hopping MAC protocol for military aeronautical ad hoc networks

    Directory of Open Access Journals (Sweden)

    Jinhui TANG

    2018-05-01

    Full Text Available Attacking time-sensitive targets has rigid demands for the timeliness and reliability of information transmission, while typical Media Access Control (MAC designed for this application works well only in very light-load scenarios; as a consequence, the performances of system throughput and channel utilization are degraded. For this problem, a feedback-retransmission based asynchronous FRequency hopping Media Access (FRMA control protocol is proposed. Burst communication, asynchronous Frequency Hopping (FH, channel coding, and feedback retransmission are utilized in FRMA. With the mechanism of asynchronous FH, immediate packet transmission and multi-packet reception can be realized, and thus the timeliness is improved. Furthermore, reliability can be achieved via channel coding and feedback retransmission. With theories of queuing theory, Markov model, packets collision model, and discrete Laplace transformation, the formulas of packet success probability, system throughput, average packet end-to-end delay, and delay distribution are obtained. The approximation accuracy of theoretical derivation is verified by experimental results. Within a light-load network, the proposed FRMA has the ability of millisecond delay and 99% reliability as well as outperforms the non-feedback-retransmission based asynchronous frequency hopping media access control protocol. Keywords: Ad hoc networks, Aeronautical communications, Frequency hopping, Media Access Control (MAC, Time-sensitive

  8. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

  9. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Real-Time Gesture-Controlled Physical Modelling Music Synthesis with Tactile Feedback

    Directory of Open Access Journals (Sweden)

    David M. Howard

    2004-06-01

    Full Text Available Electronic sound synthesis continues to offer huge potential possibilities for the creation of new musical instruments. The traditional approach is, however, seriously limited in that it incorporates only auditory feedback and it will typically make use of a sound synthesis model (e.g., additive, subtractive, wavetable, and sampling that is inherently limited and very often nonintuitive to the musician. In a direct attempt to challenge these issues, this paper describes a system that provides tactile as well as acoustic feedback, with real-time synthesis that invokes a more intuitive response from players since it is based upon mass-spring physical modelling. Virtual instruments are set up via a graphical user interface in terms of the physical properties of basic well-understood sounding objects such as strings, membranes, and solids. These can be interconnected to form complex integrated structures. Acoustic excitation can be applied at any point mass via virtual bowing, plucking, striking, specified waveform, or from any external sound source. Virtual microphones can be placed at any point masses to deliver the acoustic output. These aspects of the instrument are described along with the nature of the resulting acoustic output.

  11. Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis

    DEFF Research Database (Denmark)

    Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit

    The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid...... control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require a precise model of the HVDC grid, wind farm, and the controllers. In this paper, a linear multivariable...... feedback control system (FCS) model is proposed to represent the dynamic characteristics of HVDC grids and their controllers. The FCS model can be used for different dynamic analyses in time and frequency domains. Moreover, using the FCS model the system stability is analyzed in both open- and closed...

  12. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-01-01

    Full Text Available Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.

  13. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements.

    Science.gov (United States)

    Kim, Kwang S; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated.

  14. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  15. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  16. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    Science.gov (United States)

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  18. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  19. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  20. Nonlinearity measure and internal model control based linearization in anti-windup design

    Energy Technology Data Exchange (ETDEWEB)

    Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

  1. Automatic Flight Controller With Model Inversion

    Science.gov (United States)

    Meyer, George; Smith, G. Allan

    1992-01-01

    Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.

  2. Constrained quadratic stabilization of discrete-time uncertain nonlinear multi-model systems using piecewise affine state-feedback

    Directory of Open Access Journals (Sweden)

    Olav Slupphaug

    1999-07-01

    Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.

  3. The Effect of the Feedback Controller on Superconducting Tokamak AC Losses + AC-CRPP user manual

    International Nuclear Information System (INIS)

    Schaerz, B.; Bruzzone, P.; Favez, J.Y.; Lister, J.B.; Zapretilina, E.

    2001-11-01

    Superconducting coils in a Tokamak are subject to AC losses when the field transverse to the coil current varies. A simple model to evaluate the AC losses has been derived and benchmarked against a complete model used in the ITER design procedure. The influence of the feedback control strategy on the AC losses is examined using this model. An improved controller is proposed, based on this study. (author)

  4. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  5. A multipoint feedback control system for scanned focussed ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Johnson, C.; Kress, R.; Roemer, R.; Hynynen, K.

    1987-01-01

    A multipoint feedback control system has been developed and tested for use with a scanned focussed ultrasound hyperthermia system. Extensive in-vivo tests (using a perfused organ model) have been made to evaluate the basic performance characteristics of the feedback control scheme for control of temperature in perfused media. The results of these tests are presented and compared with the predictions of a simulation routine. The control scheme was also tested in vivo using dogs' thighs and kidneys. Thigh experiments show the control scheme responds well to the affects of vasodilation and is able to maintain the targeted temperatures. In kidney experiments, where the rate of perfusion was controllable, the power adjusting algorithm successfully maintained uniform temperature distributions across regions of varying rates of perfusion. As a conclusion, the results show that this multipoint feedback controller scheme induces uniform temperature distributions when used with scanned focussed ultrasound systems

  6. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  7. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  8. Amplitude based feedback control for NTM stabilisation at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher, E-mail: chris.rapson@ipp.mpg.de; Giannone, Louis; Maraschek, Marc; Reich, Matthias; Stober, Joerg; Treutterer, Wolfgang

    2014-05-15

    Highlights: • Two algorithms have been developed which use the NTM amplitude to control ECCD deposition and stabilise NTMs. • Both algorithms were tested and tuned in a simulation of the full feedback loop including an MRE. • Both algorithms have been successfully deployed in ASDEX Upgrade experiments. • Use of the NTM amplitude adds considerable robustness, which is necessary when trying to target ECCD to within 1 cm of the island location. • This is part of ongoing work to reliably and quickly stabilise NTMs in any plasma scenario. - Abstract: Neoclassical Tearing Modes (NTMs) degrade the confinement in tokamak plasmas at high beta, placing a major limitation on the projected fusion performance. Furthermore, NTMs can lead to disruptions with even more severe consequences. Therefore methods to stabilise NTMs are being developed with high priority at several research institutes worldwide. The favoured method is to deposit Electron Cyclotron Current Drive (ECCD) precisely at the mode location by controlling a movable mirror in the ECCD launcher. This method requires both the mode location and the deposition location to be known with high accuracy in real time. The required accuracy is given by half of the marginal island width, or approximately 1 cm for a m/n = 3/2 NTM at ASDEX Upgrade. Despite considerable development on a range of diagnostics, it remains challenging to provide the necessary accuracy reliably and in real time. To relax the accuracy requirements and add robustness, the feedback controller can additionally consider the effect of ECCD on the NTM amplitude directly. Then the optimal deposition location is simply where the NTM amplitude is minimised. The simplest implementation sweeps the ECCD beam across the expected NTM location. After the sweep, the beam can be returned to the optimal location and held there to stabilise the NTM. Unfortunately, waiting for a full sweep takes too long. Therefore a second method assesses the NTM growth every

  9. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  10. Time-delayed feedback control of diffusion in random walkers

    Science.gov (United States)

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  11. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  12. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  13. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    Directory of Open Access Journals (Sweden)

    YanBin Liu

    2017-01-01

    Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.

  14. Suboptimal RED Feedback Control for Buffered TCP Flow Dynamics in Computer Network

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed

    2007-01-01

    Full Text Available We present an improved dynamic system that simulates the behavior of TCP flows and active queue management (AQM system. This system can be modeled by a set of stochastic differential equations driven by a doubly stochastic point process with intensities being the controls. The feedback laws proposed monitor the status of buffers and multiplexor of the router, detect incipient congestion by sending warning signals to the sources. The simulation results show that the optimal feedback control law from the class of linear as well as quadratic polynomials can improve the system performance significantly in terms of maximizing the link utilization, minimizing congestion, packet losses, as well as global synchronization. The optimization process used is based on random recursive search technique known as RRS.

  15. Nonlinear model-based robust control of a nuclear reactor using adaptive PIF gains and variable structure controller

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods. (Author)

  16. Decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    This paper is devoted to the study of the decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures. A smart panel with collocated piezoelectric actuators and velocity sensors is modeled using a finite element method, and then the size of the model is reduced in the state space using the modal Hankel singular value. The necessary and sufficient conditions of decentralized guaranteed cost static output feedback control for the reduced system have been presented. The decentralized and centralized static output feedback matrices can be obtained from solving two linear matrix inequalities. A comparison between centralized control and decentralized control is performed in order to investigate their effectiveness in suppressing vibration of a smart panel. Numerical results show that when the system is subjected to initial displacement or white noise disturbance, the decentralized and centralized controls are both very effective and the control results are very close

  17. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics

    Science.gov (United States)

    Prins, Noeline W.; Sanchez, Justin C.; Prasad, Abhishek

    2017-06-01

    Objective. For brain-machine interfaces (BMI) to be used in activities of daily living by paralyzed individuals, the BMI should be as autonomous as possible. One of the challenges is how the feedback is extracted and utilized in the BMI. Our long-term goal is to create autonomous BMIs that can utilize an evaluative feedback from the brain to update the decoding algorithm and use it intelligently in order to adapt the decoder. In this study, we show how to extract the necessary evaluative feedback from a biologically realistic (synthetic) source, use both the quantity and the quality of the feedback, and how that feedback information can be incorporated into a reinforcement learning (RL) controller architecture to maximize its performance. Approach. Motivated by the perception-action-reward cycle (PARC) in the brain which links reward for cognitive decision making and goal-directed behavior, we used a reward-based RL architecture named Actor-Critic RL as the model. Instead of using an error signal towards building an autonomous BMI, we envision to use a reward signal from the nucleus accumbens (NAcc) which plays a key role in the linking of reward to motor behaviors. To deal with the complexity and non-stationarity of biological reward signals, we used a confidence metric which was used to indicate the degree of feedback accuracy. This confidence was added to the Actor’s weight update equation in the RL controller architecture. If the confidence was high (>0.2), the BMI decoder used this feedback to update its parameters. However, when the confidence was low, the BMI decoder ignored the feedback and did not update its parameters. The range between high confidence and low confidence was termed as the ‘ambiguous’ region. When the feedback was within this region, the BMI decoder updated its weight at a lower rate than when fully confident, which was decided by the confidence. We used two biologically realistic models to generate synthetic data for MI (Izhikevich

  18. Progress and improvement of KSTAR plasma control using model-based control simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Sang-hee, E-mail: hahn76@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Welander, A.S. [General Atomics, San Diego, CA (United States); Yoon, S.W.; Bak, J.G. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Eidietis, N.W. [General Atomics, San Diego, CA (United States); Han, H.S. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Humphreys, D.A.; Hyatt, A. [General Atomics, San Diego, CA (United States); Jeon, Y.M. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Johnson, R.D. [General Atomics, San Diego, CA (United States); Kim, H.S.; Kim, J. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Kolemen, E.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Penaflor, B.G.; Piglowski, D.A. [General Atomics, San Diego, CA (United States); Shin, G.W. [University of Science and Technology, Daejeon (Korea, Republic of); Walker, M.L. [General Atomics, San Diego, CA (United States); Woo, M.H. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of)

    2014-05-15

    Superconducting tokamaks like KSTAR, EAST and ITER need elaborate magnetic controls mainly due to either the demanding experiment schedule or tighter hardware limitations caused by the superconducting coils. In order to reduce the operation runtime requirements, two types of plasma simulators for the KSTAR plasma control system (PCS) have been developed for improving axisymmetric magnetic controls. The first one is an open-loop type, which can reproduce the control done in an old shot by loading the corresponding diagnostics data and PCS setup. The other one, a closed-loop simulator based on a linear nonrigid plasma model, is designed to simulate dynamic responses of the plasma equilibrium and plasma current (I{sub p}) due to changes of the axisymmetric poloidal field (PF) coil currents, poloidal beta, and internal inductance. The closed-loop simulator is the one that actually can test and enable alteration of the feedback control setup for the next shot. The simulators have been used routinely in 2012 plasma campaign, and the experimental performances of the axisymmetric shape control algorithm are enhanced. Quality of the real-time EFIT has been enhanced by utilizations of the open-loop type. Using the closed-loop type, the decoupling scheme of the plasma current control and axisymmetric shape controls are verified through both the simulations and experiments. By combining with the relay feedback tuning algorithm, the improved controls helped to maintain the shape suitable for longer H-mode (10–16 s) with the number of required commissioning shots largely reduced.

  19. Control of an atom laser using feedback

    International Nuclear Information System (INIS)

    Haine, S.A.; Ferris, A.J.; Close, J.D.; Hope, J.J.

    2004-01-01

    A generalized method of using feedback to control multimode behavior in Bose-Einstein condensates is introduced. We show that for any available control, there is an associated moment of the atomic density and a feedback scheme that will remove energy from the system while there are oscillations in that moment. We demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of nonlinear controls. If the nonlinear interaction between the atoms can be controlled via a Feshbach resonance, we show that the feedback process can operate with a much higher efficiency

  20. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  1. Feedback-based probabilistic category learning is selectively impaired in attention/hyperactivity deficit disorder.

    Science.gov (United States)

    Gabay, Yafit; Goldfarb, Liat

    2017-07-01

    Although Attention-Deficit Hyperactivity Disorder (ADHD) is closely linked to executive function deficits, it has recently been attributed to procedural learning impairments that are quite distinct from the former. These observations challenge the ability of the executive function framework solely to account for the diverse range of symptoms observed in ADHD. A recent neurocomputational model emphasizes the role of striatal dopamine (DA) in explaining ADHD's broad range of deficits, but the link between this model and procedural learning impairments remains unclear. Significantly, feedback-based procedural learning is hypothesized to be disrupted in ADHD because of the involvement of striatal DA in this type of learning. In order to test this assumption, we employed two variants of a probabilistic category learning task known from the neuropsychological literature. Feedback-based (FB) and paired associate-based (PA) probabilistic category learning were employed in a non-medicated sample of ADHD participants and neurotypical participants. In the FB task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of the response. In the PA learning task, participants viewed the cue and its associated outcome simultaneously without receiving an overt response or corrective feedback. In both tasks, participants were trained across 150 trials. Learning was assessed in a subsequent test without a presentation of the outcome or corrective feedback. Results revealed an interesting disassociation in which ADHD participants performed as well as control participants in the PA task, but were impaired compared with the controls in the FB task. The learning curve during FB training differed between the two groups. Taken together, these results suggest that the ability to incrementally learn by feedback is selectively disrupted in ADHD participants. These results are discussed in relation to both

  2. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    International Nuclear Information System (INIS)

    Nino, Daniel; Wang, Haowei; N Milstein, Joshua

    2014-01-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)

  3. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Daniel; Wang, Haowei; N Milstein, Joshua, E-mail: josh.milstein@utoronto.ca [Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6 (Canada)

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)

  4. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  5. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  6. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen

    2017-06-01

    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  7. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  8. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    Science.gov (United States)

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Quantum feedback for rapid state preparation in the presence of control imperfections

    International Nuclear Information System (INIS)

    Combes, Joshua; Wiseman, Howard M

    2011-01-01

    Quantum feedback control protocols can improve the operation of quantum devices. Here we examine the performance of a purification protocol when there are imperfections in the controls. The ideal feedback protocol produces an x-eigenstate from a mixed state in the minimum time, and is known as rapid state preparation. The imperfections we examine include time delays in the feedback loop, finite strength feedback, calibration errors and inefficient detection. We analyse these imperfections using the Wiseman-Milburn feedback master equation and related formalism. We find that the protocol is most sensitive to time delays in the feedback loop. For systems with slow dynamics, however, our analysis suggests that inefficient detection would be the bigger problem. We also show how system imperfections, such as dephasing and damping, can be included in a model via the feedback master equation.

  10. Design analysis and microprocessor based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Sabbakh, N.J.

    1988-01-01

    The object of this thesis is to design and test a microprocessor based controller, to a simulated nuclear reactor system. The mathematical model that describes the dynamics of a typical nuclear reactor of one group of delayed neutrons approximations with temperature feedback was chosen. A digital computer program has been developed for the design and analysis of a simulated model based on the concept of state-variable feedback in order to meet a desired system response with maximum overshoot of 3.4% and setting time of 4 sec. The state variable feedback coefficients are designed for the continuous system, then an approximation is used to obtain in the state variable feedback vector for the discrete system. System control was implemented utilizing Direct Digital Control (DDC) of a nuclear reactor simulated model through a control algorithm that was performed by means of a microprocessor based system. The controller performance was satisfactorily tested by exciting the reactor system with a transient reactivity disturbance and by a step change in power demand. Direct digital control, when implemented on a microprocessor adds versatility, flexibility in system design with the added advantage of possible use of optimal control algorithms. 6 tabs.; 30 figs.; 46 refs.; 6 apps

  11. Design and implementation of remote robotic control system for nuclear power plant application achieved through kinesthetic force feedback model

    International Nuclear Information System (INIS)

    Roy, D.

    1995-01-01

    The technology of telerobotic control through a universal and transparent Man-Machine Interface is a growing field of robotics research in today's industrial scenario because of its promising application in hazardous and unstructured environments. The joystick, a sophisticated information receiver-translator-transmitter device, serves as a Man-Machine Interface for telerobots. The present paper describes the development paradigms of a remote control system for a planar four degrees-of-freedom joystick following position feed-forward force/torque feedback strategy in a bi-lateral mode. This joystick based control technology is designed to actuate an industrial robot working in nuclear power plant. The remote control system has been illustrated with model, algorithm, electronic hardware and software routines along with experimental results in order to have effective telemanipulation

  12. Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2013-04-09

    A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.

  13. Extracting the invariant model from the feedback paths of digital hearing aids

    DEFF Research Database (Denmark)

    Ma, Guilin; Gran, Fredrik; Jacobsen, Finn

    2011-01-01

    environments given a specific type of hearing aids. Based on this observation, a feedback path model that consists of an invariant model and a variant model is proposed. A common-acoustical-pole and zero model-based approach and an iterative least-square search-based approach are used to extract the invariant...... model from a set of impulse responses of the feedback paths. A hybrid approach combining the two methods is also proposed. The general properties of the three methods are studied using artificial datasets, and the methods are cross-validated using the measured feedback paths. The results show...

  14. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    Science.gov (United States)

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important

  15. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  16. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  17. Computationally efficient design of optimal output feedback strategies for controllable passive damping devices

    International Nuclear Information System (INIS)

    Kamalzare, Mahmoud; Johnson, Erik A; Wojtkiewicz, Steven F

    2014-01-01

    Designing control strategies for smart structures, such as those with semiactive devices, is complicated by the nonlinear nature of the feedback control, secondary clipping control and other additional requirements such as device saturation. The usual design approach resorts to large-scale simulation parameter studies that are computationally expensive. The authors have previously developed an approach for state-feedback semiactive clipped-optimal control design, based on a nonlinear Volterra integral equation that provides for the computationally efficient simulation of such systems. This paper expands the applicability of the approach by demonstrating that it can also be adapted to accommodate more realistic cases when, instead of full state feedback, only a limited set of noisy response measurements is available to the controller. This extension requires incorporating a Kalman filter (KF) estimator, which is linear, into the nominal model of the uncontrolled system. The efficacy of the approach is demonstrated by a numerical study of a 100-degree-of-freedom frame model, excited by a filtered Gaussian random excitation, with noisy acceleration sensor measurements to determine the semiactive control commands. The results show that the proposed method can improve computational efficiency by more than two orders of magnitude relative to a conventional solver, while retaining a comparable level of accuracy. Further, the proposed approach is shown to be similarly efficient for an extensive Monte Carlo simulation to evaluate the effects of sensor noise levels and KF tuning on the accuracy of the response. (paper)

  18. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  19. Application of H∞ control theory to power control of a nonlinear reactor model

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Shimazaki, Junya; Shinohara, Yoshikuni

    1993-01-01

    The H∞ control theory is applied to the compensator design of a nonlinear nuclear reactor model, and the results are compared with standard linear quadratic Gaussian (LQG) control. The reactor model is assumed to be provided with a control rod drive system having the compensation of rod position feedback. The nonlinearity of the reactor model exerts a great influence on the stability of the control system, and hence, it is desirable for a power control system of a nuclear reactor to achieve robust stability and to improve the sensitivity of the feedback control system. A computer simulation based on a power control system synthesized by LQG control was performed revealing that the control system has some stationary offset and less stability. Therefore, here, attention is given to the development of a methodology for robust control that can withstand exogenous disturbances and nonlinearity in view of system parameter changes. The developed methodology adopts H∞ control theory in the feedback system and shows interesting features of robustness. The results of the computer simulation indicate that the feedback control system constructed by the developed H∞ compensator possesses sufficient robustness of control on the stability and disturbance attenuation, which are essential for the safe operation of a nuclear reactor

  20. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  1. Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator

    International Nuclear Information System (INIS)

    Arriagada, A J; Jurkov, A S; Mintchev, M P; Neshev, E; Andrews, C N; Muench, G

    2011-01-01

    Functional neural gastrointestinal electrical stimulation (NGES) is a methodology of gastric electrical stimulation that can be applied as a possible treatment for disorders such as obesity and gastroparesis. NGES is capable of generating strong lumen-occluding local contractions that can produce retrograde or antegrade movement of gastric content. A feedback-controlled implantable NGES system has been designed, implemented and tested both in laboratory conditions and in an acute animal setting. The feedback system, based on gastric tissue impedance change, is aimed at reducing battery energy requirements and managing the phenomenon of gastric tissue accommodation. Acute animal testing was undertaken in four mongrel dogs (2 M, 2 F, weight 25.53 ± 7.3 kg) that underwent subserosal two-channel electrode implantation. Three force transducers sutured serosally along the gastric axis and a wireless signal acquisition system were utilized to record stimulation-generated contractions and tissue impedance variations respectively. Mechanically induced contractions in the stomach were utilized to indirectly generate a tissue impedance change that was detected by the feedback system. Results showed that increasing or decreasing impedance changes were detected by the implantable stimulator and that therapy can be triggered as a result. The implantable feedback system brings NGES one step closer to long term treatment of burdening gastric motility disorders in humans

  2. Preventing smoking relapse via Web-based computer-tailored feedback: a randomized controlled trial.

    Science.gov (United States)

    Elfeddali, Iman; Bolman, Catherine; Candel, Math J J M; Wiers, Reinout W; de Vries, Hein

    2012-08-20

    Web-based computer-tailored approaches have the potential to be successful in supporting smoking cessation. However, the potential effects of such approaches for relapse prevention and the value of incorporating action planning strategies to effectively prevent smoking relapse have not been fully explored. The Stay Quit for You (SQ4U) study compared two Web-based computer-tailored smoking relapse prevention programs with different types of planning strategies versus a control group. To assess the efficacy of two Web-based computer-tailored programs in preventing smoking relapse compared with a control group. The action planning (AP) program provided tailored feedback at baseline and invited respondents to do 6 preparatory and coping planning assignments (the first 3 assignments prior to quit date and the final 3 assignments after quit date). The action planning plus (AP+) program was an extended version of the AP program that also provided tailored feedback at 11 time points after the quit attempt. Respondents in the control group only filled out questionnaires. The study also assessed possible dose-response relationships between abstinence and adherence to the programs. The study was a randomized controlled trial with three conditions: the control group, the AP program, and the AP+ program. Respondents were daily smokers (N = 2031), aged 18 to 65 years, who were motivated and willing to quit smoking within 1 month. The primary outcome was self-reported continued abstinence 12 months after baseline. Logistic regression analyses were conducted using three samples: (1) all respondents as randomly assigned, (2) a modified sample that excluded respondents who did not make a quit attempt in conformance with the program protocol, and (3) a minimum dose sample that also excluded respondents who did not adhere to at least one of the intervention elements. Observed case analyses and conservative analyses were conducted. In the observed case analysis of the randomized sample

  3. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  4. Role of measurement in feedback-controlled quantum engines

    Science.gov (United States)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  5. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  6. Accelerator and feedback control simulation using neural networks

    International Nuclear Information System (INIS)

    Nguyen, D.; Lee, M.; Sass, R.; Shoaee, H.

    1991-05-01

    Unlike present constant model feedback system, neural networks can adapt as the dynamics of the process changes with time. Using a process model, the ''Accelerator'' network is first trained to simulate the dynamics of the beam for a given beam line. This ''Accelerator'' network is then used to train a second ''Controller'' network which performs the control function. In simulation, the networks are used to adjust corrector magnetics to control the launch angle and position of the beam to keep it on the desired trajectory when the incoming beam is perturbed. 4 refs., 3 figs

  7. Mental models of audit and feedback in primary care settings.

    Science.gov (United States)

    Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul

    2018-05-30

    Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research  in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.

  8. Self-control over combined video feedback and modeling facilitates motor learning.

    Science.gov (United States)

    Post, Phillip G; Aiken, Christopher A; Laughlin, David D; Fairbrother, Jeffrey T

    2016-06-01

    Allowing learners to control the video presentation of knowledge of performance (KP) or an expert model during practice has been shown to facilitate motor learning (Aiken, Fairbrother, & Post, 2012; Wulf, Raupach, & Pfeiffer, 2005). Split-screen replay features now allow for the simultaneous presentation of these modes of instructional support. It is uncertain, however, if such a combination incorporated into a self-control protocol would yield similar benefits seen in earlier self-control studies. Therefore, the purpose of the present study was to examine the effects of self-controlled split-screen replay on the learning of a golf chip shot. Participants completed 60 practice trials, three administrations of the Intrinsic Motivation Inventory, and a questionnaire on day one. Retention and transfer tests and a final motivation inventory were completed on day two. Results revealed significantly higher form and accuracy scores for the self-control group during transfer. The self-control group also had significantly higher scores on the perceived competence subscale, reported requesting feedback mostly after perceived poor trials, and recalled a greater number of critical task features compared to the yoked group. The findings for the performance measures were consistent with previous self-control research. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. FEM-based neural-network approach to nonlinear modeling with application to longitudinal vehicle dynamics control.

    Science.gov (United States)

    Kalkkuhl, J; Hunt, K J; Fritz, H

    1999-01-01

    An finite-element methods (FEM)-based neural-network approach to Nonlinear AutoRegressive with eXogenous input (NARX) modeling is presented. The method uses multilinear interpolation functions on C0 rectangular elements. The local and global structure of the resulting model is analyzed. It is shown that the model can be interpreted both as a local model network and a single layer feedforward neural network. The main aim is to use the model for nonlinear control design. The proposed FEM NARX description is easily accessible to feedback linearizing control techniques. Its use with a two-degrees of freedom nonlinear internal model controller is discussed. The approach is applied to modeling of the nonlinear longitudinal dynamics of an experimental lorry, using measured data. The modeling results are compared with local model network and multilayer perceptron approaches. A nonlinear speed controller was designed based on the identified FEM model. The controller was implemented in a test vehicle, and several experimental results are presented.

  10. Learning and Control Model of the Arm for Loading

    Science.gov (United States)

    Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu

    We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.

  11. Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2017-03-01

    Full Text Available This paper is concerned with a competition and cooperation model of two enterprises with multiple delays and feedback controls. With the aid of the difference inequality theory, we have obtained some sufficient conditions which guarantee the permanence of the model. Under a suitable condition, we prove that the system has global stable periodic solution. The paper ends with brief conclusions.

  12. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2015-01-01

    function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by servovalve restrictions. This work demonstrates enhancements of the dynamic response of flexible rotor-bearing systems supported by an active tilting-pad journal bearing by means of the feedback......The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...

  13. Optimal control of transverse mode coupling instability based on the two particle model

    International Nuclear Information System (INIS)

    Ogata, Atsushi

    1985-01-01

    The optimal regulator design technique is applied to asymptotically stabilize the transverse mode coupling instability of a storage ring. The state equations are based on the two particle model. These are a pair of equation sets, one for the first and one for the second half of the synchrotron phase. Each set consists of first-order difference equations in vector-matrix form, with time step equal to the revolution time of the ring. Solution of the discrete Riccati equation gives the optimal gain matrix of the transverse feedback. Computer simulations are carried out to verify its effectiveness. Some modifications necessary to apply it to the real accelerator operation are made. The old methods, the classical output feedback and the reactive feedback, are interpreted from the viewpoint of the optimal control. (orig.)

  14. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  15. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  16. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  17. Robust model predictive control for constrained continuous-time nonlinear systems

    Science.gov (United States)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  18. Nonlinear H-ininity state feedback controllers:

    DEFF Research Database (Denmark)

    Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin

    1997-01-01

    From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...... (semiglobally) in this paper, and the obtained control laws are implemented in MAPLE...

  19. Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller

    International Nuclear Information System (INIS)

    Chen Shihua; Wang Feng; Wang Changping

    2004-01-01

    We present a systematic design procedure to synchronize a class of chaotic systems in a so-called strict-feedback form based on back-stepping procedure. This approach needs only a single controller to realize synchronization no matter how many dimensions the chaotic system contains. Furthermore, we point out that the method does not work for general strict-feedback chaotic systems, for instance, Lorenz system. Therefore, we propose three kinds of synchronization schemes for Lorenz system using the Lyapunov function method. All the three schemes avoid including divergence factor as in Ref. [Chaos, Solitons and Fractals 16 (2003) 37]. Especially in the last two schemes, we need only one state variable in controller, which has important significance in chaos synchronization used for communication purposes. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods

  20. On optimal feedforward and ILC : the role of feedback for optimal performance and inferential control

    NARCIS (Netherlands)

    van Zundert, J.C.D.; Oomen, T.A.E

    2017-01-01

    The combination of feedback control with inverse model feedforward control or iterative learning control is known to yield high performance. The aim of this paper is to clarify the role of feedback in the design of feedforward controllers, with specific attention to the inferential situation. Recent

  1. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  2. Using a reflection model for modeling the dynamic feedback path of digital hearing aids

    DEFF Research Database (Denmark)

    Ma, Guilin; Gran, Fredrik; Jacobsen, Finn

    2010-01-01

    Feedback whistling is one of the severe problems with hearing aids, especially in dynamic situations when the users hug, pick up a telephone, etc. This paper investigates the properties of the dynamic feedback paths of digital hearing aids and proposes a model based on a reflection assumption...... gain. The method is also extended to dual-microphone hearing aids to assess the possibility of relating the two dynamic feedback paths through the reflection model. However, it is found that in a complicated acoustic environment, the relation between the two feedback paths can be very intricate...

  3. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.

    Science.gov (United States)

    Gu, Guoying; Zhu, Limin

    2010-08-01

    In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.

  4. Feedback-Controlled Lubrication for Reducing the Lateral Vibration of Flexible Rotors supported by Tilting-Pad Journal Bearings

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2014-01-01

    In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime...... to experimentally characterized multi-input multi-output systems is used to determine the stabilizing PD gain domain. The main contribution of this work is to demonstrate the enhancement of the dynamic response of a flexible rotor-bearing system supported by an active TPJB by means of the feedback...... are used as actuators and the flexible rotor lateral movements as feedback control signals. To synthesise the PD controller gains an objective function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by the servovalves restrictions. The D-decomposition approach expanded...

  5. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  6. Controlling chaos in Internet congestion control model

    International Nuclear Information System (INIS)

    Chen Liang; Wang Xiaofan; Han Zhengzhi

    2004-01-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p max . This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic

  7. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  8. Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation

    Directory of Open Access Journals (Sweden)

    H.M. Omar

    2005-01-01

    Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.

  9. A Robust Multivariable Feedforward/Feedback Controller Design for Integrated Power Control of Boiling Water Reactor Power Plants

    International Nuclear Information System (INIS)

    Shyu, S.-S.; Edwards, Robert M.

    2002-01-01

    In this paper, a methodology for synthesizing a robust multivariable feedforward/feedback control (FF/FBC) strategy is proposed for an integrated control of turbine power, throttle pressure, and reactor water level in a nuclear power plant. In the proposed method, the FBC is synthesized by the robust control approach. The feedforward control, which is generated via nonlinear programming, is added to the robust FBC system to further improve the control performance. The plant uncertainties, including unmodeled dynamics, linearization, and model reduction, are characterized and estimated. The comparisons of simulation responses based on a nonlinear reactor model demonstrate the achievement of the proposed controller with specified performance and endurance under uncertainty. It is also important to note that all input variables are manipulated in an orchestrated manner in response to a single output's setpoint change

  10. Robust wide-range control of nuclear reactors by using the feedforward-feedback concept

    International Nuclear Information System (INIS)

    Weng, C.K.; Edwards, R.M.; Ray, A.

    1994-01-01

    A robust feedforward-feedback controller is proposed for wide-range operations of nuclear reactors. This control structure provides (a) optimized performance over a wide operating range resulting form the feedforward element and (b) guaranteed robust stability and performance resulting from the feedback element. The feedforward control law is synthesized via nonlinear programming, which generates an optimal control sequence over a finite-time horizon under specified constraints. The feedback control is synthesized via the structured singular value μ approach to guarantee robustness in the presence of disturbances and modeling uncertainties. The results of simulation experiments are presented to demonstrate efficacy of the proposed control structure for a large rapid power reduction to avoid unnecessary plant trips

  11. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  12. Designing and Evaluating Tutoring Feedback Strategies for digital learning environments on the basis of the Interactive Tutoring Feedback Model

    Directory of Open Access Journals (Sweden)

    Susanne Narciss

    2013-06-01

    Full Text Available This paper describes the interactive tutoring feedback model (ITF-model; Narciss, 2006; 2008, and how it can be applied to the design and evaluation of feedback strategies for digital learning environments. The ITF-model conceptualizes formative tutoring feedback as a multidimensional instructional activity that aims at contributing to the regulation of a learning process in order to help learners acquire or improve the competencies needed to master learning tasks. It integrates findings from systems theory with recommendations of prior research on interactive instruction and elaborated feedback, on task analyses, on error analyses, and on tutoring techniques. Based on this multi-dimensional view of formative tutoring feedback methodological implications for designing and investigating multiple effects of feedback under multiple individual and situational conditions are described. Furthermore, the paper outlines how the implications of the ITF-model have been applied in several studies to the design and evaluation of tutoring feedback strategies for digital learning environments (e.g., Narciss, 2004; Narciss & Huth, 2006; Narciss, Schnaubert, Andres, Eichelmann, Goguadze, & Sosnovsky, 2013.

  13. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  14. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Tianhua Li

    2013-09-01

    Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

  15. Eliminating oscillations in the Internet by time-delayed feedback control

    International Nuclear Information System (INIS)

    Liu Chenglin; Tian Yuping

    2008-01-01

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation

  16. Eliminating oscillations in the Internet by time-delayed feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Automatic Control, Southeast University, Nanjing 210096 (China); Tian Yuping [Department of Automatic Control, Southeast University, Nanjing 210096 (China)], E-mail: yptian@seu.edu.cn

    2008-03-15

    In this paper, a time-delayed feedback control method is applied to congestion control in order to eliminate oscillations in the Internet. The stability of the proposed control method is demonstrated based on frequency-domain analysis. The effectiveness of the method is illustrated using simulation.

  17. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    OpenAIRE

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  18. Delayed feedback control of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Gjurchinovski, A; Urumov, V; Sandev, T

    2010-01-01

    We study the possibility to stabilize unstable steady states and unstable periodic orbits in chaotic fractional-order dynamical systems by the time-delayed feedback method. By performing a linear stability analysis, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parameterized by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. We demonstrate that the method can also stabilize unstable periodic orbits for a suitable choice of the feedback gain, providing that the time delay is chosen to coincide with the period of the target orbit. In addition, it is shown numerically that delayed feedback control with a sinusoidally modulated time delay significantly enlarges the stability region of steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  19. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Savi, Marcelo Amorim

    2009-01-01

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  20. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration.

    Science.gov (United States)

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B

    2017-09-20

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of

  1. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  2. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.

    Science.gov (United States)

    Selk Ghafari, A; Meghdari, A; Vossoughi, G

    2009-08-01

    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of pressure during locomotion. The parameters of the proposed controller were determined by employing the iterative feedback tuning approach to minimize tracking errors during forward dynamics simulation. Simultaneously, an inverse-dynamics-based optimization was employed to compute a set of desired musculotendon forces in the closed-loop simulation to resolve muscle redundancy. Quantitative comparisons of the simulation results with the experimental measurements and the reference muscles' activities illustrate the accuracy and efficiency of the proposed method during the stable ascending simulation.

  3. Dynamics and control of a financial system with time-delayed feedbacks

    International Nuclear Information System (INIS)

    Chen, W.-C.

    2008-01-01

    Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks

  4. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.

    Science.gov (United States)

    Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman

    2017-02-01

    Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.

  5. MARTe at FTU: The new feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM - ENEA Fusion Association, Frascati Research Centre, Division of Fusion Physics, Rome, Frascati (Italy); Sadeghi, Yahya; Carnevale, Daniele; Di Geronimo, Andrea; Varano, Gianluca; Vitelli, Riccardo [Department of Computer Science, Systems and Production, University of Rome Tor Vergata, Rome (Italy); Galperti, Critsian [Istituto di Fisica del Plasma, CNR, EURATOM-ENEA Association, Milan (Italy); Zarfati, Emanuele; Pucci, Daniele [Department Antonio Ruberti, University of Rome La Sapienza, Rome (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We show that the MARTe is a candidate for ITER PSH. Black-Right-Pointing-Pointer We replace the old real-time feedback software using the MARTe framework. Black-Right-Pointing-Pointer We describe all the work done for the integration. - Abstract: Keeping in mind the necessities of a modern control system for fusion devices, such as modularity and a distributed architecture, an upgrade of the present FTU feedback control system was planned, envisaging also a possible reutilization in the proposed FAST experiment [1]. For standardization and efficiency purposes we decided to adopt a pre-existent ITER-relevant framework called MARTe [2], already used with success in other European Tokamak devices [3]. Following the developments shown in [4], in this paper we report on the structure of the new feedback system, and how it was integrated in the current control structure and pulse programming interface, and in the other MARTe systems already in FTU: RT-ODIN [5] and the ECRH and LH [6] satellite stations. The new feedback system has been installed in the FTU backup station (known as 'Feedback B'), which shares the input signals with the actual feedback system, in order to simplify the validation and debug of the new controller by testing it in parallel with the current one. Experimental results are then presented.

  6. Robust output feedback cruise control for high-speed train movement with uncertain parameters

    International Nuclear Information System (INIS)

    Li Shu-Kai; Yang Li-Xing; Li Ke-Ping

    2015-01-01

    In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H ∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. (paper)

  7. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    Directory of Open Access Journals (Sweden)

    Nataraj Raviraj

    2012-05-01

    Full Text Available Abstract Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI. Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS, and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its

  8. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Liu Chen

    1986-01-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of Tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m ≥ 2 is fairly straighforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles

  9. Feedback control for a train-like vehicle

    International Nuclear Information System (INIS)

    Micaelli, A.

    1994-01-01

    This paper presents a feedback nonlinear control law for a train-like vehicle (TLV) used in nuclear power-station maintenance. The front cart is either manual or automated guided. The rear carts are feedback controlled. The control objective is to ensure that the rear carts track the path produced (on-line) by the front cart. This controller was experimentally tested on the TLV-prototype. (authors). 4 figs., 4 refs

  10. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  11. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    International Nuclear Information System (INIS)

    Kontchou, E W Chimi; Fotsin, H B; Woafo, P

    2008-01-01

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented

  12. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying......-time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...... for the whole system. We propose a "security level" metric based on an evolution of cryptography algorithms used in embedded systems. Experimental results demonstrate that SAFCM not only has the excellent adaptivity compared to open-loop mechanism, but also has a better overall performance than PID control...

  13. Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system

    International Nuclear Information System (INIS)

    Zhao Junchan; Lu Junan

    2008-01-01

    This paper investigates control and synchronization of a new hyperchaotic system which was proposed by [Chen A, Lu J-A, Lue J, Yu S. Generating hyperchaotic Lue attractor via state feedback control. Physica A 2006;364:103-10]. Firstly, we give different sampled-data feedback control schemes with the variation of system parameter d. Specifically, we only use one controller to drive the system to the origin when d element of (-0.35, 0), and use two controllers if d element of [0, 1.3]. Next, we combine PC method with linear feedback approach to realize synchronization, and derive similar conclusions with varying d. Numerical simulations are also given to validate the proposed approaches

  14. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.

    1997-01-01

    with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...

  15. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  16. Output feedback dissipation control for the power-level of modular high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Dong, Z.

    2011-01-01

    Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR) is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis. (author)

  17. Feedback control using only quantum back-action

    International Nuclear Information System (INIS)

    Jacobs, Kurt

    2010-01-01

    The traditional approach to feedback control is to apply deterministic forces to a system by modifying the Hamiltonian. Here we show that finite-dimensional quantum systems can be controlled purely by exploiting the random quantum back-action of a continuous weak measurement. We demonstrate that, quite remarkably, the quantum back-action of such an adaptive measurement is just as effective at controlling quantum systems as traditional feedback.

  18. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    Science.gov (United States)

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  19. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  20. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  1. Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)

    2009-10-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)

  2. Orbit stability and feedback control in synchrotron radiation rings

    International Nuclear Information System (INIS)

    Yu, L.H.

    1989-01-01

    Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs

  3. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  4. Closed loop kinesthetic feedback for postural control rehabilitation.

    Science.gov (United States)

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  5. Design of H2/H∞ RMPC for Boiler Superheated Steam Temperature Based on Memoryless Feedback Multistep Strategy

    Directory of Open Access Journals (Sweden)

    Pu Han

    2017-01-01

    Full Text Available The collection of superheated steam temperature models of a thermal power plant under different loads can be approximated to “multimodel” linear uncertain systems. After transformation, the tracking system was obtained from “multimodel” linear uncertain systems. For this tracking uncertain system, a mixed H2/H∞ robust model predictive control (HRMPC based on a memoryless feedback multistep strategy is proposed. A multistep control strategy combines the advantages of predictive control rolling optimization with memoryless feedback control thoughts. It could effectively decrease the controller optimization parameter and ensure closed-loop system stability, and, at the same time, it also achieved acceptable control performance. Successful application to the superheated steam temperature system of a 300 MW thermal power plant verified the study of the HRMPC-P cascade controller design scheme in terms of feasibility and effectiveness.

  6. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Chen, L.

    1985-12-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m greater than or equal to 2 is fairly straightforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles. 20 refs., 3 figs

  7. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  8. Effects of two types of intra-team feedback on developing a shared mental model in Command & Control teams

    NARCIS (Netherlands)

    Rasker, P.C.; Post, W.M.; Schraagen, J.M.C.

    2000-01-01

    In two studies, the effect of two types of intra-team feedback on developing a shared mental model in Command & Control teams was investigated. A distinction is made between performance monitoring and team self-correction. Performance monitoring is the ability of team members to monitor each other's

  9. Data-Based Predictive Control with Multirate Prediction Step

    Science.gov (United States)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  10. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  11. Controlling chaos in Internet congestion control model

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang E-mail: chenmoon110@yahoo.com.cn; Wang Xiaofan; Han Zhengzhi

    2004-07-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p{sub max}. This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic.

  12. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.

    2017-10-19

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  13. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.; Mabrok, Mohamed; Petersen, Ian R.

    2017-01-01

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  14. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  15. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    International Nuclear Information System (INIS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach. (paper)

  16. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Science.gov (United States)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng

    1993-01-01

    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  17. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    Science.gov (United States)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  18. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  19. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  20. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  1. Tutorial on beam-based feedback systems for linacs

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine

  2. Nonlinear Feedback Control and Stability Analysis of a Proof-of-Work Blockchain

    Directory of Open Access Journals (Sweden)

    Geir Hovland

    2017-10-01

    Full Text Available In this paper a novel feedback controller and stability analysis of a blockchain implementation is developed by using a control engineering perspective. The controller output equals the difficulty adjustment in the mining process while the feedback variable is the average block time over a certain time period. The computational power (hash rate of the miners is considered a disturbance in the model. The developed controller is tested against a simulation model with constant disturbance, step and ramp responses as well as with a high-frequency sinusoidal disturbance. Stability and a fast response is demonstrated in all these cases with a controller which adjusts it's output at every new block. Finally the performance of the controller is implemented and demonstrated on a testnet with a constant hash rate as well as on the mainnet of a public open source blockchain project.

  3. Advantages of coherent feedback for cooling quantum oscillators.

    Science.gov (United States)

    Hamerly, Ryan; Mabuchi, Hideo

    2012-10-26

    We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

  4. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    Science.gov (United States)

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  5. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  6. Internal-Model-Principle-Based Specific Harmonics Repetitive Controller for Grid-Connected PWM Inverters

    Directory of Open Access Journals (Sweden)

    Wenzhou Lu

    2016-01-01

    Full Text Available This paper analyzes the general properties of IMP-based controller and presents an internal-model-principle-based (IMP-based specific harmonics repetitive control (SHRC scheme. The proposed SHRC is effective for specific nk±m order harmonics, with n>m≥0 and k=0,1,2,…. Using the properties of exponential function, SHRC can also be rewritten into the format of multiple resonant controllers in parallel, where the control gain of SHRC is n/2 multiple of that of conventional RC (CRC. Therefore, including SHRC in a stable closed-loop feedback control system, asymptotic disturbance eliminating, or reference tracking for any periodic signal only including these specific harmonic components at n/2 times faster error convergence rate compared with CRC can be achieved. Application examples of SHRC controlled three-phase/single-phase grid-connected PWM inverters demonstrate the effectiveness and advantages of the proposed SHRC scheme.

  7. Uplink Contention-based CSI Feedback with Prioritized Layers for a Multi-Carrier System

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2012-01-01

    , several works have considered contention-based CSI feedback in the UL control channel. We propose such a feedback scheme for a generic MC system, based on the idea of variable collision protection, where the probability that a feedback information experiences a collision depends on its importance......Optimized resource allocation of the Downlink (DL) in wireless systems utilizing Multi-Carrier (MC) transmission requires Channel State Information (CSI) feedback for each user/subchannel to the Base Station (BS), consuming a high amount of Uplink (UL) radio resources. To alleviate this problem...

  8. Using Patterns for Multivariate Monitoring and Feedback Control of Linear Accelerator Performance: Proof-of-Concept Research

    International Nuclear Information System (INIS)

    Cordes, Gail Adele; Van Ausdeln, Leo Anthony; Velasquez, Maria Elena

    2002-01-01

    The report discusses preliminary proof-of-concept research for using the Advanced Data Validation and Verification System (ADVVS), a new INEEL software package, to add validation and verification and multivariate feedback control to the operation of non-destructive analysis (NDA) equipment. The software is based on human cognition, the recognition of patterns and changes in patterns in time-related data. The first project applied ADVVS to monitor operations of a selectable energy linear electron accelerator, and showed how the software recognizes in real time any deviations from the optimal tune of the machine. The second project extended the software method to provide model-based multivariate feedback control for the same linear electron accelerator. The projects successfully demonstrated proof-of-concept for the applications and focused attention on the common application of intelligent information processing techniques

  9. Robust ℋ∞ Dynamic Output Feedback Control Synthesis with Pole Placement Constraints for Offshore Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Tore Bakka

    2012-01-01

    Full Text Available The problem of robust ℋ∞ dynamic output feedback control design with pole placement constraints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear model is obtained and linearized using the FAST software developed for wind turbines. The main contributions of this paper are threefold. Firstly, a family of linear models are represented based on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded parameter-varying parameters are removed using upper bounded inequalities in the control design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities (LMIs. The simulation results show a comparison between controller design based on a constant linear model and a controller design for the linear parameter-varying model. The results show the effectiveness of our proposed design technique.

  10. Kinematic feedback control laws for generating natural arm movements

    International Nuclear Information System (INIS)

    Kim, Donghyun; Jang, Cheongjae; Park, Frank C

    2014-01-01

    We propose a stochastic optimal feedback control law for generating natural robot arm motions. Our approach, inspired by the minimum variance principle of Harris and Wolpert (1998 Nature 394 780–4) and the optimal feedback control principles put forth by Todorov and Jordan (2002 Nature Neurosci. 5 1226–35) for explaining human movements, differs in two crucial respects: (i) the endpoint variance is minimized in joint space rather than Cartesian hand space, and (ii) we ignore the dynamics and instead consider only the second-order differential kinematics. The feedback control law generating the motions can be straightforwardly obtained by backward integration of a set of ordinary differential equations; these equations are obtained exactly, without any linear–quadratic approximations. The only parameters to be determined a priori are the variance scale factors, and for both the two-DOF planar arm and the seven-DOF spatial arm, a table of values is constructed based on the given initial and final arm configurations; these values are determined via an optimal fitting procedure, and consistent with existing findings about neuromuscular motor noise levels of human arm muscles. Experiments conducted with a two-link planar arm and a seven-DOF spatial arm verify that the trajectories generated by our feedback control law closely resemble human arm motions, in the sense of producing nearly straight-line hand trajectories, having bell-shaped velocity profiles, and satisfying Fitts Law. (paper)

  11. Beam-based Feedback Simulations for the NLC Linac

    International Nuclear Information System (INIS)

    Hendrickson, Linda

    2000-01-01

    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. The authors show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances

  12. Combined feedforward and feedback control of end milling system

    OpenAIRE

    Čuš, Franc; Župerl, Uroš; Balič, Jože

    2012-01-01

    Purpose: Purpose of this paper. An intelligent control system is presented that uses a combination of feedforward and feedback for cutting force control in end milling.Design/methodology/approach: The network is trained by the feedback output that is minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network.Findings: The feedback controller corrects for errors caused by external disturbances. The feedforward...

  13. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    International Nuclear Information System (INIS)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-01-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of t d ≅10τ w is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system

  14. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  15. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    Science.gov (United States)

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  16. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2010-07-01

    Full Text Available Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller or as an added value (risk-seeking controller to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

  17. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  18. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  19. Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control

    International Nuclear Information System (INIS)

    Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi

    2010-01-01

    In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.

  20. Benefits of Individualized Feedback in Internet-Based Interventions for Depression: A Randomized Controlled Trial.

    Science.gov (United States)

    Zagorscak, Pavle; Heinrich, Manuel; Sommer, Daniel; Wagner, Birgit; Knaevelsrud, Christine

    2018-01-01

    Even though there is an increasing number of studies on the efficacy of Internet-based interventions (IBI) for depression, experimental trials on the benefits of added guidance by clinicians are scarce and inconsistent. This study compared the efficacy of semistandardized feedback provided by psychologists with fully standardized feedback in IBI. Participants with mild-to-moderate depression (n = 1,089, 66% female) from the client pool of a health insurance company participated in a cognitive-behavioral IBI targeting depression over 6 weeks. Individuals were randomized to weekly semistandardized e-mail feedback from psychologists (individual counseling; IC) or to automated, standardized feedback where a psychologist could be contacted on demand (CoD). The contents and tasks were identical across conditions. The primary outcome was depression; secondary outcomes included anxiety, rumination, and well-being. Outcomes were assessed before and after the intervention and 3, 6, and 12 months later. Changes in outcomes were evaluated using latent change score modeling. Both interventions yielded large pre-post effects on depression (Beck Depression Inventory-II: dIC = 1.53, dCoD = 1.37; Patient Health Questionnaire-9: dIC = 1.20, dCoD = 1.04), as well as significant improvements of all other outcome measures. The effects remained significant after 3, 6, and 12 months. The groups differed with regard to attrition (IC: 17.3%, CoD: 25.8%, p = 0.001). Between-group effects were statistically nonsignificant across outcomes and measurement occasions. Adding semistandardized guidance in IBI for depression did not prove to be more effective than fully standardized feedback on primary and secondary outcomes, but it had positive effects on attrition. © 2018 S. Karger AG, Basel.

  1. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    Science.gov (United States)

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  3. Analytic modeling of the feedback stabilization of resistive wall modes

    International Nuclear Information System (INIS)

    Pustovitov, Vladimir D.

    2003-01-01

    Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Optimal choice of the input signal for the feedback, effects related to the geometry of the feedback active coils, RWM suppression in a configuration with ITER-like double wall, are considered here. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that for an ideal feedback system the best input signal would be a combination of radial and poloidal perturbations measured inside the vessel. (author)

  4. Controlling chaos in RCL-shunted Josephson junction by delayed linear feedback

    International Nuclear Information System (INIS)

    Feng Yuling; Shen Ke

    2008-01-01

    The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required

  5. Analysis of Feedback processes in Online Group Interaction: a methodological model

    Directory of Open Access Journals (Sweden)

    Anna Espasa

    2013-06-01

    Full Text Available The aim of this article is to present a methodological model to analyze students' group interaction to improve their essays in online learning environments, based on asynchronous and written communication. In these environments teacher and student scaffolds for discussion are essential to promote interaction. One of these scaffolds can be the feedback. Research on feedback processes has predominantly focused on feedback design rather than on how students utilize feedback to improve learning. This methodological model fills this gap contributing to analyse the implementation of the feedback processes while students discuss collaboratively in a specific case of writing assignments. A review of different methodological models was carried out to define a framework adjusted to the analysis of the relationship of written and asynchronous group interaction, and students' activity and changes incorporated into the final text. The model proposed includes the following dimensions: 1 student participation 2 nature of student learning and 3 quality of student learning. The main contribution of this article is to present the methodological model and also to ascertain the model's operativity regarding how students incorporate such feedback into their essays.

  6. RF system modeling and controller design for the European XFEL

    International Nuclear Information System (INIS)

    Schmidt, Christian

    2011-06-01

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration. They are not sufficiently suppressed

  7. Analytic robust stability analysis of SVD orbit feedback

    CERN Document Server

    Pfingstner, Jürgen

    2012-01-01

    Orbit feedback controllers are indispensable for the operation of modern particle accelerators. Many such controllers are based on the decoupling of the inputs and outputs of the system to be controlled with the help of the singular value decomposition (SVD controller). It is crucial to verify the stability of SVD controllers, also in the presence of mismatches between the used accelerator model and the real machine (robust stability problem). In this paper, analytical criteria for guaranteed stability margins of SVD orbit feedback systems for three different types of model mismatches are presented: scaling errors of actuators and BPMs (beam position monitors) and additive errors of the orbit response matrix. For the derivation of these criteria, techniques from robust control theory have been used, e.g the small gain theorem. The obtained criteria can be easily applied directly to other SVD orbit feedback systems. As an example, the criteria were applied to the orbit feedback system of the Compact Linear ...

  8. A randomized controlled trial of a personalized feedback intervention for problem gamblers.

    Directory of Open Access Journals (Sweden)

    John A Cunningham

    Full Text Available Personalized feedback is a promising self-help for problem gamblers. Such interventions have shown consistently positive results with other addictive behaviours, and our own pilot test of personalized normative feedback materials for gamblers yielded positive findings. The current randomized controlled trial evaluated the effectiveness, and the sustained efficacy, of the personalized feedback intervention materials for problem gamblers.Respondents recruited by a general population telephone screener of Ontario adults included gamblers with moderate and severe gambling problems. Those who agreed to participate were randomly assigned to receive: 1 the full personalized normative feedback intervention; 2 a partial feedback that contained all the feedback information provided to those in condition 1 but without the normative feedback content (i.e., no comparisons provided to general population gambling norms; or 3 a waiting list control condition. The primary hypothesis was that problem gamblers who received the personalized normative feedback intervention would reduce their gambling more than problem gamblers who did not receive any intervention (waiting list control condition by the six-month follow-up.The study found no evidence for the impact of normative personalized feedback. However, participants who received, the partial feedback (without norms reduced the number of days they gambled compared to participants who did not receive the intervention. We concluded that personalized feedback interventions were well received and the materials may be helpful at reducing gambling. Realistically, it can be expected that the personalized feedback intervention may have a limited, short term impact on the severity of participants' problem gambling because the intervention is just a brief screener. An Internet-based version of the personalized feedback intervention tool, however, may offer an easy to access and non-threatening portal that can be used to

  9. Improvement of density control by feedback on Langmuir probe signals in Tore Supra

    International Nuclear Information System (INIS)

    Gunn, J.; Bucalossi, J.; Costanzo, L.; Grisolia, C.; Ghendrih, Ph.; Grosman, A.; Loarer, T.; Martin, G.; Monier-Garbet, P.; Moulin, D.; Pascal, J.Y.; Saint-Laurent, F.

    1999-12-01

    Real time control of deuterium or helium gas injection by feedback on Langmuir probe signals is implemented in Tore Supra ergodic divertor discharges. The feedback schemes are based on the robust experimental observation that the density limit coincides with edge temperature T e ∼ 10 eV. Three control algorithms are used: (1) proportional feedback on the central line-averaged density with real-time attenuation of the system gain and security cut-off of the gas injection if the edge temperature becomes too low; (2) proportional feedback on the central line-averaged density with security cut-off controlled by the degree of detachment (DoD); (3) proportional feedback on edge temperature with security cut-off on the DoD. The DoD is defined for deuterium discharges, but not for helium since those do not detach. All three feedback modes permit operation close to the density limit and have been successfully applied for plasma currents 0.4 p p =1.4 MA with up to 4 MW of ICRH power. (author)

  10. A double-panel active segmented partition module using decoupled analog feedback controllers: numerical model.

    Science.gov (United States)

    Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D

    2009-06-01

    Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.

  11. Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms

    Science.gov (United States)

    Holmes, Christopher D.

    2018-04-01

    The atmospheric methane (CH4) chemical feedback is a key process for understanding the behavior of atmospheric CH4 and its environmental impact. This work reviews how the feedback is defined and used, then examines the meteorological, chemical, and emission factors that control the feedback strength. Geographical and temporal variations in the feedback are described and explained by HOx (HOx = OH + HO2) production and partitioning. Different CH4 boundary conditions used by models, however, make no meaningful difference to the feedback calculation. The strength of the CH4 feedback depends on atmospheric composition, particularly the atmospheric CH4 burden, and is therefore not constant. Sensitivity tests show that the feedback depends very weakly on temperature, insolation, water vapor, and emissions of NO. While the feedback strength has likely remained within 10% of its present value over the industrial era and likely will over the twenty-first century, neglecting these changes biases our understanding of CH4 impacts. Most environmental consequences per kg of CH4 emissions, including its global warming potential (GWP), scale with the perturbation time, which may have grown as much as 40% over the industrial era and continues to rise.

  12. Model Predictive Controller Combined with LQG Controller and Velocity Feedback to Control the Stewart Platform

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil Sharak; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    The main objective of this paper is to investigate the erformance and applicability of two GPC (generalized predictive control) based control methods on a complete benchmark model of the Stewart platform made in MATLAB V6.5. The first method involves an LQG controller (Linear Quadratic Gaussian...

  13. Output Feedback Dissipation Control for the Power-Level of Modular High-Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2011-11-01

    Full Text Available Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis.

  14. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.

    Science.gov (United States)

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-05-21

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.

  15. A feedback model of visual attention.

    Science.gov (United States)

    Spratling, M W; Johnson, M H

    2004-03-01

    Feedback connections are a prominent feature of cortical anatomy and are likely to have a significant functional role in neural information processing. We present a neural network model of cortical feedback that successfully simulates neurophysiological data associated with attention. In this domain, our model can be considered a more detailed, and biologically plausible, implementation of the biased competition model of attention. However, our model is more general as it can also explain a variety of other top-down processes in vision, such as figure/ground segmentation and contextual cueing. This model thus suggests that a common mechanism, involving cortical feedback pathways, is responsible for a range of phenomena and provides a unified account of currently disparate areas of research.

  16. Feedback control linear, nonlinear and robust techniques and design with industrial applications

    CERN Document Server

    Dodds, Stephen J

    2015-01-01

    This book develops the understanding and skills needed to be able to tackle original control problems. The general approach to a given control problem is to try the simplest tentative solution first and, when this is insufficient, to explain why and use a more sophisticated alternative to remedy the deficiency and achieve satisfactory performance. This pattern of working gives readers a full understanding of different controllers and teaches them to make an informed choice between traditional controllers and more advanced modern alternatives in meeting the needs of a particular plant. Attention is focused on the time domain, covering model-based linear and nonlinear forms of control together with robust control based on sliding modes and the use of state observers such as disturbance estimation. Feedback Control is self-contained, paying much attention to explanations of underlying concepts, with detailed mathematical derivations being employed where necessary. Ample use is made of diagrams to aid these conce...

  17. Robust output feedback H-infinity control and filtering for uncertain linear systems

    CERN Document Server

    Chang, Xiao-Heng

    2014-01-01

    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  18. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  19. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  20. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    Science.gov (United States)

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Design of output feedback controller for a unified chaotic system

    International Nuclear Information System (INIS)

    Li Wenlin; Chen Xiuqin; Shen Zhiping

    2008-01-01

    In this paper, the synchronization of a unified chaotic system is investigated by the use of output feedback controllers; a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable. Compared with the existing results, the controllers designed in this paper have some advantages such as small feedback gain, simple structure and less conservation. Finally, numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method

  2. Generalised synchronisation of spatiotemporal chaos using feedback control method and phase compression

    International Nuclear Information System (INIS)

    Xing-Yuan, Wang; Na, Zhang

    2010-01-01

    Coupled map lattices are taken as examples to study the synchronisation of spatiotemporal chaotic systems. First, a generalised synchronisation of two coupled map lattices is realised through selecting an appropriate feedback function and appropriate range of feedback parameter. Based on this method we use the phase compression method to extend the range of the parameter. So, we integrate the feedback control method with the phase compression method to implement the generalised synchronisation and obtain an exact range of feedback parameter. This technique is simple to implement in practice. Numerical simulations show the effectiveness and the feasibility of the proposed program. (general)

  3. Feedback control modeling of plasma position and current during intense heating in ISX-B

    International Nuclear Information System (INIS)

    Charlton, L.A.; Swain, D.W.; Neilson, G.H.

    1979-08-01

    The ISX-B Tokamak at ORNL is designed to have 1.8 MW (and eventually 3 MW) of neutral beam power injected to heat the plasma. This power may raise the anti β of the plasma to over 5% in less than 50 msec if the plasma is MHD stable. The results of a numerical simulation of the feedback control system and poloidal coil power supplies necessary to control the resulting noncircular (D-shaped or elliptical) plasma are presented. The resulting feedback control system is shown to be straightforward, although nonlinear voltage-current dependence is assumed in the power supplies. The required power supplied to the poloidal coils in order to contain the plasma under the high heating rates is estimated

  4. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  5. Synchronizing tracking control for flexible joint robots via estimated state feedback

    NARCIS (Netherlands)

    Rodriguez Angeles, A.; Nijmeijer, H.

    2004-01-01

    In this paper, we propose a synchronization controller for flexible joint robots, which are interconnected in a master-slave scheme. The synchronization controller is based on feedback linearization and only requires measurements of the master and slave link positions, since the velocities and

  6. The Role of Locus of Control and Feedback on Performance of ...

    African Journals Online (AJOL)

    This study examined Students' Locus of Control and Teacher Feedback using a 2x3 factorial to measure the performance of thirty-six (36) primary school students utilizing the two locus of control types and three levels of teacher feedback: no feedback, attributional feedback, and progressive feedback. No significant ...

  7. Feedback Control of MEMS to Atoms

    CERN Document Server

    Shapiro, Benjamin

    2012-01-01

    Feedback Control of MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated miniaturized systems. The book is organized according to the dimensional scale of the problem, starting with microscale systems and ending with atomic-scale systems. Similar to macroscale machines and processes, control systems can play a major role in improving the performance of micro- and nanoscale systems and in enabling new capabilities that would otherwise not be possible. The majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control theory and engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry. This book: Shows how the utilization of feedback control in nanotechnology instrumentation can yield results far better than passive systems can Discusses the application of control systems to problems...

  8. Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network

    International Nuclear Information System (INIS)

    Ekkachai, Kittipong; Nilkhamhang, Itthisek; Tungpimolrut, Kanokvate

    2013-01-01

    An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption. (paper)

  9. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling

    International Nuclear Information System (INIS)

    Chen, Liang; Dirmeyer, Paul A

    2016-01-01

    To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC. (letter)

  10. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  11. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    Science.gov (United States)

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  12. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  13. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  14. Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Nori, Franco

    2009-01-01

    We study cooling and squeezing the fluctuations of a nanomechanical beam using quantum feedback control. In our model, the nanomechanical beam is coupled to a transmission line resonator via a superconducting quantum interference device. The leakage of the electromagnetic field from the transmission line resonator is measured using homodyne detection. This measured signal is then used to design a quantum feedback control signal to drive the electromagnetic field in the transmission line resonator. Although the control is imposed on the transmission line resonator, this quantum feedback control signal indirectly affects the thermal motion of the nanomechanical beam via the inductive beam-resonator coupling, making it possible to cool and squeeze the fluctuations of the beam, allowing it to approach the standard quantum limit.

  15. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovic, V.; Vukosavic, S. (Electrical Engineering Inst. Nikola Tesla, Viktora Igoa 3, Belgrade, 11000 (Yugoslavia))

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  16. Synthesis of state observer and nonlinear output feedback controller design of AC machines

    International Nuclear Information System (INIS)

    Al-Tahir, Ali Abdul Razzaq

    2016-01-01

    The research work developed in this thesis has been mainly devoted to the observation and sensor-less control problems of electrical systems. Three major contributions have been carried out using the high - gain concept and output feedback adaptive nonlinear control for online UPS. In this thesis, we dealt with synthesis of sampled high - gain observers for nonlinear systems application to PMSMs and DFIGs. We particularly focus on two constraints: sampling effect and tracking unmeasured mechanical and magnetic state variables. The first contribution consists in a high gain observer design that performs a relatively accurate estimation of both mechanical and magnetic state variable using the available measurements on stator currents and voltages of PMSM. We propose a global exponential observer having state predictor for a class of nonlinear globally Lipschitz system. In second contribution, we proposed a novel non - standard HGO design for non-injective feedback relation application to variable speed DFIG based WPGS. Meanwhile, a reduced system model is analyzed, provided by observability test to check is it possible synthesis state observer for sensor-less control. In last contribution, an adaptive observer for states and parameters estimation are designed for a class of state - affine systems application to output feedback adaptive nonlinear control of three-phase AC/DC boost power converter for online UPS systems. Basically, the problem focused on cascade nonlinear adaptive controller that is developed making use Lyapunov theory. The parameters uncertainties are processed by the practical control laws under back-stepping design techniques with capacity of adaptation. (author)

  17. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.

    Science.gov (United States)

    Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2009-10-01

    A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.

  18. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  19. RF system modeling and controller design for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Christian

    2011-06-15

    The European XFEL is being constructed at the Deutsche Elektronen Synchrotron DESY to generate intense, ultrashort pulses of highly coherent and monochromatic X-Rays for material science research. X-ray flashes are generated by accelerating electron bunches within superconducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control of these fields requires extremely high quality in order to achieve the physical processes of photon generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most necessary components, even before the XFEL is conducted. Current field control is based on a proportional feedback controller in addition to a constant feedforward drive, which do not meet the high requirements of the XFEL. This thesis shows that a model based controller design can achieve the necessary field regulation requirements. A linear, time invariant ''black box model'' is estimated, which characterizes the essential dynamic behavior. This model is not based on physical assumptions, but describes exclusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed mode, in which the RF field must be kept constant for a finite period. The character of the disturbances and variations from pulse-to-pulse, together with the properties of the system, require a combination of controlled feedforward drive and feedback. Generally unpredictable, low frequency pulse-to-pulse variations are suppressed by the feedback controller. The structural design of the complex multivariable feedback controller is given, which constrains the model based design approach to assign the controller parameters only. Estimation of the parameters, which can not be tuned manually, is done by the method of H{sub {infinity}} loop shaping which is often applied in modern control theory. However, disturbances within a pulse are in a high frequency range concerning the short pulse duration

  20. Minimal-Inversion Feedforward-And-Feedback Control System

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  1. Practical Loop-Shaping Design of Feedback Control Systems

    Science.gov (United States)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  2. Model-based control of the resistive wall mode in DIII-D: A comparison study

    International Nuclear Information System (INIS)

    Dalessio, J.; Schuster, E.; Humphreys, D.A.; Walker, M.L.; In, Y.; Kim, J.-S.

    2009-01-01

    One of the major non-axisymmetric instabilities under study in the DIII-D tokamak is the resistive wall mode (RWM), a form of plasma kink instability whose growth rate is moderated by the influence of a resistive wall. One of the approaches for RWM stabilization, referred to as magnetic control, uses feedback control to produce magnetic fields opposing the moving field that accompanies the growth of the mode. These fields are generated by coils arranged around the tokamak. One problem with RWM control methods used in present experiments is that they predominantly use simple non-model-based proportional-derivative (PD) controllers requiring substantial derivative gain for stabilization, which implies a large response to noise and perturbations, leading to a requirement for high peak voltages and coil currents, usually leading to actuation saturation and instability. Motivated by this limitation, current efforts in DIII-D include the development of model-based RWM controllers. The General Atomics (GA)/Far-Tech DIII-D RWM model represents the plasma surface as a toroidal current sheet and characterizes the wall using an eigenmode approach. Optimal and robust controllers have been designed exploiting the availability of the RWM dynamic model. The controllers are tested through simulations, and results are compared to present non-model-based PD controllers. This comparison also makes use of the μ structured singular value as a measure of robust stability and performance of the closed-loop system.

  3. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    Science.gov (United States)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  4. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation

    International Nuclear Information System (INIS)

    Aelen, P; Jurkov, A; Aulanier, A; Mintchev, M P

    2009-01-01

    Neural gastric electrical stimulation (NGES) is a new method for invoking gastric contractions under microprocessor control. However, optimization of this technique using feedback mechanisms to minimize power consumption and maximize effectiveness has been lacking. The present pilot study proposes a prototype feedback-controlled neural gastric electric stimulator for the treatment of obesity. Both force-based and inter-electrode impedance-based feedback neurostimulators were implemented and tested. Four mongrel dogs (2 M, 2 F, weight 14.9 ± 2.3 kg) underwent subserosal implantation of two-channel, 1 cm, bipolar electrode leads and two force transducers in the distal antrum. Two of the dogs were stimulated with a force feedback system utilizing the force transducers, and the other two animals were stimulated utilizing an inter-electrode impedance-based feedback system utilizing the proximal electrode leads. Both feedback systems were able to recognize erythromycin-driven contractions of the stomach and were capable of overriding them with NGES-invoked retrograde contractions which exceeded the magnitudes of the erythromycin-driven contractions by an average of 100.6 ± 33.5% in all animals. The NGES-invoked contractions blocked the erythromycin-driven contractions past the proximal electrode pair and induced temporary gastroparesis in the vicinity of the distal force transducer despite the continuing erythromycin infusion. The amplitudes of the erythromycin-invoked contractions in the vicinity of the proximal force transducer decreased abruptly by an average of 47.9 ± 6.3% in all four dogs after triggering-invoked retrograde contractions, regardless of the specific feedback-controlled mechanism. The proposed technique could be helpful for retaining food longer in the stomach, thus inducing early satiety and diminishing food intake

  5. Temperature feedback control for long-term carrier-envelope phase locking

    Science.gov (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  6. Control system modelling for superconducting accelerator

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.; Romaniuk, R.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  7. Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems

    Directory of Open Access Journals (Sweden)

    Man Hong

    2013-01-01

    Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.

  8. A multiple relevance feedback strategy with positive and negative models.

    Directory of Open Access Journals (Sweden)

    Yunlong Ma

    Full Text Available A commonly used strategy to improve search accuracy is through feedback techniques. Most existing work on feedback relies on positive information, and has been extensively studied in information retrieval. However, when a query topic is difficult and the results from the first-pass retrieval are very poor, it is impossible to extract enough useful terms from a few positive documents. Therefore, the positive feedback strategy is incapable to improve retrieval in this situation. Contrarily, there is a relatively large number of negative documents in the top of the result list, and it has been confirmed that negative feedback strategy is an important and useful way for adapting this scenario by several recent studies. In this paper, we consider a scenario when the search results are so poor that there are at most three relevant documents in the top twenty documents. Then, we conduct a novel study of multiple strategies for relevance feedback using both positive and negative examples from the first-pass retrieval to improve retrieval accuracy for such difficult queries. Experimental results on these TREC collections show that the proposed language model based multiple model feedback method which is generally more effective than both the baseline method and the methods using only positive or negative model.

  9. To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller

    International Nuclear Information System (INIS)

    Afridi, M. A.

    2012-01-01

    Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)

  10. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    Science.gov (United States)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  11. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  12. Weighted congestion coefficient feedback in intelligent transportation systems

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu; Wang Binghong

    2010-01-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  13. The Effect of Emotional Feedback on Behavioral Intention to Use Computer Based Assessment

    Science.gov (United States)

    Terzis, Vasileios; Moridis, Christos N.; Economides, Anastasios A.

    2012-01-01

    This study introduces emotional feedback as a construct in an acceptance model. It explores the effect of emotional feedback on behavioral intention to use Computer Based Assessment (CBA). A female Embodied Conversational Agent (ECA) with empathetic encouragement behavior was displayed as emotional feedback. More specifically, this research aims…

  14. Quadcopter Path Following Control Design Using Output Feedback with Command Generator Tracker LOS Based At Square Path

    Science.gov (United States)

    Nugraha, A. T.; Agustinah, T.

    2018-01-01

    Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.

  15. Delay-based virtual congestion control in multi-tenant datacenters

    Science.gov (United States)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  16. Time series modeling for analysis and control advanced autopilot and monitoring systems

    CERN Document Server

    Ohtsu, Kohei; Kitagawa, Genshiro

    2015-01-01

    This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships’ autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state–space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracki...

  17. Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...

  18. FEEDBACK AND LOGISTICS CONTROLLING

    Directory of Open Access Journals (Sweden)

    Mehesne Berek Szilvia

    2015-07-01

    Full Text Available The following things led to that the feedback, the supervision and improvement of the processes have become more pronounced: continuous rise in the importance of logistics; increase in complexity of its content; its activity becoming more complex. These activities are necessary for the optimum information supply. The intensification of market competition requires the corporations to possess exact and up-to-date information about their activities. Complexity of the logistics system presumes a parallel application of an effective feedback, supervision and management system simultaneously with the given logistics system. The indispensability of logistics is also proved by the fact that it can be found sporadically (in the form of logistics departments or in a complex way in case of each organization. The logistical approach means a huge support in the management since it contains the complexity, the handling as a unit in order to ensure a harmony of the different corporate departments and part activities. In addition to the professional application of a logistics system, there is an opportunity to coordinate the relations inside an organization as well as between the organizations and to handle them as a unit. The sine qua non of the success of logistical processes is a harmony of the devices applied. The controlling system is a device for feeding back the processes of a corporate system. By means of the checkpoints intercalated into the processes, the logistics controlling provides information for the leadership which contributes even more to the complex approach of logistics system. By dint of the logistics controlling, the monitoring and coordination of every logistical part activity become possible with the help of information supply ensured by the logistics controlling. The logistics controlling reviews, assesses and coordinates; these activities have an effect on the cost and income management. Its reason is to be searched in the built

  19. Interaction between beam control and rf feedback loops for high Q cavities an heavy beam loading. Revision A

    International Nuclear Information System (INIS)

    Mestha, L.K.; Kwan, C.M.; Yeung, K.S.

    1994-04-01

    An open-loop state space model of all the major low-level rf feedback control loops is derived. The model has control and state variables for fast-cycling machines to apply modern multivariable feedback techniques. A condition is derived to know when exactly we can cross the boundaries between time-varying and time-invariant approaches for a fast-cycling machine like the Low Energy Booster (LEB). The conditions are dependent on the Q of the cavity and the rate at which the frequency changes with time. Apart from capturing the time-variant characteristics, the errors in the magnetic field are accounted in the model to study the effects on synchronization with the Medium Energy Booster (MEB). The control model is useful to study the effects on beam control due to heavy beam loading at high intensities, voltage transients just after injection especially due to time-varying voltages, instability thresholds created by the cavity tuning feedback system, cross coupling between feedback loops with and without direct rf feedback etc. As a special case we have shown that the model agrees with the well known Pedersen model derived for the CERN PS booster. As an application of the model we undertook a detailed study of the cross coupling between the loops by considering all of them at once for varying time, Q and beam intensities. A discussion of the method to identify the coupling is shown. At the end a summary of the identified loop interactions is presented

  20. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  1. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  2. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    Science.gov (United States)

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  3. On a new time-delayed feedback control of chaotic systems

    International Nuclear Information System (INIS)

    Tian Lixin; Xu Jun; Sun Mei; Li Xiuming

    2009-01-01

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  4. Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control

    International Nuclear Information System (INIS)

    Fu Shi-Hui; Lu Qi-Shao; Du Ying

    2012-01-01

    Adaptive H ∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H ∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H ∞ -norm constraint. Adaptive H ∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis. (general)

  5. Chaos control for the family of Roessler systems using feedback controllers

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Yu Pei

    2006-01-01

    This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given

  6. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process.

    Science.gov (United States)

    Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf

    2017-09-15

    The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Environmental Feedback and Spatial Conditioning

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Poulsen, Esben Skouboe

    2010-01-01

    with structural integrity, where thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparancy altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening and application....

  8. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    Science.gov (United States)

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Feedback control of edge turbulence in a tokamak

    International Nuclear Information System (INIS)

    Kan, Zhai; Yi-zhi, Wen; Chang-xuan, Yu; Wan-dong, Liu; Chao, Wang; Ge, Zhuang; Kan, Zhai; Zhi-Zhan, Yu

    1997-01-01

    An experiment on feedback control of edge turbulence has been undertaken on the KT-5C tokamak. The results indicate that the edge turbulence could be suppressed or enhanced depending on the phase shift of the feedback network. In a typical case of 90 degree phase shift feedback, the turbulence amplitudes of both T e and n e were reduced by about 25% when the gain of the feedback network was 15. Correspondingly the radial particle flux decreased to about 75% level of the background. Through bispectral analysis it is found that there exists a substantial nonlinear coupling between various modes comprised in edge turbulence, especially in the frequency range from about 10 kHz to 100 kHz, which contains the large part of the edge turbulence energy in KT-5C tokamak. In particular, by actively controlling the turbulence amplitude using feedback, a direct experimental evidence of the link between the nonlinear wave-wave coupling over the whole spectrum in turbulence, the saturated turbulence amplitude, and the radial particle flux was provided. copyright 1997 The American Physical Society

  10. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  11. Model reference adaptive vector control for induction motor without speed sensor

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2017-01-01

    Full Text Available The wide applications of vector control improve the high-accuracy performance of alternating current (AC adjustable speed system. In order to obverse the full-order flux and calculate the real-time speed, this article introduces the motor T equivalent circuit to build a full-order flux observer model, where the current and flux variables of stator and rotor are adopted. Model reference adaptive control is introduced to build the AC motor flux observer. The current output is used as feedback to build the feedback matrix. The calculation method of motor speed, which is part of the inputs of flux observation, is applied to realize the adaptive control. The concept of characteristic function is introduced to calculate the flux, of which the foundation is the variables of composite form of voltage and current models. The characteristic function is deduced as a relative-state variable function. The feedback matrix is improved and designed to ensure the motor flux observer is a smooth switch between current and voltage model in low and high speeds, respectively. Experimental results show that the feedback and characteristic model are feasible, and the vector control with speed sensorless based on the full-order flux observer has better performance and anti-disturbance.

  12. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  13. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    Directory of Open Access Journals (Sweden)

    Yaoyao Wang

    2014-01-01

    Full Text Available For the 4-DOF (degrees of freedom trajectory tracking control problem of underwater remotely operated vehicles (ROVs in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC technique is introduced in light of the equivalent output injection sliding mode observer (SMO and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.

  14. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  15. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-01-01

    Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with

  16. Dynamic Output Feedback Robust MPC with Input Saturation Based on Zonotopic Set-Membership Estimation

    Directory of Open Access Journals (Sweden)

    Xubin Ping

    2016-01-01

    Full Text Available For quasi-linear parameter varying (quasi-LPV systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC with the consideration of input saturation is investigated. The saturated dynamic output feedback controller is represented by a convex hull involving the actual dynamic output controller and an introduced auxiliary controller. By taking both the actual output feedback controller and the auxiliary controller with a parameter-dependent form, the main optimization problem can be formulated as convex optimization. The consideration of input saturation in the main optimization problem reduces the conservatism of dynamic output feedback controller design. The estimation error set and bounded disturbance are represented by zonotopes and refreshed by zonotopic set-membership estimation. Compared with the previous results, the proposed algorithm can not only guarantee the recursive feasibility of the optimization problem, but also improve the control performance at the cost of higher computational burden. A nonlinear continuous stirred tank reactor (CSTR example is given to illustrate the effectiveness of the approach.

  17. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  18. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  19. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao

    2006-01-01

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays

  20. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Feedback control policies employed by people using intracortical brain-computer interfaces

    Science.gov (United States)

    Willett, Francis R.; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Saab, Jad; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Simeral, John D.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.

    2017-02-01

    Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a ‘feedback control policy’. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users’ feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user’s neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor’s current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  2. Negative derivative feedback for vibration control of flexible structures

    International Nuclear Information System (INIS)

    Cazzulani, G; Resta, F; Ripamonti, F; Zanzi, R

    2012-01-01

    In this paper a resonant control technique, called negative derivative feedback (NDF), for structural vibration control is presented. Resonant control is a class of control logics, based on the modal approach, which calculates the control action through a dynamic compensator in order to achieve a damping increase on a certain number of system modes. The NDF compensator is designed to work as a band-pass filter, cutting off the control action far from the natural frequencies associated with the controlled modes and reducing the so-called spillover effect. In the paper the proposed control logic is compared both theoretically and experimentally with the most common state-of-the-art resonant control techniques. (paper)

  3. Active vibration control of clamped beams using positive position feedback controllers with moment pair

    International Nuclear Information System (INIS)

    Shin, Chang Joo; Jeong, Weui Bong; Hong, Chin Suk

    2012-01-01

    This paper investigates the active vibration control of clamp beams using positive position feedback (PPF) controllers with a sensor/ moment pair actuator. The sensor/moment pair actuator which is the non-collocated configuration leads to instability of the control system when using the direct velocity feedback (DVFB) control. To alleviate the instability problem, a PPF controller is considered in this paper. A parametric study of the control system with PPF controller is first conducted to characterize the effects of the design parameters (gain and damping ratio in this paper) on the stability and performance. The gain of the controller is found to affect only the relative stability. Increasing the damping ratio of the controller slightly improves the stability condition while the performance gets worse. In addition, the higher mode tuned PPF controller affects the system response at the lower modes significantly. Based on the characteristics of PPF controllers, a multi-mode controllable SISO PPF controller is then considered and tuned to different modes (in this case, three lowest modes) numerically and experimentally. The multi-mode PPF controller can be achieved to have a high gain margin. Moreover, it reduces the vibration of the beam significantly. The vibration levels at the tuned modes are reduced by about 11 dB

  4. Control characteristics of cryogenic distillation column with a feedback stream for fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1997-01-01

    The control characteristics of the cryogenic distillation column with a feedback stream have been discussed based on computer simulation results. This column plays an important role in fusion reactor. A new control system was proposed from the simulation results. The flow rate of top product is determined from the composition and flow rate of a main feed stream by a feedforward control loop. The flow rates of the feedback stream and vapor stream within the column are proportionally changed with a corresponding change of feed flow rate. The flow rate of vapor stream within the column is further adjusted to maintain product purity by a feedback control loop. The proposed system can control the product purity for a large fluctuation of feed composition, a change of feed flow rate, and an increase or decrease of the number of total theoretical stages of the column. The control system should be designed for each column by considering its operating conditions and function. The present study gives us a basic procedure for the design method of the control system of the cryogenic distillation column. (author)

  5. Fuzzy Control and Connected Region Marking Algorithm-Based SEM Nanomanipulation

    Directory of Open Access Journals (Sweden)

    Dongjie Li

    2012-01-01

    Full Text Available The interactive nanomanipulation platform is established based on fuzzy control and connected region marking (CRM algorithm in SEM. The 3D virtual nanomanipulation model is developed to make up the insufficiency of the 2D SEM image information, which provides the operator with depth and real-time visual feedback information to guide the manipulation. The haptic device Omega3 is used as the master to control the 3D motion of the nanopositioner in master-slave mode and offer the force sensing to the operator controlled with fuzzy control algorithm. Aiming at sensing of force feedback during the nanomanipulation, the collision detection method of the virtual nanomanipulation model and the force rending model are studied to realize the force feedback of nanomanipulation. The CRM algorithm is introduced to process the SEM image which provides effective position data of the objects for updating the virtual environment (VE, and relevant issues such as calibration and update rate of VE are also discussed. Finally, the performance of the platform is validated by the ZnO nanowire manipulation experiments.

  6. Feedback in Videogame-based Adaptive Training

    Science.gov (United States)

    2011-05-01

    G. (1985). The geometry tutor. Proceedings of the International Joint Conference on Artificial Intelligence . Los Altos, CA: Kaufmann. Anderson, R...Technical Report 1287 Feedback in Videogame -based Adaptive Training Iris D. Rivera Florida Institute of Technology...REPORT TYPE Final 3. DATES COVERED (from. . . to) August 2008 – April 2010 4. TITLE AND SUBTITLE Feedback in Videogame -based Adaptive

  7. The motivating role of positive feedback in sport and physical education: evidence for a motivational model.

    Science.gov (United States)

    Mouratidis, Athanasios; Vansteenkiste, Maarten; Lens, Willy; Sideridis, Georgios

    2008-04-01

    Based on self-determination theory (Deci & Ryan, 2000), an experimental study with middle school students participating in a physical education task and a correlational study with highly talented sport students investigated the motivating role of positive competence feedback on participants' well-being, performance, and intention to participate. In Study 1, structural equation modeling favored the hypothesized motivational model, in which, after controlling for pretask perceived competence and competence valuation, feedback positively predicted competence satisfaction, which in turn predicted higher levels of vitality and greater intentions to participate, through the mediation of autonomous motivation. No effects on performance were found. Study 2 further showed that autonomous motivation mediated the relation between competence satisfaction and well-being, whereas a motivation mediated the negative relation between competence satisfaction and ill-being and rated performance. The discussion focuses on the motivational role of competence feedback in sports and physical education settings.

  8. Interaction in Spoken Word Recognition Models: Feedback Helps

    Science.gov (United States)

    Magnuson, James S.; Mirman, Daniel; Luthra, Sahil; Strauss, Ted; Harris, Harlan D.

    2018-01-01

    Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis. PMID:29666593

  9. Interaction in Spoken Word Recognition Models: Feedback Helps.

    Science.gov (United States)

    Magnuson, James S; Mirman, Daniel; Luthra, Sahil; Strauss, Ted; Harris, Harlan D

    2018-01-01

    Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

  10. Interaction in Spoken Word Recognition Models: Feedback Helps

    Directory of Open Access Journals (Sweden)

    James S. Magnuson

    2018-04-01

    Full Text Available Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

  11. A biomolecular proportional integral controller based on feedback regulations of protein level and activity.

    Science.gov (United States)

    Mairet, Francis

    2018-02-01

    Homeostasis is the capacity of living organisms to keep internal conditions regulated at a constant level, despite environmental fluctuations. Integral feedback control is known to play a key role in this behaviour. Here, I show that a feedback system involving transcriptional and post-translational regulations of the same executor protein acts as a proportional integral (PI) controller, leading to enhanced transient performances in comparison with a classical integral loop. Such a biomolecular controller-which I call a level and activity-PI controller (LA-PI)-is involved in the regulation of ammonium uptake by Escherichia coli through the transporter AmtB. The P II molecules, which reflect the nitrogen status of the cell, inhibit both the production of AmtB and its activity (via the NtrB-NtrC system and the formation of a complex with GlnK, respectively). Other examples of LA-PI controller include copper and zinc transporters, and the redox regulation in photosynthesis. This scheme has thus emerged through evolution in many biological systems, surely because of the benefits it offers in terms of performances (rapid and perfect adaptation) and economy (protein production according to needs).

  12. Robust hopping based on virtual pendulum posture control

    International Nuclear Information System (INIS)

    Sharbafi, Maziar A; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Maufroy, Christophe; Seyfarth, Andre

    2013-01-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved. (paper)

  13. Model-based adaptive sliding mode control of the subcritical boiler-turbine system with uncertainties.

    Science.gov (United States)

    Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng

    2018-05-25

    As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.

  14. Non interacting control by measurement feedback

    NARCIS (Netherlands)

    Woude, van der J.W.

    1987-01-01

    In this paper we shall solve the problem of non interacting control by measurement feedback for systems that in addition to a control input and a measurement output have two exogenous inputs and two exogenous outputs. That is, we shall derive necessary and sufficient conditions that can actually be

  15. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch.

    Science.gov (United States)

    Ermakov, I V; Tronciu, V Z; Colet, Pere; Mirasso, Claudio R

    2009-05-25

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  16. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch

    OpenAIRE

    Ermakov, Ilya; Tronciu, Vasile; Colet, Pere; Mirasso, Claudio R.

    2009-01-01

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  17. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control

    Science.gov (United States)

    Grantham, Walter J.; Lee, Byoung-Soo

    1987-01-01

    A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.

  18. Effects of computer-based immediate feedback on foreign language listening comprehension and test-associated anxiety.

    Science.gov (United States)

    Lee, Shu-Ping; Su, Hui-Kai; Lee, Shin-Da

    2012-06-01

    This study investigated the effects of immediate feedback on computer-based foreign language listening comprehension tests and on intrapersonal test-associated anxiety in 72 English major college students at a Taiwanese University. Foreign language listening comprehension of computer-based tests designed by MOODLE, a dynamic e-learning environment, with or without immediate feedback together with the state-trait anxiety inventory (STAI) were tested and repeated after one week. The analysis indicated that immediate feedback during testing caused significantly higher anxiety and resulted in significantly higher listening scores than in the control group, which had no feedback. However, repeated feedback did not affect the test anxiety and listening scores. Computer-based immediate feedback did not lower debilitating effects of anxiety but enhanced students' intrapersonal eustress-like anxiety and probably improved their attention during listening tests. Computer-based tests with immediate feedback might help foreign language learners to increase attention in foreign language listening comprehension.

  19. Robust control of chaos in Chua's circuit based on internal model principle

    International Nuclear Information System (INIS)

    Lee, Keum W.; Singh, Sahjendra N.

    2007-01-01

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished

  20. Genetic test feedback with weight control advice: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Meisel Susanne F

    2012-12-01

    Full Text Available Abstract Background Genetic testing for risk of weight gain is already available over the internet despite uncertain benefits and concerns about adverse emotional or behavioral effects. Few studies have assessed the effect of adding genetic test feedback to weight control advice, even though one of the proposed applications of genetic testing is to stimulate preventive action. This study will investigate the motivational effect of adding genetic test feedback to simple weight control advice in a situation where weight gain is relatively common. Methods/design First-year university students (n = 800 will be randomized to receive either 1 their personal genetic test result for a gene (FTO related to weight gain susceptibility in addition to a leaflet with simple weight control advice (‘Feedback + Advice’ group, FA, or 2 only the leaflet containing simple weight control advice (‘Advice Only’ group, AO. Motivation to avoid weight gain and active use of weight control strategies will be assessed one month after receipt of the leaflet with or without genetic test feedback. Weight and body fat will be measured at baseline and eight months follow-up. We will also assess short-term psychological reactions to the genetic test result. In addition, we will explore interactions between feedback condition and gene test status. Discussion We hope to provide a first indication of the clinical utility of weight-related genetic test feedback in the prevention context. Trial registration Current controlled trials ISRCTN91178663

  1. Drag reduction of a car model by linear genetic programming control

    Science.gov (United States)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  2. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  3. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Directory of Open Access Journals (Sweden)

    Felix Jost

    2017-02-01

    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  4. Movement goals and feedback and feedforward control mechanisms in speech production.

    Science.gov (United States)

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  5. Suboptimal control of pressurized water reactor power plant using approximate model-following method

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Ogawa, Yuichi

    1987-01-01

    We attempted to develop an effective control system that can successfully manage the nuclear steam supply (NSS) system of a PWR power plant in an operational mode requiring relatively small variations of power. A procedure is proposed for synthesizing control system that is a simple, yet practiced, suboptimal control system. The suboptimal control system is designed in two steps; application of the optimal control theory, based on the linear state-feedback control and the use of an approximate model-following method. This procedure can appreciably reduce the complexity of the structure of the controller by accepting a slight deviation from the optimality and by the use of the output-feedback control. This eliminates the engineering difficulty caused by an incompletely state-feedback that is sometimes encountered in practical applications of the optimal state-feedback control theory to complex large-scale dynamical systems. Digital simulations and graphical studies based on the Bode-diagram demonstrate the effectiveness of the suboptimal control, and the applicability of the proposed design method as well. (author)

  6. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    International Nuclear Information System (INIS)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-01-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances or uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade

  7. Robust nonlinear control of nuclear reactors under model uncertainty

    International Nuclear Information System (INIS)

    Park, Moon Ghu

    1993-02-01

    A nonlinear model-based control method is developed for the robust control of a nuclear reactor. The nonlinear plant model is used to design a unique control law which covers a wide operating range. The robustness is a crucial factor for the fully automatic control of reactor power due to time-varying, uncertain parameters, and state estimation error, or unmodeled dynamics. A variable structure control (VSC) method is introduced which consists of an adaptive performance specification (fime control) after the tracking error reaches the narrow boundary-layer by a time-optimal control (coarse control). Variable structure control is a powerful method for nonlinear system controller design which has inherent robustness to parameter variations or external disturbances using the known uncertainty bounds, and it requires very low computational efforts. In spite of its desirable properties, conventional VSC presents several important drawbacks that limit its practical applicability. One of the most undesirable phenomena is chattering, which implies extremely high control activity and may excite high-frequency unmodeled dynamics. This problem is due to the neglected actuator time-delay or sampling effects. The problem was partially remedied by replacing chattering control by a smooth control inter-polation in a boundary layer neighnboring a time-varying sliding surface. But, for the nuclear reactor systems which has very fast dynamic response, the sampling effect may destroy the narrow boundary layer when a large uncertainty bound is used. Due to the very short neutron life time, large uncertainty bound leads to the high gain in feedback control. To resolve this problem, a derivative feedback is introduced that gives excellent performance by reducing the uncertainty bound. The stability of tracking error dynamics is guaranteed by the second method of Lyapunov using the two-level uncertainty bounds that are obtained from the knowledge of uncertainty bound and the estimated

  8. Resonant-inductor-voltage feedback active damping based control for grid-connected inverters with LLCL-filters

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2014-01-01

    damping method with an extra feedback provides a high rejection of the resonance so that the dynamic is improved. In this paper, taking a Proportional-Resonant (PR) together with a harmonic compensator (HC), resonant-inductor-voltage-feedback active damping is applied on an LLCL-filter based three...... of the proposed method is investigated in simulation and by experimental results....

  9. A comprehensive gaze stabilization controller based on cerebellar internal models

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia

    2017-01-01

    . The VOR works in conjunction with the opto-kinetic reflex (OKR), which is a visual feedback mechanism that allows to move the eye at the same speed as the observed scene. Together they keep the image stationary on the retina. In this work we implement on a humanoid robot a model of gaze stabilization...... based on the coordination of VCR and VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot...

  10. Surgical Trainee Feedback-Seeking Behavior in the Context of Workplace-Based Assessment in Clinical Settings.

    Science.gov (United States)

    Gaunt, Anne; Patel, Abhilasha; Fallis, Simon; Rusius, Victoria; Mylvaganam, Seni; Royle, T James; Almond, Max; Markham, Deborah H; Pawlikowska, Teresa R B

    2017-06-01

    To investigate surgical trainee feedback-seeking behaviors-directly asking for feedback (inquiry) and observing and responding to situational clues (monitoring)-in the context of workplace-based assessment (WBA). A hypothetical model of trainee feedback-seeking behavior was developed using existing literature. A questionnaire, incorporating previously validated instruments from organizational psychology, was distributed to general surgical trainees at 23 U.K. hospitals in 2012-2013. Statistical modeling techniques compared the data with 12 predetermined hypothetical relationships between feedback-seeking behaviors and predictive variables (goal orientation, supervisory style) through mediating variables (perceptions of personal benefits and costs of feedback) to develop a final model. Of 235 trainees invited, 178 (76%) responded. Trainees completed 48 WBAs/year on average, and 73% reported receiving feedback via WBA. The final model was of good fit (chi-square/degree of freedom ratio = 1.620, comparative fit index = 0.953, root mean square error of approximation = 0.059). Modeled data showed trainees who perceive personal benefits to feedback use both feedback inquiry and monitoring to engage in feedback interactions. Trainees who seek feedback engage in using WBA. Trainees' goal orientations and perceptions of trainers' supervisory styles as supportive and instrumental are associated with perceived benefits and costs to feedback. Trainees actively engage in seeking feedback and using WBA. Their perceptions of feedback benefits and costs and supervisory style play a role in their feedback-seeking behavior. Encouraging trainees to actively seek feedback by providing specific training and creating a supportive environment for feedback interactions could positively affect their ability to seek feedback.

  11. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  12. High-performance feedback-type active damping of LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    a generalized impedance-based model of grid current control with feedback-type active damping. Then, a controller design method based on the z-domain root contours and frequency-domain passivity theorem is proposed. It not only allows a co-design of the grid current controller and damping controller......Active damping of LCL-filter resonance based on single-state feedback control is widely used with voltage source converters. Its robustness against grid impedance variation has always been a major concern with its controller design. To deal with this issue, this paper begins by developing......, but ensures also a robust stabilization against the grid parameters variations. For illustration, the approach is applied to design three single-state feedback-damping schemes, and their damping robustness are compared under both inductive and resonant grid impedances. Experimental results validate...

  13. An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model

    Science.gov (United States)

    Ikome, John M.; Kanakana, Grace M.

    2018-03-01

    In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.

  14. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    Science.gov (United States)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  15. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    Science.gov (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  16. Robust entry guidance using linear covariance-based model predictive control

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2017-02-01

    Full Text Available For atmospheric entry vehicles, guidance design can be accomplished by solving an optimal issue using optimal control theories. However, traditional design methods generally focus on the nominal performance and do not include considerations of the robustness in the design process. This paper proposes a linear covariance-based model predictive control method for robust entry guidance design. Firstly, linear covariance analysis is employed to directly incorporate the robustness into the guidance design. The closed-loop covariance with the feedback updated control command is initially formulated to provide the expected errors of the nominal state variables in the presence of uncertainties. Then, the closed-loop covariance is innovatively used as a component of the cost function to guarantee the robustness to reduce its sensitivity to uncertainties. After that, the models predictive control is used to solve the optimal problem, and the control commands (bank angles are calculated. Finally, a series of simulations for different missions have been completed to demonstrate the high performance in precision and the robustness with respect to initial perturbations as well as uncertainties in the entry process. The 3σ confidence region results in the presence of uncertainties which show that the robustness of the guidance has been improved, and the errors of the state variables are decreased by approximately 35%.

  17. The importance of proper feedback modeling in HWR

    Energy Technology Data Exchange (ETDEWEB)

    Saphier, D; Gorelik, Z; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The DSNP simulation language was applied to study the effect of different modeling approximations of feedback phenomena in nuclear power plants. The different methods to model the feedback effects are presented and discussed. It is shown that HWR`s are most sensitive to the correct modeling since the usually have at least three feedback effects acting at different time scales, and to achieve correct kinetics a one dimensional representation is needed with correct modeling of the in core time delays. The simulation methodology of lumped parameters and one dimensional models using the DSNP simulation language is presented (authors).

  18. The importance of proper feedback modeling in HWR

    International Nuclear Information System (INIS)

    Saphier, D.; Gorelik, Z.; Shapira, M.

    1996-01-01

    The DSNP simulation language was applied to study the effect of different modeling approximations of feedback phenomena in nuclear power plants. The different methods to model the feedback effects are presented and discussed. It is shown that HWR's are most sensitive to the correct modeling since the usually have at least three feedback effects acting at different time scales, and to achieve correct kinetics a one dimensional representation is needed with correct modeling of the in core time delays. The simulation methodology of lumped parameters and one dimensional models using the DSNP simulation language is presented (authors)

  19. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    Science.gov (United States)

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  20. Simulating feedbacks in land use and land cover change models

    NARCIS (Netherlands)

    Verburg, P.H.

    2006-01-01

    In spite of the many advances in land use and land cover change modelling over the past decade many challenges remain. One of these challenges relates to the explicit treatment of feedback mechanisms in descriptive models of the land use system. This paper argues for model-based analysis to explore

  1. Control Framework for Dexterous Manipulation Using Dynamic Visual Servoing and Tactile Sensors’ Feedback

    Directory of Open Access Journals (Sweden)

    Carlos A. Jara

    2014-01-01

    Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

  2. Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control

    Directory of Open Access Journals (Sweden)

    C. R. Shapiro

    2018-01-01

    Full Text Available This paper is an extended version of our paper presented at the 2016 TORQUE conference (Shapiro et al., 2016. We investigate the use of wind farms to provide secondary frequency regulation for a power grid using a model-based receding horizon control framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and wake interactions, both of which play an important role in wind farm power production. In order to test the control strategy, it is implemented in a large-eddy simulation (LES model of an 84-turbine wind farm using the actuator disk turbine representation. Rotor-averaged velocity measurements at each turbine are used to provide feedback for error correction. The importance of including the dynamics of wake advection in the underlying wake model is tested by comparing the performance of this dynamic-model control approach to a comparable static-model control approach that relies on a modified Jensen model. We compare the performance of both control approaches using two types of regulation signals, RegA and RegD, which are used by PJM, an independent system operator in the eastern United States. The poor performance of the static-model control relative to the dynamic-model control demonstrates that modeling the dynamics of wake advection is key to providing the proposed type of model-based coordinated control of large wind farms. We further explore the performance of the dynamic-model control via composite performance scores used by PJM to qualify plants for regulation services or markets. Our results demonstrate that the dynamic-model-controlled wind farm consistently performs well, passing the qualification threshold for all fast-acting RegD signals. For the RegA signal, which changes over slower timescales, the dynamic-model control leads to average performance that surpasses the qualification threshold, but further

  3. Model-based reasoning and the control of process plants

    International Nuclear Information System (INIS)

    Vaelisuo, Heikki

    1993-02-01

    In addition to feedback control, safe and economic operation of industrial process plants requires discrete-event type logic control like for example automatic control sequences, interlocks, etc. A lot of complex routine reasoning is involved in the design and verification and validation (VandV) of such automatics. Similar reasoning tasks are encountered during plant operation in action planning and fault diagnosis. The low-level part of the required problem solving is so straightforward that it could be accomplished by a computer if only there were plant models which allow versatile mechanised reasoning. Such plant models and corresponding inference algorithms are the main subject of this report. Deep knowledge and qualitative modelling play an essential role in this work. Deep knowledge refers to mechanised reasoning based on the first principles of the phenomena in the problem domain. Qualitative modelling refers to knowledge representation formalism and related reasoning methods which allow solving problems on an abstraction level higher than for example traditional simulation and optimisation. Prolog is a commonly used platform for artificial intelligence (Al) applications. Constraint logic languages like CLP(R) and Prolog-III extend the scope of logic programming to numeric problem solving. In addition they allow a programming style which often reduces the computational complexity significantly. An approach to model-based reasoning implemented in constraint logic programming language CLP(R) is presented. The approach is based on some of the principles of QSIM, an algorithm for qualitative simulation. It is discussed how model-based reasoning can be applied in the design and VandV of plant automatics and in action planning during plant operation. A prototype tool called ISIR is discussed and some initial results obtained during the development of the tool are presented. The results presented originate from preliminary test results of the prototype obtained

  4. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  5. Feedback-controlled diffusion: From self-trapping to true self-avoiding walks

    International Nuclear Information System (INIS)

    Schulz, B.M.; Trimper, S.; Schulz, M.

    2005-01-01

    We study the asymptotic behavior of a Brownian particle under the influence of a dynamical feedback by numerical simulations and analytical considerations. The feedback is controlled by a memory coupling of strength λ. Whereas a negative memory strength yields a true self avoiding walk, a positive memory leads to a self-trapping of the particle. The localization is manifested by a constant mean square displacement in the long time limit which appears after an initial diffusive regime. The probability distribution function of the trapping distance shows an exponential decay. The numerical simulations are compared with an analytical modeling

  6. Dynamic modeling and simulation of an induction motor with adaptive backstepping design of an input-output feedback linearization controller in series hybrid electric vehicle

    Directory of Open Access Journals (Sweden)

    Jalalifar Mehran

    2007-01-01

    Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.

  7. Wind farms providing secondary frequency regulation: Evaluating the performance of model-based receding horizon control

    International Nuclear Information System (INIS)

    Shapiro, Carl R.; Meneveau, Charles; Gayme, Dennice F.; Meyers, Johan

    2016-01-01

    We investigate the use of wind farms to provide secondary frequency regulation for a power grid. Our approach uses model-based receding horizon control of a wind farm that is tested using a large eddy simulation (LES) framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and interactions, both of which play an important role in wind farm power production. This controller is implemented in an LES model of an 84-turbine wind farm represented by actuator disk turbine models. Differences between the velocities at each turbine predicted by the wake model and measured in LES are used for closed-loop feedback. The controller is tested on two types of regulation signals, “RegA” and “RegD”, obtained from PJM, an independent system operator in the eastern United States. Composite performance scores, which are used by PJM to qualify plants for regulation, are used to evaluate the performance of the controlled wind farm. Our results demonstrate that the controlled wind farm consistently performs well, passing the qualification threshold for all fastacting RegD signals. For the RegA signal, which changes over slower time scales, the controlled wind farm's average performance surpasses the threshold, but further work is needed to enable the controlled system to achieve qualifying performance all of the time. (paper)

  8. Feedback control of resistive wall modes in toroidal devices

    International Nuclear Information System (INIS)

    Liu Yueqiang; Bondeson, A.; Gregoratto, D.; Fransson, C.M.; Gribov, Y.; Paccagnella, R.

    2003-01-01

    Feedback of nonaxisymmetric resistive wall modes (RWM) is studied analytically for cylindrical plasmas and computationally for high beta tokamaks. Internal poloidal sensors give superior performance to radial sensors, and this is explained by the distribution of poles and residues for the transfer functions. A single poloidal array of feedback coils allows robust control with respect to variations in plasma pressure, current and rotation velocity. The control analysis is applied to advanced scenarios for ITER. Studies are also shown of configurations with multiple poloidal coils and of feedback systems for nonresonant MHD instabilities in reversed field pinches. (author)

  9. The Effectiveness of Pre-Service English Teachers’ Collaborative Genre-Based Writing Feedback

    Directory of Open Access Journals (Sweden)

    Didik Rinan Sumekto

    2017-05-01

    Full Text Available This study investigated the collaborative genre-based effectiveness among the pre-service English teachers (PSETs. Data collection used the genre-based writing feedback observation upon its reflection and instruction and need analysis questionnaire. The data analysis used multivariate statistics method to generalize the writing tests. The findings showed that the PSETs’ feedback supported the interaction, accountability, and interdependence. These aspects were due to the collaborative participation in groups, in which the PSETs worked with the flexibility, entirely performed the quality, andcontributed in positive attitude during the meetings and assignments. The feedback emphasized the learning improvement within the formative reflection through the general linear model (GLM repeated measures analysis, where F=6,114 and p<0,01. This study concludes that the collaborative genre-based writing feedback has the positive response from the PSETs. The determinant ranges gains in between 85% to 90% after a series of genre-based writing lectures were conducted.

  10. Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback

    OpenAIRE

    Jung–Min Yang

    2016-01-01

    Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the ...

  11. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  12. MRI feedback temperature control for focused ultrasound surgery

    International Nuclear Information System (INIS)

    Vanne, A; Hynynen, K

    2003-01-01

    A temperature feedback controller routine using a physical model for temperature evolution was developed for use with focused ultrasound surgery. The algorithm for the controller was a multi-input, single-output linear quadratic regulator (LQR) derived from Pennes' bioheat transfer equation. The controller was tested with simulated temperature data that had the same characteristics as those obtained with magnetic resonance imaging (MRI). The output of the controller was the appropriate power level to be used by the transducer. Tissue parameters estimated prior to the simulated treatments were used to determine the controller parameters. The controller performance was simulated in three dimensions with varying system parameters, and sufficient temperature tracking was achieved. The worst-case overshoot was 7 deg. C and the steady-state error was 5 deg. C. The simulated behaviour of the controller suggests satisfactory performance and that the controller may be useful in controlling the power output during MRI-monitored ultrasound surgery

  13. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  14. Corresponding Angle Feedback in an innovative weighted transportation system

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu

    2010-01-01

    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  15. Nonlinear observer output-feedback MPC treatment scheduling for HIV

    Directory of Open Access Journals (Sweden)

    Zurakowski Ryan

    2011-05-01

    Full Text Available Abstract Background Mathematical models of the immune response to the Human Immunodeficiency Virus demonstrate the potential for dynamic schedules of Highly Active Anti-Retroviral Therapy to enhance Cytotoxic Lymphocyte-mediated control of HIV infection. Methods In previous work we have developed a model predictive control (MPC based method for determining optimal treatment interruption schedules for this purpose. In this paper, we introduce a nonlinear observer for the HIV-immune response system and an integrated output-feedback MPC approach for implementing the treatment interruption scheduling algorithm using the easily available viral load measurements. We use Monte-Carlo approaches to test robustness of the algorithm. Results The nonlinear observer shows robust state tracking while preserving state positivity both for continuous and discrete measurements. The integrated output-feedback MPC algorithm stabilizes the desired steady-state. Monte-Carlo testing shows significant robustness to modeling error, with 90% success rates in stabilizing the desired steady-state with 15% variance from nominal on all model parameters. Conclusions The possibility of enhancing immune responsiveness to HIV through dynamic scheduling of treatment is exciting. Output-feedback Model Predictive Control is uniquely well-suited to solutions of these types of problems. The unique constraints of state positivity and very slow sampling are addressable by using a special-purpose nonlinear state estimator, as described in this paper. This shows the possibility of using output-feedback MPC-based algorithms for this purpose.

  16. Designing Linear Feedback Controller for Elastic Inverted Pendulum with Tip Mass

    Directory of Open Access Journals (Sweden)

    Minh Hoang Nguyen

    2016-12-01

    Full Text Available This paper introduced a kind of cart and pole system. The pole in this system is not a solid beam but an elastic beam. The paper analyzed the dynamic equation of this complex system. Then, a linear feedback controller was designed to stabilize this model in order to keep the elastic beam balanced in the up-side position. The control results were proved to work well through simulation.

  17. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  18. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  19. A new criterion for chaos and hyperchaos synchronization using linear feedback control

    International Nuclear Information System (INIS)

    Wang Faqiang; Liu Chongxin

    2006-01-01

    Based on the characteristic of the chaotic or hyperchaotic system and linear feedback control method, synchronization of the two identical chaotic or hyperchaotic systems with different initial conditions is studied. The range of the control parameter for synchronization is derived. Simulation results are provided to show the effectiveness of the proposed synchronization method

  20. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.