WorldWideScience

Sample records for model-based advanced water

  1. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  2. Experience with model based display for advanced diagnostics and control

    International Nuclear Information System (INIS)

    Staffon, J.D.; Lindsay, R.W.

    1989-01-01

    A full color, model based display system based on the Rankine thermodynamic cycle has been developed for use at the Experimental Breeder Reactor II by plant operators, engineers, and experimenters. The displays generate a real time thermodynamic model of the plant processes on computer screens to provide a direct indication of the plant performance. Operators and others who view the displays are no longer required to mentally ''construct'' a model of the process before acting. The model based display accurately depicts the plant states. It appears to effectively reduce the gulf of evaluation, which should result in a significant reduction in human operator errors if this plant display approach is adopted by the nuclear industry. Preliminary comments from users, including operators, indicate an overwhelming acceptance of the display approach. The displays incorporate alarm functions as well as levels of detail ''paging'' capability. The system is developed on a computer network which allows the easy addition of displays as well as extra computers. Constructing a complete console can be rapid and inexpensive. 1 ref., 2 figs

  3. Operator model-based design and evaluation of advanced systems

    International Nuclear Information System (INIS)

    Schryver, J.C.

    1988-01-01

    A multi-level operator modeling approach is recommended to provide broad support for the integrated design of advanced control and protection systems for new nuclear power plants. Preliminary design should address the symbiosis of automated systems and human operator by giving careful attention to the roles assigned to these two system elements. A conceptual model of the operator role is developed in the context of a command control-communication problem. According to this approach, joint responsibility can be realized in at least two ways: sharing or allocation. The inherent stabilities of different regions of the operator role space are considered

  4. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  5. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  6. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  7. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  8. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process

  9. Advanced boiling water reactor

    International Nuclear Information System (INIS)

    Nishimura, N.; Nakai, H.; Ross, M.A.

    1999-01-01

    In the Boiling Water Reactor (BWR) system, steam generated within the nuclear boiler is sent directly to the main turbine. This direct cycle steam delivery system enables the BWR to have a compact power generation building design. Another feature of the BWR is the inherent safety that results from the negative reactivity coefficient of the steam void in the core. Based on the significant construction and operation experience accumulated on the BWR throughout the world, the ABWR was developed to further improve the BWR characteristics and to achieve higher performance goals. The ABWR adopted 'First of a Kind' type technologies to achieve the desired performance improvements. The Reactor Internal Pump (RIP), Fine Motion Control Rod Drive (FMCRD), Reinforced Concrete Containment Vessel (RCCV), three full divisions of Emergency Core Cooling System (ECCS), integrated digital Instrumentation and Control (I and C), and a high thermal efficiency main steam turbine system were developed and introduced into the ABWR. (author)

  10. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  11. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  12. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  13. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  14. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  15. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    International Nuclear Information System (INIS)

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-01-01

    applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose

  16. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  17. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  18. Model-based leakage localization in drinking water distribution networks using structured residuals

    OpenAIRE

    Puig Cayuela, Vicenç; Rosich, Albert

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  19. Strategies to combat salt water intrusion in coastal aquifers : A model-based exploratory analysis

    NARCIS (Netherlands)

    Kwakkel, J.H.; Slinger, J.H.

    2011-01-01

    Coastal communities dependent upon groundwater resources for drinking water and irrigation are vulnerable to salinization of the groundwater reserve. The increasing uncertainty associated with changing climatic conditions, population and economic development, and technological advances in

  20. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    OpenAIRE

    Jun-He Yang; Ching-Hsue Cheng; Chia-Pan Chan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting m...

  1. Projection pursuit water quality evaluation model based on chicken swam algorithm

    Science.gov (United States)

    Hu, Zhe

    2018-03-01

    In view of the uncertainty and ambiguity of each index in water quality evaluation, in order to solve the incompatibility of evaluation results of individual water quality indexes, a projection pursuit model based on chicken swam algorithm is proposed. The projection index function which can reflect the water quality condition is constructed, the chicken group algorithm (CSA) is introduced, the projection index function is optimized, the best projection direction of the projection index function is sought, and the best projection value is obtained to realize the water quality evaluation. The comparison between this method and other methods shows that it is reasonable and feasible to provide decision-making basis for water pollution control in the basin.

  2. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  3. A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain

    Directory of Open Access Journals (Sweden)

    Francesca Gagliardi

    2017-07-01

    Full Text Available This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and presented. These models, together with two benchmark models (based on artificial neural network and naïve methods, were applied to three real-life case studies for the purpose of forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the model based on a homogeneous Markov chain provides more accurate short-term forecasts than the one based on a non-homogeneous Markov chain, which is in line with the artificial neural network model. Both Markov chain models enable probabilistic information regarding the stochastic demand forecast to be easily obtained.

  4. Advanced autonomous model-based operation of industrial process systems (Autoprofit) : technological developments and future perspectives

    NARCIS (Netherlands)

    Ozkan, L.; Bombois, X.J.A.; Ludlage, J.H.A.; Rojas, C.R.; Hjalmarsson, H.; Moden, P.E.; Lundh, M.; Backx, A.C.P.M.; Van den Hof, P.M.J.

    2016-01-01

    Model-based operation support technology such as Model Predictive Control (MPC) is a proven and accepted technology for multivariable and constrained large scale control problems in process industry. Despite the growing number of successful implementations, the low level of operational efficiency of

  5. Model-based monitoring techniques for leakage localization in distribution water networks

    OpenAIRE

    Meseguer Amela, Jordi; Mirats Tur, Josep Maria; Cembrano Gennari, Gabriela; Puig Cayuela, Vicenç

    2015-01-01

    This is an open access article under the CC BY-NC-ND license This paper describes an integrated model-based monitoring framework for leakage localization in district-metered areas (DMA) of water distribution networks, which takes advantage of the availability of a hydraulic model of the network. The leakage localization methodology is based on the use of flow and pressure sensors at the DMA inlets and a limited number of pressure sensors deployed inside the DMA. The placement of these sens...

  6. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  7. Model-based approach for cyber-physical attack detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2018-08-01

    Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.

  8. Getting water right: A case study in water yield modelling based on precipitation data.

    Science.gov (United States)

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. Copyright

  9. Model-Based Diagnosis and Prognosis of a Water Recycling System

    Science.gov (United States)

    Roychoudhury, Indranil; Hafiychuk, Vasyl; Goebel, Kai Frank

    2013-01-01

    A water recycling system (WRS) deployed at NASA Ames Research Center s Sustainability Base (an energy efficient office building that integrates some novel technologies developed for space applications) will serve as a testbed for long duration testing of next generation spacecraft water recycling systems for future human spaceflight missions. This system cleans graywater (waste water collected from sinks and showers) and recycles it into clean water. Like all engineered systems, the WRS is prone to standard degradation due to regular use, as well as other faults. Diagnostic and prognostic applications will be deployed on the WRS to ensure its safe, efficient, and correct operation. The diagnostic and prognostic results can be used to enable condition-based maintenance to avoid unplanned outages, and perhaps extend the useful life of the WRS. Diagnosis involves detecting when a fault occurs, isolating the root cause of the fault, and identifying the extent of damage. Prognosis involves predicting when the system will reach its end of life irrespective of whether an abnormal condition is present or not. In this paper, first, we develop a physics model of both nominal and faulty system behavior of the WRS. Then, we apply an integrated model-based diagnosis and prognosis framework to the simulation model of the WRS for several different fault scenarios to detect, isolate, and identify faults, and predict the end of life in each fault scenario, and present the experimental results.

  10. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  11. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  12. Next Steps: Water Technology Advances (Research)

    Science.gov (United States)

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  13. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  14. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  15. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  16. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  17. Advancing Water Science through Data Visualization

    Science.gov (United States)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  18. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  19. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  20. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  1. Advancing Water Science through Improved Cyberinfrastructure

    Science.gov (United States)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI

  2. Tribocorrosion in pressurized high temperature water: a mass flow model based on the third body approach

    Energy Technology Data Exchange (ETDEWEB)

    Guadalupe Maldonado, S.

    2014-07-01

    Pressurized water reactors (PWR) used for power generation are operated at elevated temperatures (280-300 °C) and under higher pressure (120-150 bar). In addition to these harsh environmental conditions some components of the PWR assemblies are subject to mechanical loading (sliding, vibration and impacts) leading to undesirable and hardly controllable material degradation phenomena. In such situations wear is determined by the complex interplay (tribocorrosion) between mechanical, material and physical-chemical phenomena. Tribocorrosion in PWR conditions is at present little understood and models need to be developed in order to predict component lifetime over several decades. The goal of this project, carried out in collaboration with the French company AREVA NP, is to develop a predictive model based on the mechanistic understanding of tribocorrosion of specific PWR components (stainless steel control assemblies, stellite grippers). The approach taken here is to describe degradation in terms of electro-chemical and mechanical material flows (third body concept of tribology) from the metal into the friction film (i.e. the oxidized film forming during rubbing on the metal surface) and from the friction film into the environment instead of simple mass loss considerations. The project involves the establishment of mechanistic models for describing the single flows based on ad-hoc tribocorrosion measurements operating at low temperature. The overall behaviour at high temperature and pressure in investigated using a dedicated tribometer (Aurore) including electrochemical control of the contact during rubbing. Physical laws describing the individual flows according to defined mechanisms and as a function of defined physical parameters were identified based on the obtained experimental results and from literature data. The physical laws were converted into mass flow rates and solved as differential equation system by considering the mass balance in compartments

  3. Outline of advanced boiling water reactor

    International Nuclear Information System (INIS)

    Yoshio Matsuo

    1987-01-01

    The ABWR (Advanced Boiling Water Reactor) is based on construction and operational experience in Japan, USA and Europe. It was developed jointly by the BWR supplieres, General Electric, Hitachi, and Toshiba, as the next generation BWR for Japan. The Tokyo Electric Power Co. provided leadership and guidance in developing the ABWR, and in combination with five other Japanese electric power companies. The major objectives in developing the ABWR are: 1. Enhanced plant operability, maneuverability and daily load-following capability; 2. Increased plant safety and operating margins; 3. Improved plant availability and capacity factor; 4. Reduced occupational radiation exposure; 5. Reduced radwaste volume, and 6. Reduced plant capital and operating costs. (Liu)

  4. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  5. Advanced light water reactors for the nineties

    International Nuclear Information System (INIS)

    Ross, F.A.; Sugnet, W.R.

    1987-01-01

    The EPRI/Industry advanced light water reactor (ALWR) program and the US Department of Energy ALWR program are closely coordinated to meet the common objective which is the availability of improved and simplified light water reactor plants that may be ordered in the next decade to meet new or replacement capacity requirements. The EPRI/Industry objectives, program participants, and foreign participants, utility requirements document, its organization and content, small plant conceptual design program, the DOE ALWR program, design verification program, General Electric ABWR design features, Combustion Engineering system design, mid-size plant development, General Electric SBWR objectives, Westinghouse/Burns and Roe design objectives, construction improvement, and improved instrumentation and control are discussed in the paper

  6. Dosimetry of intravenously administered oxygen-15 labelled water in man: a model based on experimental human data from 21 subjects

    International Nuclear Information System (INIS)

    Smith, T.; Tong, C.; Lammertsma, A.A.; Butler, K.R.; Schnorr, L.; Watson, J.D.G.; Ramsay, S.; Clark, J.C.; Jones, T.

    1994-01-01

    Models based on uniform distribution of tracer in total body water underestimate the absorbed dose from H 2 15 O because of the short half-life (2.04 min) of 15 O, which leads to non-uniform distribution of absorbed dose and also complicates the direct measurement of organ retention curves. However, organ absorbed doses can be predicted by the present kinetic model based on the convolution technique. The measured time course of arterial H 2 15 O concentration following intravenous administration represents the input function to organs. The impulse response of a given organ is its transit time function determined by blood flow and the partition of water between tissue and blood. Values of these two parameters were taken from the literature. Integrals of the arterial input function and organ transit time functions were used to derive integrals of organ retention functions (organ residence times). The latter were used with absorbed dose calculation software (MIRDOSE-2) to obtain estimates for 24 organs. From the mean values of organ absorbed doses, the effective dose equivalent (EDE) and effective dose (ED) were calculated. From measurements on 21 subjects, the average value for both EDE and ED was calculated to be 1.2 μSv.MBq -1 compared with a value of about 0.5 μSv.MBq -1 predicted by uniform water distribution models. Based on the human data, a method of approximating H 2 15 O absorbed dose values from body surface area is described. (orig.)

  7. General description of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Kakodkar, A.; Sinha, R.K.; Dhawan, M.L.

    1999-01-01

    Advanced Heavy Water Reactor is a boiling light water cooled, heavy water moderated and vertical pressure tube type reactor with its design optimised for utilisation of thorium for power generation. The core consists of (Th-U 233 )O 2 and (Th-Pu)O 2 fuel with a discharge burn up of 20,000 MWd/Te. This reactor incorporates several features to simplify the design, which eliminate certain systems and components. AHWR design is also optimised for easy replaceability of coolant channels, facilitation of in-service inspection and maintenance and ease of erection. The AHWR design also incorporates several passive systems for performing safety-related functions in the event of an accident. In case of LOCA, emergency coolant is injected through 4 accumulators of 260 m 3 capacity directly into the core. Gravity driven water pool of capacity 6000 m 3 serves to cool the core for 3 days without operator's intervention. Core submergence, passive containment isolation and passive containment cooling are the added features in AHWR. The paper describes the various process systems, core and fuel design, primary components and safety concepts of AHWR. Plant layout and technical data are also presented. The conceptual design of the reactor has been completed, and the detailed design and development is scheduled for completion in the year 2002. (author)

  8. Model-based analysis of water management in alkaline direct methanol fuel cells

    Science.gov (United States)

    Weinzierl, C.; Krewer, U.

    2014-12-01

    Mathematical modelling is used to analyse water management in Alkaline Direct Methanol Fuel Cells (ADMFCs) with an anion exchange membrane as electrolyte. Cathodic water supply is identified as one of the main challenges and investigated at different operation conditions. Two extreme case scenarios are modelled to study the feasible conditions for sufficient water supply. Scenario 1 reveals that water supply by cathodic inlet is insufficient and, thus, water transport through membrane is essential for ADMFC operation. The second scenario is used to analyse requirements on water transport through the membrane for different operation conditions. These requirements are influenced by current density, evaporation rate, methanol cross-over and electro-osmotic drag of water. Simulations indicate that water supply is mainly challenging for high current densities and demands on high water diffusion are intensified by water drag. Thus, current density might be limited by water transport through membrane. The presented results help to identify important effects and processes in ADMFCs with a polymer electrolyte membrane and to understand these processes. Furthermore, the requirements identified by modelling show the importance of considering water transport through membrane besides conductivity and methanol cross-over especially for designing new membrane materials.

  9. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Directory of Open Access Journals (Sweden)

    V. Couvreur

    2012-08-01

    Full Text Available Many hydrological models including root water uptake (RWU do not consider the dimension of root system hydraulic architecture (HA because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance Krs and the compensatory RWU conductance Kcomp. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.

  10. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  11. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  12. Integrated Model-Based Decisions for Water, Energy and Food Nexus

    Science.gov (United States)

    Zhang, X.; Vesselinov, V. V.

    2015-12-01

    Energy, water and food are critical resources for sustaining social development and human lives; human beings cannot survive without any one of them. Energy crises, water shortages and food security are crucial worldwide problems. The nexus of energy, water and food has received more and more attention in the past decade. Energy, water and food are closely interrelated; water is required in energy development such as electricity generation; energy is indispensable for collecting, treating, and transporting water; both energy and water are crucial inputs for food production. Changes of either of them can lead to substantial impacts on other two resources, and vice versa. Effective decisions should be based on thorough research efforts for better understanding of their complex nexus. Rapid increase of population has significantly intensified the pressures on energy, water and food. Addressing and quantifying their interactive relationships are important for making robust and cost-effective strategies for managing the three resources simultaneously. In addition, greenhouse gases (GHGs) are emitted in energy, water, food production, consequently making contributions to growing climate change. Reflecting environmental impacts of GHGs is also desired (especially, on the quality and quantity of fresh water resources). Thus, a socio-economic model is developed in this study to quantitatively address the complex connections among energy, water and food production. A synthetic problem is proposed to demonstrate the model's applicability and feasibility. Preliminary results related to integrated decisions on energy supply management, water use planning, electricity generation planning, energy facility capacity expansion, food production, and associated GHG emission control are generated for providing cost-effective supports for decision makers.

  13. An efficient soil water balance model based on hybrid numerical and statistical methods

    Science.gov (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  14. Status of advanced small pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Peipei; Zhou Yun

    2012-01-01

    In order to expand the nuclear power in energy and desalination, increase competitiveness in global nuclear power market, many developed countries with strong nuclear energy technology have realized the importance of Small Modular Reactor (SMR) and initiated heavy R and D programs in SMR. The Advanced Small Pressurized Water Reactor (ASPWR) is characterized by great advantages in safety and economy and can be used in remote power grid and replace mid/small size fossil plant economically. This paper reviews the history and current status of SMR and ASPWR, and also discusses the design concept, safety features and other advantages of ASPWR. The purpose of this paper is to provide an overall review of ASPWR technology in western countries, and to promote the R and D in ASPWR in China. (authors)

  15. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  16. Fuel behavior in advanced water reactors

    International Nuclear Information System (INIS)

    Bolme, A.B.

    1996-01-01

    Fuel rod behavior of advanced pressurized water reactors under steady state conditions has been investigated in this study. System-80+ and Westinghouse Vantage-5 fuels have been considered as advanced pressurized water reactor fuels to be analyzed. The purpose of this study is to analyze the sensitivity of ditferent models and the effect of selected design parameters on the overall fuel behavior. FRAPCON-II computer code has been used for the analyses. Different modelling options of FRAPCON-II have also been considered in these analyses. Analyses have been performed in two main parts. In the first part, effects of operating conditions on fuel behavior have been investigated. First, fuel rod response under normal operating conditions has been analyzed. Then, fuel rod response to different fuel ratings has been calculated. In the second part, in order to estimate the effect of design parameters on fuel behavior, parametric analyses have been performed. In this part, the effects of initial gap thickness, as fabricated fuel density, and initial fill gas pressure on fuel behavior have been analyzed. The computations showed that both of the fuel rods used in this study operate within the safety limits. However, FRAPCON-II modelling options have been resulted in different behavior due to their modelling characteristics. Hence, with the absence of experimental data, it is difficult to make assesment for the best fuel parameters. It is also difficult to estimate error associated with the results. To improve the performance of the code, it is necessary to develop better experimental correlations for material properties in order to analyze the eftect ot considerably different design parameters rather than nominal rod parameters

  17. Model-Based Diagnosis and Prognosis of a Water Recycling System

    Data.gov (United States)

    National Aeronautics and Space Administration — A water recycling system (WRS) deployed at NASA Ames Research Center’s Sustainability Base (an energy efficient office building that integrates some novel...

  18. Attenuation of Visible Solar Radiation in the Upper Water Column: A Model Based on IOPs

    National Research Council Canada - National Science Library

    Lee, Zhong P; Du, KePing; Arnone, Robert; Liew, SooChin; Penta, Bradley

    2005-01-01

    .... Currently, KPAR is estimated based on chlorophyll concentration ([C]) from ocean color. This kind of approach works well for waters where all optical properties can be adequately described by values of [C...

  19. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  20. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems

    Science.gov (United States)

    2016-12-01

    that Fort Drum uses water from two sources: (1) treated groundwater from its on-post wells and (2) treated surface water supplied by the Development...Complete replacement of distribution system piping $21 million Year 10 and Year 30 Leak repair $40,000 Annual Bottled water for drinking $20,000 per...about effects of the instal- lation’s dual water supplies on operation of the water -distribution system. 5.2 Recommendations 5.2.1 Applicability Model

  1. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  2. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  3. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    Science.gov (United States)

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  4. Heavy water moderated reactors advances and challenges

    International Nuclear Information System (INIS)

    Meneley, D.A.; Olmstead, R.A.; Yu, A.M.; Dastur, A.R.; Yu, S.K.W.

    1994-01-01

    Nuclear energy is now considered a key contributor to world electricity production, with total installed capacity nearly equal to that of hydraulic power. Nevertheless, many important challenges lie ahead. Paramount among these is gaining public acceptance: this paper makes the basic assumption that public acceptance will improve if, and only if, nuclear power plants are operated safely and economically over an extended period of time. The first task, therefore, is to ensure that these prerequisites to public acceptance are met. Other issues relate to the many aspects of economics associated with nuclear power, include capital cost, operation cost, plant performance and the risk to the owner's investment. Financing is a further challenge to the expansion of nuclear power. While the ability to finance a project is strongly dependent on meeting public acceptance and economic challenges, substantial localisation of design and manufacture is often essential to acceptance by the purchaser. The neutron efficient heavy water moderated CANDU with its unique tube reactor is considered to be particularly well qualified to respond to these market challenges. Enhanced safety can be achieved through simplification of safety systems, design of the moderator and shield water systems to mitigate severe accident events, and the increased use of passive systems. Economics are improved through reduction in both capital and operating costs, achieved through the application of state-of-the-art technologies and economy of scale. Modular features of the design enhance the potential for local manufacture. Advanced fuel cycles offer reduction in both capital costs and fuelling costs. These cycles, including slightly enriched uranium and low grade fuels from reprocessing plants can serve to increase reactor output, reduce fuelling cost and reduce waste production, while extending resource utilisation. 1 ref., 1 tab

  5. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  6. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J [Energovyzkum Ltd, Brno (Switzerland); Grazl, K [Vitkovice s.c., Ostrava (Switzerland); Tischler, J; Mihalik, M [SEP Atomove Elektrarne Bohunice (Slovakia)

    1996-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  7. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  8. Derivation of the mean annual water-energy balance model based on an Ohms-type law

    Science.gov (United States)

    Li, X.; Shan, X.; Yang, H.

    2017-12-01

    The Budyko Hypothesis is used to describe the water partition and energy partition. Many empirical and analytical solutions have been proposed to evaluate the general solution which can be described as E/P = F(E0/P, c), where c is a parameter. And previous studies have given a derivation of Mezentsev-Choudhruy-Yang (MCY) model, based on dimensional analysis and mathematic reasoning, however, little hydrological process. Thus further hydrological meaning is limited to the boundary conditions which are difficult to explore. Note that hydrologic cycle is always forced by the energy conversions and atmospheric transportation, and the parallel in the electric circuits and the atmospheric motions, therefore we try to give a new derivation of MCY model from a conceptual model, considering hydrologic fluxes and atmospheric motions. Here an analogy of Ohms Law and the atmospheric cycle is used to aim at describing the partition of water in a long-term timescale. Then MCY model is derived in a new form, which is based on more physical explanation than mathematic reasoning proposed in previous studies. The implications of this derivation are also explored.

  9. Model based control and optimization of a feed-water heater train; Modellbaserad reglering och optimering av en foervaermarekedja

    Energy Technology Data Exchange (ETDEWEB)

    Velut, Stephane; Raaberg, Martin; Wendel, Hans (Grontmij AB (SE))

    2007-12-15

    Thermal power plants are complex processes in which many variables must be monitored and controlled in real-time for a safe and economic operation. The complex interactions between actuators and controlled variables as well as the load dependent dynamics make the design and tuning of all controllers a challenging task. A mathematical model of the process that describes critical characteristics such as dynamics, interactions, and nonlinearities might greatly facilitate the task of the control engineer. Such controllers can be designed in a rather systematic way to achieve good performance in terms of response time and robustness. This enables the operator to run the process closer to its limits while minimizing damage risks. The goal of the project was threefold. The first objective was to describe the available methods to compute process models directly from experimental data and illustrate how those models can be used for control design. The second objective was to apply some of the fore mentioned methods on a specific process, namely a feed water heater train to control the level in each preheater. The third objective was to analyze how the level in each preheater affects the thermal efficiency of the plant and derive adequate set-points for the model-based controllers. The project started at the end of the production season, which resulted in a tight schedule for the planning and the realization of experiments. Informative data could however be collected and models could be derived for some specific loads. Unfortunately the effect of the changes in the level set point could not be verified because of the limited length of the experiments. The project results can be summarized as follows: The way the condensate level should be chosen in every preheater has been formulated as a simple optimization problem that aims as maximizing the thermal efficiency of the plant. Even though the model used in the optimization was simple, the results were pretty intuitive. The

  10. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic......The water resource is under increasing pressure, both from the increase in population and from the wish to improve the living standards of the individual. Water scarcity is defined as the situation where demand is greater than the resource. Water scarcity has two distinctly different dimensions......: water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...

  11. Exploring the energy benefits of advanced water metering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hans, Liesel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piscopo, Kate [Univ. of California, Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are based on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow

  12. Advanced Manufacturing Office Clean Water Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-03-01

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  13. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  14. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. The conventional production flow control and pressure control of the facility was replaced by the advanced control software called OPIR. To assess the differences between conventional and advanced

  15. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  16. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production.

    Science.gov (United States)

    Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N

    2017-07-01

    Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.

  17. Advances in Radiocarbon Measurement of Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Janovics, R.; Molnar, M.; Major, I. [Institute of Nuclear Research (ATO MKI), Hungarian Academy of Sciences, H-4001 Debrecen (Hungary); Svetlik, I. [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Prague (Czech Republic); Wacker, L. [Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2013-07-15

    In this paper two very different and novel methods for the {sup 14}C measurement of water samples are presented. The first method uses direct absorption into a scintillation cocktail and a following liquid scintillation measurement. Typical sample size is 20-40 L and overall uncertainty is {+-} 2% for modern samples. It is a very cost effective and easy to use method based on a novel and simple static absorption process for the CO{sub 2} extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using a gas ion source. With a MICADAS type AMS system we demonstrated that you can routinely measure the {sup 14}C content of 1 mL of water sample with better than 1% precision (for a modern sample). This direct {sup 14}C AMS measurement of water takes less than 20 minutes including sample preparation. (author)

  18. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  19. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  20. Managing multidisciplinary model based water management projects, 7th International Confeence on HydroInmatics, Nice France, 4-8 September 2006

    NARCIS (Netherlands)

    Scholten, H.; Kassahun, A.; Refsgaard, J.C.

    2006-01-01

    Multidisciplinary model-based water management projects have to follow a complex process and may encounter many problems, related to miscommunication, malpractice, misuse of the model, insufficient problem knowledge and overselling of model capabilities. This leads to model projects, which are not

  1. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  2. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  3. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  4. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  5. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  6. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  7. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  8. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi

    2018-02-01

    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  9. Advanced Exploration Systems Water Architecture Study Interim Results

    Science.gov (United States)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  10. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  11. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  12. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  13. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  14. Advances in Membrane Distillation for Water Desalination and Purification Applications

    Directory of Open Access Journals (Sweden)

    Juan Gomez

    2013-01-01

    Full Text Available Membrane distillation is a process that utilizes differences in vapor pressure to permeate water through a macro-porous membrane and reject other non-volatile constituents present in the influent water. This review considers the fundamental heat and mass transfer processes in membrane distillation, recent advances in membrane technology, module configurations, and the applications and economics of membrane distillation, and identifies areas that may lead to technological improvements in membrane distillation as well as the application characteristics required for commercial deployment.

  15. Qualification issues for advanced light-water reactor protection systems

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying the I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light-water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light-water reactor. The template was then used to suggest a methodology for the qualification of microprocessor-based protection systems. The methodology identifies standards/regulatory guides (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems. This approach addresses in part issues raised in NRC policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards. as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  16. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  17. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    1991-05-01

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  18. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    1991-05-01

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Development of advanced boiling water reactor for medium capacity

    International Nuclear Information System (INIS)

    Kazuo Hisajima; Yutaka Asanuma

    2005-01-01

    This paper describes a result of development of an Advanced Boiling Water Reactor for medium capacity. 1000 MWe was selected as the reference. The features of the current Advanced Boiling Water Reactors, such as a Reactor Internal Pump, a Fine Motion Control Rod Drive, a Reinforced Concrete Containment Vessel, and three-divisionalized Emergency Core Cooling System are maintained. In addition, optimization for 1000 MWe has been investigated. Reduction in thermal power and application of the latest fuel reduced the number of fuel assemblies, Control Rods and Control Rod Drives, Reactor Internal Pumps, and Safety Relief Valves. The number of Main Steam lines was reduced from four to two. As for the engineered safety features, the Flammability Control System was removed. Special efforts were made to realize a compact Turbine Building, such as application of an in line Moisture Separator, reduction in the number of pumps in the Condensate and Feedwater System, and change from a Turbine-Driven Reactor Feedwater Pump to a Motor-Driven Reactor Feedwater Pump. 31% reduction in the volume of the Turbine Building is expected in comparison with the current Advanced Boiling Water Reactors. (authors)

  20. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  1. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  2. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  3. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  4. Outline of the advanced boiling water reactor (ABWR)

    International Nuclear Information System (INIS)

    Hucik, S.A.; Imaoka, T.; Minematsu, A.; Takashima, Y.

    1986-01-01

    The fundamental design of the Advanced Boiling Water Reactor (ABWR) was completed in December 1985. This design represents the next generation of Boiling Water Reactors (BWR) to be introduced into commercial operation in the 1990s. The ABWR is the result of the continuing evolution of the BWR, incorporating state-of-the-art technologies and many new improvements based on an extensive accumulation of world-wide experience through design, construction and operation of BWRs. The ABWR development program was initiated in 1978, with subsequent design and test and development programs started in 1981. Most of the development and verification tests of the new features have been completed. The ABWR development objective focused on an optimized selection of advanced technologies and proven BWR technologies. The ABWR objectives were specific improvements such as operating and safety margins, enhanced availability and capacity factor, and reduced occupational exposure while at the same time achieving significant cost reduction in both capital and operating costs. The ABWR is characterized by an improved NSSS including ten internal recirculation pumps, fine motion electric-hydraulic control rod drives, optimized safety and auxiliary systems, advanced control and instrumentation systems, improved turbine-generator with moisture/separator reheater with plant output increased to 1350 MWe, and an integrated reinforced concrete containment vessel and compact Reactor and Turbine Building design. The turbine system also included improvements in the Turbine-Generator, feedwater/heater system, and condensate treatment systems. The radwaste system was also optimized taking advantage of the plant design improvements and advances in radwaste technology. The ABWR is a truly optimal design which utilizes advanced technologies, capabilities, performance improvements, and yet provides an economic advantage. (author)

  5. Model-based Impact Assessment of an Integrated Water Management Strategy on Ecosystem Services relevant to Food Security in Namibia

    Science.gov (United States)

    Luetkemeier, R.; Liehr, S.

    2012-04-01

    North-central Namibia is characterized by seasonal alterations of drought and heavy rainfall, mostly saline groundwater resources and a lack of perennial rivers. Water scarcity poses a great challenge for freshwater supply, harvest and food security against the background of high population growth and climate change. CuveWaters project aims at poverty reduction and livelihood improvement on a long term basis by introducing a multi-resource-mix as part of an integrated water resources management (IWRM) approach. Herein, creating water buffers by rainwater harvesting (RWH) and subsurface water storage as well as reuse of treated wastewater facilitates micro-scale gardening activities. This link constitutes a major component of a sustainable adaptation strategy by contributing to the conservation and improvement of basic food and freshwater resources in order to reduce drought vulnerability. This paper presents main findings of an impact assessment carried out on the effect of integrated water resources management on ecosystem services (ESS) relevant to food security within the framework of CuveWaters project. North-central Namibia is perceived as a social-ecological system characterized by a strong mutual dependence between natural environment and anthropogenic system. This fundamental reliance on natural resources highlights the key role of ESS in semi-arid environments to sustain human livelihoods. Among other services, food provision was chosen for quantification as one of the most fundamental ESS in north-central Namibia. Different nutritional values were utilized as indicators to adopt a demand-supply approach (Ecosystem Service Profile) to illustrate the ability of the ecosystem to meet people's nutritional requirements. Calculations have been conducted using both Bayesian networks to incorporate uncertainty introduced by the variability of monthly precipitation and the application of plant specific water production functions. Results show that improving the

  6. Space water electrolysis: Space Station through advance missions

    Science.gov (United States)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  7. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  8. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  9. Introduction of advanced pressurized water reactors in France

    International Nuclear Information System (INIS)

    Millot, J.P.; Nigon, M.; Vitton, M.

    1988-01-01

    Designed >30 yr ago, pressurized water reactors (PWRs) have evolved well to match the current safety, operating, and economic requirements. The first advanced PWR generation, the N4 reactor, is under construction with 1992 as a target date for commercial operation. The N4 may be considered to be a technological outcome of PWR evolution, providing advances in the fields of safety, man/machine interfaces, and load flexibility. As a step beyond N4, a second advanced PWR generation is presently under definition with, as a main objective, a greater ability to cope with the possible deterioration of the natural uranium market. In 1986, Electricite de France (EdF) launched investigations into the possible characteristics of this advanced PWR, called REP-2000 (PWR-2000: the reactor for the next century). Framatome joined EdF in 1987 but had been working on a new tight-lattice reactor. Main options are due by 1988; preliminary studies will begin and, by 1990, detailed design will proceed with the intent of firm commitments for the first unit by 1995. Commissioning is planned in the early years of the next century. This reactor type should be either an improved version of the N4 reactor or a spectral shift convertible reactor (RCVS). Through research and development efforts, Framatome, Commissariat a l'Energie Atomique (CEA), and EdF are investigating the physics of fuel rod tight lattices including neutronics, thermohydraulics, fuel behavior, and reactor mechanics

  10. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    Science.gov (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  11. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  12. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  13. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  14. Neutron physics of a high converting advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Berger, H.D.

    1985-01-01

    The neutron physics of an APWR are analysed by single pin-cell calculations as well as two-dimensional whole-reactor computations. The calculational methods of the two codes employed for this study, viz. the cell code SPEKTRA and the diffusion-burnup code DIBU, are presented in detail. The APWR-investigations carried out concentrate on the void coefficient characteristics of tight UO 2 /PuO 2 -lattices, control rod worths, burnup behaviour and spatial power distributions in APWR cores. The principal physics design differences between advanced pressurized water reactors and present-day PWRs are identified and discussed. (orig./HP) [de

  15. Domestic and overseas development of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Hatazawa, Mamoru; Fuchino, Satoshi; Nakada, Kotaro

    2010-01-01

    Since Toshiba delivered the world's first advanced boiling water reactor (ABWR) to The Tokyo Electric Power Company, Inc. in 1996, we have been devoting continuous efforts to the construction and operational support of ABWR systems as major products. We are now promoting the construction of domestic and overseas ABWR systems along with the standardization of ABWRs. We are also engaged in the research and development of core technologies to support further promotion of ABWRs as a concurrent solution to the issues of global warming and energy security for individual countries. (author)

  16. Advanced fuels for plutonium management in pressurized water reactors

    International Nuclear Information System (INIS)

    Vasile, A.; Dufour, Ph.; Golfier, H.; Grouiller, J.P.; Guillet, J.L.; Poinot, Ch.; Youinou, G.; Zaetta, A.

    2003-01-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1 . More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate

  17. Digital control application for the advanced boiling water reactor

    International Nuclear Information System (INIS)

    Fennern, L.E.; Pearson, T.; Wills, H.D.; Swire Rhodes, L.; Pearson, R.L.

    1986-01-01

    The Advanced Boiling Water Reactor (ABWR) is a 1300 MWe class Nuclear Power Plant whose design studies and demonstration tests are being performed by the three manufacturers, General Electric, Toshiba and Hitachi, under requirement specifications from the Tokyo Electric Power Company. The goals are to apply new technology to the BWR in order to achieve enhanced operational efficiencies, improved safety measures and cost reductions. In the plant instrumentation and control areas, traditional analog control equipment and wire cables will be replaced by distributed digital microprocessor based control units communicating with each other and the control room over fiber optic multiplexed data buses

  18. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  19. State of the art of the advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Seifritz, W.; Chawla, R.

    1987-01-01

    A review is given of the present status of the works concerned with an advanced pressurized water reactor (APWR). It includes the following items: reactor physics, thermal and hydraulic investigations and other engineering aspects as well as an analysis of electricity generation cost and long-term problems of embedding the APWR in a plutonium economy. As a summary it can be stated that there are discernible no principal obstacles of technically accomplishing an APWR, but there will be necessary considerable expenses in research and development works if it should be intended to start commercial service of an APWR up to the end of this century. (author)

  20. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  1. Advanced technology heavy water monitors offering reduced implementation costs

    International Nuclear Information System (INIS)

    Kalechstein, W.; Hippola, K.B.

    1984-10-01

    The development of second generation heavy water monitors for use at CANDU power stations and heavy water plants has been completed and the instruments brought to the stage of commercial availability. Applications of advanced technology and reduced utilization of custom manufactured components have together resulted in instruments that are less expensive to produce than the original monitors and do not require costly station services. The design has been tested on two prototypes and fully documented, including the inspection and test procedures required for manufacture to the CSA Z299.3 quality verfication program standard. Production of the new monitors by a commercial vendor (Barringer Research Ltd.) has begun and the first instrument is scheduled for delivery to CRNL's NRU reactor in late 1984

  2. US Advanced Light Water Reactor Program; overall objective

    International Nuclear Information System (INIS)

    Klug, N.

    1989-01-01

    The overall objective of the US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) program is to perform coordinated programs of the nuclear industry and DOE to insure the availability of licensed, improved, and simplified light water reactor standard plant designs that may be ordered in the 1990's to help meet the US electrical power demand. The discussion includes plans to meet program objectives and the design certification program. DOE is currently supporting the development of conceptual designs, configurations, arrangements, construction methods/plans, and proof test key design features for the General Electric ASBWR and the Westinghouse AP600. Key features of each are summarized. Principal milestones related to licensing of large standard plants, simplified mid-size plant development, and plant lifetime improvement are noted

  3. A GIS model-based assessment of the environmental distribution of γ-hexachlorocyclohexane in European soils and waters

    International Nuclear Information System (INIS)

    Vizcaino, P.; Pistocchi, A.

    2010-01-01

    The MAPPE GIS based multimedia model is used to produce a quantitative description of the behaviour of γ-hexachlorocyclohexane (γ-HCH) in Europe, with emphasis on continental surface waters. The model is found to reasonably reproduce γ-HCH distributions and variations along the years in atmosphere and soil; for continental surface waters, concentrations were reasonably well predicted for year 1995, when lindane was still used in agriculture, while for 2005, assuming severe restrictions in use, yields to substantial underestimation. Much better results were yielded when same mode of release as in 1995 was considered, supporting the conjecture that for γ-HCH, emission data rather that model structure and parameterization can be responsible for wrong estimation of concentrations. Future research should be directed to improve the quality of emission data. Joint interpretation of monitoring and modelling results, highlights that lindane emissions in Europe, despite the marked decreasing trend, persist beyond the provisions of existing legislation. - An spatially-explicit multimedia modelling strategy was applied to describe the historical distribution of γ-HCH in European soils and surface waters.

  4. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  5. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  6. Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach

    International Nuclear Information System (INIS)

    Mayyas, Abdel Ra'ouf; Kumar, Sushil; Pisu, Pierluigi; Rios, Jacqueline; Jethani, Puneet

    2017-01-01

    Highlights: •Vehicle hardware In-the-loop VHiL testing and validation is implemented in vehicle test bed. •Torque at the roller bench test is used to control the torque at wheels to reflect vehicle electrification symptoms. •Electrified powertrain with Equivalent Consumption Minimization Strategy is tested and validated using VHiL. •Fuel economy and power train performance is measured using high precision fuel measurement device. -- Abstract: Hybridization of automotive powertrains by using more than one type of energy converter is considered as an important step towards reducing fuel consumption and air pollutants. Specifically, the development of energy efficient, highly complex, alternative drive-train systems, in which the interactions of different energy converters play an important role, requires new design methods and processes. This paper discusses the inclusion of an alternative hybrid power train into an existing vehicle platform for maximum energy efficiency. The new proposed integrated Vehicle Hardware In-the-loop (VHiL) and Model Based Design (MBD) approach is utilized to evaluate the energy efficiency of electrified powertrain. In VHiL, a complete chassis system becomes an integrated part of the vehicle test bed. A complete conventional Internal Combustion Engine (ICE) powered vehicle is tested in roller bench test for the integration of energy efficient hybrid electric power train modules in closed-loop, real-time, feedback configuration. A model that is a replica of the test vehicle is executed – in real-time- where all hybrid power train modules are included. While the VHiL platform is controlling the signal exchange between the test bed automation software and the vehicle on-board controller, the road load exerted on the driving wheels is manipulated in closed –loop real-time manner in order to reflect all hybrid driving modes including: All Electric Range (AER), Electric Power Assist (EPA) and blended Modes (BM). Upon successful

  7. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  8. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  9. A GIS model-based assessment of the environmental distribution of gamma-hexachlorocyclohexane in European soils and waters.

    Science.gov (United States)

    Vizcaíno, P; Pistocchi, A

    2010-10-01

    The MAPPE GIS based multimedia model is used to produce a quantitative description of the behaviour of gamma-hexachlorocyclohexane (gamma-HCH) in Europe, with emphasis on continental surface waters. The model is found to reasonably reproduce gamma-HCH distributions and variations along the years in atmosphere and soil; for continental surface waters, concentrations were reasonably well predicted for year 1995, when lindane was still used in agriculture, while for 2005, assuming severe restrictions in use, yields to substantial underestimation. Much better results were yielded when same mode of release as in 1995 was considered, supporting the conjecture that for gamma-HCH, emission data rather that model structure and parameterization can be responsible for wrong estimation of concentrations. Future research should be directed to improve the quality of emission data. Joint interpretation of monitoring and modelling results, highlights that lindane emissions in Europe, despite the marked decreasing trend, persist beyond the provisions of existing legislation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  11. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  12. Advanced boiling water reactors for the 90's and beyond

    International Nuclear Information System (INIS)

    Rao, A.S.; Sawyer, C.D.; Qurik, J.F.; McCandless, R.J.

    1990-01-01

    This paper discusses how the advanced boiling water reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990s. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability and reduced occupational exposure and radwaste. International cooperative efforts are also under way aimed at development of a simplified BWR employing natural circulation and passive safety systems. The SBWR conceptual design is complete. This BWR concept shows technical and economic promise. The SBWR program is aimed at providing a U.S. NRC certified design in an investor-ready state by 1995. With its short construction schedule, the 600 MWe SBWR will provide an option for commercial operation worldwide by the mid-to-late 1990s

  13. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  14. Recent Experimental Advances to Determine (noble) Gases in Waters

    Science.gov (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment

  15. Study of Pu consumption in Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    1993-01-01

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE's 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology

  16. Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5

    Science.gov (United States)

    Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.

    2013-12-01

    Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted

  17. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  18. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  19. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  20. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  1. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    Smith, P.F.

    1992-01-01

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  2. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  3. Reliability assurance programme guidebook for advanced light water reactors

    International Nuclear Information System (INIS)

    2001-12-01

    To facilitate the implementation of reliability assurance programmes (RAP) within future advanced reactor programmes and to ensure that the next generation of commercial nuclear reactors achieves the very high levels of safety, reliability and economy which are expected of them, in 1996, the International Atomic Energy Agency (IAEA) established a task to develop a guidebook for reliability assurance programmes. The draft RAP guidebook was prepared by an expert consultant and was reviewed/modified at an Advisory Group meeting (7-10 April 1997) and at a consults meeting (7-10 October 1997). The programme for the RAP guidebook was reported to and guided by the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR). This guidebook will demonstrate how the designers and operators of future commercial nuclear plants can exploit the risk, reliability and availability engineering methods and techniques developed over the past two decades to augment existing design and operational nuclear plant decision-making capabilities. This guidebook is intended to provide the necessary understanding, insights and examples of RAP management systems and processes from which a future user can derive his own plant specific reliability assurance programmes. The RAP guidebook is intended to augment, not replace, specific reliability assurance requirements defined by the utility requirements documents and by individual nuclear steam supply system (NSSS) designers. This guidebook draws from utility experience gained during implementation of reliability and availability improvement and risk based management programmes to provide both written and diagrammatic 'how to' guidance which can be followed to assure conformance with the specific requirements outlined by utility requirements documents and in the development of a practical and effective plant specific RAP in any IAEA Member State

  4. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  5. Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Deelman, E.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Galloway, D. K.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Gonzlez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krmer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Luck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magaa; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Prrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Tayra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; Van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Steeghs, D.; Wang, L.

    2017-01-01

    We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by

  6. Utility Leadership in Defining Requirements for Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    Sugnet, William R.; Layman, William H.

    1990-01-01

    It is appropriate, based on twenty five years of operating experience, that utilities take a position of leadership in developing the technical design and performance requirements for the next generations of nuclear electric generating plants. The U. S. utilities, through the Electric Power Research Institute, began an initiative in 1985 to develop such Utility requirements. Many international Utility organizations, including Korea Electric Power Corporation, have joined as full participants in this important Utility industry initiative. In light of the closer linkage among countries of the world due to rapid travel and telecommunications, it is also appropriate that there be international dialogue and agreement on the principal standards for nuclear power plant acceptability and performance. The Utility/EPRI Advanced Light Water Reactor Program guided by the ALRR Utility Steering Committee has been very successful in developing these Utility requirements. This paper will summarize the state of development of the ALRR Utility Requirements for Evolutionary Plants, recent developments in their review by the U. S. Nuclear Regulatory Commission, resolution of open issues, and the extension of this effort to develop a companion set of ALRR Utility Requirements for plants employing passive safety features

  7. On the path to ordering standardized advanced light water reactors

    International Nuclear Information System (INIS)

    Sliter, G.E.

    1997-01-01

    The international Advanced Light Water Reactor (ALWR) program is specifying, designing, and certifying the next generation of nuclear power plants. Begun in the mid-1980's, the program is on track to permit ordering and construction of families of standardized plants at the start of the twenty-first century. ALWRs will be constructed only if they are economically competitive with alternative forms of electricity generation and are recognized as acceptable and favorable by the public, prospective owners, and investors. This paper first gives an overview of the major building blocks ensuring safe, reliable, and economic designs and the status of those designs. Next it lays out the path the industry has charted toward adopting the ALWR option and indicates the status of three key steps -- design certification, utility requirements, and first-of-a-kind engineering. Lastly, the paper focuses on one of the most important building blocks for ensuring economic viability -- life-cycle standardization. Among the topics are the definition and scope of standardization; its advantages and disadvantages; design team standardization plans that describe the desired or optimum degree of standardization and the processes used to achieve it; and the need for an agreement among all plant owners and operators for implementing and sustaining standardization in families of ALWRs. 10 refs., 5 figs

  8. Contributions to the energetical role of advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1984-06-01

    Three articles written by the author in the past two years and all concerned with energy production of the Advanced Pressurized Water Reactor (APWR) are collated to form this report. The standpoint is made that the APWR using mixed oxide-fuel (about 8% Pusub(fiss) and Usub(depl)) would entail similar capital costs as a PWR, but with conversion rates of 0.85< C<0.95. Given this assumption the analysis shows that the high specific plutonium inventories (being proportional to the conversion ratio in the interested range) result in a strong damping effect on the growth rate, the effective uranium utilization, and on the total nuclear power level. Over one century an APWR strategy is 'far from equilibrium' and to describe this dynamic situation using static APWR data is not appropriate. If nuclear fission energy is to play a substantial and not just a marginal role in providing energy for the future (in the region of 5 - 8 TWsub(el) in 50 years time, corresponding to a share of 20 - 25% of the total world demand), clearly the fast breeder strategy offers the better chance of achieving the goal. (Auth.)

  9. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  10. Factors in the economic viability of advanced light water reactors

    International Nuclear Information System (INIS)

    Matzie, R.A.; Bagnal, C.W.; Rohde, K.R.

    1997-01-01

    Nuclear power currently produces over 20% of the electricity generated in the United States, and a similar number for the entire world. Electricity generated from these nuclear power plants is typically some of the most economical of all sources, and is becoming even more economical with time as utilities focus on reducing production costs. Nevertheless, with the exception of the Asia Pacific region, no new nuclear orders have been placed in many years, and none are planned for the forseeable future. Two reasons for this demise for nuclear power in the western world are usually put forward: the current price of alternative means of electric power generation and the political climate, which tends to be anti-nuclear. The first of these reasons is founded in the low price of natural gas, which has been the preferred fuel for recent power generation additions. These additions have principally been used as peaking units, which are required only at the highest demand periods and not as base load units. The second reason stems from some bad experiences in the post-TMI era, when projects experienced a rapidly changing regulatory environment, long schedule stretchouts, and huge cost overruns. In spite of this relatively poor environment for new nuclear power plants, major programs to develop advanced light water reactors are continuing to keep the nuclear option alive, both in the United States and Europe. These programs are aimed at capturing the lessons learned from past experience, to ensure the success of future nuclear projects. 6 refs., 8 figs., 1 tab

  11. Consideration of important technical issues for advanced light water reactors

    International Nuclear Information System (INIS)

    Thadani, A.C.; Perch, R.L.

    1993-01-01

    Early in the design and review process of the Advanced Light Water Reactors (ALWR), the US Nuclear Regulatory Commission (NRC) in recognition of the importance of defense-in-depth focused its attention on lessons learned from the operating experience, research and other studies as well as addressing the challenges from severe accidents. The Commission issued the Policy Statement on Safety Goals for the Operations of Nuclear Power Plants on August 4, 1986. This policy statement focused on the risks to the public from nuclear power plant operations with the objective of establishing goals that broadly define an acceptable level of radiological risk that might be imposed on the public as a result of nuclear power plant operation. The Commission recognizes the importance of mitigating the consequences of a core-melt accident and continues to emphasize features such as containment and siting in less populated areas as integral parts of the defense-in-depth concept associated with its accident prevention and mitigation philosophy. In its Severe Accident Policy statement, the Commission expressed its expectation that vendors engage in designing new standard plants should address severe accidents during the design stage to take full advantage of insights gained by providing design features to further reduce the likelihood of severe accidents from occurring and, in the unlikely occurrence of a severe accident, mitigating their consequences. Incorporating insights and design features during the design phase can be cost effective when compared to modifications to existing plants. The staff has used this guidance to apply defense-in-depth philosophy in focusing attention on severe accident considerations. This paper discusses some of the key prevention and mitigation issues the NRC has focused its efforts, including emerging technologies being applied to new reactor designs

  12. SSWR Water Systems Project 2: Next Steps – Technology Advances

    Science.gov (United States)

    EPA is responsible for protecting America’s water resources under the Clean Water Act (CWA) and for ensuring that the Nation’s drinking water is safe under the Safe Drinking Water Act (SDWA). Further, it is the responsibility of EPA to conduct research and analyses t...

  13. Uncertainty analysis of LBLOCA for Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Lele, H.G.; Ghosh, A.K.; Kushwaha, H.S.

    2008-01-01

    , uncertainty analysis for the Large Break LOCA (200% Inlet Header Break) of Advanced Heavy Water Reactor (AHWR) has been carried out. The uncertainty analysis was carried out for the peak cladding temperature (PCT), based on the two different methods i.e., Wilk's method and the response surface technique. Their findings have also been compared

  14. Advances in Biological Water-saving Research: Challenge and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Lun Shan; Xiping Deng; Suiqi Zhang

    2006-01-01

    Increasing the efficiency of water use by crops continues to escalate as a topic of concern because drought is a restrictive environmental factor for crop productivity worldwide. Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture. Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yield now provides us with an opportunity to identify and then precisely select for physiological and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goat. A definition of biological water-saving measures is proposed which embraces improvements in water-use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of biological water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of biological water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.

  15. State of development progress of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Tomono, Katsuya

    1982-01-01

    Advanced BWRs being developed at present are those aiming at the improvement of reliability and safety, the reduction of radiation exposure, the improvement of operation performance and capacity ratio of plants, and the heightening of economical efficiency by concentrating the experience and excellent technology of BWR manufacturers in the world. Now in Japan, the independence with Japanese technology is possible in almost all fields of nuclear power generation, and the improvement and standardization project is in progress to obtain the steady results. However, in order to pursue the most desirable BWRs conceivable at present, five BWR manufacturers in the world organized the Advanced Engineering Team in July, 1978, and performed the feasibility study of advanced BWRs for more than one year. Tokyo Electric Power Co., Inc., evaluated the report on the results, and judged that it is desirable to advance into the next stage aiming at the practical use of advanced BWRs. For the purpose, the electric power common research on advanced BWRs has been in progress, and the A-BWR project is to be examined in the third improvement and standardization project of MITI. The main technical features such as the coolant recirculation system of internal pump type, reinforced concrete containment vessels, fine motion control rod drive, improved core and fuel and others are explained. (Kako, I.)

  16. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  17. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    Science.gov (United States)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  18. The utility of a model-based cost-effectiveness analysis of degarelix versus leuprolide in the therapy of hormone-dependent advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    Massimo Perachino

    2013-09-01

    Full Text Available INTRODUCTION: Prostate cancer (PC is a very common tumor among men: in Italy its prevalence in 2006 was 0.9%. Androgen deprivation therapy is a way to treat hormone-responsive PC by decreasing testosterone levels. GnRH-analogues, including GnRH-agonists and GnRH-antagonists, are effective for this purpose. AIM: This article presents a cost-effectiveness analysis based on a semi-Markov model comparing the GnRH-antagonist degarelix and GnRH-agonist leuprolide in the treatment of hormone-dependent advanced prostate cancer from the perspective of the Regional Health Service in Veneto Region (Italy.MATERIALS AND METHODS: Effectiveness data were retrieved by a 12-month phase III non-inferiority clinical trial, comparing degarelix and 7,5 mg leuprolide in 610 patients treated for hormone-dependent prostate cancer. Epidemiological data came from a national database and were referred to Veneto Region. The values of the healthcare resources were calculated using regional and national prices (€ 2012. The model considers 3 exhaustive and mutually exclusive health status: first-line treatment, further-lines treatment and death. It lasts 10 years, with 28 days per cycle. The entry in the model is hypothesized at the age of 70 (the age with most PCs in Veneto Region. Effectiveness endpoints were life years saved and quality-adjusted life years, using 3% social discount rate. The incremental cost per QALY was related to the range of acceptability proposed by the Associazione Italiana di Economia Sanitaria (€ 25,000-40,000. The budget impact was calculated on a 5-year time horizon. Univariate and probabilistic sensitivity analyses were performed on every hypothesis of the model.RESULTS: Degarelix resulted in minor costs if compared to 7.5 mg leuprolide (€ 20,511.64 vs 22,256.49. The cost-driver was chemotherapic care (32.45% degarelix vs 44.30% 7.5 mg leuprolide. Life years saved were the same for both the alternatives (5.58, while QALYs obtained were

  19. A knowledge base system for multidisciplinary model-based water management, Summit on Environmentel Modelling and Software, 3rd Biennial meeting of the International Environmental Modelling and Software Society, Burlington, Vermont, USA, July 9-12, 2006

    NARCIS (Netherlands)

    Kassahun, A.; Scholten, H.

    2006-01-01

    To improve the quality of multidisciplinary model-based water management studies and provide guidance on best practices, a user-friendly guidance and quality assurance knowledge-based system has been built within the EU funded HarmoniQuA project. The knowledge base system provides experts and

  20. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  1. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  2. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  3. An Advanced Microturbine System with Water-Lubricated Bearings

    Directory of Open Access Journals (Sweden)

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  4. Identification of improvements of advanced light water reactor concepts

    International Nuclear Information System (INIS)

    Frisch, W.; Liesch, K.; Riegel, B.

    1993-01-01

    The scope of this report is to identify the improvement of reactor developments with respect to reactor safety. This includes the collection of non-proprietary information on the description of the advanced design characteristics, especially summary design descriptions and general publications. This documentation is not intended to include a safety evaluation of the advanced concepts; however, it is structured in such a way that it can serve as a basis for a future safety evaluation. This is taken into account in the structure of the information regarding the distinction of the various concepts with respect to their 'advancement' and the classification of design characteristics according to some basic safety aspects. The overall description concentrates on those features which are relevant to safety. Other aspects, such as economy, operational features, maintenance, the construction period, etc...are not considered explicitly in this report

  5. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  6. The rose petal effect and the role of advancing water contact angles for drop confinement

    DEFF Research Database (Denmark)

    Mandsberg, Nikolaj Kofoed; Taboryski, Rafael J.

    2017-01-01

    We studied the role of advancing water contact angles on superhydrophobic surfaces that exhibited strong pinning effects as known in nature from rose petals. Textured surfaces were engineered in silicon by lithographical techniques. The textures were comprised of hexagonal microstructures...

  7. Advanced Air Evaporation System with Reusable Wicks for Water Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  8. ADVANCED TOOLS FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS AND SOURCE WATERS

    Science.gov (United States)

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxy...

  9. Advanced Product Water Removal and Management (APWR) Fuel Cell System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a passive, self-regulating, gravity-independent Advanced Product Water Removal and management (APWR) system for incorporation into Polymer...

  10. Advanced Product Water Removal and Management (APWR) Fuel Cell System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a passive, self-regulating, gravity-independent Advanced Product Water Removal (APWR) system for Polymer Electrolyte Membrane (PEM)...

  11. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  12. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval

  13. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  14. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  15. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  16. Advances in treatment methods for uranium contaminated soil and water

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2002-01-01

    Water and soil contaminated with actinides, such as uranium and plutonium, are an environmental concern at most U.S. Department of Energy sites, as well as other locations in the world. Remediation actions are on going at many sites, and plans for cleanup are underway at other locations. This paper will review work underway at Clemson University in the area of treatment and remediation of soil and water contaminated with actinide elements. (author)

  17. Status of advanced containment systems for next generation water reactors

    International Nuclear Information System (INIS)

    1994-06-01

    The present IAEA status report is intended to provide information on the current status and development of containment systems of the next generation reactors for electricity production and, particularly, to highlight features which may be considered advanced, i.e. which present improved performance with evolutionary or innovative design solutions or new design approaches. The objectives of the present status report are: To present, on a concise and consistent basis, selected containment designs currently being developed in the world; to review and compare new approaches to the design bases for the containments, in order to identify common trends, that may eventually lead to greater worldwide consensus, to identify, list and compare existing design objectives for advanced containments, related to safety, availability, maintainability, plant life, decommissioning, economics, etc.; to describe the general approaches adopted in different advanced containments to cope with various identified challenges, both those included in the current design bases and those related to new events considered in the design; to briefly identify recent achievements and future needs for new or improved computer codes, standards, experimental research, prototype testing, etc. related to containment systems; to describe the outstanding features of some containments or specific solutions proposed by different parties and which are generally interesting to the international scientific community. 36 refs, 27 figs, 1 tab

  18. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  19. Advances in the hydrogeochemistry and microbiology of acid mine waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  20. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  1. General remarks on advance remote infusion of water in a Campine colliery

    Energy Technology Data Exchange (ETDEWEB)

    Neels, P V [Institut d' Hygiene des Mines, Hasselt, Belgium; Degueldre, G

    1973-06-01

    This paper describes the application of the process of advance remote infusion of water into about ten panels at the Zolder, Holland coal mine to control dust. Tests show that the method, where applicable, will ensure a real and economical prevention of dust in the face, which is completely independent of the mining cycle and of the rate of advance of the workings, and which at the same time needs less water. Advance remote infusion is also found to increase the safety of working conditions by slowing down the emission of mine gas. 10 references.

  2. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  3. Review of advanced methods for treating radioactive contaminated water

    International Nuclear Information System (INIS)

    Dubourg, M.

    2002-01-01

    The accidental release of large quantities of radionuclide after a nuclear accident tends to contaminate the groundwater system of rivers and lakes by the transfer of the main radionuclides such as Cesium 137, Strontium 90 or Cobalt 60, Ruthenium 106 and others (including transuranic radionuclides, such as: Pu 239, Pu 240, Am 241..). The aim of this paper is to review the possible solutions for the removal of these contaminants from large quantities of water. the use of crown ethers for the selective removal of strontium 90 such as the di-cyclohexyl 18 crown 6 which is able to remove with 90% of efficiency the strontium. the use of zeolites for the removal of Cesium 137. On larger scale the use of electromagnetic filtration technology is able to process in a relatively short time large quantities of water by using a seeding system of resin coated metallic magnetic particles to enhance the filtering efficiency under cold conditions. Examples of efficiencies and results obtained on loops at a fairly large will be given in this paper, theses examples show rather high efficiency of removal even at low concentration of contaminants (a few ppb: part per billion). Examples of water treatment concepts will be also given for treatment of contaminated surface water and to treat large groundwater applications. Major applications could be implemented on various sites namely in Russia (Karatchai lake) or in Belarus and Ukraine. The magnetic filtration is not a new concept but with the use of various selective adsorbing treatment particles, this concept has been proven so effective that dissolved metals in process water have been reduced to level in the very low ppb range. (authors)

  4. Fuzzy logic control of water level in advanced boiling water reactor

    International Nuclear Information System (INIS)

    Lin, Chaung; Lee, Chi-Szu; Raghavan, R.; Fahrner, D.M.

    1995-01-01

    The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller

  5. Construction of the advanced boiling water reactor in Japan

    International Nuclear Information System (INIS)

    Natsume, Nobuo; Noda, Hiroshi

    1996-01-01

    The Advanced Boiling Reactor (ABWR) has been developed with international cooperation between Japan and the US as the generation of plants for the 1990s and beyond. It incorporates the best BWR technologies from the world in challengeable pursuit of improved safety and reliability, reduced construction and operating cost, reduced radiation exposure and radioactive waste. Tokyo Electric Power Company (MPCO) decided to apply the first ABWRs to unit No. 6 and 7 of Kashiwazaki-Kariwa nuclear power station (K-6 and 7). These units are scheduled to commence commercial operation in December 1996 and July 1997 respectively. Particular attention is given in this discussion to the construction period from rock inspection for the reactor building to commercial operation, which is to be achieved in only 52 months through innovative and challenging construction methods. To date, construction work is advancing ahead of the original schedule. This paper describes not only how to shorten the construction period by adoption of a variety of new technologies, such as all-weather construction method and large block module construction method, but also how to check and test the state of the art technologies during manufacturing and installation of new equipment for K-6 and 7

  6. Performance of advanced self-shielding models in DRAGON Version4 on analysis of a high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Karthikeyan, Ramamoorthy; Hebert, Alain

    2008-01-01

    A high conversion light water reactor lattice has been analysed using the code DRAGON Version4. This analysis was performed to test the performance of the advanced self-shielding models incorporated in DRAGON Version4. The self-shielding models are broadly classified into two groups - 'equivalence in dilution' and 'subgroup approach'. Under the 'equivalence in dilution' approach we have analysed the generalized Stamm'ler model with and without Nordheim model and Riemann integration. These models have been analysed also using the Livolant-Jeanpierre normalization. Under the 'subgroup approach', we have analysed Statistical self-shielding model based on physical probability tables and Ribon extended self-shielding model based on mathematical probability tables. This analysis will help in understanding the performance of advanced self-shielding models for a lattice that is tight and has a large fraction of fissions happening in the resonance region. The nuclear data for the analysis was generated in-house. NJOY99.90 was used for generating libraries in DRAGLIB format for analysis using DRAGON and A Compact ENDF libraries for analysis using MCNP5. The evaluated datafiles were chosen based on the recommendations of the IAEA Co-ordinated Research Project on the WIMS Library Update Project. The reference solution for the problem was obtained using Monte Carlo code MCNP5. It was found that the Ribon extended self-shielding model based on mathematical probability tables using correlation model performed better than all other models

  7. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  8. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    Science.gov (United States)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  9. The experimental program of neutronphysics for advanced water reactors

    International Nuclear Information System (INIS)

    Martin-Deider, L.; Cathalu, S.; Santamarina, A.; Gomit, M.

    1985-11-01

    The C.E.A. and E.D.F. has jointly undertaken a program of experimental studies on under-moderated water lattices, with mixed oxide fuel UO 2 -PuO 2 . Undermoderated lattices offer high conversion ratios. This type of lattice could limit in the future the natural uranium consumption of pressurized water reactors. This experimental program is aimed at qualifying neutron transport calculations in a large range of moderating ratio (between 0.5 and 1.5). It includes three experiments: ERASME, a critical experiment of large size in the EOLE reactor at Cadarache; ICARE, an irradiation experiment in the MELUSINE reactor at Grenoble; and an experiment to measure the reactivity effects by oscillations in the MINERVE reactor at Cadarache [fr

  10. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  11. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Juan F. Velasco-Muñoz

    2018-03-01

    Full Text Available Water use efficiency in agriculture (WUEA has become a priority given increasing limitations on hydric resources. As a result, this area of research has increased in importance, becoming one of the most prolific lines of study. The main aim of this study was to present a review of worldwide WUEA research over the last 30 years. A bibliometric analysis was developed based on the Scopus database. The sample included 6063 articles. The variables analyzed were: articles per year, category, journal, country, institution, author, and keyword. The results indicate that a remarkable growth in the number of articles published per year is occurring. The main category is environmental science and the main journal Agricultural Water Management. The countries with the highest number of articles were China, the United States of America, and India. The institution that published the most articles was the Chinese Academy of Sciences and the authors from China also were the most productive. The most frequently used keywords were irrigation, crop yield, water supply, and crops. The findings of this study can assist researchers in this field by providing an overview of worldwide research.

  12. Immersed membrane technology for advanced wastewater treatment and water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkies, J.W. [Zenon Municipal Systems Inc., Oakville, ON (Canada)

    2000-07-01

    The use of membrane technology for both municipal water purification and wastewater/sewage treatment was discussed. Membranes are available in a wide range of forms and configurations. Their primary characteristics are pore size and molecular weight separation which classifies then as either microfiltration, ultrafiltration or reverse osmosis membranes. Ultrafiltration can separate soluble organics and insoluble solids such as bacteria, viruses, colloids and suspended particles. Microfiltration can separate most suspended solids including bacteria, many viruses and other suspended solids. It is not, however a complete barrier to viruses and is best used in conjunction with an ultra-violet disinfecting process. Different membrane configurations currently available were described along with their performance and efficiency. The ZenoGem{sup R} process which operates at high organic loadings, meets surface water discharge criteria. This membrane bioreactor makes wastewater reuse an achievable and cost-effective option, particularly when it is combined with carbon filtration and ultra-violet disinfection. The Cycle-Let{sup R} system produces a treated stream that is suitable for re-use in non-potable applications such as toilet flush water or for irrigation. 1 tab., 3 figs.

  13. Materials characterization for advanced pressurized water reactors: Pt. 2

    International Nuclear Information System (INIS)

    Little, E.A.; Gage, G.

    1994-01-01

    A compilation and overview is presented of the experimental techniques available for characterization of the microstructural changes induced by neutron irradiation of PWR pressure vessel steels, and directed towards monitoring of embrittlement processes by examination of surveillance samples from advanced reactor systems. The microstructural features of significance include copper precipitation, dislocation loop and/or microvoid matrix damage and grain boundary solute segregation. The techniques of transmission electron microscopy, field-emission gun scanning transmission electron microscopy, small angle neutron scattering, positron annihilation and field-ion microscopy have all developed to a degree of sophistication such that they are capable of providing detailed microstructural information in these areas, and afford considerable insight into embrittlement processes when used in combination. (author)

  14. Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems

    OpenAIRE

    Herrera, Manuel; Meniconi, Silvia; Alvisi, Stefano; Izquierdo, Joaquin

    2018-01-01

    This document is intended to be a presentation of the Special Issue “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems”. The final aim of this Special Issue is to propose a suitable framework supporting insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system design, optimization of network perf...

  15. Evolutionary/advanced light water reactor data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  16. Evolutionary/advanced light water reactor data report

    International Nuclear Information System (INIS)

    1996-01-01

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (''burned'') in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ''evolutionary'' or ''advanced'' designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ''evolutionary'' LWR alternative

  17. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  18. The industry/EPRI advanced light water reactor program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Sugnet, W.R.; Bilan, W.J.

    1986-01-01

    For the United States nuclear power industry to remain viable, it must be prepared to meet the expected need for new generating capacity in the late 1990s with an improved reactor system. The best hope of meeting this requirement is with evolutionary changes in current LWR systems through system simplification and reevaluation of safety and operational design margins. The grid characteristics and the difficulty in raising capital for large projects indicate that smaller light water reactors (400 to 600 MWe) may play an important role the next generation

  19. Enhancing proliferation resistance in advanced light water reactor fuel cycles

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Pilat, E.E.; Driscoll, M.J.; Xu, Z.; Wang, D.; Zhao, X.

    2001-01-01

    Alternative once-through, light water reactor fuel designs are evaluated for capability to reduce the amount and quality of plutonium produced. Doubling the discharge burnup is quite effective, producing modest reductions in total plutonium and significant increases in 238 Pu whose heat generation and spontaneous neutrons complicate weapon usability. Reductions in the hydrogen to heavy metal ratio are counterproductive. Increases are helpful, but only small changes can be accommodated. Use of ThO 2 in a homogeneous mixture with UO 2 can reduce plutonium production to about 50% of that in a typical present day PWR, and in heterogeneous seed-blanket designs can reduce it to 30 to 45%. (author)

  20. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  1. The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000

    International Nuclear Information System (INIS)

    Schene, R.

    2009-01-01

    Featuring proven technology and innovative passive safety systems, the Westinghouse AP1000 pressurized water reactor can achieve competitive generation costs in the current electricity market without emitting harmful greenhouse gases and further harming the environment. Westinghouse Electric Company, the pioneer in nuclear energy once again sets a new industry standard with the AP1000. The AP1000 is a two-loop pressurized water reactor that uses simplified, innovative and effective approach to safety. With a gross power rating of 3415 megawatt thermal and a nominal net electrical output of 1117 megawatt electric, the AP1000 is ideal for new base load generation. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive a design certification from the U.S. Nuclear Regulatory Commission (NRC). Based on nearly 20 years of research and development, the AP1000 builds and improves upon the established technology of major components used in current Westinghouse designed plants. These components, including steam generators, digital instrumentation and controls, fuel, pressurizers, and reactor vessels, are currently in use around the world and have years of proven, reliable operating experience. Historically, Westinghouse plant designs and technology have forged the cutting edge technology of nuclear plant around the world. Today, nearly 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. Westinghouse continues to be the nuclear industry's global leader. (author)

  2. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  3. Advances in Photocatalytic CO2 Reduction with Water: A Review

    Directory of Open Access Journals (Sweden)

    Samsun Nahar

    2017-06-01

    Full Text Available In recent years, the increasing level of CO2 in the atmosphere has not only contributed to global warming but has also triggered considerable interest in photocatalytic reduction of CO2. The reduction of CO2 with H2O using sunlight is an innovative way to solve the current growing environmental challenges. This paper reviews the basic principles of photocatalysis and photocatalytic CO2 reduction, discusses the measures of the photocatalytic efficiency and summarizes current advances in the exploration of this technology using different types of semiconductor photocatalysts, such as TiO2 and modified TiO2, layered-perovskite Ag/ALa4Ti4O15 (A = Ca, Ba, Sr, ferroelectric LiNbO3, and plasmonic photocatalysts. Visible light harvesting, novel plasmonic photocatalysts offer potential solutions for some of the main drawbacks in this reduction process. Effective plasmonic photocatalysts that have shown reduction activities towards CO2 with H2O are highlighted here. Although this technology is still at an embryonic stage, further studies with standard theoretical and comprehensive format are suggested to develop photocatalysts with high production rates and selectivity. Based on the collected results, the immense prospects and opportunities that exist in this technique are also reviewed here.

  4. Technical features of advanced boiling water reactor (ABWR)

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Takashima, Yoshie; Yokomi, Michiro

    1986-01-01

    As the final stage of the development of ABWRs of 1300 MWe output class carried out since 1984, the design for optimizing the plants has been performed, but it was completed at the end of 1985. Hereafter, the ABWRs will advance to the development of the actual project toward the permission and approval and the construction. By the optimization, the simplification, compacting and the heightening of thermal efficiency of the ABWRs were further promoted. The above promotion was attained by a cylindrical concrete containment vessel constructed in one body with the structure of a reactor building, the optimization of the redundancy of facilities, the optimization of equipment size, the combination of a two-stage reheating, 52 in blade turbine and the recovery of heater drain and so on. The plant characteristics such as the capacity factor, operability and the radiation exposure dose of workers were examined in detail in the process of optimization. As the results, it was shown that the ABWRs have the excellent economical efficiency and the performance characteristics of high level. The technical features of the ABWRs are large capacity and high efficiency plants, the improved core adopting internal pumps and new control rod driving mechanism, rational waste treatment facilities and so on. (Kako, I.)

  5. Closing the loop: integrating human impacts on water resources to advanced land surface models

    Science.gov (United States)

    Zaitchik, B. F.; Nie, W.; Rodell, M.; Kumar, S.; Li, B.

    2016-12-01

    Advanced Land Surface Models (LSMs), including those used in the North American Land Data Assimilation System (NLDAS), offer a physically consistent and spatially and temporally complete analysis of the distributed water balance. These models are constrained both by physically-based process representation and by observations ingested as meteorological forcing or as data assimilation updates. As such, they have become important tools for hydrological monitoring and long-term climate analysis. The representation of water management, however, is extremely limited in these models. Recent advances have brought prognostic irrigation routines into models used in NLDAS, while assimilation of Gravity Recovery and Climate Experiment (GRACE) derived estimates of terrestrial water storage anomaly has made it possible to nudge models towards observed states in water storage below the root zone. But with few exceptions these LSMs do not account for the source of irrigation water, leading to a disconnect between the simulated water balance and the observed human impact on water resources. This inconsistency is unacceptable for long-term studies of climate change and human impact on water resources in North America. Here we define the modeling challenge, review instances of models that have begun to account for water withdrawals (e.g., CLM), and present ongoing efforts to improve representation of human impacts on water storage across models through integration of irrigation routines, water withdrawal information, and GRACE Data Assimilation in NLDAS LSMs.

  6. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline

  7. The United States advanced light water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, J.C. Jr.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear Power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind

  8. The United States Advanced Light Water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, Jr.J.C.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind. (author)

  9. Analysis of core calculation schemes for advanced water reactors

    International Nuclear Information System (INIS)

    Nicolas, Anne

    1989-01-01

    This research thesis addresses the analysis of the core control of sub-moderated water reactors with plutonium fuel and varying spectrum. Firstly, a calculation scheme is defined, based on transport theory for the three existing assembly configurations. It is based on the efficiency analysis of the control cluster and of the flow sheet shape in the assembly. Secondly, studies of the assembly with control cluster and within a theory of diffusion with homogenization or detailed assembly representation are performed by taking the environment into account in order to assess errors. Thirdly, due to the presence of a very efficient absorbent in control clusters, a deeper physical analysis requires the study of the flow gradient existing at the interface between assemblies. A parameter is defined to assess this gradient, and theoretically calculated by using finite elements. Developed software is validated [fr

  10. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  11. EPR (European Pressurized water Reactor) The advanced nuclear reactor

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear energy, which provides a steady supply of electricity at low cost, has its rightful place in the energy mix of the 21. century, which puts the emphasis on sustainable development. The EPR is the only 3. generation reactor under construction today. It is an evolutionary reactor that represents a new generation of pressurized water reactors with no break in the technology used for the most recent models. The EPR was developed by Framatome and Siemens, whose nuclear activities were combined in January 2001 to form Framatome ANP, a subsidiary of AREVA and Siemens. EDF and the major German electricity companies played an active part in the project. The safety authorities of the two countries joined forces to bring their respective safety standards into line and draw up joint design rules for the new reactor. The project had three objectives: meet the requirements of European utilities, comply with the safety standards laid down by the French safety authority for future pressurized water reactors, in concert with its German counterpart, and make nuclear energy even more competitive than energy generated using fossil fuels. The EPR can guarantee a safe, inexpensive electricity supply, without adding to the greenhouse effect. It meets the requirements of the safety authorities and lives up to the expectations of electricity utilities. This document presents the main characteristics of the EPR, and in particular the additional measures to prevent the occurrence of events likely to damage the core, the leak-tight containment, the measures to reduce the exposure of operating and maintenance personnel, the solutions for an even greater protection of the environment. The foreseen development of the EPR in France and abroad (Finland, China, the United States) is summarized

  12. Needs of nuclear data for advanced light water reactor

    International Nuclear Information System (INIS)

    Chaki, Masao

    2008-01-01

    Hitachi has been developing medium sized ABWRs as a power source that features flexibility to meet various market needs, such as minimizing capital risks, providing a timely return on capital investments, etc. Basic design concepts of the medium sized ABWRs are 1) using the current ABWR design which has accumulated favorable construction and operation histories as a starting point; 2) utilizing standard BWR fuels which have been fabricated by proven technology; 3) achieving a rationalized design by suitably utilizing key components developed for large sized reactors. Development of the medium sized ABWRs has proceeded in a systematic, stepwise manner. The first step was to design an output scale for the 600MWe class reactor (ABWR-600), and the next step was to develop an uprating concept to extend this output scale to the 900MWe class reactor (ABWR-900) based on the rationalized technology of the ABWR-600 for further cost savings. In addition, Hitachi and MHI developed an ultra small reactor, 'Package-Reactor'. About the nuclear data, for the purpose of verification of the nuclear analysis method of BWR for mixed oxide (MOX) cores, UO 2 and MOX fuel critical experiments EPICURE and MISTRAL were analyzed using nuclear design codes HINES and CERES with ENDF/B nuclear data file. The critical keffs of the absorber worth experiments, the water hole worth experiments and the 2D void worth experiments agreed with those of the reference experiments within about 0.1%Δk. The root mean square differences of radial power distributions between calculation and measurement were almost less than 2.0%. The calculated reactivity worth values of the absorbers, the water hole and the 2D void agreed with the measured values within nearly experimental uncertainties. These results indicate that the nuclear analysis method of BWR in the present paper give the same accuracy for the UO 2 cores and the MOX cores. (author)

  13. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  14. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  15. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  16. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  17. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  18. Advanced Modeling in Excel: from Water Jets to Big Bang

    Science.gov (United States)

    Ignatova, Olga; Chyzhyk, D.; Willis, C.; Kazachkov, A.

    2006-12-01

    An international students’ project is presented focused on application of Open Office and Excel spreadsheets for modeling of projectile-motion type dynamical systems. Variation of the parameters of plotted and animated families of jets flowing at different angles out of the holes in the wall of water-filled reservoir [1,2] revealed unexpected peculiarities of the envelopes, vertices, intersections and landing points of virtual trajectories. Comparison with real-life systems and rigorous calculations were performed to prove predictions of computer experiments. By same technique, the kinematics of fireworks was analyzed. On this basis two-dimensional ‘firework’ computer model of Big Bang was designed and studied, its relevance and limitations checked. 1.R.Ehrlich, Turning the World Inside Out, (Princeton University Press, Princeton, NJ, 1990), pp. 98-100. 2.A.Kazachkov, Yu.Bogdan, N.Makarovsky, N.Nedbailo. A Bucketful of Physics, in R.Pinto, S.Surinach (eds), International Conference Physics Teacher Education Beyond 2000. Selected Contributions (Elsevier Editions, Paris, 2001), pp.563-564. Sponsored by Courtney Willis.

  19. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  20. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  1. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    Okubo, T.; Iwamura, T.; Takeda, R.; Yamamoto, K.; Okada, H.

    2001-01-01

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  2. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  3. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    International Nuclear Information System (INIS)

    Ro, Ki Deok

    2014-01-01

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately

  4. Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2014-03-15

    In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V = 2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

  5. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  6. Implications of alpha-decay for long term storage of advanced heavy water reactor fuels

    International Nuclear Information System (INIS)

    Pencer, J.; McDonald, M.H.; Roubtsov, D.; Edwards, G.W.R.

    2017-01-01

    Highlights: •Alpha decays versus storage time are calculated for examples of advanced heavy water reactor fuels. •Estimates are made for fuel swelling and helium bubble formation as a function of time. •These predictions are compared to predictions for natural uranium fuel. •Higher rates of damage are predicted for advanced heavy water reactor fuels than natural uranium. -- Abstract: The decay of actinides such as 238 Pu, results in recoil damage and helium production in spent nuclear fuels. The extent of the damage depends on storage time and spent fuel composition and has implications for the integrity of the fuels. Some advanced nuclear fuels intended for use in pressurized heavy water pressure tube reactors have high initial plutonium content and are anticipated to exhibit swelling and embrittlement, and to accumulate helium bubbles over storage times as short as hundreds of years. Calculations are performed to provide estimates of helium production and fuel swelling associated with alpha decay as a function of storage time. Significant differences are observed between predicted aging characteristics of natural uranium and the advanced fuels, including increased helium concentrations and accelerated fuel swelling in the latter. Implications of these observations for long term storage of advanced fuels are discussed.

  7. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    Science.gov (United States)

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  9. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  10. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  11. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  12. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  13. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  14. A real-time, dynamic early-warning model based on uncertainty analysis and risk assessment for sudden water pollution accidents.

    Science.gov (United States)

    Hou, Dibo; Ge, Xiaofan; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2014-01-01

    A real-time, dynamic, early-warning model (EP-risk model) is proposed to cope with sudden water quality pollution accidents affecting downstream areas with raw-water intakes (denoted as EPs). The EP-risk model outputs the risk level of water pollution at the EP by calculating the likelihood of pollution and evaluating the impact of pollution. A generalized form of the EP-risk model for river pollution accidents based on Monte Carlo simulation, the analytic hierarchy process (AHP) method, and the risk matrix method is proposed. The likelihood of water pollution at the EP is calculated by the Monte Carlo method, which is used for uncertainty analysis of pollutants' transport in rivers. The impact of water pollution at the EP is evaluated by expert knowledge and the results of Monte Carlo simulation based on the analytic hierarchy process. The final risk level of water pollution at the EP is determined by the risk matrix method. A case study of the proposed method is illustrated with a phenol spill accident in China.

  15. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO2 enrichment.

    Science.gov (United States)

    Ikawa, Hiroki; Chen, Charles P; Sikma, Martin; Yoshimoto, Mayumi; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Ono, Keisuke; Maruyama, Atsushi; Watanabe, Tsutomu; Kuwagata, Tsuneo; Hasegawa, Toshihiro

    2018-03-01

    Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO 2 concentration ([CO 2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO 2 ] (A-CO 2 and E-CO 2 , respectively) via leaf ecophysiological parameters derived from a free-air CO 2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO 2 and E-CO 2 , and E-CO 2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO 2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO 2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a

  16. Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Giger, Walter [GRC, Giger Research Consulting, Zurich (Switzerland); Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland)

    2009-01-15

    Organic pollutants are a highly relevant topic in environmental science and technology. This article briefly reviews historic developments, and then focuses on the current state of the art and future perspectives on the qualitative and quantitative trace determination of polar organic contaminants, which are of particular concern in municipal and industrial wastewater effluents, ambient surface waters, run-off waters, atmospheric waters, groundwaters and drinking waters. The pivotal role of advanced analytical methods is emphasized and an overview of some contaminant classes is presented. Some examples of polar water pollutants, which are discussed in a bit more detail here, are chosen from projects tackled by the research group led by the author of this article. (orig.)

  17. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  18. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Schlitzer, R.

    1984-01-01

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO 2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP) [de

  19. The footprint of CO2 leakage in the water-column: Insights from numerical modeling based on a North Sea gas release experiment

    Science.gov (United States)

    Vielstädte, L.; Linke, P.; Schmidt, M.; Sommer, S.; Wallmann, K.; McGinnis, D. F.; Haeckel, M.

    2013-12-01

    Assessing the environmental impact of potential CO2 leakage from offshore carbon dioxide storage sites necessitates the investigation of the corresponding pH change in the water-column. Numerical models have been developed to simulate the buoyant rise and dissolution of CO2 bubbles in the water-column and the subsequent near-field dispersion of dissolved CO2 in seawater under ocean current and tidal forcing. In order to test and improve numerical models a gas release experiment has been conducted at 80 m water-depth within the Sleipner area (North Sea). CO2 and Kr (used as inert tracer gas) were released on top of a benthic lander at varying gas flows (impact of such leakage rates is limited to the near-field bottom waters, due to the rapid dissolution of CO2 bubbles in seawater (CO2 is being stripped within the first two to five meters of bubble rise). In particular, small bubbles, which will dissolve close to the seafloor, may cause a dangerous low-pH environment for the marine benthos. However, on the larger scale, the advective transport by e.g. tidal currents, dominates the CO2 dispersal in the North Sea and dilutes the CO2 peak quickly. The model results show that at the small scales (impact on the marine environment, thereby reducing pH substantially (by 0.4 units) within a diameter of less than 50 m around the release spot (depending on the duration of leakage and the current velocities). Strong currents and tidal cycles significantly reduce the spreading of low-pH water masses into the far-field by efficiently diluting the amount of CO2 in ambient seawater.

  20. Analysis and Model Based Assessment of Water Quality in European Mesoscale Forest Catchments with Different Management Strategies (a Climatic Gradient Approach)

    Science.gov (United States)

    Tavares, Filipa; Schwaerzel, Kai; Nunes, João. Pedro; Feger, Karl-Heinz

    2010-05-01

    Forestry activities affect the environmental conditions of river basins by modifying soil properties and vegetation cover, leading to changes in e.g. runoff generation and routing, water yield or the trophic status of water bodies. Climate change is directly linked to forestry, since site-adapted sustainable forest management can buffer negative climate change impacts in river basins, while practices leading to over-harvesting or increasing wildfires can exacerbate these impacts. While studies relating hydrological processes with forestry practices or climate change have already been conducted, the combined impacts of both are rarely discussed. The main objective of the proposed work is to study the interactions between forest management and climate change and the effects of these upon water fluxes and water quality at the catchment scale, over medium to long-term periods and following an East-West climate gradient. Additional objectives are to increase knowledge about the relations between forest, water quality and soil conservation/degradation; and to improve the modelling of hydrological and matter transport processes in managed forests. The present poster shows a conceptual approach to understand this combined interaction by analysing an East-West climatic gradient (Ukraine-Germany-Portugal), with contrasting forestry practices and climate vulnerabilities. The activities within this workplan, to take place during the period 2010 - 2014, will be developed in close collaboration with several ongoing research projects in the host institution at the Dresden University of Technology (TUD) and in the University of Aveiro (UA). The Institute of Soil Science and Site-Ecology (ISSE) at TUD has an internationally renowned research tradition in forest hydrological topics using methods and findings from various (sub)disciplines in a multidisplinary approach. The measurement and simulation of forest catchments has also been a point of research at the Centre for

  1. Piping benchmark problems for the General Electric Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1993-08-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set

  2. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  3. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  4. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    Science.gov (United States)

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  5. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    Science.gov (United States)

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  6. An Eco-Hydrological Model-Based Assessment of the Impacts of Soil and Water Conservation Management in the Jinghe River Basin, China

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2015-11-01

    Full Text Available Many soil and water conservation (SWC measures have been applied in the Jinghe River Basin to decrease soil erosion and restore degraded vegetation cover. Analysis of historical streamflow records suggests that SWC measures may have led to declines in streamflow, although climate and human water use may have contributed to observed changes. This paper presents an application of a watershed-scale, physically-based eco-hydrological model—the Regional Hydro-Ecological Simulation System (RHESSys—in the Jinghe River Basin to study the impacts of SWC measures on streamflow. Several extensions to the watershed-scale RHESSys model were made in this paper to support the model application at larger scales (>10,000 km2 of the Loess Plateau. The extensions include the implementation of in-stream routing, reservoir sub-models and representation of soil and water construction engineering (SWCE. Field observation data, literature values and remote sensing data were used to calibrate and verify the model parameters. Three scenarios were simulated and the results were compared to quantify both vegetation recovery and SWCE impacts on streamflow. Three scenarios respectively represent no SWC, vegetation recovery only and both vegetation recovery and SWCE. The model results demonstrate that the SWC decreased annual streamflow by 8% (0.1 billion m3, with the largest decrease occurring in the 2000s. Model estimates also suggest that SWCE has greater impacts than vegetation recovery. Our study provides a useful tool for SWC planning and management in this region.

  7. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    Science.gov (United States)

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  8. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  9. A nonlinear multi-proxy model based on manifold learning to reconstruct water temperature from high resolution trace element profiles in biogenic carbonates

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2010-11-01

    Full Text Available A long standing problem in paleoceanography concerns the reconstruction of water temperature from δ18O carbonate. It is problematic in the case of freshwater influenced environments because the δ18O isotopic composition of the ambient water (related to salinity needs to be known. In this paper we argue for the use of a nonlinear multi-proxy method called Weight Determination by Manifold Regularization (WDMR to develop a temperature reconstruction model that is less sensitive to salinity variations. The motivation for using this type of model is twofold: firstly, observed nonlinear relations between specific proxies and water temperature motivate the use of nonlinear models. Secondly, the use of multi-proxy models enables salinity related variations of a given temperature proxy to be explained by salinity-related information carried by a separate proxy. Our findings confirm that Mg/Ca is a powerful paleothermometer and highlight that reconstruction performance based on this proxy is improved significantly by combining its information with the information for other trace elements in multi-proxy models. Although the models presented here are black-box models that do not use any prior knowledge about the proxies, the comparison of model reconstruction performances based on different proxy combinations do yield useful information about proxy characteristics. Using Mg/Ca, Sr/Ca, Ba/Ca and Pb/Ca the WDMR model enables a temperature reconstruction with a root mean squared error of ± 2.19 °C for a salinity range between 15 and 32.

  10. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  11. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.

    2004-01-01

    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  12. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  14. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    Science.gov (United States)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  15. Reflooding phase after loss of coolant of an advanced pressurized water reactor with high conversion ratio

    International Nuclear Information System (INIS)

    Schumann, S.

    1984-01-01

    The emergency core cooling behaviour of an advanced pressurized water reactor (APWR) during the reflooding phase of the LOCA with double-ended break is analysed and compared to a common pressurized water reactor (PWR). The code FLUT-BS, its models and correlations are explained in detail and have been verified by numerous PWR-reflood experiments with large parameter range. The influence of core-design on ECC-behaviour as well as the influences of initial and boundary values are examined. The results show the essential differences of ECC-behaviour between PWR and APWR. (orig.) [de

  16. Advanced oxidation in waste water treatment; Oxidacion avanzada en el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Baraza, J.; Esplugas, S. [Universitat de Barcelona (Spain)

    2000-07-01

    The treatment of waste waters and, sometimes, drinking water, using advanced oxidation processes is reviewed on the basis of the studies carried out in which the hydroxyl radical plays an important part, with different techniques and reagents offering a broad range of possibilities. A distinction is made between photochemical an non-photochemical processes. A simple presentation of the fundamentals of each method is made together with a wide-ranging review of the literature and the results obtained in the degradation of certain contaminants resistant to conventional chemical treatments. (Author) 43 refs.

  17. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  18. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  19. Advanced Light Water Reactor Program: Program management and staff review methodology

    International Nuclear Information System (INIS)

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond

  20. Evaluation of damages of airplane crash in European Advanced Boiling Water Reactor (EU-ABWR)

    International Nuclear Information System (INIS)

    Kamei, Kazuhiro; Tanoue, Tetsuharu; Kataoka, Kazuyoshi; Jimbo, Masakazu

    2011-01-01

    European Advanced Boiling Water Reactor (EU-ABWR) is developed by Toshiba. EU-ABWR accommodates an armored reactor building against Airplane Crash (APC), severe accident mitigation systems, N+2 principle in safety systems and a large output of 1600 MWe. Thanks to above mentioned features, EU-ABWR's design objectives and principles are consistent with safety requirements in an European market. In this paper, evaluation of damages induced by APC has been summarized. (author)

  1. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  2. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  3. Advanced electrolytic cascade process for tritium recovery from irradiated heavy water moderator (Preprint No. PD-15)

    International Nuclear Information System (INIS)

    Ragunathan, P.; Mitra, S.K.; Jain, D.K.; Nayar, M.G.; Ramani, M.P.S.

    1989-04-01

    The paper briefly describes a design study of an electrolytic cascade process plant for enrichment and recovery of tritium from irradiated heavy water moderators from Rajasthan Atomic Power Station Reactors. In direct multistage electrolysis process, tritiated heavy water from the reactor units is fed to the electrolytic cell modules arranged in the form of a cascade where it is enriched and decomposed into O 2 gas stream and D 2 /DT gas stream. The direct electrolysis of tritiated heavy water allows tritium to be concentrated in the aqueous phase. Several stages are used to achieve the necessary enrichment. The cascade plant incorporates the advanced electrolyser technology developed in Bhabha Atomic Research Centre (Bombay) using porous nickel electrodes, capable o f high current density operation at reduced energy consumption for electrolysis. (author). 3 tabs

  4. Application of processes of advanced oxidation as phenol treatment in industrial residual waters of refinery

    International Nuclear Information System (INIS)

    Forero, Jorge Enrique; Ortiz, Olga Patricia; Rios, Fabian

    2005-01-01

    Although more efficient and economical processes for the treatment of sewage have been developed in recent years, the challenge they are facing-due to the greater knowledge of the effect that pollutants have on the environment, the greater consumption of water because of the development of human and industrial activity and the reduction of fresh water sources indicate that we are far from attaining the final solution. This affirmation specially applies to the pollutants, which are resistant to biological treatment processes, such as most of the aromatic compounds found in sewage of the petrochemical industries. In this document, the processes known as advanced oxidation will be explored. Theses have been reported as having the greatest potential in the treatment of these pollutants. Likewise the results of the application of these technologies with waters typical of the petroleum industry will be reported. These have previously been evaluated with processes of typical ozonization

  5. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  6. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  7. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  8. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?

    Science.gov (United States)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.

    2009-12-01

    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility

  9. Parametric studies to establish natural circulation in advanced heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S K; Dhawan, M L [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Design of Advanced Heavy Water Reactor (AHWR) is in progress. It consists of vertical pressure tubes with boiling light water coolant flowing through the tubes and heavy water moderator in the calandria. In PHWRs, core heat removal is through forced circulation of the coolant by PHT pumps. In AHWR, no PHT pumps are used and core heat is carried away by natural circulation of the coolant due to density difference between steam/water mixture inside the core and the water region outside the core. This passive means of core heat removal results in a number of benefits viz. (a) extra length of piping, valves, instruments, power supply and control systems for functioning of instruments are eliminated, (b) plant layout is simplified, (c) maintenance of valves and instruments is reduced. Natural circulation in AHWR is achieved by keeping the steam drum at a sufficient height above the core to get the required driving force. The loop height depends on many factors i.e. channel power, V{sub c}/V{sub f} ratio (ratio of coolant volume to fuel volume) and core height. The effect of these parameters on the loop height to establish natural circulation have been studied and presented. (author). 1 ref., 1 fig., 1 tab.

  10. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  11. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    Davis, G.A.

    1992-01-01

    Since 1985, ABB Combustion Engineering Nuclear Power (CENP) and Duke Engineering ampersand Services, Inc. (DE ampersand S) have been developing the next generation of pressurized water reactor (PWR) plant for worldwide deployment. The goal is to make available a pre-licensed, standardized plant design that can satisfy the need for a reliable and economic supply of electricity for residential, commercial and industrial use. To ensure that such a design is available when needed, it must be based on proven technology and established licensing criteria. These requirements dictate development of nuclear technology that is advanced, yet evolutionary in nature. This has been achieved with the System 80+ Standard Plant Design

  13. Experimental PIV and CFD studies of UV-peroxide advanced oxidation reactors for water treatment

    International Nuclear Information System (INIS)

    Sozzi, A.; Taghipour, F.

    2004-01-01

    An experimental and numerical study of the flow characteristics in an annular UV reactor, as used for drinking water disinfection or Advanced Oxidation Processes, was carried out using Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). The influence of different turbulence models and mesh structures on the CFD results was investigated. By qualitative and quantitative comparison of CFD and PIV experimental data, it was shown that the Realizable k-e- turbulence model is best suited for simulating the hydrodynamics of this geometry. (author)

  14. Removal of decay heat by specially designed isolation condensers for advanced heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, M L; Bhatia, S K [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    For Advanced Heavy Water Reactor (AHWR), removal of decay heat and containment heat is being considered by passive means. For this, special type of isolation condensers are designed. Isolation condensers when submerged in a pool of water, are the best choice because condensation of high temperature steam is an extremely efficient heat transfer mechanism. By the use of isolation condensers, not only heat is removed but also pressure and temperature of the system are automatically controlled without losing the coolant and without using conventional safety relief valves. In this paper, design optimisation studies of isolation condensers of different types with natural circulation for the removal of core decay heat for AHWR is presented. (author). 8 refs., 2 figs.

  15. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided

  16. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    Energy Technology Data Exchange (ETDEWEB)

    Hoppes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oster, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased water disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.

  17. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  18. Numerical evaluation of fluid mixing phenomena in boiling water reactor using advanced interface tracking method

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    2008-01-01

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low. (author)

  19. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  20. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    Science.gov (United States)

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  1. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  3. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  4. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-03-01

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  5. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances

    Directory of Open Access Journals (Sweden)

    Tahereh Jafari

    2016-07-01

    Full Text Available Photocatalytic water splitting using sunlight is a promising technology capable of providing high energy yield without pollutant byproducts. Herein, we review various aspects of this technology including chemical reactions, physiochemical conditions and photocatalyst types such as metal oxides, sulfides, nitrides, nanocomposites, and doped materials followed by recent advances in computational modeling of photoactive materials. As the best-known catalyst for photocatalytic hydrogen and oxygen evolution, TiO2 is discussed in a separate section, along with its challenges such as the wide band gap, large overpotential for hydrogen evolution, and rapid recombination of produced electron-hole pairs. Various approaches are addressed to overcome these shortcomings, such as doping with different elements, heterojunction catalysts, noble metal deposition, and surface modification. Development of a photocatalytic corrosion resistant, visible light absorbing, defect-tuned material with small particle size is the key to complete the sunlight to hydrogen cycle efficiently. Computational studies have opened new avenues to understand and predict the electronic density of states and band structure of advanced materials and could pave the way for the rational design of efficient photocatalysts for water splitting. Future directions are focused on developing innovative junction architectures, novel synthesis methods and optimizing the existing active materials to enhance charge transfer, visible light absorption, reducing the gas evolution overpotential and maintaining chemical and physical stability.

  6. The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations

    International Nuclear Information System (INIS)

    Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

    1999-01-01

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the worlds electrical energy. It is a renewable energy source that can contribute significantly to reduction of greenhouse gases by offsetting conventional carbon-based electricity generation. However, rather than growing in importance, hydroelectric generation has actually declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, environmentally friendly turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described

  7. Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality

    International Nuclear Information System (INIS)

    Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

    1999-01-01

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the worlds electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, environmentally friendly turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described

  8. Advanced light water reactors: an economically viable part of the world's future energy mix

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1996-01-01

    In addition to safety and reliability, a common mission for the international nuclear industry in the 21. century will be ensure affordable electricity. At the Westinghouse Electric Corporation believe our advanced light water reactor (ALWR) design gives us the opportunity to provide the safest, most reliable, lowest cost, most competitive generation method possible for use by nations and utilities worldwide. While the safety and reliability aspects of the ALWR can be proven tangibly and are well-documented, questions have been raised about the technology's ability to work within the world's selling price range for electricity generation. For our industry's financial stability, and especially for the stability of the world's future power needs, Westinghouse has done extensive work on this issue and we are convinced we can meet the competitive challenge. We believe the ALWR can be an economically viable part of the world's future energy mix. This paper will define the competitive challenge that is being addressed by the industry and then analyze three specific areas: capital costs, operating costs, and financing costs. The hidden advantage of nuclear power in responding to these challenges will be explored, and a strong case will be made asserting that the advanced light water reactor will be able to compete in international markets with viable production costs. (authors)

  9. The key design features of the Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sinha, R.K.; Kakodkar, A.; Anand, A.K.; Venkat Raj, V.; Balakrishnan, K.

    1999-01-01

    The 235 MWe Indian Advanced Heavy Water Reactor (AHWR) is a vertical, pressure tube type, boiling light water cooled reactor. The three key specific features of design of the AHWR, having a large impact on its viability, safety and economics, relate to its reactor physics, coolant channel, and passive safety features. The reactor physics design is tuned for maximising use of thorium based fuel, and achieving a slightly negative void coefficient of reactivity. The fulfilment of these requirements has been possible through use of PuO 2 -ThO 2 MOX, and ThO 2 -U 233 O 2 MOX in different pins of the same fuel cluster, and use of a heterogeneous moderator consisting of pyrolytic carbon and heavy water in 80%-20% volume ratio. The coolant channels of AHWR are designed for easy replaceability of pressure tubes, during normal maintenance shutdowns. The removal of pressure tube along with bottom end-fitting, using rolled joint detachment technology, can be done in AHWR coolant channels without disturbing the top end-fitting, tail pipe and feeder connections, and all other appendages of the coolant channel. The AHWR incorporates several passive safety features. These include core heat removal through natural circulation, direct injection of Emergency Core Coolant System (ECCS) water in fuel, passive systems for containment cooling and isolation, and availability of a large inventory of borated water in overhead Gravity Driven Water Pool (GDWP) to facilitate sustenance of core decay heat removal, ECCS injection, and containment cooling for three days without invoking any active systems or operator action. Incorporation of these features has been done together with considerable design simplifications, and elimination of several reactor grade equipment. A rigorous evaluation of feasibility of AHWR design concept has been completed. The economy enhancing aspects of its key design features are expected to compensate for relative complexity of the thorium fuel cycle activities

  10. Effect of tillage on water advance and distribution under surge and continuous furrow irrigation methods for cotton in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.

    2006-01-01

    A field experiment was carried out to assess the effect of tillage on water advance and water distribution in the root zone area (0.5 m) under continuous and surge flow irrigation in a cotton field. The experiment was conducted at the Agriculture Experimental Station, Assiut University, Assiut,

  11. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  12. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  13. IAEA'S study on advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, J.; McDonald, A.; Rao, A.; )

    2008-01-01

    About one-fifth of the world's energy consumption is used for electricity generation, with nuclear power contributing approximately 15.2% of this electricity. However; most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, and heat for industrial processes. Nuclear energy also has potential to provide a near-term, greenhouse gas free, source of energy for transportation. These applications rely on a source of heat and electricity. Nuclear energy from water-cooled reactors, of course, is not unique in this sense. Indeed, higher temperature heat can be produced by burning natural gas and coal, or through the use of other nuclear technologies such as gas-cooled or liquid-metal-cooled reactors. Water-cooled reactors, however; are being deployed today while other reactor types have had considerably less operational and regulatory experience and will take still some time to be widely accepted in the market. Both seawater desalination and district heating with nuclear energy are well proven, and new seawater desalination projects using water-cooled reactors will soon be commissioned. Provision of process heat with nuclear energy can result in less dependence on fossil fuels and contribute to reductions of greenhouse gases. Importantly, because nuclear power produces base-load electricity at stable and predictable prices, it provides a greenhouse gas free source of electricity for transportation systems (trains and subways), and for electric and plug-in hybrid vehicles, and in the longer term nuclear energy could produce hydrogen for fuel cell vehicles, as well as for other components of a hydrogen economy. These advanced applications can play an important role in enhancing public acceptance of nuclear

  14. Implementing Participatory Water Management: Recent Advances in Theory, Practice, and Evaluation

    Directory of Open Access Journals (Sweden)

    Yorck von Korff

    2012-03-01

    Full Text Available Many current water planning and management problems are riddled with high levels of complexity, uncertainty, and conflict, so-called "messes" or "wicked problems." The realization that there is a need to consider a wide variety of values, knowledge, and perspectives in a collaborative decision making process has led to a multitude of new methods and processes being proposed to aid water planning and management, which include participatory forms of modeling, planning, and decision aiding processes. However, despite extensive scientific discussions, scholars have largely been unable to provide satisfactory responses to two pivotal questions: (1 What are the benefits of using participatory approaches?; (2 How exactly should these approaches be implemented in complex social-ecological settings to realize these potential benefits? In the study of developing social-ecological system sustainability, the first two questions lead to a third one that extends beyond the one-time application of participatory approaches for water management: (3 How can participatory approaches be most appropriately used to encourage transition to more sustainable ecological, social, and political regimes in different cultural and spatial contexts? The answer to this question is equally open. This special feature on participatory water management attempts to propose responses to these three questions by outlining recent advances in theory, practice, and evaluation related to the implementation of participatory water management. The feature is largely based on an extensive range of case studies that have been implemented and analyzed by cross-disciplinary research teams in collaboration with practitioners, and in a number of cases in close cooperation with policy makers and other interested parties such as farmers, fishermen, environmentalists, and the wider public.

  15. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  16. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.

    Science.gov (United States)

    Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F

    2013-09-15

    Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  18. A critical heat flux correlation for advanced pressurized light water reactor application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-05-01

    Many CHF-correlations have been developed for water cooled rod clusters representing typical PWR or BWR fuel element geometries with relative wide rod lattices. However the fuel elements of an Advanced Pressurized Water Reactor (APWR) have a tight fuel rod lattice, in view of increasing the fuel utilization. It was therefore decided to produce a new CHF-correlation valid for rod bundles with tight lattices. The already available WSC-2 correlation was chosen as a basis. The geometry dependent parameters of this correlation were determined again with the method of the root mean square fitting from the experimental data of the CHF-tests performed in the frame of the Light Water Breeder Reactor programme at the Bettis Laboratory. These tests include triangular array rod bundles with very tight lattices. Furthermore the effect of spiral spacer ribs was investigated on the basis of experimental data from the Columbia University. Application of the new CHF-correlation to conditions typical for an APWR shows that the predicted critical heat fluxes are much smaller than those calculated with the usual PWR-CHF-correlations, but they are higher than those predicted by the B+W-VPI+SU correlation. (orig.) [de

  19. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)

  20. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2018-05-01

    Full Text Available Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model, a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil from being polluted by acid mine drainage.

  1. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  2. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  3. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  4. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    Science.gov (United States)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  5. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    Science.gov (United States)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  6. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  7. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce P.; Kenneth, Thomas [Idaho National Laboratory, Idaho (United States)

    2014-08-15

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  8. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Kenneth, Thomas

    2014-01-01

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security

  9. The Water-Energy-Food Nexus: Advancing Innovative, Policy-Relevant Methods

    Science.gov (United States)

    Crootof, A.; Albrecht, T.; Scott, C. A.

    2017-12-01

    The water-energy-food (WEF) nexus is rapidly expanding in scholarly literature and policy settings as a novel way to address complex Anthropocene challenges. The nexus approach aims to identify tradeoffs and synergies of water, energy, and food systems, internalize social and environmental impacts, and guide development of cross-sectoral policies. However, a primary limitation of the nexus approach is the absence - or gaps and inconsistent use - of adequate methods to advance an innovative and policy-relevant nexus approach. This paper presents an analytical framework to identify robust nexus methods that align with nexus thinking and highlights innovative nexus methods at the frontier. The current state of nexus methods was assessed with a systematic review of 245 journal articles and book chapters. This review revealed (a) use of specific and reproducible methods for nexus assessment is uncommon - less than one-third of the reviewed studies present explicit methods; (b) nexus methods frequently fall short of capturing interactions among water, energy, and food - the very concept they purport to address; (c) assessments strongly favor quantitative approaches - 70% use primarily quantitative tools; (d) use of social science methods is limited (26%); and (e) many nexus methods are confined to disciplinary silos - only about one-quarter combine methods from diverse disciplines and less than one-fifth utilize both quantitative and qualitative approaches. Despite some pitfalls of current nexus methods, there are a host of studies that offer innovative approaches to help quantify nexus linkages and interactions among sectors, conceptualize dynamic feedbacks, and support mixed method approaches to better understand WEF systems. Applying our analytical framework to all 245 studies, we identify, and analyze herein, seventeen studies that implement innovative multi-method and cross-scalar tools to demonstrate promising advances toward improved nexus assessment. This paper

  10. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  11. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  12. Control of xenon oscillations in Advanced Heavy Water Reactor via two-stage decomposition

    International Nuclear Information System (INIS)

    Munje, R.K.; Parkhe, J.G.; Patre, B.M.

    2015-01-01

    Highlights: • Singularly perturbed model of Advanced Heavy Water Reactor is explored. • Composite controller is designed using slow subsystem alone, which achieves asymptotic stability. • Nonlinear simulations are carried out under different transient conditions. • Performance of the controller is found to be satisfactory. - Abstract: Xenon induced spatial oscillations developed in large nuclear reactors, like Advanced Heavy Water Reactor (AHWR) need to be controlled for safe operation. Otherwise, a serious situation may arise in which different regions of the core may undergo variations in neutron flux in opposite phase. If these oscillations are left uncontrolled, the power density and rate of change of power at some locations in the reactor core may exceed their respective thermal limits, resulting in fuel failure. In this paper, a state feedback based control strategy is investigated for spatial control of AHWR. The nonlinear model of AHWR including xenon and iodine dynamics is characterized by 90 states, 5 inputs and 18 outputs. The linear model of AHWR, obtained by linearizing the nonlinear equations is found to be highly ill-conditioned. This higher order model of AHWR is first decomposed into two comparatively lower order subsystems, namely, 73rd order ‘slow’ subsystem and 17th order ‘fast’ subsystem using two-stage decomposition. Composite control law is then derived from individual subsystem feedback controls and applied to the vectorized nonlinear model of AHWR. Through the dynamic simulations it is observed that the controller is able to suppress xenon induced spatial oscillations developed in AHWR and the overall performance is found to be satisfactory

  13. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  14. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  15. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    Science.gov (United States)

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  17. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    International Nuclear Information System (INIS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-01-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H 2 O 2 under UV irradiation (H 2 O 2 /UV) and Fenton system under visible light (Fenton/H 2 O 2 /Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H 2 O 2 /UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H 2 O 2 /Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  18. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  19. A parametric thermohydraulic study an advanced pressurized light water reactor with a tight fuel rod lattice

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-12-01

    A parametric thermohydraulic study for an Advanced Pressurized Light Water Reactor (APWR) with a tight fuel rod lattice has been performed. The APWR improves the uranium utilisation. The APWR core should be placed in a modern German PWR plant. Within this study about 200 different reactors have been calculated. The tightening of the fuel rod lattice implies a decrease of the net electrical output of the plant, which is greater for the heterogeneous reactor than for the homogeneous reactor. APWR cores mean higher core pressure drops and higher water velocities in the core region. The cores tend to be shorter and the number of fuel rods to be higher than for the PWR. At the higher fuel rod pitch to diameter ratios (p/d) the DNB limitation is more stringent than the limitation on the fuel rod linear rating given by the necessity of reflooding after a reactor accident. The contrary is true for the lower p/d ratios. Subcooled boiling in the highest rated coolant channels occurs for the most of the calculated reactors. (orig.) [de

  20. Bounding analysis of containment of high pressure melt ejection in advanced light water reactors

    International Nuclear Information System (INIS)

    Additon, S.L.; Fontana, M.H.; Carter, J.C.

    1990-01-01

    This paper reports on the loadings on containment due to direct containment heating (DCH) as a result of high pressure melt ejection (HPME) in advanced light water reactors (ALWR) which were estimated using conservative, bounding analyses. The purpose of the analyses was to scope the magnitude of the possible loadings and to indicate the performance needed from potential mitigation methods, such as a cavity configuration that limits energy transfer to the upper containment volume. Analyses were performed for three cases which examined the effect of availability of high pressure reactor coolant system water at the time of reactor vessel melt through and the effect of preflooding of the reactor cavity. The amount of core ejected from the vessel was varied from 100% to 0% for all cases. Results indicate that all amounts of core debris dispersal could be accommodated by the containment for the case where the reactor cavity was preflooded. For the worst case, all the energy from in-vessel hydrogen generation and combustion plus that from 45% of the entire molten core would be required to equilibrate with the containment upper volume in order to reach containment failure pressure

  1. Utilization of low temperature geothermal water in traditional and advanced agricultural applications

    International Nuclear Information System (INIS)

    Rossi, L.; Pacciaroni, F.

    1992-01-01

    The locations of large amounts of low temperature geothermal sources (30 to 80 degrees C) have been identified in Italy and in many European countries; one of the most interesting utilization of these sources is greenhouse heating. Surplus investment in comparison with conventional heating systems is justified only by the application of low cost technologies for well completion, heating distribution and waste heat treatment. In the last few years, many efforts have been made in the development of these technologies and selection of more profitable crops. Since 1984, ENEA (Italian Agency for Energy, New Technologies and the Environment) has carried out experimental work in two geothermal stations located in Canino (VT) and in Gorgo di Latisana (UD). In these plants, a number of greenhouses enveloped with plastic film are provided with different heating systems; the combination of soil and forced air heating is preferred. Plastic pipes, buried in the soil, are used as soil heating for horticulture and fruit production. For plot plant cultivation, soil heating is obtained by plastic pipes half-buried in a concrete floor. Asparagus cultivation is carried out with buried pipes. No additional heating with conventional fuel is provided in any greenhouse. During these years, ENEA has developed heating and water distribution technologies: current industrial components are generally utilized. Moreover, ENEA has recently completed an advanced automatic control system able to control geothermal greenhouses, manage water distribution, save energy and optimize environmental conditions

  2. Analytical modelling and study of the stability characteristics of the Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.

    2000-04-01

    An analytical model has been developed to study the thermohydraulic and neutronic-coupled density-wave instability in the Indian Advanced Heavy Water Reactor (AHWR) which is a natural circulation pressure tube type boiling water reactor. The model considers a point kinetics model for the neutron dynamics and a lumped parameter model for the fuel thermal dynamics along with the conservation equations of mass, momentum and energy and equation of state for the coolant. In addition, to study the effect of neutron interactions between different parts of the core, the model considers a coupled multipoint kinetics equation in place of simple point kinetics equation. Linear stability theory was applied to reveal the instability of in-phase and out-of-phase modes in the boiling channels of the AHWR. The results indicate that the design configuration considered may experience both Ledinegg and Type I and Type II density-wave instabilities depending on the operating condition. Some methods of suppressing these instabilities were found out. In addition, it was found that the stability behavior of the reactor is greatly influenced by the void reactivity coefficient, fuel time constant, radial power distribution and channel inlet orificing. The delayed neutrons were found to have strong influence on the Type I and Type II instabilities. Decay ratio maps were predicted considering various operating parameters of the reactor, which are useful for its design. (author)

  3. Modeling interfacial glass-water reactions: recent advances and current limitations

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-01-01

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries-pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. (authors)

  4. The management plan of liquid effluent in Korean advanced light water reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Lim, H. S.; Jeong, D. W.; Jeong, D. Y.

    2001-01-01

    Non-radioactive liquid effluent in Korean Advanced Light Water Reactor is transferred and treated in centralized waste treatment facility after the radioactivity in effluent is checked within power block. The liquid effluent from centralized waste treatment facility will be discharged by way of discharge canal in order to be in the sufficient condition. As a result of investigating the radiation monitoring design in accordance with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring design satisfies the regulatory guideline. In relation to sampling and analyses, most systems satisfy the regulatory guideline except for some effluents from turbine building. And, though sampling and analyses are performed after radioactivity is monitored at each system in turbine building, these exceptions in turbine building effluents are expected to cause no significant problems because radioactivity is monitored by direct or indirect methods prior to release from turbine building. Integrated monitoring on liquid effluent from the centralized waste water treatment facility is not necessary because radiation monitoring, sampling and analyses on each system within power block are performed, and operational effectiveness compared with cost according to adding the radiation monitoring equipment is too low. So, whether the radiation monitoring in this effluent is reflected on design or not is planned to be determined through discussion with regulatory authority

  5. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ''Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs

  6. Maintenance Cycle Extension in the IRIS Advanced Light Water Reactor Plant Design

    International Nuclear Information System (INIS)

    Galvin, Mark R.; Todreas, Neil E.; Conway, Larry E.

    2003-01-01

    New nuclear power generation in the United States will be realized only if the economic performance can be made competitive with other methods of electrical power generation. The economic performance of a nuclear power plant can be significantly improved by increasing the time spent on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described that can be used to resolve, in the design phase, maintenance-related operating cycle length barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the International Reactor, Innovative and Secure (IRIS) design. IRIS is an advanced light water nuclear power plant that is being designed to maximize this on-line generating time by increasing the operating cycle length. This is consequently a maintenance strategy paper using the IRIS plant as the example.Potential IRIS operating cycle length maintenance-related barriers, determined by modification of an earlier operating pressurized water reactor (PWR) plant cycle length analysis to account for differences between the design of IRIS and this operating PWR, are presented. The proposed methodology to resolve these maintenance-related barriers by the design process is described. The results of applying the methodology to two potential IRIS cycle length barriers, relief valve testing and emergency heat removal system testing, are presented

  7. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  8. Utilization of low temperature geothermal water in traditional and advanced agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L.; Pacciaroni, F.

    1992-12-31

    The locations of large amounts of low temperature geothermal sources (30 to 80 degrees C) have been identified in Italy and in many European countries; one of the most interesting utilization of these sources is greenhouse heating. Surplus investment in comparison with conventional heating systems is justified only by the application of low cost technologies for well completion, heating distribution and waste heat treatment. In the last few years, many efforts have been made in the development of these technologies and selection of more profitable crops. Since 1984, ENEA (Italian Agency for Energy, New Technologies and the Environment) has carried out experimental work in two geothermal stations located in Canino (VT) and in Gorgo di Latisana (UD). In these plants, a number of greenhouses enveloped with plastic film are provided with different heating systems; the combination of soil and forced air heating is preferred. Plastic pipes, buried in the soil, are used as soil heating for horticulture and fruit production. For plot plant cultivation, soil heating is obtained by plastic pipes half-buried in a concrete floor. Asparagus cultivation is carried out with buried pipes. No additional heating with conventional fuel is provided in any greenhouse. During these years, ENEA has developed heating and water distribution technologies: current industrial components are generally utilized. Moreover, ENEA has recently completed an advanced automatic control system able to control geothermal greenhouses, manage water distribution, save energy and optimize environmental conditions.

  9. Standardization of advanced light water reactors and progress on achieving utility requirements

    International Nuclear Information System (INIS)

    Marston, T.U.; Layman, W.H.; Bockhold, G. Jr.

    1992-01-01

    This paper reports that for a number of years, the U.S. utilities had led an industry-wide effort to establish a technical foundation for the design of the next generation of light water reactors in the United States. Since 1985, this utility initiative has been effected through a major technical program managed by the Electric Power Research Institute (EPRI); the U.S. Advanced Light Water Reactor (ALWR) Program. In addition to the U.S. utility leadership and sponsorship, the ALWR Program also has the participation and sponsorship of a number of international utility companies and close cooperation with the U.S. Department of Energy (DOE). The NPOC Strategic Plan for Building New Nuclear Plants creates a framework within which new standardized nuclear plants may be built. The Strategic Plan is an expression of the nuclear energy industry's serious intent to create the necessary conditions for new plant construction and operation. The industry has assembled a comprehensive, integrated list of actions that must be taken before new plants will be built and assigns responsibility for managing the various issues and sets time-tables and milestones against which we must measure progress

  10. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  11. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' [Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety] is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document

  12. Proceedings of the GCNEP-IAEA course on natural circulation phenomena and passive safety systems in advanced water cooled reactors. V.1

    International Nuclear Information System (INIS)

    2014-01-01

    The current status and prospect, economics, advanced designs and applications of reactors in operation and construction, safety of advanced water cooled reactors is discussed. Papers relevant to INIS are indexed separately

  13. Proceedings of the GCNEP-IAEA course on natural circulation phenomena and passive safety systems in advanced water cooled reactors. V.2

    International Nuclear Information System (INIS)

    2014-01-01

    The current status and prospect, economics, advanced designs and applications of reactors in operation and construction, safety of advanced water cooled reactors is discussed. Papers relevant to INIS are indexed separately

  14. Second meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Helsinki, 6-9 June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The Second Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) was held in Helsinki, Finland, from 6-9 June 1988. The Summary Report (Part II) contains the papers which review the national programmes since the first meeting of IWGATWR in May 1987 in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of these 12 papers presented at the meeting. Figs and tabs

  15. Oxygen Isotopes Archived in Subfossil Chironomids: Advancing a Promising Proxy for Lake Water Isotopes

    Science.gov (United States)

    Lasher, G. E.; Axford, Y.; Blair, N. E.

    2017-12-01

    Oxygen isotopes measured in subfossil chironomid head capsules (aquatic insect remains) in lake sediments are beginning to offer paleoclimate insights from previously under-studied areas of the world. Since the first published pilot study demonstrated the potential of chironomid δ18O to record lake water δ18O (Wooller et al., 2004), subsequent work has refined our understanding of this proxy: confirming via lab cultures that growth water controls head capsule δ18O (Wang et al., 2009), refining laboratory pretreatment protocols, and further validating the method by demonstrating strong agreement between carbonate and chironomid-derived paleo-isotope records (Verbruggen et al., 2009, 2010, 2011). However, outstanding questions remain, including the seasonality of chironomid growth, possible species-dependent vital effects, and diagenetic effects on the protein-chitin complex that comprise chironomid cuticles. To address some of these questions, we summarize available data from paired modern chironomid-lake water δ18O values from around the world and discuss climatic and environmental factors affecting chironomid isotopic signatures. We also present new data on the resistance of these subfossils to diagenesis and degradation throughout the late Quaternary using Fourier Transform Infrared Spectroscopy (FT-IR) and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) of chironomid remains up to >100,000 years old. As chironomids are nearly ubiquitous in lakes globally and, we argue, molecularly stable through glacial and interglacial cycles, this proxy has the potential to greatly expand the spatial and temporal resolution of Quaternary paleo-isotopes and thus climate records. In addition to reviewing and presenting new methodological advances, we also present applications of chironomid δ18O from millennial- to centennial-scale Holocene Greenland lake records.

  16. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    Science.gov (United States)

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Design and development of face seal type sealing plug for advanced heavy water reactor

    International Nuclear Information System (INIS)

    Bansal, S.; Bhattacharyya, S.; Patel, R.J.; Agrawal, R.G.; Vaze, K.K.

    2005-09-01

    Advanced Heavy Water Reactor is a vertical pressure tube type reactor having light water as its coolant and heavy water as moderator. Sealing plug is required to close the pressure boundary of main heat transport system of the reactor by preventing escape of light water/steam From the coolant channel. There are 452 coolant channels in the reactor located in square lattice pitch. Sealing plug is located at the top of each coolant channel (in the top end fitting). Top end fitting is having a stepped bore to create a sealing face. Sealing plug is held through its expanded jaws in a specially provided groove of the end fitting. The plug was designed and prototypes were manufactured considering its functional importance, intricate design and precision machining requirements. Sealing plug consists of about 20 components mostly made up of precipitation hardening stainless steel, which is suitable for water environment and meets other requirements of strength and resistance to wear and galling. Seal disc is a critical component of the sealing plug as it is the pressure-retaining component. It is a circular disc with protruded stem. One face of the seal disc is nickel plated in the peripheral area that creates the sealing by abutting against the sealing face provided in the end fitting. The typical shape and profile of seal disc provides flexibility and allows elastic deformation to assist in locking of sealing plug and creating adequate seating force for effective sealing. Design and development aspects of the sealing plug have been detailed out in this report. Also results of stress analysis and experimental studies for seal disc have been mentioned in the report. Stress analysis and experimental testing was required for the seal disc because high stresses are developed due to its exposure to high pressure and temperature environment of Main Heat Transport system. Hot testing was carried out to simulate the reactor-simulated condition. The performance was found to be

  19. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Science.gov (United States)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  20. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  1. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  2. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team

  3. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  4. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  5. Critical heat flux and flow instability in an advanced light water reactor

    International Nuclear Information System (INIS)

    Dae-Hyun Hwang; Kyong-Won Seo; Chung-Chan Lee; Sung-Kyun Zee

    2005-01-01

    Full text of publication follows: An advanced light water reactor concept has been continuously studied in KAERI with an output in the range of about 60 to 300 MW th . The reactor is purposed to be utilized as an energy source for seawater desalination as well as small scale power generation. In order to achieve the intrinsic safety and enhanced operational flexibility, some specific design considerations such as low power density and soluble boron free operation have been incorporated in the multiple-parallel-channel type reactor core. The low power density can be achieved by adopting fuel assemblies with tightly spaced non-square lattice rod array. The allowable core operating region should be primarily limited by the two design parameters; the critical heat flux(CHF) and the flow instabilities in the multiple parallel fuel assembly channels. The characteristics of CHF and flow instability have been investigated through experimental and analytical works. The CHF prediction model was established on the basis of experimental data obtained from 19-rod test bundles. The CHF experiments have been conducted for various test bundles with different heated lengths, uniform and non-uniform radial and axial power distributions, water and Freon as the working fluids, and different number of unheated rods. The parametric ranges of CHF experiments covers the pressure from 6 to 18 MPa, the mass flux from 150 to 2000 kg/m 2 /s, and the inlet subcooling from 10 to 120 deg. C. The flow instabilities due to density wave oscillations were investigated by conducting experiments with two parallel channels under the pressure ranges from 6 to 16 MPa. The parametric behavior of flow instability was examined for the test sections with different lengths of adiabatic risers, different axial power shapes, different inlet restrictions, and different channel cross sections. The stability boundary was experimentally determined by increasing channel inlet temperature or reducing the flow rate

  6. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu [North Carolina State University, PO Box 7926, Raleigh, NC 27695-7926 (United States); Kothe, Douglas B., E-mail: kothe@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6164 (United States)

    2016-05-15

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL

  7. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment

    NARCIS (Netherlands)

    Vughs, D.; Baken, K.A.; Kolkman, A.; Martijn, A.J.; de Voogt, P.

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many

  8. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW t (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment

  9. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    KAUST Repository

    Parsons, Eugene P.; Popopvsky, Sigal; Lohrey, Gregory T.; Lu, Shiyou; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A.

    2012-01-01

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC2F2, was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC2F2 fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C16 monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss. © 2012 Physiologia Plantarum.

  10. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.)

    KAUST Repository

    Parsons, Eugene P.

    2012-03-05

    To understand the role of fruit cuticle lipid composition in fruit water loss, an advanced backcross population, the BC2F2, was created between the Capsicum annuum (PI1154) and the Capsicum chinense (USDA162), which have high and low post-harvest water loss rates, respectively. Besides dramatic differences in fruit water loss, preliminary studies also revealed that these parents exhibited significant differences in both the amount and composition of their fruit cuticle. Cuticle analysis of the BC2F2 fruit revealed that although water loss rate was not strongly associated with the total surface wax amount, there were significant correlations between water loss rate and cuticle composition. We found a positive correlation between water loss rate and the amount of total triterpenoid plus sterol compounds, and negative correlations between water loss and the alkane to triterpenoid plus sterol ratio. We also report negative correlations between water loss rate and the proportion of both alkanes and aliphatics to total surface wax amount. For the first time, we report significant correlations between water loss and cutin monomer composition. We found positive associations of water loss rate with the total cutin, total C16 monomers and 16-dihydroxy hexadecanoic acid. Our results support the hypothesis that simple straight-chain aliphatic cuticle constituents form more impermeable cuticular barriers than more complex isoprenoid-based compounds. These results shed new light on the biochemical basis for cuticle involvement in fruit water loss. © 2012 Physiologia Plantarum.

  11. [Design for constructability studies in support of the DOE ALWR (Advanced Light Water Reactor) Program

    International Nuclear Information System (INIS)

    1990-03-01

    This technical report accounts for work performed as part of Duke Power Company's Design for Constructability Program. This program is contractual agreement AC03-86SF16566, part of the US Department of Energy's Technology Program in Support of Advanced Light Water Reactors. This report covers the period from contract inception (September 1986) through completion (March 1990). This report is divided into 4 volumes. Volume 1 includes the executive summary and significant program conclusions. The details supporting these conclusions are in Volume 3, Improving Construction Performance, and Volume 4, Enchancing Constructability Through Design. Volume 2 includes a description of the program, objectives, and approach. A significant conclusion from these discussions was the identification of a ''missing link'' in ALWR programs. With an essentially complete, certified design, the majority of the up-front planning and preparation for implementing the design can be accomplished. Though a monumental undertaking beyond the scope of this project, this up-front planning and preparation must be considered as the next logical step for standardization. Much of the planning can be repeated with future plants and marketed to recoup expenditures. Devoting resources to develop the standard design (evolutionary or passive) to a marketable, standard, and comprehensive plant package is essential to revitalizing the option of nuclear energy. The DOE should seriously consider devoting these resources as a logical extension of its ALWR support

  12. An assessment of ex-vessel fuel-coolant interaction energetics for advanced light water reactors

    International Nuclear Information System (INIS)

    Murphy, J.G.; Corradini, M.L.

    1997-01-01

    The occurrence of an energetic fuel/coolant interaction (FCI) below the reactor pressure vessel in the cavity of advanced light water reactors (ALWRs) are analyzed to determine the possible hazard to structural walls as a result of dynamic liquid phase pressures. Such analyses are important to demonstrate that these cavity walls will maintain their integrity so that ex-vessel core debris coolability is possible. Past studies that have examined this or related issues are reviewed, and a methodology is proposed to analyze the occurrence of this physical event using the IFCI and TEXAS models for the FCI as well as dynamic shock wave propagation estimates using hand calculations as well as the CTH hydro model. Scenarios for the ALWRs are reviewed, and one severe accident scenario is used as an example to demonstrate the methodology. Such methodologies are recommended for consideration in future safety studies. These methodologies should be verified with direct comparison to energetic FCI data such as that being produced in KROTOS at the Joint Research Centre, Ispra

  13. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    Science.gov (United States)

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  15. Single-earthquake design for piping systems in advanced light water reactors

    International Nuclear Information System (INIS)

    Terao, D.

    1993-01-01

    Appendix A to Part 100 of Title 10 of the Code of Federal Regulations (10 CFR Part 100) requires, in part, that all structures, systems, and components of the nuclear power plant necessary for continued operation without undue risk to the health and safety of the public shall be designed to remain functional and within applicable stress and deformation limits when subject to an operating basis earthquake (OBE). The US Nuclear Regulatory Commission (NRC) is proposing changes to Appendix A to Part 100 to redefine the OBE at a level such that its purpose can be satisfied without the need to perform explicit response analyses. Consequently, only the safe-shutdown earthquake (SSE) would be required for the seismic design of safety-related structures, systems and components. The purpose of this paper is to discuss the proposed changes to existing seismic design criteria that the NRC staff has found acceptable for implementing the proposed rule change in the design of safety-related piping systems in the advanced light water reactor (ALWR) lead plant. These criteria apply only to the ALWR lead plant design and are not intended to replace the seismic design criteria approved by the Commission in the licensing bases of currently operating facilities. Although the guidelines described herein have been proposed for use as a pilot program for implementing the proposed rule change specifically for the ALWR lead plant, the NRC staff expects that these guidelines will also be applied to other ALWRs

  16. Considerations on monitoring needs of advanced, passive safety light water reactors for severe accident management

    International Nuclear Information System (INIS)

    Bava, G.; Zambardi, F.

    1992-01-01

    This paper deals with problems concerning information and related instrumentation needs for Accident Management (AM), with special emphasis on Severe Accidents (SA) in the new advanced, passive safety Light Water Reactors (PLWR), presently in a development stage. The passive safety conception adopted in the plants concerned goes parallel with a deeper consideration of SA, that reflects the need of increasing the plant resistance against conditions going beyond traditional ''design basis accidents''. Further, the role of Accident Management (AM) is still emphasized as last step of the defence in depth concept, in spite of the design efforts aimed to reduce human factor importance; as a consequence, the availability of pertinent information on actual plant conditions remains a necessary premise for performing preplanned actions. This information is essential to assess the evolution of the accident scenarios, to monitor the performances of the safety systems, to evaluate the ultimate challenge to the plant safety, and to implement the emergency operating procedures and the emergency plans. Based on these general purposes, the impact of the new conception on the monitoring structure is discussed, furthermore reference is made to the accident monitoring criteria applied in current plants to evaluate the requirements for possible solutions. (orig.)

  17. Advanced boiling water reactor (ABWR). Design, construction, operation and maintenance experience

    International Nuclear Information System (INIS)

    Idesawa, M.

    1998-01-01

    The ABWR has experienced all phases of design, construction, operation and maintenance at Kashiwazaki-Kariwa Nuclear Power Station Units No.6 and 7 and confirmed that originally intended development targets have been achieved with highly satisfactory results. This is the fruit of a project that collected wisdom from various sources under a international cooperative organization, with Tokyo Electric Power Company taking the leading role from the onset. These two units have not only demonstrated that ABWRs have superior performance as the first standard units of advanced light water reactor but also aroused a hope for the big potential advantages that ABWRs can provide us. The ABWR has already been awarded a U.S. standard license for having proved that it can comply with the requirements of international regulatory systems with an ample margin. There are also many construction programs with ABWRs progressing both domestically and abroad, suggesting that it has won recognition as an international standard plant. We will do our utmost to perfect the operation and maintenance records of Kashiwazaki-Kariwa Units No.6 and 7, which is the top runner among ABWRs, and to make known the superiority of this reactor to the world. (J.P.N.)

  18. Advancing Fenton and photo-Fenton water treatment through the catalyst design.

    Science.gov (United States)

    Vorontsov, Alexander V

    2018-04-20

    The review is devoted to modern Fenton, photo-Fenton, as well as Fenton-like and photo-Fenton-like reactions with participation of iron species in liquid phase and as heterogeneous catalysts. Mechanisms of these reactions were considered that include hydroxyl radical and oxoferryl species as the reactive intermediates. The barriers in the way of application of these reactions to wastewater treatment were discussed. The following fundamental problems need further research efforts: inclusion of more mechanism steps and quantum calculations of all rate constants lacking in the literature, checking the outer sphere electron transfer contribution, determination of the causes for the key changes in the homogeneous Fenton reaction mechanism with a change in the reagents concentration. The key advances for Fenton reactions implementation for the water treatment are related to tremendous hydrodynamical effects on the catalytic activity, design of ligands for high rate and completeness of mineralization in short time, and design of highly active heterogeneous catalysts. While both homogeneous and heterogeneous Fenton and photo-Fenton systems are open for further improvements, heterogeneous photo-Fenton systems are most promising for practical applications because of the inherent higher catalyst stability. Modern methods of quantum chemistry are expected to play a continuously increasing role in development of such catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    Science.gov (United States)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  20. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    Science.gov (United States)

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low

  1. Model-based security testing

    OpenAIRE

    Schieferdecker, Ina; Großmann, Jürgen; Schneider, Martin

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security...

  2. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  3. Conceptual study of advanced PWR systems. A study of passive and inherent safety design concepts for advanced light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; No, Hee Cheon; Baek, Won Pil; Jae, Shim Young; Lee, Goung Jin; Na, Man Gyun; Lee, Jae Young; Kim, Han Gon; Kang, Ki Sig; Moon, Sang Ki; Kim, Yun Il; Park, Jae Wook; Yang, Soo Hyung; Kim, Soo Hyung; Lee, Seong Wook; Kim, Hong Che; Park, Hyun Sik; Jeong, Ji Hwan; Lee, Sang Il; Jung, Hae Yong; Kim, Hyong Tae; Chae, Kyung Sun; Moon, Ki Hoon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The five thermal-hydraulic concepts chosen for advanced PWR have been studied as follows: (1) Critical Heat Flux: Review of previous works, analysis of parametric trends, analysis of transient CHF characteristics, extension of the CHF date bank, survey and assessment of correlations, design of a intermediate-pressure CHF test loop have been performed. (2) Passive Cooling Concepts for Concrete Containment system: Review of condensation phenomena with noncondensable gases, selection of a promising concept (i.e., use of external condensers), design of test loop according to scaling laws have been accomplished. and computer programs based on the control-volume approach, and the conceptual design of test loop have been accomplished. (4) Fluidic Diode Concepts: Review of previous applications of the concept, analysis major parameters affecting the performance, development of a computational code, and conceptual investigation of the verification test loop have been performed. (5) Wet Thermal Insulator: Review of previous works, selection of promising methods ( i.e. ceramic fiber in a steel case and mirror-type insulator), and conceptual design of the experimental loop have been performed. (author). 9 refs.

  4. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  5. AP1000R pressurised water reactor project in china advances toward completion

    International Nuclear Information System (INIS)

    Harrop, G.

    2014-01-01

    The AP1000 R pressurised water reactor (PWR) project in China is the first deployment of its first-of-a-kind Generation III+ technology, making it one of most internationally important and industry-significant new build projects. The innovative AP1000 PWR design contains advanced passive safety and performance features that involve fewer active safety components than a traditional plant, thereby reducing the site footprint. The AP1000 reactor is the first and only Generation III+ nuclear power plant to be granted design certification by the United States Nuclear Regulatory Commission, and it has received an Interim Design Acceptance Confirmation from the Office for Nuclear Regulation and an Interim Statement of Design Acceptability from the Environment Agency in the United Kingdom. Construction and testing of dual AP1000 PWR units is currently in progress in each of two coastal sites in the People's Republic of China: Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Since the initial contract award in 2007, the Westinghouse Consortium has worked in concert with the owners to construct the plants using innovative structural and mechanical modules. Uniquely designed plant components and essential instrumentation and control systems have been manufactured, delivered, and installed at the plants. Numerous personnel, including future reactor operators, have been trained at both the Sanmen and Haiyang sites, and technology transfer of technical documents and computer codes is well underway. The commercial operation dates are now nearing for Sanmen Unit 1 and Haiyang Unit 1, the first two units scheduled for completion. Consequently, these units are now in advanced stages of completion and present activities include planning and preparation for pre-operational testing, system turnover, and commissioning leading to fuel load, and eventual commercial operation. These activities are pioneering, in that they have never before been performed for a new build of

  6. Economical opportunities on advanced conventional island design for the European pressurized water reactor (EPR) based on Konvoi design. Annex 6

    International Nuclear Information System (INIS)

    Kremayr, A.; Wagner, K.; Schuberth, U.

    2002-01-01

    Design of the European Pressurized Water Reactor (EPR) has been finalized by the end of 1998. In parallel with these efforts, the German utilities group contracted the Siemens AG Power generation Group (KWU) to develop an advanced and optimized conventional island for the EPR. The main objectives for improving the conventional island design were determined on the basis of experience of the Konvoi series plants and advanced fossil plants. This paper describes the innovations introduced to the conventional island and presents the reasons for the resultant cost reductions. (author)

  7. Development of an advanced Two-Micron triple-pulse IPDA lidar for carbon dioxide and water vapor measurements

    Science.gov (United States)

    Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.

    2018-04-01

    An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.

  8. Assuring PSA technical adequacy for new advanced light water reactor designs

    International Nuclear Information System (INIS)

    Lutz, R.J.; Detar, H.L.; Schneider, R.E.

    2012-01-01

    The Probabilistic Safety Assessment (PSA) for an Advanced Light Water Reactor (ALWR) must exhibit a high level of technical adequacy, or technical quality, in order to be used as a reliable tool for making risk informed decisions concerning design and eventual operation of the plant. During the design phase, decisions on some design features may use the PSA as an input. Also, the PSA may be used as input to other operational decisions during plant design and construction including the development of procedures, development of technical specification limiting conditions for operation and scheduling of preventive maintenance activities. For the existing fleet of light water reactors (LWRs), PSA technical adequacy can be judged from wide ranging acceptance criteria such as the PRA (Probabilistic Risk Assessment) Standard in the United States of America that was developed jointly by the American Society of Mechanical Engineers (ASME) and the American Nuclear Society (ANS). However, the requirements for PRA technical adequacy in this PRA Standard assumes that the plant is built and has operation experience. Some of the requirements cannot be met for ALWRs in the design or construction phase and with no operational history. Key elements of a high level of technical adequacy include procedures, operator interviews, plant walk-downs and equipment reliability histories. The ability to include these key elements into the ALWR PSA to improve technical adequacy will progress as the ALWR progresses from the design stage through the construction stage and finally to the fuel load / pre-operational stage. As the technical adequacy becomes more robust, more confidence can be placed on risk-informed decisions that are made with the PSA. To assist in using the PSA as input to design and operational decisions in the design and construction stages of an ALWR, an addition to the ASME/ANS PRA Standard is being developed. The intent of this addition to the Standard is to provide

  9. Conventional and advanced exergoenvironmental analysis of an ammonia-water hybridabsorption-compression heat pump

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    to allocate the initial and operational environmental impact to the system components, thus revealing the main sources of environmental impact. The application of the advanced exergoenvironmental analysis improves the level of detail attained.This is achieved by accounting for technological and economic...... constraints as well as component interdependencies.The advanced exergoenvironmental analysis shows that the highest avoidable environmental impact stems from the compressor, followed by the absorber. Further, it is found that the initial environmental impactof the HACHP is negligible compared...... of an advanced exergy-based analysis, comprised of both an advanced exergy, exergoeconomic and exergoenvironmental analysis. Recent studies have presented both the advanced exergy and advanced exergoeconmic analysis of the HACHP. Anexergoenvironmental analysis combines exergy analysis with life cycle assessment...

  10. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Science.gov (United States)

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SWR 1000: an advanced boiling water reactor with passive safety features

    International Nuclear Information System (INIS)

    Brettschuh, W.

    1999-01-01

    The SWR 1000, an advanced BWR, is being developed by Siemens under contract from Germany's electric utilities and with the support of European partners. The project is currently in the basic design phase to be concluded in mid-1999 with the release of a site-independent safety report and costing analysis. The development goals for the project encompass competitive costs, use of passive safety systems to further reduce probabilities of occurrence of severe accidents, assured control of accidents so no emergency response actions for evacuation of the local population are needed, simplification of plant systems based on operator experience, and planning and design based on German codes, standards and specifications put forward by the Franco-German Reactor Safety Commission for future nuclear power plants equipped with PWRs, as well as IAEA specifications and the European Utility Requirements. These goals led to a plant concept with a low power density core, with large water inventories stored above the core inside the reactor pressure vessel, in the pressure suppression pool, and in other locations. All accident situations arising from power operation can be controlled by passive safety features without rise in core temperature and with a grace period of more than three days. In addition, postulated core melt is controlled by passive equipment. All new passive systems have been successfully tested for function and performance using large-scale components in experimental testing facilities at PSI in Switzerland and at the Juelich Research Centre in Germany. In addition to improvements of the safety systems, the plant's operating systems have been simplified based on operating experience. The design's safety concept, simplified operating systems and 48 months construction time yield favourable plant construction costs. The level of concept maturity required to begin offering the SWR 1000 on the power generation market is anticipated to be reached, as planned in the year

  12. Severe transient analysis of the Penn State University Advanced Light Water Reactor

    International Nuclear Information System (INIS)

    Borkowski, J.A.

    1988-08-01

    The Penn State University Advanced Light Water Reactor (PSU ALWR) incorporates various passive and active ultra-safe features, such as continuous online injection and letdown for pressure control, a raised-loop primary system for enhanced natural circulation, a dedicated primary reservoir for enhanced thermal hydraulic control, and a secondary shutdown turbine. Because of the conceptual design basis of the project, the dynamic system modeling was to be performed using a code with a high degree of flexibility. For this reason the modeling has been performed with the Modular Modeling System (MMS). The basic design and normal transients have been performed successfully with MMS. However, the true test of an inherently safe concept lies in its response to more brutal transients. Therefore, such a demonstrative transient is chosen for the PSU ALWR: a turbine trip and reactor scram, concurrent with total loss of offsite ac power. Diesel generators are likewise unavailable. This transient demonstrates the utility of the pressure control system, the shutdown turbine generator, and the enhanced natural circulation of the PSU ALWR. The low flow rates, low pressure drops, and large derivative states encountered in such a transient pose special problems for the modeler and for MMS. The results of the transient analyses indicate excellent performance by the PSU ALWR in terms of inherently safe operation. The primary coolant enters full natural circulation, and removes all decay heat through the steam generators. Further, the steam generators continually supply sufficient steam to the shutdown power system, despite the abrupt changeover to the auxiliary feedwater system. Finally, even with coincident failures in the pressurization system, the primary repressurizes to near-normal values, without overpressurization. No core boiling or uncovery is predicted, and consequently fuel damage is avoided. 17 refs., 19 figs., 4 tabs

  13. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  14. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2017-06-01

    Full Text Available This special issue is a collection of recent papers in the field of Water Footprint Assessment (WFA, an emerging area of research focused on the analysis of freshwater use, scarcity, and pollution in relation to consumption, production, and trade. As increasing freshwater scarcity forms a major risk to the global economy, sustainable management of water resources is a prerequisite to development. We introduce the papers in this special issue by relating them to Sustainable Development Goal (SDG number 6 of the United Nations, the goal on water. We will particularly articulate how each paper drives the understanding needed to achieve target 6.3 on water quality and pollution and target 6.4 on water-use efficiency and water scarcity. Regarding SDG 6, we conclude that it lacks any target on using green water more efficiently, and while addressing efficiency and sustainability of water use, it lacks a target on equitable sharing of water. The latter issue is receiving limited attention in research as well. By primarily focusing on water-use efficiency in farming and industries at the local level, to a lesser extent to using water sustainably at the level of total water systems (like drainage basins, aquifers, and largely ignoring issues around equitable water use, understanding of our water problems and proposed solutions will likely remain unbalanced.

  15. Advances in water resources research in the Upper Blue Nile basin and the way forward: A review

    Science.gov (United States)

    Dile, Yihun Taddele; Tekleab, Sirak; Ayana, Essayas K.; Gebrehiwot, Solomon G.; Worqlul, Abeyou W.; Bayabil, Haimanote K.; Yimam, Yohannes T.; Tilahun, Seifu A.; Daggupati, Prasad; Karlberg, Louise; Srinivasan, Raghavan

    2018-05-01

    The Upper Blue Nile basin is considered as the lifeline for ∼250 million people and contributes ∼50 Gm3/year of water to the Nile River. Poor land management practices in the Ethiopian highlands have caused a significant amount of soil erosion, thereby threatening the productivity of the Ethiopian agricultural system, degrading the health of the aquatic ecosystem, and shortening the life of downstream reservoirs. The Upper Blue Nile basin, because of limited research and availability of data, has been considered as the "great unknown." In the recent past, however, more research has been published. Nonetheless, there is no state-of-the-art review that presents research achievements, gaps and future directions. Hence, this paper aims to bridge this gap by reviewing the advances in water resources research in the basin while highlighting research needs and future directions. We report that there have been several research projects that try to understand the biogeochemical processes by collecting information on runoff, groundwater recharge, sediment transport, and tracers. Different types of hydrological models have been applied. Most of the earlier research used simple conceptual and statistical approaches for trend analysis and water balance estimations, mainly using rainfall and evapotranspiration data. More recent research has been using advanced semi-physically/physically based distributed hydrological models using high-resolution temporal and spatial data for diverse applications. We identified several research gaps and provided recommendations to address them. While we have witnessed advances in water resources research in the basin, we also foresee opportunities for further advancement. Incorporating the research findings into policy and practice will significantly benefit the development and transformation agenda of the Ethiopian government.

  16. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    OpenAIRE

    Beber de Souza, Jeanette; Queiroz Valdez, Fernanda; Jeranoski, Rhuan Felipe; Vidal, Carlos Magno de Sousa; Cavallini, Grasiele Soares

    2015-01-01

    The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses o...

  17. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs

  18. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs.

  19. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ecohydrological advances and applications in plant-water relations research: a review

    NARCIS (Netherlands)

    Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.T.; Osch, F. van; Rietkerk, M.G.; Chen, J.; Gotsch, S.; Tobon, C.; Geissert, D.R.; Gomez-Tagle, A.; Vache, K.; Dawson, T.E.

    2011-01-01

    Aims The field of ecohydrology is providing new theoretical frameworks and methodological approaches for understanding the complex interactions and feedbacks between vegetation and hydrologic flows at multiple scales. Here we review some of the major scientific and technological advances in

  1. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  2. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  3. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  4. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original implementation of Carvalho et al that allow us to retain the computational advantages of particle learning while improving the suitability of the methodology to the analysis of streaming data and simultaneously facilitating the real time discovery of latent cluster structures. Section 4 demonstrates our methodological enhancements in the context of several simulated and classical data sets, showcasing the use of particle learning methods for online anomaly detection, label generation, drift detection, and semi-supervised classification, none of which would be achievable through a standard MCMC approach. Section 5 concludes with a discussion of future directions for research.

  5. Performance acceptance test of a portable instrument to detect uranium in water at the DOE Advanced Waste Water Treatment Plant, Fernald, Ohio

    International Nuclear Information System (INIS)

    Anderson, M.S.; Weeks, S.J.

    1997-01-01

    The Eppendorf-Biotronik Model IC 2001-2, a portable field ruggedized ion chromatography instrument, was rigorously tested at the DOE Advanced Waste Water Treatment Plant, Fernald, Ohio. This instrument rapidly detected the uranium concentration in water, and has a detection limit in the low ppb range without using the sample concentrating feature. The test set of samples analyzed included: ''Real World'' water samples from the AWWT containing uranium concentrations in the 9--110 ppb range, a sample blank, and a performance evaluation sample. The AWWT samples contained sets of both raw water and acid-preserved water samples. Selected samples were analyzed in quadruplicate to asses the instrument's precision, and these results were compared with the results from an off-site confirmatory laboratory to assess the instrument's accuracy. Additional comparisons with on-site laboratory instruments, Chemcheck KPA-11 and Scintrex UA-3 are reported. Overall, the Eppendorf-Biotronik IC 2001-2 performed exceptionally well providing a detection limit in the low ppb region (< 10 ppb) and giving rapid (< 5 minutes) accurate and reproducible analytical results for the AWWT, ''real world'', water samples with uranium concentrations in the region of interest (10--40 ppb). The per sample operating cost for this instrument is equivalent to the per sample cost for the currently used KPA. The time required to analyze a sample and provide a result is approximately the same for the CI 2001-2, KPA, and Scintrex instruments

  6. Advanced waste water cleaning with the aid of an algae biofilm; Weitergehende Abwasserreinigung mit Hilfe eines Algenbiofilms

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, G.; Patzold, V.; Ike, A.; Sekoulov, I. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Abwasserwirtschaft

    1999-07-01

    These first investigations have led to results indicating that advanced waste water cleaning with the aid of algae biofilm as a downstream process stage is feasible. The concentration of phosphorus in waste water could be reduced to less than 1 mg per litre. Ammonium, which is toxic to fish, was nitrified, and the overall nitrogen concentration could be cut down. The concentration of bacteria was reduced by means of a close-to-nature process to less than the limiting values set by the European Union directive governing the quality of bathing waters. (orig.) [German] Die Ergebnisse dieser ersten Untersuchungen zeigen, dass eine weitergehende Abwasserreinigung mit Hilfe eines Algenbiofilms als nachgeschaltete Verfahrensstufe moeglich ist. Die Phosphorkonzentration im Abwasser konnte auf unter 1 mg/l reduziert werden. Fischgiftiges Ammonium wurde nitrifiziert und die Gesamtstickstoffkonzentration konnte gesenkt werden. Die Bakterienkonzentration konnte mit Hilfe eines naturnahen Verfahrens bis unter die Grenzwerte der EU-Richtlinie ueber die Qualitaet der Badegewaesser reduziert werden. (orig.)

  7. Fuel cycle flexibility in Advanced Heavy Water Reactor (AHWR) with the use of Th-LEU fuel

    International Nuclear Information System (INIS)

    Thakur, A.; Singh, B.; Pushpam, N.P.; Bharti, V.; Kannan, U.; Krishnani, P.D.; Sinha, R.K.

    2011-01-01

    The Advanced Heavy Water Reactor (AHWR) is being designed for large scale commercial utilization of thorium (Th) and integrated technological demonstration of the thorium cycle in India. The AHWR is a 920 MW(th), vertical pressure tube type cooled by boiling light water and moderated by heavy water. Heat removal through natural circulation and on-line fuelling are some of the salient features of AHWR design. The physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Our recent efforts have been directed towards a case study for the use of Th-LEU fuel cycle in a once-through mode. The discharged Uranium from Th-LEU cycle has proliferation resistant characteristics. This paper gives the initial core, fuel cycle characteristics and online refueling strategy of Th-LEU fuel in AHWR. (author)

  8. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  9. Advances in Nuclear Power Plant Water Chemistry in Reducing Radiation Exposure

    International Nuclear Information System (INIS)

    Febrianto

    2005-01-01

    Water quality in light water reactor in Pressurized Water Reactor as well as in Boiling Water Reactor has being gradually improved since the beginning, to reduce corrosion risk and radiation exposure level. Corrosion problem which occurred to both type of reactors can reduce the plants availability, increase the operation and maintenance cost and increase the radiation exposure. Corrosion and radiation exposure risk in both reactor rare different. BWR type reactor has more experiences in corrosion problem because at the type of reactor lets water to boil in the core, while at PWR type reactor, water is kept not to boil. The BWR reactor has also higher radiation exposure rather than the PWR one. Many collaborative efforts of plants manufacturers and plant operator utilities have been done to reduce the radiation exposure level and corrosion risk. (author)

  10. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  11. Applications of Magnetic Water Technology in Farming and Agriculture Development: A Review of Recent Advances

    OpenAIRE

    Yadollahpour Ali; Rashidi Samaneh; Fatemeh Kavakebian

    2014-01-01

    Magnetic water treatment (MWT) techniques have shown promising potentials in different areas specially agriculture. Safety, compatibility and simplicity, environmentally friendliness, low operating cost and not proven harmful effects are the main advantages of electromagnetic field (EMF) over conventional methods for water treatment. Magnetized or magnetic water (MW) possesses unique physical and chemical characteristics making it a multi-purpose compound with potential benefits in medical tr...

  12. Smart Sensing of the Aux. Feed-water Pump Performance in NPP Severe Accidents Using Advanced GMDH Method

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In order to develop and verify the models, a number of data obtained by simulating station black out (SBO) scenario for the optimized power reactor 1000 (OPR1000) using MARS code were used. Most of monitoring systems for component have been suggested by using the directly measured data. However, it is very difficult to acquire data related to safety-critical component' status. Therefore, it is necessary to develop the new method that combines the data-based equipped with learning system and data miming technique. Many data-based modeling methods have been applied successfully to nuclear engineering area, such as signal validation, plant diagnostics and event identification. Also, the data miming is the process of analyzing data from different perspectives and summarizing it into useful information. In this study, the smart sensing technique was developed using advanced group method of data handing (GMDH) model. The original GMDH is an inductive self organizing algebraic model. The advanced GMDH model is equipped with a fuzzy concept. The proposed advanced GMDH model enhances the original GMDH model by reducing the effect of outliers and noise. The advanced GMDH uses different weightings according to their importance which is specified by the fuzzy membership grade. The developed model was verified using SBO accident simulation data for the OPR1000 nuclear power plant acquired with MARS code. Also, the advanced GMDH model was trained using the simulated development data and verified with simulated test data. The development and test data sets were independent. The simulation results show that the performance of the developed advanced GMDH model was very satisfactory, as shown in Table 1. Therefore, if the developed model can be optimized using diverse and specific data, it will be possible to predict the performance of Aux. feed water pump accurately.

  13. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  14. SWR 1000: An Advanced, Medium-Sized Boiling Water Reactor, Ready for Deployment

    International Nuclear Information System (INIS)

    Brettschuh, Werner

    2006-01-01

    The latest developments in nuclear power generation technology mainly concern large-capacity plants in the 1550 -1600 MW range, or very small plants (100 - 350 MW). The SWR 1000 boiling water reactor (BWR), by contrast, offers all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation costs, in the medium-capacity range (1000 - 1250 MW). The SWR 1000 is particularly suitable for countries whose power systems are not designed for large-capacity generating facilities. The economic efficiency of this medium-sized plant in comparison with large-capacity designs is achieved by deploying very simple passive safety equipment, simplified systems for plant operation, and a very simple plant configuration in which systems engineering is optimized and dependence on electrical and instrumentation and control (I and C) systems is reduced. In addition, systems and components that require protection against natural and external man-made hazards are accommodated in such a way that as few buildings as possible have to be designed to withstand the loads from such events. The fuel assemblies to be deployed in the SWR 1000 core, meanwhile, have been enlarged from a 10 x 10 rod array to a 12 x 12 array. This reduces the total number of fuel assemblies in the core and thus also the number of control rods and control rod drives, as well as in-core neutron flux monitors. The design owes its competitiveness to the fact that investment costs, maintenance costs and fuel cycle costs are all lower. In addition, refueling outages are shorter, thanks to the reduced scope of outage activities. The larger fuel assemblies have been extensively and successfully tested, as have all of the other new components and systems incorporated into the plant design. As in existing plants, the forced coolant circulation method is deployed, ensuring problem-free startup, and enabling plant operators to adjust power rapidly in the high power range (70

  15. Advanced fuel pellet materials and designs for water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2004-10-01

    This meeting was the second IAEA meeting on this subject. The first was held in 1996 in Tokyo, Japan. They are all part of a cooperative effort through the Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) of IAEA, with a series of three further meetings organized by CEA, France and co-sponsored by the IAEA and OECD/NEA. In the seven years since the first meeting took place, the demands on fuel duties have increased, with higher burnup, longer fuel cycles and higher temperatures. This places additional demands on fuel performance to comply with safety requirements. Criteria relative to fuel components, i.e. pellets and fuel rod column, require limiting of fission gas release and pellet-cladding interaction (PCI). This means that fuel components should maintain the composite of rather contradictory properties from the beginning until the end of its in-pile operation. Fabrication and design tools are available to influence, and to some extent, to ensure desirable in-pile fuel properties. Discussion of these tools was one of the objectives of the meeting. The second objective was the analysis of fuel characteristics at high burnup and the third and last objective was the discussion of specific feature of MOX and urania gadolinia fuels. Sixty specialists in the field of fuel fabrication technology attended the meeting from 18 countries. Twenty-five papers were presented in five sessions covering all relevant topics from the practices and modelling of fuel fabrication technology to its optimization. Eight papers were presented in session 'Optimization of fuel fabrication technology' which all were devoted to fuel fabrication technology. They mostly treated methods for optimizing fuel manufacturing processes, but gave also a good overview on nuclear fabrication needs and capabilities in different countries. During Session 'UO 2 , MOX and UO 2 -Gd 2 O 3 pellets with additives', six papers were presented in this session, which dealt mainly

  16. Issues in practical model-based diagnosis

    NARCIS (Netherlands)

    Bakker, R.R.; Bakker, R.R.; van den Bempt, P.C.A.; van den Bempt, P.C.A.; Mars, Nicolaas; Out, D.-J.; Out, D.J.; van Soest, D.C.; van Soes, D.C.

    1993-01-01

    The model-based diagnosis project at the University of Twente has been directed at improving the practical usefulness of model-based diagnosis. In cooperation with industrial partners, the research addressed the modeling problem and the efficiency problem in model-based reasoning. Main results of

  17. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  18. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  19. Advanced water-cooled reactor technologies. Rationale, state of progress and outlook

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Eighty per cent of the world's power reactors are water cooled and moderated. Many improvements in their design and operation have been implemented since the first such reactor started commercial operation in 1957. This report addresses the safety, environmental and economic rationales for further improvements, as well as their relevance to currently operating water reactors

  20. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  1. Advancement in Electrospun Nanofibrous Membranes Modification and Their Application in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ramalingam Balamurugan

    2013-09-01

    Full Text Available Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article.

  2. Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands

    Science.gov (United States)

    Boon, J.; Smits, J. G.

    2006-12-01

    There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.

  3. An Advanced Radiative Transfer and Neural Network Scheme and Evaluation for Estimating Water Vapor Content from MODIS Data

    Directory of Open Access Journals (Sweden)

    Kebiao Mao

    2017-07-01

    Full Text Available This work made an improvement upon and a further evaluation of previous work for estimating water vapor content from near-infrared around 1 μm from MODIS data. The accuracy of RM-NN is determined by the complicated relationship of the geophysical parameters. An advanced scheme is proposed for building different training databases for different seasons in different regions to reduce the complexity. The training database includes three parts. The first part is a simulation database by MODTRAN for different weather conditions, which is made as a basic database; the second part is reliable field measurement data in observation stations; and the third part is the MYD05_L2 product on clear days, which is produced by the standard product algorithm for water vapor content. The comparative analyses based on simulation data indicate that maximum accuracy of single condition could be improved by about 34% relative to the “all conditions” results. Two study regions in China and America are selected as test areas, and the evaluation shows that the mean and the standard deviation of estimation error are about 0.08 g cm−2 and 0.09 g cm−2, respectively. All the analysis indicates that the advanced scheme can improve the retrieval accuracy of water vapor content, which can make full use of the advantages of previous methods.

  4. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    Science.gov (United States)

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  5. Advances in heavy water reactor technology. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    This IAEA meeting addressed both the status of national programmes and technical topics including advances in plant and system design and new plant features, development of pressure tube technologies, fuel and fuel cycle options, computer code development and verification, and safety and accident analysis

  6. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  7. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 1)

    International Nuclear Information System (INIS)

    1987-12-01

    The first meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. Part I of the Summary Report contains the minutes of the meeting

  8. Energy, mass, model-based displays, and memory recall

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1989-01-01

    The operation of a pressurized water reactor in the context of the conservation laws for energy and mass is discussed. These conservation laws are the basis of the Rankine heat engine cycle. Computer graphic implementation of the heat engine cycle, in terms of temperature-entropy coordinates for water, serves as a model-based display of the plant process. A human user of this display, trained in first principles of the process, may exercise a monitoring strategy based on the conservation laws

  9. Advances and limitations of the integrated water resources management in Panama

    International Nuclear Information System (INIS)

    Escalante Henriquez, Luis Carlos; Charpentier, Claudia; Diez Hernandez, Juan Manuel

    2011-01-01

    Panama competitiveness depends largely on quality and abundance of natural resources, which are being progressively degraded by a disordered urban and economic development. The availability of water in adequate quantity and quality poses serious problems in some areas of the country. This affects both the quality of life of the population and key sectors such as agriculture, industry, hydro and tourism; and stimulates social conflicts related to access, use and disposal of used water. To prevent the degradation of water resources has been promoted a holistic, known as integrated in water resources management (IWRM) strategy. From the Summit of Mar del Plata, Argentina (1977) until the 5th Forum world of the water in Istanbul in Turkey (2009), international meetings that have contributed to defining the principles and recommendations for the IWRM have been held. This work presents a methodological model of IWRM designed for Panama. Essentially consists of a perfected in how to manage water, requiring changes in the political, social, economic and administrative systems of water resource management approach

  10. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  11. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  12. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  13. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    Science.gov (United States)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  14. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  15. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    Gehringer, P.; Szinovatz, W.; Eschweiler, H.; Haberl, R.

    1994-08-01

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O 3 /H 2 O 2 and O 3 /γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  16. [Application of simultaneous determination of inorganic ionic species by advanced ion chromatography for water quality monitoring of river water and wastewater].

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    In this study, our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions (SO4(2-), Cl(-) and NO3(-)) and cations (Na+, NH4+, K+, Mg2+, and Ca2+), nutrients (phosphate and silicate) and hydrogen ion/alkalinity are summarized first. Then, the applications using these methods for monitoring environmental water quality are also presented. For the determination of common anions and cations with nutrients, the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C (Tosoh, 150 mm x 6.0 mm i. d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry. For the determination of hydrogen ion/alkalinity, the separation was conducted by TSKgel ODS-100Z column (Tosoh, 150 mm x 4.5 mm i. d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector. The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant. Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed. From these results, our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.

  17. Advanced Portable Fine Water Mist Fire Extinguisher for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist (FWM) is a promising replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in performance,...

  18. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  19. Development of an advanced spacecraft water and waste materials processing system

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  20. Advances in understanding phosphorus cycling in inland waters - Their significance for South African limnology

    CSIR Research Space (South Africa)

    Twinch, AJ

    1980-02-01

    Full Text Available The definitions of the different phosphorus compound fractions present in inland waters are reviewed and the limitations of the definitions discussed. The development of models of phosphorus cycling is summarized. Attempts to establish...

  1. The Value of Advanced Smart Metering in the Management of Urban Water Supply Services

    Science.gov (United States)

    Guardiola, J.; Pulido-Velazquez, M.; Giuliani, M.; Castelletti, A.; Cominola, A.; Arregui de la Cruz, F.; Escriva-Bou, A.; Soriano, J.; Pérez, J. J.; Castillo, J.; Barba, J.; González, V.; Rizzoli, A. E.

    2016-12-01

    This work intends to outline the experience of the implementation and further exploitation of an extensive network of smart meters (SM) in the city of Valencia by Aguas de Valencia, the water utility that offers water supply and sanitation services to the city of Valencia and its metropolitan area. Valencia has become the first large city in Europe fully equipped with a point-to-point fixed network of SM (currently with more than 430,000 units, about 90% of the meters of the city). The shift towards a water supply management system based on SM is a complex process that entails changes and impacts on different management areas of the water supply organization. A new data management and processing platform has been developed and is already proving notable benefits in the operation of the system. For example, a tool allows to automatically issue and manage work orders when abnormalities such as internal leaks (constant consumption) or meter alarms are detected. Another tool has been developed to reduce levels of non-revenue water by continuously balancing supply and demand in district metered areas. Improving leak detection and adjusting pressure levels has significantly increased the efficiency of the water distribution network. Finally, a service of post-meter leak detection has been also implemented. But the SM also contribute to improve demand management. The customers now receive detailed information on their water consumption, valuable for improving household water management and assessing the value of water conservation strategies. SM are also key tools for improving the level of understanding of demand patterns. Users have been categorized into different clusters depending in their consumption patterns characteristics. Within the EU SmartH2O project, a high resolution and frequency monitoring of residential uses has been conducted in a selected sample of households for a precise disaggregation of residential end-uses. The disaggregation of end-uses allows for

  2. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States)

    2014-10-14

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow for the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.

  3. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  4. Investigations of the reflood-phase after a loss-of-coolant-accident of an advanced pressurized water reactor (APWR)

    International Nuclear Information System (INIS)

    Schumann, S.; Oldekop, W.

    1983-01-01

    Differences between a high converting advanced pressurized-water reactor (APWR) and a conventional PWR, which are relevant to the reflood-phase after LOCA are presented. The used code and its verification by PWR-reflood experiments is explained. Comparative calculations for APWR and PWR with several conservative assumptions for example cold-leg-injection only, yield nearly the same maximum midplane-temperatures for the average-channel. For the APWR, however, the upper half of the rod shows higher temperatures. Quenchfront and core-water-level increase more slowly. The differences in the reflood-thermohydraulics are analysed in detail. A conservative hot-channel calculation shows maximum temperatures of about 920 0 C. Finally the influence of conservative assumptions is described and the necessity of experiments pointed out. (orig.)

  5. International symposium on advances in isotope hydrology and its role in sustainable water resources management (IHS-2007). Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The quadrennial IAEA isotope hydrology symposia provide an international forum for a comprehensive review of the state of the art and recent advances in this field. The symposia also facilitate the transfer of information, knowledge and interactions between developed and developing countries. Isotopes are increasingly being used to address many of the challenges in sustainable water resources management. The integration of these tools with classical methods and spatial information technologies has been growing rapidly over the past sel years. These have provided unsurpassed capabilities to apply nuclear and geochemical techniques in complex hydrological systems. The main objectives of this symposium are to: - Review the state of the art in isotope hydrology; - Outline recent developments in the application of isotope techniques for water resources management; - Identify future trends and developments for research and applications.

  6. International symposium on advances in isotope hydrology and its role in sustainable water resources management (IHS-2007). Book of abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    The quadrennial IAEA isotope hydrology symposia provide an international forum for a comprehensive review of the state of the art and recent advances in this field. The symposia also facilitate the transfer of information, knowledge and interactions between developed and developing countries. Isotopes are increasingly being used to address many of the challenges in sustainable water resources management. The integration of these tools with classical methods and spatial information technologies has been growing rapidly over the past several years. These have provided unsurpassed capabilities to apply nuclear and geochemical techniques in complex hydrological systems. The main objectives of this symposium are to: - Review the state of the art in isotope hydrology; - Outline recent developments in the application of isotope techniques for water resources management; - Identify future trends and developments for research and applications

  7. Advanced investigation on the change in the streamflow into the water source of the middle route of China's water diversion project

    Science.gov (United States)

    She, Dunxian; Xia, Jun; Shao, Quanxi; Taylor, John A.; Zhang, Liping; Zhang, Xiang; Zhang, Yanjun; Gu, Huanghe

    2017-07-01

    To alleviate water shortage in northern China, the middle route of the South to North Water Diversion Project (MRP) was constructed by the Chinese government. A dramatic reduction in the annual streamflow into Danjiangkou Reservoir (ASDR), the water source of MRP, during 1990 has raised some concerns on the MRP's operation. This paper employed an advanced segmented regression model with more recent data to have a clear picture and understand the changing pattern of the ASDR. Our study first revealed a zigzag changing pattern (decreasing-increasing-decreasing-increasing) of ASDR during 1960-2013, which was supported by statistical criteria compared with a monotonic or single abrupt change. Particularly, the significantly decreasing trend from 1990s was reversed after 2000, and such change may relieve the concern about the water availability in the future. Sensitivity analysis showed that changes in streamflow were largely influenced by the combined effects of precipitation (P) and potential evapotranspiration (ET0) and were more sensitive to P than ET0. As ET0 is estimated from other primary variables, further analysis was conducted to understand the sensitivities of ET0 to its primary driving variables (wind speed, actual vapor pressure, temperature, and sunshine duration) and indicated that ET0 is mostly sensitive to actual vapor pressure during 1960-2013. The findings will assist the MRP's operation and management. Moreover, the results in this study also indicate that an adaptive water diversion plan, rather than the current plan with a constant annual amount of diversion water, might be a better option in the MRP's operation.

  8. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  9. Advanced Oxidation Treatment of Drinking Water and Wastewater Using High-energy Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2007-03-01

    Full Text Available Application of electron beam as a strong oxidation method for disinfection of drinking water and wastewater has been investigated. Drinking water samples were prepared from wells in rock zones in Yazd Province. Wastewater samples were collected from Yazd Wastewater Treatment Plant. Samples were irradiated by 10 MeV electron beam accelerator at Yazd Radiation Processing Center. The irradiation dose range varied from 0.5-5 kGy. Biological parameters and microbial agents such as aerobic mesophiles and coliforms including E. coli count before and after irradiation versus irradiation dose were obtained using MPN method. The data obtained from irradiated water and wastewater were compared with un-irradiated (control samples. The results showed a removal of 90% of all microorganisms at irradiation doses below 5 kGy, suggesting electron beam irradiation as an effective method for disinfection of wastewater.

  10. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.

    Science.gov (United States)

    Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing

    2017-02-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO 3 - usually fall into three main categories: reducing bromide (Br - ) prior to formation of BrO 3 - , minimizing BrO 3 - formation during the ozonation process, and removing BrO 3 - from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO 3 - , have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.

  11. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    Science.gov (United States)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  12. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  13. Design measures for prevention and mitigation of severe accidents at advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-06-01

    Over 8500 reactor-years of operating experience have been accumulated with the current nuclear energy systems. New generations of nuclear power plants are being developed, building upon this background of experience. During the last decade, requirements for equipment specifically intended to minimize releases of radioactive material to the environment in the event of a core melt accident have been introduced, and designs for new plants include measures for preventing and mitigating a range of severe accident scenarios. The IAEA Technical Committee Meeting on Impact of Severe Accidents on Plant Design and Layout of Advanced Water Cooled Reactors was jointly organized by the Department of Nuclear Energy and the Department of Nuclear Safety to review measures which are being incorporated into advanced water cooled reactor designs for preventing and mitigating severe accidents, the status of experimental and analytical investigations of severe accident phenomena and challenges which support design decisions and accident management procedures, and to understand the impact of explicitly addressing severe accidents on the cost of nuclear power plants. This publication is intended to provide an objective source of information on this topic. It includes 14 papers presented at the Technical Committee meeting held in Vienna between 21-25 October 1996. It also includes a Summary and Findings of the Working Groups. The papers were grouped in three sections. A separate abstract was prepared for each paper

  14. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  15. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-10-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule duration, and to simplify design. This document discusses construction approaches. 77 refs., 5 figs., 6 tabs

  16. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1987-12-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses successes and problems in construction. 49 refs., 16 figs., 8 tabs

  17. Implementing Participatory Water Management : Recent Advances in Theory, Practice, and Evaluation

    NARCIS (Netherlands)

    Von Korff, Y.; Daniell, K.A.; Moellenkamp, S.; Bots, P.W.G.; Bijlsma, R.M.

    2012-01-01

    Many current water planning and management problems are riddled with high levels of complexity, uncertainty, and conflict, so-called “messes” or “wicked problems.” The realization that there is a need to consider a wide variety of values, knowledge, and perspectives in a collaborative decision

  18. Implementing participatory water management : Recent advances in theory, practice, and evaluation

    NARCIS (Netherlands)

    Von Korff, Y.; Daniell, K.A.; Moellenkamp, S.; Bots, P.W.G.; Bijlsma, R.M.

    2012-01-01

    Many current water planning and management problems are riddled with high levels of complexity, uncertainty, and conflict, so-called “messes” or “wicked problems.” The realization that there is a need to consider a wide variety of values, knowledge, and perspectives in a collaborative decision

  19. Advanced signal processing techniques for acoustic detection of sodium/water reaction

    International Nuclear Information System (INIS)

    Yughay, V.S.; Gribok, A.V.; Volov, A.N.

    1997-01-01

    In this paper results of development of a neural network technique for processing of acoustic background noise and injection noise of various media (argon, water steam, hydrogen) at test rigs and industrial steam generator are presented. (author). 3 refs, 9 figs, 3 tabs

  20. Removal of Herbicide Mecoprop from Surface Water Using Advanced Oxidation Processes (AOPS)

    International Nuclear Information System (INIS)

    Martinez, S.; Delgado, M.; Jarvis, P.

    2016-01-01

    In the last twenty years, due to a number of natural and anthropogenic reasons, many water sources have become poorer in quality with respect to micropollutants. An example of a micropollutant that needs to be removed is the chloro phenoxypropionic herbicide mecoprop (MCPP). MCPP is one of the nine pesticides used as an indicator to monitor pesticide concentrations in rivers because it is frequently found to exceed the 0.1 μg L-1 limit in England and Wales. The aim of this study was to investigate the effectiveness of different AOPs for the degradation of the herbicide Mecoprop (MCPP) in both deionised water (DW) and in surface water using different UV 2 54 intensities and concentrations of reagents. For an initial MCPP concentration of 10 mg/L, Photo-Fenton at neutral p H using 20 mg/L of H 2 O 2 and 20 mg/L Fe 2+ proved to be the most effective process in terms of degradation rate in both DW and surface water. When using an environmentally relevant concentration (1 μg/L) and neutral p H, if optimized, Photo-Fenton and UV/H 2 O 2 processes achieved the best degradation results.

  1. Advancing smoke-free public spaces: the challenge of water-pipe in the Canadian context

    Directory of Open Access Journals (Sweden)

    Lesley James

    2018-03-01

    In recent years, Canada has made great strides in securing further protection with regard to water-pipe tobacco. The battle is not yet over, and large communities within Canada continue to be without regulation. Cases from across Canada can serve as useful lessons to make progress in the rest of the country and in the global context.

  2. Advanced development and operating experience with a canned motor pump under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Dittmer, H.; Reymann, A.; Seibig, B.; Reinecker, H.

    1988-01-01

    At the research reactor FRG-2, Geesthacht, an irradiation device is in operation for testing defective light-water-reactor (LWR) test fuel rods under pressurized water reactor conditions (320 0 C, 160 bar). The requirements to the canned motor pump for cooling water circulation: medium: Demineralized water, operating temperature 320 0 C, operating pressure 155 bar, radiation field of the reactor, integration in the irradiation capsule, helium leak rate -6 mbar.dm 3 .s -1 , minimum working life 3000 hours, were high and caused difficulties in the acquisition of this component. First test runs with supplied pumps showed that the desired working life could not be achieved. The results of the development steps, the test runs, and the performance in service show that for our range of applications, the best combination of materials for the radial bearings is silicon-infiltrated SiC (8% free Si) against the same material. These bearings allowed a good working life for the pump to be achieved. (orig./GL) [de

  3. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-01-01

    Under Contract No. AC03-86SF16565, Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses design requirements. 36 refs., 57 figs., 56 tabs

  4. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    Science.gov (United States)

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  5. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    Science.gov (United States)

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Advances in the ROBLINKS project on long-range shallow-water robust acoustic communciation links

    NARCIS (Netherlands)

    Gijzen, M.B. van; Walree, P.A. van; Cano, D.; Passerieux, J-M.; Waldhorst, A.; Weber, R.

    2000-01-01

    Within the ROBLINKS project waveforms and algorithms have been developed to establish robust underwater acoustic communication links with high data rates in shallow water. To evaluate the signalling schemes, a wide range of experiments has been performed during a sea trial that has been held in May

  7. WAG (water-alternating-gas) as a method for petroleum advanced recovering

    International Nuclear Information System (INIS)

    Campozana, Fernando P.; Mato, Luiz F.

    2000-01-01

    Water-Alternating-Gas (WAG) injection is an oil recovery method that has been more and more applied worldwide. Oil recovery has been increased up to 20 % (over conventional waterflooding) in field-scale WAG projects. This additional recovery has been attributed to improved sweep and areal efficiency as well as microscopic displacement efficiency. Field results have shown that not only WAG method combines the advantages of gas and water injection but also leads to more stable fronts and better mobility control. Moreover, three-phase flow usually leads to a lower residual oil saturation when compared to that of two-phase flow. In this study, we show some theoretical aspects of WAG as well as some results obtained from numerical simulation of a pilot project to be implemented in Aracas field, Bahia, Brazil. (author)

  8. Press kit. EPR (European pressurized water reactor). The advanced nuclear reactor

    International Nuclear Information System (INIS)

    2004-10-01

    Nuclear energy, which provides a steady supply of electricity at low cost, has its rightful place in the energy mix of the 21 century, which puts the emphasis on sustainable development. In this framework, this document presents the advantages of the EPR (European Pressurized water Reactor). The EPR is the only third generation reactor under construction today. It is an evolutionary reactor that represents a new generation of pressurized water reactors with no break in the technology used for the most recent models. The EPR can guarantee a safe, inexpensive electricity supply, without adding to the greenhouse effect. It meets the requirements of the safety authorities and lives up to the expectations of electricity utilities. (A.L.B.)

  9. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  10. A Review: Advances on Absorption of Heavy Metals in the Waste Water by Biochar

    Science.gov (United States)

    Chen, Hao; Xie, Anbin; You, Shaohong

    2018-01-01

    Biochar as a new type of adsorbent, its physical and chemical characteristics and adsorption of heavy metal has been widely studied. Based on the current studies, the article reviewed the main characteristics of biochar, its influencing factors (preparation temperature, feed stocks, functional group et.) on adsorption of heavy metals in water and its mechanism of adsorption (ion exchange adsorption, complexation, precipitation sedimentation et.). Briefly summarize unresolved issues for potential applications of biochar in the future.

  11. Development of an advanced static feed water electrolysis module. [for spacecraft

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  12. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  13. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  14. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  15. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  16. Advanced light water reactor plants System 80+trademark design certification program. Annual progress report, October 1, 1994 - September 30, 1995

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems

  17. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  18. Effect of Components in Water on the Extraction of Herbal Medicine—Advanced Approach Using Multivariate Analysis—

    Science.gov (United States)

    Kanzaki, Yasushi

    Many kinds of water products have been offered commercially suggesting some strange efficacy beyond our scientific knowledge even now at which various advanced scientific and technological research have been highly promoted. However, it seems quite obvious that such a strange efficacy must be nonexistent. If such efficacy were really existing, it must be solved by some suitable scientific procedure. In this study, the extraction of paeoniflorin from paeoniae radix was examined by varying the kind of extracting water. Then, the result was analyzed using multivariate analysis where the effect on the extraction was assumed to be ascribed to the ionic species dissolved in each water examined. The dissolved species were analyzed by chemical and instrumental analyses. According to the multivariate analysis, the amount of extracted paeoniflorin (Y) was presented by the following regression equation. The result shows that pH, [Ca2+], and [HCO3 -] were significant parameters and the combination of Ca2+ and HCO3 - affected negatively on the extraction of paeoniflorin. Y=28.11-0.71 pH-0.0034[Ca2+]-0.93[HCO3 -] where [Ca2+] is the concentration of calcium ion and [HCO3 -] is that of bicarbonate ion.

  19. Advanced light water reactor plants System 80+trademark design certification program. Annual progress report, October 1, 1995 - September 30, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1996 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems

  20. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated

  1. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    Cahn, H.

    1990-01-01

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  2. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  3. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  4. Water Cycle Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis

    Science.gov (United States)

    Sivapalan, M.; Kumar, P.; Rhoads, B. L.; Wuebbles, D.

    2007-12-01

    As one ponders a changing environment -- climate, hydrology, land use, biogeochemical cycles, human dynamics -- there is an increasing need to understand the long term evolution of the linked component systems (e.g., climatic, hydrologic and ecological) through conceptual and quantitative models. The most challenging problem toward this goal is to understand and incorporate the rich dynamics of multiple linked systems with weak and strong coupling, and with many internal variables that exhibit multi-scale interactions. The richness of these interactions leads to fluctuations in one variable that in turn drive the dynamics of other related variables. The key question then becomes: Do these complexities lend an inherently stochastic character to the system, rendering deterministic prediction and modeling of limited value, or do they translate into constrained self- organization through which emerges order, and a limited group of "active" processes (that may change from time to time) that determine the general evolution of the system through a series of structured states with a distinct signature? This is a grand challenge for predictability and therefore requires community effort. The interconnectivity and hence synthesis of knowledge across the fields should be natural for hydrologists since the global water cycle and its regional manifestations directly correspond to the information flows for mass and energy transformations across the media, and across the disciplines. Further, the rich history of numerical, conceptual and stochastic modeling in hydrology provides the training and breadth for addressing the multi- scale, complex system dynamics challenges posed by the evolution question. Theory and observational analyses that necessitate stepping back from the existing knowledge paradigms and looking at the integrated system are needed. In this talk we will present the outlines of a new NSF-funded community effort that attempts to forge inter- disciplinary

  5. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  6. Microencapsulated fuel technology for commercial light water and advanced reactor application

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.

    2012-01-01

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  7. Factors affecting the water holding capacity of red meat products: a review of recent research advances.

    Science.gov (United States)

    Cheng, Qiaofen; Sun, Da-Wen

    2008-02-01

    The water holding capacity of meat products is a very important quality attribute which has an influence on product yield, which in turn has economic implications, but is also important in terms of eating quality. A number of pre-and post-mortem factors influence the water holding capacity (WHC) of meat. During the growth and development of meat animals, genotype and animal diet are important due to their direct influence on muscle characteristics. In the immediate pre-slaughter period, stresses on the animal such as fasting, and different stunning methods are likely to influence meat WHC. In the post-slaughter period chilling, ageing, injecting non-meat ingredients, as well as tumbling have important influences on WHC. Furthermore, cooking and cooling procedures for the final meat products can also affect the WHC of the product, in particular the cooking and the cooling methods, the heating and the cooling rate, the cooking temperature, and the endpoint temperature. This paper provides an overview of recent research on important intrinsic and extrinsic factors that affect the WHC of beef, pork, and lamb products, and reveals explanations and solutions to some of the critical problems related to WHC and product quality.

  8. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  10. From deep water to deep rock: MWD/LWD technology advancing

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-01-01

    Measurement-while-drilling (MWD) and logging-while-drilling (LWD) tools that help operators learn about the geological formations they drill while drilling them, are discussed. New MWD and LWD systems are quickly being developed for both offshore and onshore applications, even though both services are relatively expensive. For the offshore market a new seismic-while-drilling LWD tool has just been introduced by Schlumberger. The seismicVision tool acquires and transmits traditional borehole seismic data without interrupting drilling operations. Similarly, Baker-Atlas also introduced a new LWD system for onshore applications that uses advanced downhole sensing technology in a shorter, lighter, reliable instrument package to carry out well logging with accuracy and precision at up to twice the speed of conventional technology. Precision Drilling Inc. also has a new MWD system out, called HEL (hostile environment logging) which is designed to address shortcomings of currently available deepwater MWD systems. The HEL MWD is rated to operate at downhole pressures of up to 30,000 psi and temperatures of up to 180 degrees C. The entire system, including telemetry tools, environmental severity measurement sensors, and other sophisticated measuring tools are housed in one drill collar. photos.

  11. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  12. Advancing methods for research on household water insecurity: Studying entitlements and capabilities, socio-cultural dynamics, and political processes, institutions and governance.

    Science.gov (United States)

    Wutich, Amber; Budds, Jessica; Eichelberger, Laura; Geere, Jo; Harris, Leila; Horney, Jennifer; Jepson, Wendy; Norman, Emma; O'Reilly, Kathleen; Pearson, Amber; Shah, Sameer; Shinn, Jamie; Simpson, Karen; Staddon, Chad; Stoler, Justin; Teodoro, Manuel P; Young, Sera

    2017-11-01

    Household water insecurity has serious implications for the health, livelihoods and wellbeing of people around the world. Existing methods to assess the state of household water insecurity focus largely on water quality, quantity or adequacy, source or reliability, and affordability. These methods have significant advantages in terms of their simplicity and comparability, but are widely recognized to oversimplify and underestimate the global burden of household water insecurity. In contrast, a broader definition of household water insecurity should include entitlements and human capabilities, sociocultural dynamics, and political institutions and processes. This paper proposes a mix of qualitative and quantitative methods that can be widely adopted across cultural, geographic, and demographic contexts to assess hard-to-measure dimensions of household water insecurity. In doing so, it critically evaluates existing methods for assessing household water insecurity and suggests ways in which methodological innovations advance a broader definition of household water insecurity.

  13. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  14. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  15. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  16. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  17. Advances of study on thermal-hydraulic performance in tight-lattice rod bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Akira Ohnuki; Kazuyuki Takase; Masatoshi Kureta; Hiroyuki Yoshida; Hidesada Tamai; Wei Liu; Toru Nakatsuka; Hajime Akimoto

    2005-01-01

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) is started at Japan Atomic Energy Research Institute in collaboration with power company, reactor vendors, universities since 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the RMWR because of the tight-lattice configuration. In this paper, we will show the R and D plan and describe some advances on experimental and analytical studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility and the analytical one aims to develop a predictable technology for geometry effects such as gap between rods, grid spacer configuration etc. using advanced 3-D two-phase flow simulation methods. Steady-state and transient critical power experiments are conducted with the test facility (Gap width between rods: 1.0 mm) and the experimental data reveal the feasibility of RMWR. (authors)

  18. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    Science.gov (United States)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  19. Utility requirements for safety in the passive advanced light-water reactor

    International Nuclear Information System (INIS)

    Marston, T.U.; Layman, W.H.; Bockhold, G. Jr.

    1993-01-01

    The objective of the passive plant design is to use passive systems to replace all the active engineered safety systems presently used in light-water reactors. The benefits derived from such an approach to safety design are multiple. First, it is expected that a passive design approach will significantly simplify the overall plant design, including a reduction in the number of components, and reduce the operation and maintenance burden. Second, it is expected that the overall safety and reliability of the passive systems will be improved over active systems, which will result in extremely low risk to public health and safety. Third, challenges to the operating staff will be minimized during transient and emergency conditions, which will reduce the uncertainty associated with human behavior. Finally, it is expected that reliance on passive safety features will lead to a better understanding by the general public and recognition that a major improvement in public safety has been achieved

  20. Advanced fuel assemblies for economic and flexible operation of light water reactors

    International Nuclear Information System (INIS)

    Urban, P.; Bender, D.

    2001-01-01

    Increasing competition in the electricity market sets up a corresponding competition between the different electricity producing technologies. This makes further improvements in the economics of nuclear power generation a vital item for the future of nuclear energy. Though the costs for development, design and fabrication of fuel assemblies contribute only about 10% to the fuel cycle costs, the design and the performance of the fuel assemblies considerably influences total electricity generation cost. By the recent creation of Framatome ANP the nuclear activities of Framatome and Siemens were combined into one company. In the past, both had made considerable achievements in the development of fuel assemblies and related services supporting the goal of safe and economic electricity generation by light water reactors. The examples described in this paper cover former Siemens products and experience. In the future, our combined experience bases will be an ideal platform to offer further substantial improvements to our customers. (author)

  1. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  2. Application of advanced irradiation analysis methods to light water reactor pressure vessel test and surveillance programs

    International Nuclear Information System (INIS)

    Odette, R.; Dudey, N.; McElroy, W.; Wullaert, R.; Fabry, A.

    1977-01-01

    Inaccurate characterization and inappropriate application of neutron irradiation exposure variables contribute a substantial amount of uncertainty to embrittlement analysis of light water reactor pressure vessels. Damage analysis involves characterization of the irradiation environment (dosimetry), correlation of test and surveillance metallurgical and dosimetry data, and projection of such data to service conditions. Errors in available test and surveillance dosimetry data are estimated to contribute a factor of approximately 2 to the data scatter. Non-physical (empirical) correlation procedures and the need to extrapolate to the vessel may add further error. Substantial reductions in these uncertainties in future programs can be obtained from a more complete application of available damage analysis tools which have been developed for the fast reactor program. An approach to reducing embrittlement analysis errors is described, and specific examples of potential applications are given. The approach is based on damage analysis techniques validated and calibrated in benchmark environments

  3. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    Science.gov (United States)

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is f